linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/cpuset.h>
  34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include "internal.h"
  38
  39/*
  40 * FIXME: remove all knowledge of the buffer layer from the core VM
  41 */
  42#include <linux/buffer_head.h> /* for try_to_free_buffers */
  43
  44#include <asm/mman.h>
  45
  46/*
  47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  48 * though.
  49 *
  50 * Shared mappings now work. 15.8.1995  Bruno.
  51 *
  52 * finished 'unifying' the page and buffer cache and SMP-threaded the
  53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  54 *
  55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  56 */
  57
  58/*
  59 * Lock ordering:
  60 *
  61 *  ->i_mmap_mutex              (truncate_pagecache)
  62 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  63 *      ->swap_lock             (exclusive_swap_page, others)
  64 *        ->mapping->tree_lock
  65 *
  66 *  ->i_mutex
  67 *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
  68 *
  69 *  ->mmap_sem
  70 *    ->i_mmap_mutex
  71 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  72 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  73 *
  74 *  ->mmap_sem
  75 *    ->lock_page               (access_process_vm)
  76 *
  77 *  ->i_mutex                   (generic_file_buffered_write)
  78 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  79 *
  80 *  bdi->wb.list_lock
  81 *    sb_lock                   (fs/fs-writeback.c)
  82 *    ->mapping->tree_lock      (__sync_single_inode)
  83 *
  84 *  ->i_mmap_mutex
  85 *    ->anon_vma.lock           (vma_adjust)
  86 *
  87 *  ->anon_vma.lock
  88 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  89 *
  90 *  ->page_table_lock or pte_lock
  91 *    ->swap_lock               (try_to_unmap_one)
  92 *    ->private_lock            (try_to_unmap_one)
  93 *    ->tree_lock               (try_to_unmap_one)
  94 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
  95 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
  96 *    ->private_lock            (page_remove_rmap->set_page_dirty)
  97 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
  98 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
  99 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 100 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 101 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 102 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 103 *
 104 * ->i_mmap_mutex
 105 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 106 */
 107
 108/*
 109 * Delete a page from the page cache and free it. Caller has to make
 110 * sure the page is locked and that nobody else uses it - or that usage
 111 * is safe.  The caller must hold the mapping's tree_lock.
 112 */
 113void __delete_from_page_cache(struct page *page)
 114{
 115        struct address_space *mapping = page->mapping;
 116
 117        /*
 118         * if we're uptodate, flush out into the cleancache, otherwise
 119         * invalidate any existing cleancache entries.  We can't leave
 120         * stale data around in the cleancache once our page is gone
 121         */
 122        if (PageUptodate(page) && PageMappedToDisk(page))
 123                cleancache_put_page(page);
 124        else
 125                cleancache_invalidate_page(mapping, page);
 126
 127        radix_tree_delete(&mapping->page_tree, page->index);
 128        page->mapping = NULL;
 129        /* Leave page->index set: truncation lookup relies upon it */
 130        mapping->nrpages--;
 131        __dec_zone_page_state(page, NR_FILE_PAGES);
 132        if (PageSwapBacked(page))
 133                __dec_zone_page_state(page, NR_SHMEM);
 134        BUG_ON(page_mapped(page));
 135
 136        /*
 137         * Some filesystems seem to re-dirty the page even after
 138         * the VM has canceled the dirty bit (eg ext3 journaling).
 139         *
 140         * Fix it up by doing a final dirty accounting check after
 141         * having removed the page entirely.
 142         */
 143        if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 144                dec_zone_page_state(page, NR_FILE_DIRTY);
 145                dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 146        }
 147}
 148
 149/**
 150 * delete_from_page_cache - delete page from page cache
 151 * @page: the page which the kernel is trying to remove from page cache
 152 *
 153 * This must be called only on pages that have been verified to be in the page
 154 * cache and locked.  It will never put the page into the free list, the caller
 155 * has a reference on the page.
 156 */
 157void delete_from_page_cache(struct page *page)
 158{
 159        struct address_space *mapping = page->mapping;
 160        void (*freepage)(struct page *);
 161
 162        BUG_ON(!PageLocked(page));
 163
 164        freepage = mapping->a_ops->freepage;
 165        spin_lock_irq(&mapping->tree_lock);
 166        __delete_from_page_cache(page);
 167        spin_unlock_irq(&mapping->tree_lock);
 168        mem_cgroup_uncharge_cache_page(page);
 169
 170        if (freepage)
 171                freepage(page);
 172        page_cache_release(page);
 173}
 174EXPORT_SYMBOL(delete_from_page_cache);
 175
 176static int sleep_on_page(void *word)
 177{
 178        io_schedule();
 179        return 0;
 180}
 181
 182static int sleep_on_page_killable(void *word)
 183{
 184        sleep_on_page(word);
 185        return fatal_signal_pending(current) ? -EINTR : 0;
 186}
 187
 188/**
 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 190 * @mapping:    address space structure to write
 191 * @start:      offset in bytes where the range starts
 192 * @end:        offset in bytes where the range ends (inclusive)
 193 * @sync_mode:  enable synchronous operation
 194 *
 195 * Start writeback against all of a mapping's dirty pages that lie
 196 * within the byte offsets <start, end> inclusive.
 197 *
 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 199 * opposed to a regular memory cleansing writeback.  The difference between
 200 * these two operations is that if a dirty page/buffer is encountered, it must
 201 * be waited upon, and not just skipped over.
 202 */
 203int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 204                                loff_t end, int sync_mode)
 205{
 206        int ret;
 207        struct writeback_control wbc = {
 208                .sync_mode = sync_mode,
 209                .nr_to_write = LONG_MAX,
 210                .range_start = start,
 211                .range_end = end,
 212        };
 213
 214        if (!mapping_cap_writeback_dirty(mapping))
 215                return 0;
 216
 217        ret = do_writepages(mapping, &wbc);
 218        return ret;
 219}
 220
 221static inline int __filemap_fdatawrite(struct address_space *mapping,
 222        int sync_mode)
 223{
 224        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 225}
 226
 227int filemap_fdatawrite(struct address_space *mapping)
 228{
 229        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 230}
 231EXPORT_SYMBOL(filemap_fdatawrite);
 232
 233int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 234                                loff_t end)
 235{
 236        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 237}
 238EXPORT_SYMBOL(filemap_fdatawrite_range);
 239
 240/**
 241 * filemap_flush - mostly a non-blocking flush
 242 * @mapping:    target address_space
 243 *
 244 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 245 * purposes - I/O may not be started against all dirty pages.
 246 */
 247int filemap_flush(struct address_space *mapping)
 248{
 249        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 250}
 251EXPORT_SYMBOL(filemap_flush);
 252
 253/**
 254 * filemap_fdatawait_range - wait for writeback to complete
 255 * @mapping:            address space structure to wait for
 256 * @start_byte:         offset in bytes where the range starts
 257 * @end_byte:           offset in bytes where the range ends (inclusive)
 258 *
 259 * Walk the list of under-writeback pages of the given address space
 260 * in the given range and wait for all of them.
