linux/mm/compaction.c
<<
>>
Prefs
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include "internal.h"
  18
  19#define CREATE_TRACE_POINTS
  20#include <trace/events/compaction.h>
  21
  22/*
  23 * compact_control is used to track pages being migrated and the free pages
  24 * they are being migrated to during memory compaction. The free_pfn starts
  25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
  26 * are moved to the end of a zone during a compaction run and the run
  27 * completes when free_pfn <= migrate_pfn
  28 */
  29struct compact_control {
  30        struct list_head freepages;     /* List of free pages to migrate to */
  31        struct list_head migratepages;  /* List of pages being migrated */
  32        unsigned long nr_freepages;     /* Number of isolated free pages */
  33        unsigned long nr_migratepages;  /* Number of pages to migrate */
  34        unsigned long free_pfn;         /* isolate_freepages search base */
  35        unsigned long migrate_pfn;      /* isolate_migratepages search base */
  36        bool sync;                      /* Synchronous migration */
  37
  38        int order;                      /* order a direct compactor needs */
  39        int migratetype;                /* MOVABLE, RECLAIMABLE etc */
  40        struct zone *zone;
  41};
  42
  43static unsigned long release_freepages(struct list_head *freelist)
  44{
  45        struct page *page, *next;
  46        unsigned long count = 0;
  47
  48        list_for_each_entry_safe(page, next, freelist, lru) {
  49                list_del(&page->lru);
  50                __free_page(page);
  51                count++;
  52        }
  53
  54        return count;
  55}
  56
  57/* Isolate free pages onto a private freelist. Must hold zone->lock */
  58static unsigned long isolate_freepages_block(struct zone *zone,
  59                                unsigned long blockpfn,
  60                                struct list_head *freelist)
  61{
  62        unsigned long zone_end_pfn, end_pfn;
  63        int nr_scanned = 0, total_isolated = 0;
  64        struct page *cursor;
  65
  66        /* Get the last PFN we should scan for free pages at */
  67        zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  68        end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  69
  70        /* Find the first usable PFN in the block to initialse page cursor */
  71        for (; blockpfn < end_pfn; blockpfn++) {
  72                if (pfn_valid_within(blockpfn))
  73                        break;
  74        }
  75        cursor = pfn_to_page(blockpfn);
  76
  77        /* Isolate free pages. This assumes the block is valid */
  78        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  79                int isolated, i;
  80                struct page *page = cursor;
  81
  82                if (!pfn_valid_within(blockpfn))
  83                        continue;
  84                nr_scanned++;
  85
  86                if (!PageBuddy(page))
  87                        continue;
  88
  89                /* Found a free page, break it into order-0 pages */
  90                isolated = split_free_page(page);
  91                total_isolated += isolated;
  92                for (i = 0; i < isolated; i++) {
  93                        list_add(&page->lru, freelist);
  94                        page++;
  95                }
  96
  97                /* If a page was split, advance to the end of it */
  98                if (isolated) {
  99                        blockpfn += isolated - 1;
 100                        cursor += isolated - 1;
 101                }
 102        }
 103
 104        trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 105        return total_isolated;
 106}
 107
 108/* Returns true if the page is within a block suitable for migration to */
 109static bool suitable_migration_target(struct page *page)
 110{
 111
 112        int migratetype = get_pageblock_migratetype(page);
 113
 114        /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
 115        if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
 116                return false;
 117
 118        /* If the page is a large free page, then allow migration */
 119        if (PageBuddy(page) && page_order(page) >= pageblock_order)
 120                return true;
 121
 122        /* If the block is MIGRATE_MOVABLE, allow migration */
 123        if (migratetype == MIGRATE_MOVABLE)
 124                return true;
 125
 126        /* Otherwise skip the block */
 127        return false;
 128}
 129
 130/*
 131 * Based on information in the current compact_control, find blocks
 132 * suitable for isolating free pages from and then isolate them.
 133 */
 134static void isolate_freepages(struct zone *zone,
 135                                struct compact_control *cc)
 136{
 137        struct page *page;
 138        unsigned long high_pfn, low_pfn, pfn;
 139        unsigned long flags;
 140        int nr_freepages = cc->nr_freepages;
 141        struct list_head *freelist = &cc->freepages;
 142
 143        /*
 144         * Initialise the free scanner. The starting point is where we last
 145         * scanned from (or the end of the zone if starting). The low point
 146         * is the end of the pageblock the migration scanner is using.
