linux/kernel/kmod.c
<<
>>
Prefs
   1/*
   2        kmod, the new module loader (replaces kerneld)
   3        Kirk Petersen
   4
   5        Reorganized not to be a daemon by Adam Richter, with guidance
   6        from Greg Zornetzer.
   7
   8        Modified to avoid chroot and file sharing problems.
   9        Mikael Pettersson
  10
  11        Limit the concurrent number of kmod modprobes to catch loops from
  12        "modprobe needs a service that is in a module".
  13        Keith Owens <kaos@ocs.com.au> December 1999
  14
  15        Unblock all signals when we exec a usermode process.
  16        Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
  17
  18        call_usermodehelper wait flag, and remove exec_usermodehelper.
  19        Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
  20*/
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/syscalls.h>
  24#include <linux/unistd.h>
  25#include <linux/kmod.h>
  26#include <linux/slab.h>
  27#include <linux/completion.h>
  28#include <linux/cred.h>
  29#include <linux/file.h>
  30#include <linux/fdtable.h>
  31#include <linux/workqueue.h>
  32#include <linux/security.h>
  33#include <linux/mount.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/resource.h>
  37#include <linux/notifier.h>
  38#include <linux/suspend.h>
  39#include <linux/rwsem.h>
  40#include <asm/uaccess.h>
  41
  42#include <trace/events/module.h>
  43
  44extern int max_threads;
  45
  46static struct workqueue_struct *khelper_wq;
  47
  48#define CAP_BSET        (void *)1
  49#define CAP_PI          (void *)2
  50
  51static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
  52static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
  53static DEFINE_SPINLOCK(umh_sysctl_lock);
  54static DECLARE_RWSEM(umhelper_sem);
  55
  56#ifdef CONFIG_MODULES
  57
  58/*
  59        modprobe_path is set via /proc/sys.
  60*/
  61char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
  62
  63static void free_modprobe_argv(struct subprocess_info *info)
  64{
  65        kfree(info->argv[3]); /* check call_modprobe() */
  66        kfree(info->argv);
  67}
  68
  69static int call_modprobe(char *module_name, int wait)
  70{
  71        static char *envp[] = {
  72                "HOME=/",
  73                "TERM=linux",
  74                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
  75                NULL
  76        };
  77
  78        char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
  79        if (!argv)
  80                goto out;
  81
  82        module_name = kstrdup(module_name, GFP_KERNEL);
  83        if (!module_name)
  84                goto free_argv;
  85
  86        argv[0] = modprobe_path;
  87        argv[1] = "-q";
  88        argv[2] = "--";
  89        argv[3] = module_name;  /* check free_modprobe_argv() */
  90        argv[4] = NULL;
  91
  92        return call_usermodehelper_fns(modprobe_path, argv, envp,
  93                wait | UMH_KILLABLE, NULL, free_modprobe_argv, NULL);
  94free_argv:
  95        kfree(argv);
  96out:
  97        return -ENOMEM;
  98}
  99
 100/**
 101 * __request_module - try to load a kernel module
 102 * @wait: wait (or not) for the operation to complete
 103 * @fmt: printf style format string for the name of the module
 104 * @...: arguments as specified in the format string
 105 *
 106 * Load a module using the user mode module loader. The function returns
 107 * zero on success or a negative errno code on failure. Note that a
 108 * successful module load does not mean the module did not then unload
 109 * and exit on an error of its own. Callers must check that the service
 110 * they requested is now available not blindly invoke it.
 111 *
 112 * If module auto-loading support is disabled then this function
 113 * becomes a no-operation.
 114 */
 115int __request_module(bool wait, const char *fmt, ...)
 116{
 117        va_list args;
 118        char module_name[MODULE_NAME_LEN];
 119        unsigned int max_modprobes;
 120        int ret;
 121        static atomic_t kmod_concurrent = ATOMIC_INIT(0);
 122#define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
 123        static int kmod_loop_msg;
 124
 125        va_start(args, fmt);
 126        ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
 127        va_end(args);
 128        if (ret >= MODULE_NAME_LEN)
 129                return -ENAMETOOLONG;
 130
 131        ret = security_kernel_module_request(module_name);
 132        if (ret)
 133                return ret;
 134
 135        /* If modprobe needs a service that is in a module, we get a recursive
 136         * loop.  Limit the number of running kmod threads to max_threads/2 or
 137         * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
 138         * would be to run the parents of this process, counting how many times
 139         * kmod was invoked.  That would mean accessing the internals of the
 140         * process tables to get the command line, proc_pid_cmdline is static
 141         * and it is not worth changing the proc code just to handle this case. 