 261 */
 262int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 263                            loff_t end_byte)
 264{
 265        pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 266        pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 267        struct pagevec pvec;
 268        int nr_pages;
 269        int ret = 0;
 270
 271        if (end_byte < start_byte)
 272                return 0;
 273
 274        pagevec_init(&pvec, 0);
 275        while ((index <= end) &&
 276                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 277                        PAGECACHE_TAG_WRITEBACK,
 278                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 279                unsigned i;
 280
 281                for (i = 0; i < nr_pages; i++) {
 282                        struct page *page = pvec.pages[i];
 283
 284                        /* until radix tree lookup accepts end_index */
 285                        if (page->index > end)
 286                                continue;
 287
 288                        wait_on_page_writeback(page);
 289                        if (TestClearPageError(page))
 290                                ret = -EIO;
 291                }
 292                pagevec_release(&pvec);
 293                cond_resched();
 294        }
 295
 296        /* Check for outstanding write errors */
 297        if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 298                ret = -ENOSPC;
 299        if (test_and_clear_bit(AS_EIO, &mapping->flags))
 300                ret = -EIO;
 301
 302        return ret;
 303}
 304EXPORT_SYMBOL(filemap_fdatawait_range);
 305
 306/**
 307 * filemap_fdatawait - wait for all under-writeback pages to complete
 308 * @mapping: address space structure to wait for
 309 *
 310 * Walk the list of under-writeback pages of the given address space
 311 * and wait for all of them.
 312 */
 313int filemap_fdatawait(struct address_space *mapping)
 314{
 315        loff_t i_size = i_size_read(mapping->host);
 316
 317        if (i_size == 0)
 318                return 0;
 319
 320        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 321}
 322EXPORT_SYMBOL(filemap_fdatawait);
 323
 324int filemap_write_and_wait(struct address_space *mapping)
 325{
 326        int err = 0;
 327
 328        if (mapping->nrpages) {
 329                err = filemap_fdatawrite(mapping);
 330                /*
 331                 * Even if the above returned error, the pages may be
 332                 * written partially (e.g. -ENOSPC), so we wait for it.
 333                 * But the -EIO is special case, it may indicate the worst
 334                 * thing (e.g. bug) happened, so we avoid waiting for it.
 335                 */
 336                if (err != -EIO) {
 337                        int err2 = filemap_fdatawait(mapping);
 338                        if (!err)
 339                                err = err2;
 340                }
 341        }
 342        return err;
 343}
 344EXPORT_SYMBOL(filemap_write_and_wait);
 345
 346/**
 347 * filemap_write_and_wait_range - write out & wait on a file range
 348 * @mapping:    the address_space for the pages
 349 * @lstart:     offset in bytes where the range starts
 350 * @lend:       offset in bytes where the range ends (inclusive)
 351 *
 352 * Write out and wait upon file offsets lstart->lend, inclusive.
 353 *
 354 * Note that `lend' is inclusive (describes the last byte to be written) so
 355 * that this function can be used to write to the very end-of-file (end = -1).
 356 */
 357int filemap_write_and_wait_range(struct address_space *mapping,
 358                                 loff_t lstart, loff_t lend)
 359{
 360        int err = 0;
 361
 362        if (mapping->nrpages) {
 363                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 364                                                 WB_SYNC_ALL);
 365                /* See comment of filemap_write_and_wait() */
 366                if (err != -EIO) {
 367                        int err2 = filemap_fdatawait_range(mapping,
 368                                                lstart, lend);
 369                        if (!err)
 370                                err = err2;
 371                }
 372        }
 373        return err;
 374}
 375EXPORT_SYMBOL(filemap_write_and_wait_range);
 376
 377/**
 378 * replace_page_cache_page - replace a pagecache page with a new one
 379 * @old:        page to be replaced
 380 * @new:        page to replace with
 381 * @gfp_mask:   allocation mode
 382 *
 383 * This function replaces a page in the pagecache with a new one.  On
 384 * success it acquires the pagecache reference for the new page and
 385 * drops it for the old page.  Both the old and new pages must be
 386 * locked.  This function does not add the new page to the LRU, the
 387 * caller must do that.
 388 *
 389 * The remove + add is atomic.  The only way this function can fail is
 390 * memory allocation failure.
 391 */
 392int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 393{
 394        int error;
 395
 396        VM_BUG_ON(!PageLocked(old));
 397        VM_BUG_ON(!PageLocked(new));
 398        VM_BUG_ON(new->mapping);
 399
 400        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 401        if (!error) {
 402                struct address_space *mapping = old->mapping;
 403                void (*freepage)(struct page *);
 404
 405                pgoff_t offset = old->index;
 406                freepage = mapping->a_ops->freepage;
 407
 408                page_cache_get(new);
 409                new->mapping = mapping;
 410                new->index = offset;
 411
 412                spin_lock_irq(&mapping->tree_lock);
 413                __delete_from_page_cache(old);
 414                error = radix_tree_insert(&mapping->page_tree, offset, new);
 415                BUG_ON(error);
 416                mapping->nrpages++;
 417                __inc_zone_page_state(new, NR_FILE_PAGES);
 418                if (PageSwapBacked(new))
 419                        __inc_zone_page_state(new, NR_SHMEM);
 420                spin_unlock_irq(&mapping->tree_lock);
 421                /* mem_cgroup codes must not be called under tree_lock */
 422                mem_cgroup_replace_page_cache(old, new);
 423                radix_tree_preload_end();
 424                if (freepage)
 425                        freepage(old);
 426                page_cache_release(old);
 427        }
 428
 429        return error;
 430}
 431EXPORT_SYMBOL_GPL(replace_page_cache_page);
 432
 433/**
 434 * add_to_page_cache_locked - add a locked page to the pagecache
 435 * @page:       page to add
 436 * @mapping:    the page's address_space
 437 * @offset:     page index
 438 * @gfp_mask:   page allocation mode
 439 *
 440 * This function is used to add a page to the pagecache. It must be locked.
 441 * This function does not add the page to the LRU.  The caller must do that.
 442 */
 443int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 444                pgoff_t offset, gfp_t gfp_mask)
 445{
 446        int error;
 447
 448        VM_BUG_ON(!PageLocked(page));
 449        VM_BUG_ON(PageSwapBacked(page));
 450
 451        error = mem_cgroup_cache_charge(page, current->mm,
 452                                        gfp_mask & GFP_RECLAIM_MASK);
 453        if (error)
 454                goto out;
 455
 456        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 457        if (error == 0) {
 458                page_cache_get(page);
 459                page->mapping = mapping;
 460                page->index = offset;
 461
 462                spin_lock_irq(&mapping->tree_lock);
 463                error = radix_tree_insert(&mapping->page_tree, offset, page);
 464                if (likely(!error)) {
 465                        mapping->nrpages++;
 466                        __inc_zone_page_state(page, NR_FILE_PAGES);
 467                        spin_unlock_irq(&mapping->tree_lock);
 468                } else {
 469                        page->mapping = NULL;
 470                        /* Leave page->index set: truncation relies upon it */
 471                        spin_unlock_irq(&mapping->tree_lock);
 472                        mem_cgroup_uncharge_cache_page(page);
 473                        page_cache_release(page);
 474                }
 475                radix_tree_preload_end();
 476        } else
 477                mem_cgroup_uncharge_cache_page(page);
 478out:
 479        return error;
 480}
 481EXPORT_SYMBOL(add_to_page_cache_locked);
 482
 483int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 484                                pgoff_t offset, gfp_t gfp_mask)
 485{
 486        int ret;
 487
 488        ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 489        if (ret == 0)
 490                lru_cache_add_file(page);
 491        return ret;
 492}
 493EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 494
 495#ifdef CONFIG_NUMA
 496struct page *__page_cache_alloc(gfp_t gfp)
 497{
 498        int n;
 499        struct page *page;
 500
 501        if (cpuset_do_page_mem_spread()) {
 502                unsigned int cpuset_mems_cookie;
 503                do {
 504                        cpuset_mems_cookie = get_mems_allowed();
 505                        n = cpuset_mem_spread_node();
 506                        page = alloc_pages_exact_node(n, gfp, 0);
 507                } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
 508
 509                return page;
 510        }
 511        return alloc_pages(gfp, 0);
 512}
 513EXPORT_SYMBOL(__page_cache_alloc);
 514#endif
 515
 516/*
 517 * In order to wait for pages to become available there must be
 518 * waitqueues associated with pages. By using a hash table of
 519 * waitqueues where the bucket discipline is to maintain all
 520 * waiters on the same queue and wake all when any of the pages
 521 * become available, and for the woken contexts to check to be
 522 * sure the appropriate page became available, this saves space
 523 * at a cost of "thundering herd" phenomena during rare hash
 524 * collisions.