 147         */
 148        pfn = cc->free_pfn;
 149        low_pfn = cc->migrate_pfn + pageblock_nr_pages;
 150
 151        /*
 152         * Take care that if the migration scanner is at the end of the zone
 153         * that the free scanner does not accidentally move to the next zone
 154         * in the next isolation cycle.
 155         */
 156        high_pfn = min(low_pfn, pfn);
 157
 158        /*
 159         * Isolate free pages until enough are available to migrate the
 160         * pages on cc->migratepages. We stop searching if the migrate
 161         * and free page scanners meet or enough free pages are isolated.
 162         */
 163        for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
 164                                        pfn -= pageblock_nr_pages) {
 165                unsigned long isolated;
 166
 167                if (!pfn_valid(pfn))
 168                        continue;
 169
 170                /*
 171                 * Check for overlapping nodes/zones. It's possible on some
 172                 * configurations to have a setup like
 173                 * node0 node1 node0
 174                 * i.e. it's possible that all pages within a zones range of
 175                 * pages do not belong to a single zone.
 176                 */
 177                page = pfn_to_page(pfn);
 178                if (page_zone(page) != zone)
 179                        continue;
 180
 181                /* Check the block is suitable for migration */
 182                if (!suitable_migration_target(page))
 183                        continue;
 184
 185                /*
 186                 * Found a block suitable for isolating free pages from. Now
 187                 * we disabled interrupts, double check things are ok and
 188                 * isolate the pages. This is to minimise the time IRQs
 189                 * are disabled
 190                 */
 191                isolated = 0;
 192                spin_lock_irqsave(&zone->lock, flags);
 193                if (suitable_migration_target(page)) {
 194                        isolated = isolate_freepages_block(zone, pfn, freelist);
 195                        nr_freepages += isolated;
 196                }
 197                spin_unlock_irqrestore(&zone->lock, flags);
 198
 199                /*
 200                 * Record the highest PFN we isolated pages from. When next
 201                 * looking for free pages, the search will restart here as
 202                 * page migration may have returned some pages to the allocator
 203                 */
 204                if (isolated)
 205                        high_pfn = max(high_pfn, pfn);
 206        }
 207
 208        /* split_free_page does not map the pages */
 209        list_for_each_entry(page, freelist, lru) {
 210                arch_alloc_page(page, 0);
 211                kernel_map_pages(page, 1, 1);
 212        }
 213
 214        cc->free_pfn = high_pfn;
 215        cc->nr_freepages = nr_freepages;
 216}
 217
 218/* Update the number of anon and file isolated pages in the zone */
 219static void acct_isolated(struct zone *zone, struct compact_control *cc)
 220{
 221        struct page *page;
 222        unsigned int count[2] = { 0, };
 223
 224        list_for_each_entry(page, &cc->migratepages, lru)
 225                count[!!page_is_file_cache(page)]++;
 226
 227        __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 228        __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 229}
 230
 231/* Similar to reclaim, but different enough that they don't share logic */
 232static bool too_many_isolated(struct zone *zone)
 233{
 234        unsigned long active, inactive, isolated;
 235
 236        inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 237                                        zone_page_state(zone, NR_INACTIVE_ANON);
 238        active = zone_page_state(zone, NR_ACTIVE_FILE) +
 239                                        zone_page_state(zone, NR_ACTIVE_ANON);
 240        isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 241                                        zone_page_state(zone, NR_ISOLATED_ANON);
 242
 243        return isolated > (inactive + active) / 2;
 244}
 245
 246/* possible outcome of isolate_migratepages */
 247typedef enum {
 248        ISOLATE_ABORT,          /* Abort compaction now */
 249        ISOLATE_NONE,           /* No pages isolated, continue scanning */
 250        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
 251} isolate_migrate_t;
 252
 253/*
 254 * Isolate all pages that can be migrated from the block pointed to by
 255 * the migrate scanner within compact_control.