 142         * KAO.
 143         *
 144         * "trace the ppid" is simple, but will fail if someone's
 145         * parent exits.  I think this is as good as it gets. --RR
 146         */
 147        max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
 148        atomic_inc(&kmod_concurrent);
 149        if (atomic_read(&kmod_concurrent) > max_modprobes) {
 150                /* We may be blaming an innocent here, but unlikely */
 151                if (kmod_loop_msg < 5) {
 152                        printk(KERN_ERR
 153                               "request_module: runaway loop modprobe %s\n",
 154                               module_name);
 155                        kmod_loop_msg++;
 156                }
 157                atomic_dec(&kmod_concurrent);
 158                return -ENOMEM;
 159        }
 160
 161        trace_module_request(module_name, wait, _RET_IP_);
 162
 163        ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
 164
 165        atomic_dec(&kmod_concurrent);
 166        return ret;
 167}
 168EXPORT_SYMBOL(__request_module);
 169#endif /* CONFIG_MODULES */
 170
 171/*
 172 * This is the task which runs the usermode application
 173 */
 174static int ____call_usermodehelper(void *data)
 175{
 176        struct subprocess_info *sub_info = data;
 177        struct cred *new;
 178        int retval;
 179
 180        spin_lock_irq(&current->sighand->siglock);
 181        flush_signal_handlers(current, 1);
 182        spin_unlock_irq(&current->sighand->siglock);
 183
 184        /* We can run anywhere, unlike our parent keventd(). */
 185        set_cpus_allowed_ptr(current, cpu_all_mask);
 186
 187        /*
 188         * Our parent is keventd, which runs with elevated scheduling priority.
 189         * Avoid propagating that into the userspace child.
 190         */
 191        set_user_nice(current, 0);
 192
 193        retval = -ENOMEM;
 194        new = prepare_kernel_cred(current);
 195        if (!new)
 196                goto fail;
 197
 198        spin_lock(&umh_sysctl_lock);
 199        new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
 200        new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
 201                                             new->cap_inheritable);
 202        spin_unlock(&umh_sysctl_lock);
 203
 204        if (sub_info->init) {
 205                retval = sub_info->init(sub_info, new);
 206                if (retval) {
 207                        abort_creds(new);
 208                        goto fail;
 209                }
 210        }
 211
 212        commit_creds(new);
 213
 214        retval = kernel_execve(sub_info->path,
 215                               (const char *const *)sub_info->argv,
 216                               (const char *const *)sub_info->envp);
 217
 218        /* Exec failed? */
 219fail:
 220        sub_info->retval = retval;
 221        return 0;
 222}
 223
 224void call_usermodehelper_freeinfo(struct subprocess_info *info)
 225{
 226        if (info->cleanup)
 227                (*info->cleanup)(info);
 228        kfree(info);
 229}
 230EXPORT_SYMBOL(call_usermodehelper_freeinfo);
 231
 232static void umh_complete(struct subprocess_info *sub_info)
 233{
 234        struct completion *comp = xchg(&sub_info->complete, NULL);
 235        /*
 236         * See call_usermodehelper_exec(). If xchg() returns NULL
 237         * we own sub_info, the UMH_KILLABLE caller has gone away.
 238         */
 239        if (comp)
 240                complete(comp);
 241        else
 242                call_usermodehelper_freeinfo(sub_info);
 243}
 244
 245/* Keventd can't block, but this (a child) can. */
 246static int wait_for_helper(void *data)
 247{
 248        struct subprocess_info *sub_info = data;
 249        pid_t pid;
 250
 251        /* If SIGCLD is ignored sys_wait4 won't populate the status. */
 252        spin_lock_irq(&current->sighand->siglock);
 253        current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
 254        spin_unlock_irq(&current->sighand->siglock);
 255
 256        pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
 257        if (pid < 0) {
 258                sub_info->retval = pid;
 259        } else {
 260                int ret = -ECHILD;
 261                /*
 262                 * Normally it is bogus to call wait4() from in-kernel because
 263                 * wait4() wants to write the exit code to a userspace address.