 525 */
 526static wait_queue_head_t *page_waitqueue(struct page *page)
 527{
 528        const struct zone *zone = page_zone(page);
 529
 530        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 531}
 532
 533static inline void wake_up_page(struct page *page, int bit)
 534{
 535        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
 536}
 537
 538void wait_on_page_bit(struct page *page, int bit_nr)
 539{
 540        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 541
 542        if (test_bit(bit_nr, &page->flags))
 543                __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 544                                                        TASK_UNINTERRUPTIBLE);
 545}
 546EXPORT_SYMBOL(wait_on_page_bit);
 547
 548int wait_on_page_bit_killable(struct page *page, int bit_nr)
 549{
 550        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 551
 552        if (!test_bit(bit_nr, &page->flags))
 553                return 0;
 554
 555        return __wait_on_bit(page_waitqueue(page), &wait,
 556                             sleep_on_page_killable, TASK_KILLABLE);
 557}
 558
 559/**
 560 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 561 * @page: Page defining the wait queue of interest
 562 * @waiter: Waiter to add to the queue
 563 *
 564 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 565 */
 566void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 567{
 568        wait_queue_head_t *q = page_waitqueue(page);
 569        unsigned long flags;
 570
 571        spin_lock_irqsave(&q->lock, flags);
 572        __add_wait_queue(q, waiter);
 573        spin_unlock_irqrestore(&q->lock, flags);
 574}
 575EXPORT_SYMBOL_GPL(add_page_wait_queue);
 576
 577/**
 578 * unlock_page - unlock a locked page
 579 * @page: the page
 580 *
 581 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 582 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 583 * mechananism between PageLocked pages and PageWriteback pages is shared.
 584 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 585 *
 586 * The mb is necessary to enforce ordering between the clear_bit and the read
 587 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 588 */
 589void unlock_page(struct page *page)
 590{
 591        VM_BUG_ON(!PageLocked(page));
 592        clear_bit_unlock(PG_locked, &page->flags);
 593        smp_mb__after_clear_bit();
 594        wake_up_page(page, PG_locked);
 595}
 596EXPORT_SYMBOL(unlock_page);
 597
 598/**
 599 * end_page_writeback - end writeback against a page
 600 * @page: the page
 601 */
 602void end_page_writeback(struct page *page)
 603{
 604        if (TestClearPageReclaim(page))
 605                rotate_reclaimable_page(page);
 606
 607        if (!test_clear_page_writeback(page))
 608                BUG();
 609
 610        smp_mb__after_clear_bit();
 611        wake_up_page(page, PG_writeback);
 612}
 613EXPORT_SYMBOL(end_page_writeback);
 614
 615/**
 616 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 617 * @page: the page to lock
 618 */
 619void __lock_page(struct page *page)
 620{
 621        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 622
 623        __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 624                                                        TASK_UNINTERRUPTIBLE);
 625}
 626EXPORT_SYMBOL(__lock_page);
 627
 628int __lock_page_killable(struct page *page)
 629{
 630        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 631
 632        return __wait_on_bit_lock(page_waitqueue(page), &wait,
 633                                        sleep_on_page_killable, TASK_KILLABLE);
 634}
 635EXPORT_SYMBOL_GPL(__lock_page_killable);
 636
 637int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 638                         unsigned int flags)
 639{
 640        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 641                /*
 642                 * CAUTION! In this case, mmap_sem is not released
 643                 * even though return 0.
 644                 */
 645                if (flags & FAULT_FLAG_RETRY_NOWAIT)
 646                        return 0;
 647
 648                up_read(&mm->mmap_sem);
 649                if (flags & FAULT_FLAG_KILLABLE)
 650                        wait_on_page_locked_killable(page);
 651                else
 652                        wait_on_page_locked(page);
 653                return 0;
 654        } else {
 655                if (flags & FAULT_FLAG_KILLABLE) {
 656                        int ret;
 657
 658                        ret = __lock_page_killable(page);
 659                        if (ret) {
 660                                up_read(&mm->mmap_sem);
 661                                return 0;
 662                        }
 663                } else
 664                        __lock_page(page);
 665                return 1;
 666        }
 667}
 668
 669/**
 670 * find_get_page - find and get a page reference
 671 * @mapping: the address_space to search
 672 * @offset: the page index
 673 *
 674 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 675 * If yes, increment its refcount and return it; if no, return NULL.
 676 */
 677struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 678{
 679        void **pagep;
 680        struct page *page;
 681
 682        rcu_read_lock();
 683repeat:
 684        page = NULL;
 685        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 686        if (pagep) {
 687                page = radix_tree_deref_slot(pagep);
 688                if (unlikely(!page))
 689                        goto out;
 690                if (radix_tree_exception(page)) {
 691                        if (radix_tree_deref_retry(page))
 692                                goto repeat;
 693                        /*
 694                         * Otherwise, shmem/tmpfs must be storing a swap entry
 695                         * here as an exceptional entry: so return it without
 696                         * attempting to raise page count.
 697                         */
 698                        goto out;
 699                }
 700                if (!page_cache_get_speculative(page))
 701                        goto repeat;
 702
 703                /*
 704                 * Has the page moved?
 705                 * This is part of the lockless pagecache protocol. See
 706                 * include/linux/pagemap.h for details.
 707                 */
 708                if (unlikely(page != *pagep)) {
 709                        page_cache_release(page);
 710                        goto repeat;
 711                }
 712        }
 713out:
 714        rcu_read_unlock();
 715
 716        return page;
 717}
 718EXPORT_SYMBOL(find_get_page);
 719
 720/**
 721 * find_lock_page - locate, pin and lock a pagecache page
 722 * @mapping: the address_space to search
 723 * @offset: the page index
 724 *
 725 * Locates the desired pagecache page, locks it, increments its reference
 726 * count and returns its address.
 727 *
 728 * Returns zero if the page was not present. find_lock_page() may sleep.