 256 */
 257static isolate_migrate_t isolate_migratepages(struct zone *zone,
 258                                        struct compact_control *cc)
 259{
 260        unsigned long low_pfn, end_pfn;
 261        unsigned long last_pageblock_nr = 0, pageblock_nr;
 262        unsigned long nr_scanned = 0, nr_isolated = 0;
 263        struct list_head *migratelist = &cc->migratepages;
 264        isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
 265
 266        /* Do not scan outside zone boundaries */
 267        low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 268
 269        /* Only scan within a pageblock boundary */
 270        end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
 271
 272        /* Do not cross the free scanner or scan within a memory hole */
 273        if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 274                cc->migrate_pfn = end_pfn;
 275                return ISOLATE_NONE;
 276        }
 277
 278        /*
 279         * Ensure that there are not too many pages isolated from the LRU
 280         * list by either parallel reclaimers or compaction. If there are,
 281         * delay for some time until fewer pages are isolated
 282         */
 283        while (unlikely(too_many_isolated(zone))) {
 284                /* async migration should just abort */
 285                if (!cc->sync)
 286                        return ISOLATE_ABORT;
 287
 288                congestion_wait(BLK_RW_ASYNC, HZ/10);
 289
 290                if (fatal_signal_pending(current))
 291                        return ISOLATE_ABORT;
 292        }
 293
 294        /* Time to isolate some pages for migration */
 295        cond_resched();
 296        spin_lock_irq(&zone->lru_lock);
 297        for (; low_pfn < end_pfn; low_pfn++) {
 298                struct page *page;
 299                bool locked = true;
 300
 301                /* give a chance to irqs before checking need_resched() */
 302                if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
 303                        spin_unlock_irq(&zone->lru_lock);
 304                        locked = false;
 305                }
 306                if (need_resched() || spin_is_contended(&zone->lru_lock)) {
 307                        if (locked)
 308                                spin_unlock_irq(&zone->lru_lock);
 309                        cond_resched();
 310                        spin_lock_irq(&zone->lru_lock);
 311                        if (fatal_signal_pending(current))
 312                                break;
 313                } else if (!locked)
 314                        spin_lock_irq(&zone->lru_lock);
 315
 316                /*
 317                 * migrate_pfn does not necessarily start aligned to a
 318                 * pageblock. Ensure that pfn_valid is called when moving
 319                 * into a new MAX_ORDER_NR_PAGES range in case of large
 320                 * memory holes within the zone
 321                 */
 322                if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 323                        if (!pfn_valid(low_pfn)) {
 324                                low_pfn += MAX_ORDER_NR_PAGES - 1;
 325                                continue;
 326                        }
 327                }
 328
 329                if (!pfn_valid_within(low_pfn))
 330                        continue;
 331                nr_scanned++;
 332
 333                /*
 334                 * Get the page and ensure the page is within the same zone.
 335                 * See the comment in isolate_freepages about overlapping
 336                 * nodes. It is deliberate that the new zone lock is not taken
 337                 * as memory compaction should not move pages between nodes.
 338                 */
 339                page = pfn_to_page(low_pfn);
 340                if (page_zone(page) != zone)
 341                        continue;
 342
 343                /* Skip if free */
 344                if (PageBuddy(page))
 345                        continue;
 346
 347                /*
 348                 * For async migration, also only scan in MOVABLE blocks. Async
 349                 * migration is optimistic to see if the minimum amount of work
 350                 * satisfies the allocation
 351                 */
 352                pageblock_nr = low_pfn >> pageblock_order;
 353                if (!cc->sync && last_pageblock_nr != pageblock_nr &&
 354                                get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
 355                        low_pfn += pageblock_nr_pages;
 356                        low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
 357                        last_pageblock_nr = pageblock_nr;
 358                        continue;
 359                }
 360
 361                if (!PageLRU(page))
 362                        continue;
 363
 364                /*
 365                 * PageLRU is set, and lru_lock excludes isolation,
 366                 * splitting and collapsing (collapsing has already
 367                 * happened if PageLRU is set).
 368                 */
 369                if (PageTransHuge(page)) {
 370                        low_pfn += (1 << compound_order(page)) - 1;
 371                        continue;
 372                }
 373
 374                if (!cc->sync)
 375                        mode |= ISOLATE_ASYNC_MIGRATE;
 376
 377                /* Try isolate the page */
 378                if (__isolate_lru_page(page, mode, 0) != 0)
 379                        continue;
 380
 381                VM_BUG_ON(PageTransCompound(page));
 382
 383                /* Successfully isolated */
 384                del_page_from_lru_list(zone, page, page_lru(page));
 385                list_add(&page->lru, migratelist);
 386                cc->nr_migratepages++;
 387                nr_isolated++;
 388
 389                /* Avoid isolating too much */
 390                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 391                        ++low_pfn;
 392                        break;
 393                }
 394        }
 395
 396        acct_isolated(zone, cc);
 397
 398        spin_unlock_irq(&zone->lru_lock);
 399        cc->migrate_pfn = low_pfn;
 400
 401        trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 402
 403        return ISOLATE_SUCCESS;
 404}
 405
 406/*
 407 * This is a migrate-callback that "allocates" freepages by taking pages
 408 * from the isolated freelists in the block we are migrating to.