 264                 * But wait_for_helper() always runs as keventd, and put_user()
 265                 * to a kernel address works OK for kernel threads, due to their
 266                 * having an mm_segment_t which spans the entire address space.
 267                 *
 268                 * Thus the __user pointer cast is valid here.
 269                 */
 270                sys_wait4(pid, (int __user *)&ret, 0, NULL);
 271
 272                /*
 273                 * If ret is 0, either ____call_usermodehelper failed and the
 274                 * real error code is already in sub_info->retval or
 275                 * sub_info->retval is 0 anyway, so don't mess with it then.
 276                 */
 277                if (ret)
 278                        sub_info->retval = ret;
 279        }
 280
 281        umh_complete(sub_info);
 282        return 0;
 283}
 284
 285/* This is run by khelper thread  */
 286static void __call_usermodehelper(struct work_struct *work)
 287{
 288        struct subprocess_info *sub_info =
 289                container_of(work, struct subprocess_info, work);
 290        int wait = sub_info->wait & ~UMH_KILLABLE;
 291        pid_t pid;
 292
 293        /* CLONE_VFORK: wait until the usermode helper has execve'd
 294         * successfully We need the data structures to stay around
 295         * until that is done.  */
 296        if (wait == UMH_WAIT_PROC)
 297                pid = kernel_thread(wait_for_helper, sub_info,
 298                                    CLONE_FS | CLONE_FILES | SIGCHLD);
 299        else
 300                pid = kernel_thread(____call_usermodehelper, sub_info,
 301                                    CLONE_VFORK | SIGCHLD);
 302
 303        switch (wait) {
 304        case UMH_NO_WAIT:
 305                call_usermodehelper_freeinfo(sub_info);
 306                break;
 307
 308        case UMH_WAIT_PROC:
 309                if (pid > 0)
 310                        break;
 311                /* FALLTHROUGH */
 312        case UMH_WAIT_EXEC:
 313                if (pid < 0)
 314                        sub_info->retval = pid;
 315                umh_complete(sub_info);
 316        }
 317}
 318
 319/*
 320 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 321 * (used for preventing user land processes from being created after the user
 322 * land has been frozen during a system-wide hibernation or suspend operation).
 323 * Should always be manipulated under umhelper_sem acquired for write.
 324 */
 325static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
 326
 327/* Number of helpers running */
 328static atomic_t running_helpers = ATOMIC_INIT(0);
 329
 330/*
 331 * Wait queue head used by usermodehelper_disable() to wait for all running
 332 * helpers to finish.
 333 */
 334static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
 335
 336/*
 337 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
 338 * to become 'false'.
 339 */
 340static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
 341
 342/*
 343 * Time to wait for running_helpers to become zero before the setting of
 344 * usermodehelper_disabled in usermodehelper_disable() fails
 345 */
 346#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
 347
 348int usermodehelper_read_trylock(void)
 349{
 350        DEFINE_WAIT(wait);
 351        int ret = 0;
 352
 353        down_read(&umhelper_sem);
 354        for (;;) {
 355                prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
 356                                TASK_INTERRUPTIBLE);
 357                if (!usermodehelper_disabled)
 358                        break;
 359
 360                if (usermodehelper_disabled == UMH_DISABLED)
 361                        ret = -EAGAIN;
 362
 363                up_read(&umhelper_sem);
 364
 365                if (ret)
 366                        break;
 367
 368                schedule();
 369                try_to_freeze();
 370
 371                down_read(&umhelper_sem);
 372        }
 373        finish_wait(&usermodehelper_disabled_waitq, &wait);
 374        return ret;
 375}
 376EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
 377
 378long usermodehelper_read_lock_wait(long timeout)
 379{
 380        DEFINE_WAIT(wait);
 381
 382        if (timeout < 0)
 383                return -EINVAL;
 384
 385        down_read(&umhelper_sem);
 386        for (;;) {
 387                prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
 388                                TASK_UNINTERRUPTIBLE);
 389                if (!usermodehelper_disabled)
 390                        break;
 391
 392                up_read(&umhelper_sem);
 393
 394                timeout = schedule_timeout(timeout);
 395                if (!timeout)
 396                        break;
 397
 398                down_read(&umhelper_sem);
 399        }
 400        finish_wait(&usermodehelper_disabled_waitq, &wait);
 401        return timeout;
 402}
 403EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
 404
 405void usermodehelper_read_unlock(void)
 406{
 407        up_read(&umhelper_sem);
 408}
 409EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
 410
 411/**
 412 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
 413 * depth: New value to assign to usermodehelper_disabled.