 729 */
 730struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 731{
 732        struct page *page;
 733
 734repeat:
 735        page = find_get_page(mapping, offset);
 736        if (page && !radix_tree_exception(page)) {
 737                lock_page(page);
 738                /* Has the page been truncated? */
 739                if (unlikely(page->mapping != mapping)) {
 740                        unlock_page(page);
 741                        page_cache_release(page);
 742                        goto repeat;
 743                }
 744                VM_BUG_ON(page->index != offset);
 745        }
 746        return page;
 747}
 748EXPORT_SYMBOL(find_lock_page);
 749
 750/**
 751 * find_or_create_page - locate or add a pagecache page
 752 * @mapping: the page's address_space
 753 * @index: the page's index into the mapping
 754 * @gfp_mask: page allocation mode
 755 *
 756 * Locates a page in the pagecache.  If the page is not present, a new page
 757 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 758 * LRU list.  The returned page is locked and has its reference count
 759 * incremented.
 760 *
 761 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 762 * allocation!
 763 *
 764 * find_or_create_page() returns the desired page's address, or zero on
 765 * memory exhaustion.
 766 */
 767struct page *find_or_create_page(struct address_space *mapping,
 768                pgoff_t index, gfp_t gfp_mask)
 769{
 770        struct page *page;
 771        int err;
 772repeat:
 773        page = find_lock_page(mapping, index);
 774        if (!page) {
 775                page = __page_cache_alloc(gfp_mask);
 776                if (!page)
 777                        return NULL;
 778                /*
 779                 * We want a regular kernel memory (not highmem or DMA etc)
 780                 * allocation for the radix tree nodes, but we need to honour
 781                 * the context-specific requirements the caller has asked for.
 782                 * GFP_RECLAIM_MASK collects those requirements.
 783                 */
 784                err = add_to_page_cache_lru(page, mapping, index,
 785                        (gfp_mask & GFP_RECLAIM_MASK));
 786                if (unlikely(err)) {
 787                        page_cache_release(page);
 788                        page = NULL;
 789                        if (err == -EEXIST)
 790                                goto repeat;
 791                }
 792        }
 793        return page;
 794}
 795EXPORT_SYMBOL(find_or_create_page);
 796
 797/**
 798 * find_get_pages - gang pagecache lookup
 799 * @mapping:    The address_space to search
 800 * @start:      The starting page index
 801 * @nr_pages:   The maximum number of pages
 802 * @pages:      Where the resulting pages are placed
 803 *
 804 * find_get_pages() will search for and return a group of up to
 805 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 806 * find_get_pages() takes a reference against the returned pages.
 807 *
 808 * The search returns a group of mapping-contiguous pages with ascending
 809 * indexes.  There may be holes in the indices due to not-present pages.
 810 *
 811 * find_get_pages() returns the number of pages which were found.
 812 */
 813unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 814                            unsigned int nr_pages, struct page **pages)
 815{
 816        struct radix_tree_iter iter;
 817        void **slot;
 818        unsigned ret = 0;
 819
 820        if (unlikely(!nr_pages))
 821                return 0;
 822
 823        rcu_read_lock();
 824restart:
 825        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 826                struct page *page;
 827repeat:
 828                page = radix_tree_deref_slot(slot);
 829                if (unlikely(!page))
 830                        continue;
 831
 832                if (radix_tree_exception(page)) {
 833                        if (radix_tree_deref_retry(page)) {
 834                                /*
 835                                 * Transient condition which can only trigger
 836                                 * when entry at index 0 moves out of or back
 837                                 * to root: none yet gotten, safe to restart.
 838                                 */
 839                                WARN_ON(iter.index);
 840                                goto restart;
 841                        }
 842                        /*
 843                         * Otherwise, shmem/tmpfs must be storing a swap entry
 844                         * here as an exceptional entry: so skip over it -
 845                         * we only reach this from invalidate_mapping_pages().
 846                         */
 847                        continue;
 848                }
 849
 850                if (!page_cache_get_speculative(page))
 851                        goto repeat;
 852
 853                /* Has the page moved? */
 854                if (unlikely(page != *slot)) {
 855                        page_cache_release(page);
 856                        goto repeat;
 857                }
 858
 859                pages[ret] = page;
 860                if (++ret == nr_pages)
 861                        break;
 862        }
 863
 864        rcu_read_unlock();
 865        return ret;
 866}
 867
 868/**
 869 * find_get_pages_contig - gang contiguous pagecache lookup
 870 * @mapping:    The address_space to search
 871 * @index:      The starting page index
 872 * @nr_pages:   The maximum number of pages
 873 * @pages:      Where the resulting pages are placed
 874 *
 875 * find_get_pages_contig() works exactly like find_get_pages(), except
 876 * that the returned number of pages are guaranteed to be contiguous.
 877 *
 878 * find_get_pages_contig() returns the number of pages which were found.
 879 */
 880unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 881                               unsigned int nr_pages, struct page **pages)
 882{
 883        struct radix_tree_iter iter;
 884        void **slot;
 885        unsigned int ret = 0;
 886
 887        if (unlikely(!nr_pages))
 888                return 0;
 889
 890        rcu_read_lock();
 891restart:
 892        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
 893                struct page *page;
 894repeat:
 895                page = radix_tree_deref_slot(slot);
 896                /* The hole, there no reason to continue */
 897                if (unlikely(!page))
 898                        break;
 899
 900                if (radix_tree_exception(page)) {
 901                        if (radix_tree_deref_retry(page)) {
 902                                /*
 903                                 * Transient condition which can only trigger
 904                                 * when entry at index 0 moves out of or back
 905                                 * to root: none yet gotten, safe to restart.
 906                                 */
 907                                goto restart;
 908                        }
 909                        /*
 910                         * Otherwise, shmem/tmpfs must be storing a swap entry
 911                         * here as an exceptional entry: so stop looking for
 912                         * contiguous pages.
 913                         */
 914                        break;
 915                }
 916
 917                if (!page_cache_get_speculative(page))
 918                        goto repeat;
 919
 920                /* Has the page moved? */
 921                if (unlikely(page != *slot)) {
 922                        page_cache_release(page);
 923                        goto repeat;
 924                }
 925
 926                /*
 927                 * must check mapping and index after taking the ref.
 928                 * otherwise we can get both false positives and false
 929                 * negatives, which is just confusing to the caller.
 930                 */
 931                if (page->mapping == NULL || page->index != iter.index) {
 932                        page_cache_release(page);
 933                        break;
 934                }
 935
 936                pages[ret] = page;
 937                if (++ret == nr_pages)
 938                        break;
 939        }
 940        rcu_read_unlock();
 941        return ret;
 942}
 943EXPORT_SYMBOL(find_get_pages_contig);
 944
 945/**
 946 * find_get_pages_tag - find and return pages that match @tag
 947 * @mapping:    the address_space to search
 948 * @index:      the starting page index
 949 * @tag:        the tag index
 950 * @nr_pages:   the maximum number of pages
 951 * @pages:      where the resulting pages are placed
 952 *
 953 * Like find_get_pages, except we only return pages which are tagged with
 954 * @tag.   We update @index to index the next page for the traversal.