 409 */
 410static struct page *compaction_alloc(struct page *migratepage,
 411                                        unsigned long data,
 412                                        int **result)
 413{
 414        struct compact_control *cc = (struct compact_control *)data;
 415        struct page *freepage;
 416
 417        /* Isolate free pages if necessary */
 418        if (list_empty(&cc->freepages)) {
 419                isolate_freepages(cc->zone, cc);
 420
 421                if (list_empty(&cc->freepages))
 422                        return NULL;
 423        }
 424
 425        freepage = list_entry(cc->freepages.next, struct page, lru);
 426        list_del(&freepage->lru);
 427        cc->nr_freepages--;
 428
 429        return freepage;
 430}
 431
 432/*
 433 * We cannot control nr_migratepages and nr_freepages fully when migration is
 434 * running as migrate_pages() has no knowledge of compact_control. When
 435 * migration is complete, we count the number of pages on the lists by hand.
 436 */
 437static void update_nr_listpages(struct compact_control *cc)
 438{
 439        int nr_migratepages = 0;
 440        int nr_freepages = 0;
 441        struct page *page;
 442
 443        list_for_each_entry(page, &cc->migratepages, lru)
 444                nr_migratepages++;
 445        list_for_each_entry(page, &cc->freepages, lru)
 446                nr_freepages++;
 447
 448        cc->nr_migratepages = nr_migratepages;
 449        cc->nr_freepages = nr_freepages;
 450}
 451
 452static int compact_finished(struct zone *zone,
 453                            struct compact_control *cc)
 454{
 455        unsigned int order;
 456        unsigned long watermark;
 457
 458        if (fatal_signal_pending(current))
 459                return COMPACT_PARTIAL;
 460
 461        /* Compaction run completes if the migrate and free scanner meet */
 462        if (cc->free_pfn <= cc->migrate_pfn)
 463                return COMPACT_COMPLETE;
 464
 465        /*
 466         * order == -1 is expected when compacting via
 467         * /proc/sys/vm/compact_memory
 468         */
 469        if (cc->order == -1)
 470                return COMPACT_CONTINUE;
 471
 472        /* Compaction run is not finished if the watermark is not met */
 473        watermark = low_wmark_pages(zone);
 474        watermark += (1 << cc->order);
 475
 476        if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 477                return COMPACT_CONTINUE;
 478
 479        /* Direct compactor: Is a suitable page free? */
 480        for (order = cc->order; order < MAX_ORDER; order++) {
 481                /* Job done if page is free of the right migratetype */
 482                if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
 483                        return COMPACT_PARTIAL;
 484
 485                /* Job done if allocation would set block type */
 486                if (order >= pageblock_order && zone->free_area[order].nr_free)
 487                        return COMPACT_PARTIAL;
 488        }
 489
 490        return COMPACT_CONTINUE;
 491}
 492
 493/*
 494 * compaction_suitable: Is this suitable to run compaction on this zone now?
 495 * Returns
 496 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 497 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 498 *   COMPACT_CONTINUE - If compaction should run now
 499 */
 500unsigned long compaction_suitable(struct zone *zone, int order)
 501{
 502        int fragindex;
 503        unsigned long watermark;
 504
 505        /*
 506         * order == -1 is expected when compacting via
 507         * /proc/sys/vm/compact_memory
 508         */
 509        if (order == -1)
 510                return COMPACT_CONTINUE;
 511
 512        /*
 513         * Watermarks for order-0 must be met for compaction. Note the 2UL.