 414 *
 415 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
 416 * writing) and wakeup tasks waiting for it to change.
 417 */
 418void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
 419{
 420        down_write(&umhelper_sem);
 421        usermodehelper_disabled = depth;
 422        wake_up(&usermodehelper_disabled_waitq);
 423        up_write(&umhelper_sem);
 424}
 425
 426/**
 427 * __usermodehelper_disable - Prevent new helpers from being started.
 428 * @depth: New value to assign to usermodehelper_disabled.
 429 *
 430 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
 431 */
 432int __usermodehelper_disable(enum umh_disable_depth depth)
 433{
 434        long retval;
 435
 436        if (!depth)
 437                return -EINVAL;
 438
 439        down_write(&umhelper_sem);
 440        usermodehelper_disabled = depth;
 441        up_write(&umhelper_sem);
 442
 443        /*
 444         * From now on call_usermodehelper_exec() won't start any new
 445         * helpers, so it is sufficient if running_helpers turns out to
 446         * be zero at one point (it may be increased later, but that
 447         * doesn't matter).
 448         */
 449        retval = wait_event_timeout(running_helpers_waitq,
 450                                        atomic_read(&running_helpers) == 0,
 451                                        RUNNING_HELPERS_TIMEOUT);
 452        if (retval)
 453                return 0;
 454
 455        __usermodehelper_set_disable_depth(UMH_ENABLED);
 456        return -EAGAIN;
 457}
 458
 459static void helper_lock(void)
 460{
 461        atomic_inc(&running_helpers);
 462        smp_mb__after_atomic_inc();
 463}
 464
 465static void helper_unlock(void)
 466{
 467        if (atomic_dec_and_test(&running_helpers))
 468                wake_up(&running_helpers_waitq);
 469}
 470
 471/**
 472 * call_usermodehelper_setup - prepare to call a usermode helper
 473 * @path: path to usermode executable
 474 * @argv: arg vector for process
 475 * @envp: environment for process
 476 * @gfp_mask: gfp mask for memory allocation
 477 *
 478 * Returns either %NULL on allocation failure, or a subprocess_info
 479 * structure.  This should be passed to call_usermodehelper_exec to
 480 * exec the process and free the structure.
 481 */
 482struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
 483                                                  char **envp, gfp_t gfp_mask)
 484{
 485        struct subprocess_info *sub_info;
 486        sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
 487        if (!sub_info)
 488                goto out;
 489
 490        INIT_WORK(&sub_info->work, __call_usermodehelper);
 491        sub_info->path = path;
 492        sub_info->argv = argv;
 493        sub_info->envp = envp;
 494  out:
 495        return sub_info;
 496}
 497EXPORT_SYMBOL(call_usermodehelper_setup);
 498
 499/**
 500 * call_usermodehelper_setfns - set a cleanup/init function
 501 * @info: a subprocess_info returned by call_usermodehelper_setup
 502 * @cleanup: a cleanup function
 503 * @init: an init function
 504 * @data: arbitrary context sensitive data
 505 *
 506 * The init function is used to customize the helper process prior to
 507 * exec.  A non-zero return code causes the process to error out, exit,
 508 * and return the failure to the calling process
 509 *
 510 * The cleanup function is just before ethe subprocess_info is about to
 511 * be freed.  This can be used for freeing the argv and envp.  The
 512 * Function must be runnable in either a process context or the
 513 * context in which call_usermodehelper_exec is called.
 514 */
 515void call_usermodehelper_setfns(struct subprocess_info *info,
 516                    int (*init)(struct subprocess_info *info, struct cred *new),
 517                    void (*cleanup)(struct subprocess_info *info),
 518                    void *data)
 519{
 520        info->cleanup = cleanup;
 521        info->init = init;
 522        info->data = data;
 523}
 524EXPORT_SYMBOL(call_usermodehelper_setfns);
 525
 526/**
 527 * call_usermodehelper_exec - start a usermode application
 528 * @sub_info: information about the subprocessa
 529 * @wait: wait for the application to finish and return status.