 955 */
 956unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 957                        int tag, unsigned int nr_pages, struct page **pages)
 958{
 959        struct radix_tree_iter iter;
 960        void **slot;
 961        unsigned ret = 0;
 962
 963        if (unlikely(!nr_pages))
 964                return 0;
 965
 966        rcu_read_lock();
 967restart:
 968        radix_tree_for_each_tagged(slot, &mapping->page_tree,
 969                                   &iter, *index, tag) {
 970                struct page *page;
 971repeat:
 972                page = radix_tree_deref_slot(slot);
 973                if (unlikely(!page))
 974                        continue;
 975
 976                if (radix_tree_exception(page)) {
 977                        if (radix_tree_deref_retry(page)) {
 978                                /*
 979                                 * Transient condition which can only trigger
 980                                 * when entry at index 0 moves out of or back
 981                                 * to root: none yet gotten, safe to restart.
 982                                 */
 983                                goto restart;
 984                        }
 985                        /*
 986                         * This function is never used on a shmem/tmpfs
 987                         * mapping, so a swap entry won't be found here.
 988                         */
 989                        BUG();
 990                }
 991
 992                if (!page_cache_get_speculative(page))
 993                        goto repeat;
 994
 995                /* Has the page moved? */
 996                if (unlikely(page != *slot)) {
 997                        page_cache_release(page);
 998                        goto repeat;
 999                }
1000
1001                pages[ret] = page;
1002                if (++ret == nr_pages)
1003                        break;
1004        }
1005
1006        rcu_read_unlock();
1007
1008        if (ret)
1009                *index = pages[ret - 1]->index + 1;
1010
1011        return ret;
1012}
1013EXPORT_SYMBOL(find_get_pages_tag);
1014
1015/**
1016 * grab_cache_page_nowait - returns locked page at given index in given cache
1017 * @mapping: target address_space
1018 * @index: the page index
1019 *
1020 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1021 * This is intended for speculative data generators, where the data can
1022 * be regenerated if the page couldn't be grabbed.  This routine should
1023 * be safe to call while holding the lock for another page.
1024 *
1025 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1026 * and deadlock against the caller's locked page.
1027 */
1028struct page *
1029grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1030{
1031        struct page *page = find_get_page(mapping, index);
1032
1033        if (page) {
1034                if (trylock_page(page))
1035                        return page;
1036                page_cache_release(page);
1037                return NULL;
1038        }
1039        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1040        if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1041                page_cache_release(page);
1042                page = NULL;
1043        }
1044        return page;
1045}
1046EXPORT_SYMBOL(grab_cache_page_nowait);
1047
1048/*
1049 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1050 * a _large_ part of the i/o request. Imagine the worst scenario:
1051 *
1052 *      ---R__________________________________________B__________
1053 *         ^ reading here                             ^ bad block(assume 4k)
1054 *
1055 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1056 * => failing the whole request => read(R) => read(R+1) =>
1057 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1058 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1059 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1060 *
1061 * It is going insane. Fix it by quickly scaling down the readahead size.
1062 */
1063static void shrink_readahead_size_eio(struct file *filp,
1064                                        struct file_ra_state *ra)
1065{
1066        ra->ra_pages /= 4;
1067}
1068
1069/**
1070 * do_generic_file_read - generic file read routine
1071 * @filp:       the file to read
1072 * @ppos:       current file position
1073 * @desc:       read_descriptor
1074 * @actor:      read method
1075 *
1076 * This is a generic file read routine, and uses the
1077 * mapping->a_ops->readpage() function for the actual low-level stuff.
1078 *
1079 * This is really ugly. But the goto's actually try to clarify some
1080 * of the logic when it comes to error handling etc.
1081 */
1082static void do_generic_file_read(struct file *filp, loff_t *ppos,
1083                read_descriptor_t *desc, read_actor_t actor)
1084{
1085        struct address_space *mapping = filp->f_mapping;
1086        struct inode *inode = mapping->host;
1087        struct file_ra_state *ra = &filp->f_ra;
1088        pgoff_t index;
1089        pgoff_t last_index;
1090        pgoff_t prev_index;
1091        unsigned long offset;      /* offset into pagecache page */
1092        unsigned int prev_offset;
1093        int error;
1094
1095        index = *ppos >> PAGE_CACHE_SHIFT;
1096        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1097        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1098        last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1099        offset = *ppos & ~PAGE_CACHE_MASK;
1100
1101        for (;;) {
1102                struct page *page;
1103                pgoff_t end_index;
1104                loff_t isize;
1105                unsigned long nr, ret;
1106
1107                cond_resched();
1108find_page:
1109                page = find_get_page(mapping, index);
1110                if (!page) {
1111                        page_cache_sync_readahead(mapping,
1112                                        ra, filp,
1113                                        index, last_index - index);
1114                        page = find_get_page(mapping, index);
1115                        if (unlikely(page == NULL))
1116                                goto no_cached_page;
1117                }
1118                if (PageReadahead(page)) {
1119                        page_cache_async_readahead(mapping,
1120                                        ra, filp, page,
1121                                        index, last_index - index);
1122                }
1123                if (!PageUptodate(page)) {
1124                        if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1125                                        !mapping->a_ops->is_partially_uptodate)
1126                                goto page_not_up_to_date;
1127                        if (!trylock_page(page))
1128                                goto page_not_up_to_date;
1129                        /* Did it get truncated before we got the lock? */
1130                        if (!page->mapping)
1131                                goto page_not_up_to_date_locked;
1132                        if (!mapping->a_ops->is_partially_uptodate(page,
1133                                                                desc, offset))
1134                                goto page_not_up_to_date_locked;
1135                        unlock_page(page);
1136                }
1137page_ok:
1138                /*
1139                 * i_size must be checked after we know the page is Uptodate.
1140                 *
1141                 * Checking i_size after the check allows us to calculate
1142                 * the correct value for "nr", which means the zero-filled
1143                 * part of the page is not copied back to userspace (unless
1144                 * another truncate extends the file - this is desired though).
1145                 */
1146
1147                isize = i_size_read(inode);
1148                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1149                if (unlikely(!isize || index > end_index)) {
1150                        page_cache_release(page);
1151                        goto out;
1152                }
1153
1154                /* nr is the maximum number of bytes to copy from this page */
1155                nr = PAGE_CACHE_SIZE;
1156                if (index == end_index) {
1157                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1158                        if (nr <= offset) {
1159                                page_cache_release(page);
1160                                goto out;
1161                        }
1162                }
1163                nr = nr - offset;
1164
1165                /* If users can be writing to this page using arbitrary
1166                 * virtual addresses, take care about potential aliasing
1167                 * before reading the page on the kernel side.
1168                 */
1169                if (mapping_writably_mapped(mapping))
1170                        flush_dcache_page(page);
1171
1172                /*
1173                 * When a sequential read accesses a page several times,
1174                 * only mark it as accessed the first time.
1175                 */
1176                if (prev_index != index || offset != prev_offset)
1177                        mark_page_accessed(page);
1178                prev_index = index;
1179
1180                /*
1181                 * Ok, we have the page, and it's up-to-date, so
1182                 * now we can copy it to user space...
1183                 *
1184                 * The actor routine returns how many bytes were actually used..
1185                 * NOTE! This may not be the same as how much of a user buffer
1186                 * we filled up (we may be padding etc), so we can only update
1187                 * "pos" here (the actor routine has to update the user buffer
1188                 * pointers and the remaining count).