 514         * This is because during migration, copies of pages need to be
 515         * allocated and for a short time, the footprint is higher
 516         */
 517        watermark = low_wmark_pages(zone) + (2UL << order);
 518        if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 519                return COMPACT_SKIPPED;
 520
 521        /*
 522         * fragmentation index determines if allocation failures are due to
 523         * low memory or external fragmentation
 524         *
 525         * index of -1000 implies allocations might succeed depending on
 526         * watermarks
 527         * index towards 0 implies failure is due to lack of memory
 528         * index towards 1000 implies failure is due to fragmentation
 529         *
 530         * Only compact if a failure would be due to fragmentation.
 531         */
 532        fragindex = fragmentation_index(zone, order);
 533        if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 534                return COMPACT_SKIPPED;
 535
 536        if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 537            0, 0))
 538                return COMPACT_PARTIAL;
 539
 540        return COMPACT_CONTINUE;
 541}
 542
 543static int compact_zone(struct zone *zone, struct compact_control *cc)
 544{
 545        int ret;
 546
 547        ret = compaction_suitable(zone, cc->order);
 548        switch (ret) {
 549        case COMPACT_PARTIAL:
 550        case COMPACT_SKIPPED:
 551                /* Compaction is likely to fail */
 552                return ret;
 553        case COMPACT_CONTINUE:
 554                /* Fall through to compaction */
 555                ;
 556        }
 557
 558        /* Setup to move all movable pages to the end of the zone */
 559        cc->migrate_pfn = zone->zone_start_pfn;
 560        cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
 561        cc->free_pfn &= ~(pageblock_nr_pages-1);
 562
 563        migrate_prep_local();
 564
 565        while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
 566                unsigned long nr_migrate, nr_remaining;
 567                int err;
 568
 569                switch (isolate_migratepages(zone, cc)) {
 570                case ISOLATE_ABORT:
 571                        ret = COMPACT_PARTIAL;
 572                        goto out;
 573                case ISOLATE_NONE:
 574                        continue;
 575                case ISOLATE_SUCCESS:
 576                        ;
 577                }
 578
 579                nr_migrate = cc->nr_migratepages;
 580                err = migrate_pages(&cc->migratepages, compaction_alloc,
 581                                (unsigned long)cc, false,
 582                                cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
 583                update_nr_listpages(cc);
 584                nr_remaining = cc->nr_migratepages;
 585
 586                count_vm_event(COMPACTBLOCKS);
 587                count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
 588                if (nr_remaining)
 589                        count_vm_events(COMPACTPAGEFAILED, nr_remaining);
 590                trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
 591                                                nr_remaining);
 592
 593                /* Release LRU pages not migrated */
 594                if (err) {
 595                        putback_lru_pages(&cc->migratepages);
 596                        cc->nr_migratepages = 0;
 597                }
 598
 599        }
 600
 601out:
 602        /* Release free pages and check accounting */
 603        cc->nr_freepages -= release_freepages(&cc->freepages);
 604        VM_BUG_ON(cc->nr_freepages != 0);
 605
 606        return ret;
 607}
 608
 609static unsigned long compact_zone_order(struct zone *zone,
 610                                 int order, gfp_t gfp_mask,
 611                                 bool sync)
 612{
 613        struct compact_control cc = {
 614                .nr_freepages = 0,
 615                .nr_migratepages = 0,
 616                .order = order,
 617                .migratetype = allocflags_to_migratetype(gfp_mask),
 618                .zone = zone,
 619                .sync = sync,
 620        };
 621        INIT_LIST_HEAD(&cc.freepages);
 622        INIT_LIST_HEAD(&cc.migratepages);
 623
 624        return compact_zone(zone, &cc);
 625}
 626
 627int sysctl_extfrag_threshold = 500;
 628
 629/**
 630 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 631 * @zonelist: The zonelist used for the current allocation
 632 * @order: The order of the current allocation
 633 * @gfp_mask: The GFP mask of the current allocation
 634 * @nodemask: The allowed nodes to allocate from
 635 * @sync: Whether migration is synchronous or not
 636 *
 637 * This is the main entry point for direct page compaction.