 530 *        when -1 don't wait at all, but you get no useful error back when
 531 *        the program couldn't be exec'ed. This makes it safe to call
 532 *        from interrupt context.
 533 *
 534 * Runs a user-space application.  The application is started
 535 * asynchronously if wait is not set, and runs as a child of keventd.
 536 * (ie. it runs with full root capabilities).
 537 */
 538int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
 539{
 540        DECLARE_COMPLETION_ONSTACK(done);
 541        int retval = 0;
 542
 543        helper_lock();
 544        if (sub_info->path[0] == '\0')
 545                goto out;
 546
 547        if (!khelper_wq || usermodehelper_disabled) {
 548                retval = -EBUSY;
 549                goto out;
 550        }
 551
 552        sub_info->complete = &done;
 553        sub_info->wait = wait;
 554
 555        queue_work(khelper_wq, &sub_info->work);
 556        if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
 557                goto unlock;
 558
 559        if (wait & UMH_KILLABLE) {
 560                retval = wait_for_completion_killable(&done);
 561                if (!retval)
 562                        goto wait_done;
 563
 564                /* umh_complete() will see NULL and free sub_info */
 565                if (xchg(&sub_info->complete, NULL))
 566                        goto unlock;
 567                /* fallthrough, umh_complete() was already called */
 568        }
 569
 570        wait_for_completion(&done);
 571wait_done:
 572        retval = sub_info->retval;
 573out:
 574        call_usermodehelper_freeinfo(sub_info);
 575unlock:
 576        helper_unlock();
 577        return retval;
 578}
 579EXPORT_SYMBOL(call_usermodehelper_exec);
 580
 581static int proc_cap_handler(struct ctl_table *table, int write,
 582                         void __user *buffer, size_t *lenp, loff_t *ppos)
 583{
 584        struct ctl_table t;
 585        unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
 586        kernel_cap_t new_cap;
 587        int err, i;
 588
 589        if (write && (!capable(CAP_SETPCAP) ||
 590                      !capable(CAP_SYS_MODULE)))
 591                return -EPERM;
 592
 593        /*
 594         * convert from the global kernel_cap_t to the ulong array to print to
 595         * userspace if this is a read.
 596         */
 597        spin_lock(&umh_sysctl_lock);
 598        for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
 599                if (table->data == CAP_BSET)
 600                        cap_array[i] = usermodehelper_bset.cap[i];
 601                else if (table->data == CAP_PI)
 602                        cap_array[i] = usermodehelper_inheritable.cap[i];
 603                else
 604                        BUG();
 605        }
 606        spin_unlock(&umh_sysctl_lock);
 607
 608        t = *table;
 609        t.data = &cap_array;
 610
 611        /*
 612         * actually read or write and array of ulongs from userspace.  Remember
 613         * these are least significant 32 bits first
 614         */
 615        err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
 616        if (err < 0)
 617                return err;
 618
 619        /*
 620         * convert from the sysctl array of ulongs to the kernel_cap_t
 621         * internal representation
 622         */
 623        for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
 624                new_cap.cap[i] = cap_array[i];
 625
 626        /*
 627         * Drop everything not in the new_cap (but don't add things)
 628         */
 629        spin_lock(&umh_sysctl_lock);
 630        if (write) {
 631                if (table->data == CAP_BSET)
 632                        usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
 633                if (table->data == CAP_PI)
 634                        usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
 635        }
 636        spin_unlock(&umh_sysctl_lock);
 637
 638        return 0;
 639}
 640
 641struct ctl_table usermodehelper_table[] = {
 642        {
 643                .procname       = "bset",
 644                .data           = CAP_BSET,
 645                .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
 646                .mode           = 0600,
 647                .proc_handler   = proc_cap_handler,
 648        },
 649        {
 650                .procname       = "inheritable",
 651                .data           = CAP_PI,
 652                .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
 653                .mode           = 0600,
 654                .proc_handler   = proc_cap_handler,
 655        },
 656        { }
 657};
 658
 659void __init usermodehelper_init(void)
 660{
 661        khelper_wq = create_singlethread_workqueue("khelper");
 662        BUG_ON(!khelper_wq);
 663}
 664