1189                 */
1190                ret = actor(desc, page, offset, nr);
1191                offset += ret;
1192                index += offset >> PAGE_CACHE_SHIFT;
1193                offset &= ~PAGE_CACHE_MASK;
1194                prev_offset = offset;
1195
1196                page_cache_release(page);
1197                if (ret == nr && desc->count)
1198                        continue;
1199                goto out;
1200
1201page_not_up_to_date:
1202                /* Get exclusive access to the page ... */
1203                error = lock_page_killable(page);
1204                if (unlikely(error))
1205                        goto readpage_error;
1206
1207page_not_up_to_date_locked:
1208                /* Did it get truncated before we got the lock? */
1209                if (!page->mapping) {
1210                        unlock_page(page);
1211                        page_cache_release(page);
1212                        continue;
1213                }
1214
1215                /* Did somebody else fill it already? */
1216                if (PageUptodate(page)) {
1217                        unlock_page(page);
1218                        goto page_ok;
1219                }
1220
1221readpage:
1222                /*
1223                 * A previous I/O error may have been due to temporary
1224                 * failures, eg. multipath errors.
1225                 * PG_error will be set again if readpage fails.
1226                 */
1227                ClearPageError(page);
1228                /* Start the actual read. The read will unlock the page. */
1229                error = mapping->a_ops->readpage(filp, page);
1230
1231                if (unlikely(error)) {
1232                        if (error == AOP_TRUNCATED_PAGE) {
1233                                page_cache_release(page);
1234                                goto find_page;
1235                        }
1236                        goto readpage_error;
1237                }
1238
1239                if (!PageUptodate(page)) {
1240                        error = lock_page_killable(page);
1241                        if (unlikely(error))
1242                                goto readpage_error;
1243                        if (!PageUptodate(page)) {
1244                                if (page->mapping == NULL) {
1245                                        /*
1246                                         * invalidate_mapping_pages got it
1247                                         */
1248                                        unlock_page(page);
1249                                        page_cache_release(page);
1250                                        goto find_page;
1251                                }
1252                                unlock_page(page);
1253                                shrink_readahead_size_eio(filp, ra);
1254                                error = -EIO;
1255                                goto readpage_error;
1256                        }
1257                        unlock_page(page);
1258                }
1259
1260                goto page_ok;
1261
1262readpage_error:
1263                /* UHHUH! A synchronous read error occurred. Report it */
1264                desc->error = error;
1265                page_cache_release(page);
1266                goto out;
1267
1268no_cached_page:
1269                /*
1270                 * Ok, it wasn't cached, so we need to create a new
1271                 * page..
1272                 */
1273                page = page_cache_alloc_cold(mapping);
1274                if (!page) {
1275                        desc->error = -ENOMEM;
1276                        goto out;
1277                }
1278                error = add_to_page_cache_lru(page, mapping,
1279                                                index, GFP_KERNEL);
1280                if (error) {
1281                        page_cache_release(page);
1282                        if (error == -EEXIST)
1283                                goto find_page;
1284                        desc->error = error;
1285                        goto out;
1286                }
1287                goto readpage;
1288        }
1289
1290out:
1291        ra->prev_pos = prev_index;
1292        ra->prev_pos <<= PAGE_CACHE_SHIFT;
1293        ra->prev_pos |= prev_offset;
1294
1295        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1296        file_accessed(filp);
1297}
1298
1299int file_read_actor(read_descriptor_t *desc, struct page *page,
1300                        unsigned long offset, unsigned long size)
1301{
1302        char *kaddr;
1303        unsigned long left, count = desc->count;
1304
1305        if (size > count)
1306                size = count;
1307
1308        /*
1309         * Faults on the destination of a read are common, so do it before
1310         * taking the kmap.
1311         */
1312        if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1313                kaddr = kmap_atomic(page);
1314                left = __copy_to_user_inatomic(desc->arg.buf,
1315                                                kaddr + offset, size);
1316                kunmap_atomic(kaddr);
1317                if (left == 0)
1318                        goto success;
1319        }
1320
1321        /* Do it the slow way */
1322        kaddr = kmap(page);
1323        left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1324        kunmap(page);
1325
1326        if (left) {
1327                size -= left;
1328                desc->error = -EFAULT;
1329        }
1330success:
1331        desc->count = count - size;
1332        desc->written += size;
1333        desc->arg.buf += size;
1334        return size;
1335}
1336
1337/*
1338 * Performs necessary checks before doing a write
1339 * @iov:        io vector request
1340 * @nr_segs:    number of segments in the iovec
1341 * @count:      number of bytes to write
1342 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1343 *
1344 * Adjust number of segments and amount of bytes to write (nr_segs should be
1345 * properly initialized first). Returns appropriate error code that caller
1346 * should return or zero in case that write should be allowed.
1347 */
1348int generic_segment_checks(const struct iovec *iov,
1349                        unsigned long *nr_segs, size_t *count, int access_flags)
1350{
1351        unsigned long   seg;
1352        size_t cnt = 0;
1353        for (seg = 0; seg < *nr_segs; seg++) {
1354                const struct iovec *iv = &iov[seg];
1355
1356                /*
1357                 * If any segment has a negative length, or the cumulative
1358                 * length ever wraps negative then return -EINVAL.
1359                 */
1360                cnt += iv->iov_len;
1361                if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1362                        return -EINVAL;
1363                if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1364                        continue;
1365                if (seg == 0)
1366                        return -EFAULT;
1367                *nr_segs = seg;
1368                cnt -= iv->iov_len;     /* This segment is no good */
1369                break;
1370        }
1371        *count = cnt;
1372        return 0;
1373}
1374EXPORT_SYMBOL(generic_segment_checks);
1375
1376/**
1377 * generic_file_aio_read - generic filesystem read routine
1378 * @iocb:       kernel I/O control block
1379 * @iov:        io vector request
1380 * @nr_segs:    number of segments in the iovec
1381 * @pos:        current file position
1382 *
1383 * This is the "read()" routine for all filesystems
1384 * that can use the page cache directly.
1385 */
1386ssize_t
1387generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1388                unsigned long nr_segs, loff_t pos)
1389{
1390        struct file *filp = iocb->ki_filp;
1391        ssize_t retval;
1392        unsigned long seg = 0;
1393        size_t count;
1394        loff_t *ppos = &iocb->ki_pos;
1395
1396        count = 0;
1397        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1398        if (retval)
1399                return retval;
1400
1401        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1402        if (filp->f_flags & O_DIRECT) {
1403                loff_t size;
1404                struct address_space *mapping;
1405                struct inode *inode;
1406
1407                mapping = filp->f_mapping;
1408                inode = mapping->host;
1409                if (!count)
1410                        goto out; /* skip atime */
1411                size = i_size_read(inode);
1412                if (pos < size) {
1413                        retval = filemap_write_and_wait_range(mapping, pos,
1414                                        pos + iov_length(iov, nr_segs) - 1);
1415                        if (!retval) {
1416                                struct blk_plug plug;
1417
1418                                blk_start_plug(&plug);
1419                                retval = mapping->a_ops->direct_IO(READ, iocb,
1420                                                        iov, pos, nr_segs);
1421                                blk_finish_plug(&plug);
1422                        }
1423                        if (retval > 0) {
1424                                *ppos = pos + retval;
1425                                count -= retval;
1426                        }
1427
1428                        /*
1429                         * Btrfs can have a short DIO read if we encounter
1430                         * compressed extents, so if there was an error, or if
1431                         * we've already read everything we wanted to, or if
1432                         * there was a short read because we hit EOF, go ahead
1433                         * and return.  Otherwise fallthrough to buffered io for
1434                         * the rest of the read.