 638 */
 639unsigned long try_to_compact_pages(struct zonelist *zonelist,
 640                        int order, gfp_t gfp_mask, nodemask_t *nodemask,
 641                        bool sync)
 642{
 643        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
 644        int may_enter_fs = gfp_mask & __GFP_FS;
 645        int may_perform_io = gfp_mask & __GFP_IO;
 646        struct zoneref *z;
 647        struct zone *zone;
 648        int rc = COMPACT_SKIPPED;
 649
 650        /*
 651         * Check whether it is worth even starting compaction. The order check is
 652         * made because an assumption is made that the page allocator can satisfy
 653         * the "cheaper" orders without taking special steps
 654         */
 655        if (!order || !may_enter_fs || !may_perform_io)
 656                return rc;
 657
 658        count_vm_event(COMPACTSTALL);
 659
 660        /* Compact each zone in the list */
 661        for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
 662                                                                nodemask) {
 663                int status;
 664
 665                status = compact_zone_order(zone, order, gfp_mask, sync);
 666                rc = max(status, rc);
 667
 668                /* If a normal allocation would succeed, stop compacting */
 669                if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
 670                        break;
 671        }
 672
 673        return rc;
 674}
 675
 676
 677/* Compact all zones within a node */
 678static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
 679{
 680        int zoneid;
 681        struct zone *zone;
 682
 683        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 684
 685                zone = &pgdat->node_zones[zoneid];
 686                if (!populated_zone(zone))
 687                        continue;
 688
 689                cc->nr_freepages = 0;
 690                cc->nr_migratepages = 0;
 691                cc->zone = zone;
 692                INIT_LIST_HEAD(&cc->freepages);
 693                INIT_LIST_HEAD(&cc->migratepages);
 694
 695                if (cc->order == -1 || !compaction_deferred(zone, cc->order))
 696                        compact_zone(zone, cc);
 697
 698                if (cc->order > 0) {
 699                        int ok = zone_watermark_ok(zone, cc->order,
 700                                                low_wmark_pages(zone), 0, 0);
 701                        if (ok && cc->order > zone->compact_order_failed)
 702                                zone->compact_order_failed = cc->order + 1;
 703                        /* Currently async compaction is never deferred. */
 704                        else if (!ok && cc->sync)
 705                                defer_compaction(zone, cc->order);
 706                }
 707
 708                VM_BUG_ON(!list_empty(&cc->freepages));
 709                VM_BUG_ON(!list_empty(&cc->migratepages));
 710        }
 711
 712        return 0;
 713}
 714
 715int compact_pgdat(pg_data_t *pgdat, int order)
 716{
 717        struct compact_control cc = {
 718                .order = order,
 719                .sync = false,
 720        };
 721
 722        return __compact_pgdat(pgdat, &cc);
 723}
 724
 725static int compact_node(int nid)
 726{
 727        struct compact_control cc = {
 728                .order = -1,
 729                .sync = true,
 730        };
 731
 732        return __compact_pgdat(NODE_DATA(nid), &cc);
 733}
 734
 735/* Compact all nodes in the system */
 736static int compact_nodes(void)
 737{
 738        int nid;
 739
 740        /* Flush pending updates to the LRU lists */
 741        lru_add_drain_all();
 742
 743        for_each_online_node(nid)
 744                compact_node(nid);
 745
 746        return COMPACT_COMPLETE;
 747}
 748
 749/* The written value is actually unused, all memory is compacted */
 750int sysctl_compact_memory;
 751
 752/* This is the entry point for compacting all nodes via /proc/sys/vm */
 753int sysctl_compaction_handler(struct ctl_table *table, int write,
 754                        void __user *buffer, size_t *length, loff_t *ppos)
 755{
 756        if (write)
 757                return compact_nodes();
 758
 759        return 0;
 760}
 761
 762int sysctl_extfrag_handler(struct ctl_table *table, int write,
 763                        void __user *buffer, size_t *length, loff_t *ppos)
 764{
 765        proc_dointvec_minmax(table, write, buffer, length, ppos);
 766
 767        return 0;
 768}
 769
 770#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
 771ssize_t sysfs_compact_node(struct device *dev,
 772                        struct device_attribute *attr,
 773                        const char *buf, size_t count)
 774{
 775        int nid = dev->id;
 776
 777        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
 778                /* Flush pending updates to the LRU lists */
 779                lru_add_drain_all();
 780
 781                compact_node(nid);
 782        }
 783
 784        return count;
 785}
 786static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
 787
 788int compaction_register_node(struct node *node)
 789{
 790        return device_create_file(&node->dev, &dev_attr_compact);
 791}
 792
 793void compaction_unregister_node(struct node *node)
 794{
 795        return device_remove_file(&node->dev, &dev_attr_compact);
 796}
 797#endif /* CONFIG_SYSFS && CONFIG_NUMA */
 798