1435                         */
1436                        if (retval < 0 || !count || *ppos >= size) {
1437                                file_accessed(filp);
1438                                goto out;
1439                        }
1440                }
1441        }
1442
1443        count = retval;
1444        for (seg = 0; seg < nr_segs; seg++) {
1445                read_descriptor_t desc;
1446                loff_t offset = 0;
1447
1448                /*
1449                 * If we did a short DIO read we need to skip the section of the
1450                 * iov that we've already read data into.
1451                 */
1452                if (count) {
1453                        if (count > iov[seg].iov_len) {
1454                                count -= iov[seg].iov_len;
1455                                continue;
1456                        }
1457                        offset = count;
1458                        count = 0;
1459                }
1460
1461                desc.written = 0;
1462                desc.arg.buf = iov[seg].iov_base + offset;
1463                desc.count = iov[seg].iov_len - offset;
1464                if (desc.count == 0)
1465                        continue;
1466                desc.error = 0;
1467                do_generic_file_read(filp, ppos, &desc, file_read_actor);
1468                retval += desc.written;
1469                if (desc.error) {
1470                        retval = retval ?: desc.error;
1471                        break;
1472                }
1473                if (desc.count > 0)
1474                        break;
1475        }
1476out:
1477        return retval;
1478}
1479EXPORT_SYMBOL(generic_file_aio_read);
1480
1481static ssize_t
1482do_readahead(struct address_space *mapping, struct file *filp,
1483             pgoff_t index, unsigned long nr)
1484{
1485        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1486                return -EINVAL;
1487
1488        force_page_cache_readahead(mapping, filp, index, nr);
1489        return 0;
1490}
1491
1492SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1493{
1494        ssize_t ret;
1495        struct file *file;
1496
1497        ret = -EBADF;
1498        file = fget(fd);
1499        if (file) {
1500                if (file->f_mode & FMODE_READ) {
1501                        struct address_space *mapping = file->f_mapping;
1502                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1503                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1504                        unsigned long len = end - start + 1;
1505                        ret = do_readahead(mapping, file, start, len);
1506                }
1507                fput(file);
1508        }
1509        return ret;
1510}
1511#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1512asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1513{
1514        return SYSC_readahead((int) fd, offset, (size_t) count);
1515}
1516SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1517#endif
1518
1519#ifdef CONFIG_MMU
1520/**
1521 * page_cache_read - adds requested page to the page cache if not already there
1522 * @file:       file to read
1523 * @offset:     page index
1524 *
1525 * This adds the requested page to the page cache if it isn't already there,
1526 * and schedules an I/O to read in its contents from disk.
1527 */
1528static int page_cache_read(struct file *file, pgoff_t offset)
1529{
1530        struct address_space *mapping = file->f_mapping;
1531        struct page *page; 
1532        int ret;
1533
1534        do {
1535                page = page_cache_alloc_cold(mapping);
1536                if (!page)
1537                        return -ENOMEM;
1538
1539                ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1540                if (ret == 0)
1541                        ret = mapping->a_ops->readpage(file, page);
1542                else if (ret == -EEXIST)
1543                        ret = 0; /* losing race to add is OK */
1544
1545                page_cache_release(page);
1546
1547        } while (ret == AOP_TRUNCATED_PAGE);
1548                
1549        return ret;
1550}
1551
1552#define MMAP_LOTSAMISS  (100)
1553
1554/*
1555 * Synchronous readahead happens when we don't even find
1556 * a page in the page cache at all.
1557 */
1558static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1559                                   struct file_ra_state *ra,
1560                                   struct file *file,
1561                                   pgoff_t offset)
1562{
1563        unsigned long ra_pages;
1564        struct address_space *mapping = file->f_mapping;
1565
1566        /* If we don't want any read-ahead, don't bother */
1567        if (VM_RandomReadHint(vma))
1568                return;
1569        if (!ra->ra_pages)
1570                return;
1571
1572        if (VM_SequentialReadHint(vma)) {
1573                page_cache_sync_readahead(mapping, ra, file, offset,
1574                                          ra->ra_pages);
1575                return;
1576        }
1577
1578        /* Avoid banging the cache line if not needed */
1579        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1580                ra->mmap_miss++;
1581
1582        /*
1583         * Do we miss much more than hit in this file? If so,
1584         * stop bothering with read-ahead. It will only hurt.
1585         */
1586        if (ra->mmap_miss > MMAP_LOTSAMISS)
1587                return;
1588
1589        /*
1590         * mmap read-around
1591         */
1592        ra_pages = max_sane_readahead(ra->ra_pages);
1593        ra->start = max_t(long, 0, offset - ra_pages / 2);
1594        ra->size = ra_pages;
1595        ra->async_size = ra_pages / 4;
1596        ra_submit(ra, mapping, file);
1597}
1598
1599/*
1600 * Asynchronous readahead happens when we find the page and PG_readahead,
1601 * so we want to possibly extend the readahead further..
1602 */
1603static void do_async_mmap_readahead(struct vm_area_struct *vma,
1604                                    struct file_ra_state *ra,
1605                                    struct file *file,
1606                                    struct page *page,
1607                                    pgoff_t offset)
1608{
1609        struct address_space *mapping = file->f_mapping;
1610
1611        /* If we don't want any read-ahead, don't bother */
1612        if (VM_RandomReadHint(vma))
1613                return;
1614        if (ra->mmap_miss > 0)
1615                ra->mmap_miss--;
1616        if (PageReadahead(page))
1617                page_cache_async_readahead(mapping, ra, file,
1618                                           page, offset, ra->ra_pages);
1619}
1620
1621/**
1622 * filemap_fault - read in file data for page fault handling
1623 * @vma:        vma in which the fault was taken
1624 * @vmf:        struct vm_fault containing details of the fault
1625 *
1626 * filemap_fault() is invoked via the vma operations vector for a
1627 * mapped memory region to read in file data during a page fault.
1628 *
1629 * The goto's are kind of ugly, but this streamlines the normal case of having
1630 * it in the page cache, and handles the special cases reasonably without
1631 * having a lot of duplicated code.
1632 */
1633int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634{
1635        int error;
1636        struct file *file = vma->vm_file;
1637        struct address_space *mapping = file->f_mapping;
1638        struct file_ra_state *ra = &file->f_ra;
1639        struct inode *inode = mapping->host;
1640        pgoff_t offset = vmf->pgoff;
1641        struct page *page;
1642        pgoff_t size;
1643        int ret = 0;
1644
1645        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1646        if (offset >= size)
1647                return VM_FAULT_SIGBUS;
1648
1649        /*
1650         * Do we have something in the page cache already?
1651         */
1652        page = find_get_page(mapping, offset);
1653        if (likely(page)) {
1654                /*
1655                 * We found the page, so try async readahead before
1656                 * waiting for the lock.
1657                 */
1658                do_async_mmap_readahead(vma, ra, file, page, offset);
1659        } else {
1660                /* No page in the page cache at all */
1661                do_sync_mmap_readahead(vma, ra, file, offset);
1662                count_vm_event(PGMAJFAULT);
1663                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1664                ret = VM_FAULT_MAJOR;
1665retry_find:
1666                page = find_get_page(mapping, offset);
1667                if (!page)
1668                        goto no_cached_page;
1669        }
1670
1671        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1672                page_cache_release(page);
1673                return ret | VM_FAULT_RETRY;
1674        }
1675
1676        /* Did it get truncated? */
1677        if (unlikely(page->mapping != mapping)) {
1678                unlock_page(page);
1679                put_page(page);
1680                goto retry_find;
1681        }
1682        VM_BUG_ON(page->index != offset);
1683
1684        /*
1685         * We have a locked page in the page cache, now we need to check
1686         * that it's up-to-date. If not, it is going to be due to an error.
1687         */
1688        if (unlikely(!PageUptodate(page)))
1689                goto page_not_uptodate;
1690
1691        /*
1692         * Found the page and have a reference on it.
1693         * We must recheck i_size under page lock.
1694         */
1695        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1696        if (unlikely(offset >= size)) {
1697                unlock_page(page);
1698                page_cache_release(page);
1699                return VM_FAULT_SIGBUS;
1700        }
1701
1702        vmf->page = page;
1703        return ret | VM_FAULT_LOCKED;
1704
1705no_cached_page:
1706        /*
1707         * We're only likely to ever get here if MADV_RANDOM is in
1708         * effect.
1709         */
1710        error = page_cache_read(file, offset);
1711
1712        /*
1713         * The page we want has now been added to the page cache.
1714         * In the unlikely event that someone removed it in the
1715         * meantime, we'll just come back here and read it again.
1716         */
1717        if (error >= 0)
1718                goto retry_find;
1719
1720        /*
1721         * An error return from page_cache_read can result if the
1722         * system is low on memory, or a problem occurs while trying
1723         * to schedule I/O.
1724         */
1725        if (error == -ENOMEM)
1726                return VM_FAULT_OOM;
1727        return VM_FAULT_SIGBUS;
1728
1729page_not_uptodate:
1730        /*
1731         * Umm, take care of errors if the page isn't up-to-date.
1732         * Try to re-read it _once_. We do this synchronously,
1733         * because there really aren't any performance issues here
1734         * and we need to check for errors.
1735         */
1736        ClearPageError(page);
1737        error = mapping->a_ops->readpage(file, page);
1738        if (!error) {
1739                wait_on_page_locked(page);
1740                if (!PageUptodate(page))
1741                        error = -EIO;
1742        }
1743        page_cache_release(page);
1744
1745        if (!error || error == AOP_TRUNCATED_PAGE)
1746                goto retry_find;
1747
1748        /* Things didn't work out. Return zero to tell the mm layer so. */
1749        shrink_readahead_size_eio(file, ra);
1750        return VM_FAULT_SIGBUS;
1751}
1752EXPORT_SYMBOL(filemap_fault);
1753
1754const struct vm_operations_struct generic_file_vm_ops = {
1755        .fault          = filemap_fault,
1756};
1757
1758/* This is used for a general mmap of a disk file */
1759
1760int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1761{
1762        struct address_space *mapping = file->f_mapping;
1763
1764        if (!mapping->a_ops->readpage)
1765                return -ENOEXEC;
1766        file_accessed(file);
1767        vma->vm_ops = &generic_file_vm_ops;
1768        vma->vm_flags |= VM_CAN_NONLINEAR;
1769        return 0;
1770}
1771
1772/*
1773 * This is for filesystems which do not implement ->writepage.
1774 */
1775int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1776{
1777        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1778                return -EINVAL;
1779        return generic_file_mmap(file, vma);
1780}
1781#else
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784        return -ENOSYS;
1785}
1786int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1787{
1788        return -ENOSYS;
1789}
1790#endif /* CONFIG_MMU */
1791
1792EXPORT_SYMBOL(generic_file_mmap);
1793EXPORT_SYMBOL(generic_file_readonly_mmap);
1794
1795static struct page *__read_cache_page(struct address_space *mapping,
1796                                pgoff_t index,
1797                                int (*filler)(void *, struct page *),
1798                                void *data,
1799                                gfp_t gfp)
1800{
1801        struct page *page;
1802        int err;
1803repeat:
1804        page = find_get_page(mapping, index);
1805        if (!page) {
1806                page = __page_cache_alloc(gfp | __GFP_COLD);
1807                if (!page)
1808                        return ERR_PTR(-ENOMEM);
1809                err = add_to_page_cache_lru(page, mapping, index, gfp);
1810                if (unlikely(err)) {
1811                        page_cache_release(page);
1812                        if (err == -EEXIST)
1813                                goto repeat;
1814                        /* Presumably ENOMEM for radix tree node */
1815                        return ERR_PTR(err);
1816                }
1817                err = filler(data, page);
1818                if (err < 0) {
1819                        page_cache_release(page);
1820                        page = ERR_PTR(err);
1821                }
1822        }
1823        return page;
1824}
1825
1826static struct page *do_read_cache_page(struct address_space *mapping,
1827                                pgoff_t index,
1828                                int (*filler)(void *, struct page *),
1829                                void *data,
1830                                gfp_t gfp)
1831
1832{
1833        struct page *page;
1834        int err;
1835
1836retry:
1837        page = __read_cache_page(mapping, index, filler, data, gfp);
1838        if (IS_ERR(page))
1839                return page;
1840        if (PageUptodate(page))
1841                goto out;
1842
1843        lock_page(page);
1844        if (!page->mapping) {
1845                unlock_page(page);
1846                page_cache_release(page);
1847                goto retry;
1848        }
1849        if (PageUptodate(page)) {
1850                unlock_page(page);
1851                goto out;
1852        }
1853        err = filler(data, page);
1854        if (err < 0) {
1855                page_cache_release(page);
1856                return ERR_PTR(err);
1857        }
1858out:
1859        mark_page_accessed(page);
1860        return page;
1861}
1862
1863/**
1864 * read_cache_page_async - read into page cache, fill it if needed
1865 * @mapping:    the page's address_space
1866 * @index:      the page index
1867 * @filler:     function to perform the read
1868 * @data:       first arg to filler(data, page) function, often left as NULL
1869 *
1870 * Same as read_cache_page, but don't wait for page to become unlocked
1871 * after submitting it to the filler.
1872 *
1873 * Read into the page cache. If a page already exists, and PageUptodate() is
1874 * not set, try to fill the page but don't wait for it to become unlocked.
1875 *
1876 * If the page does not get brought uptodate, return -EIO.
1877 */
1878struct page *read_cache_page_async(struct address_space *mapping,
1879                                pgoff_t index,
1880                                int (*filler)(void *, struct page *),
1881                                void *data)
1882{
1883        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1884}
1885EXPORT_SYMBOL(read_cache_page_async);
1886
1887static struct page *wait_on_page_read(struct page *page)
1888{
1889        if (!IS_ERR(page)) {
1890                wait_on_page_locked(page);
1891                if (!PageUptodate(page)) {
1892                        page_cache_release(page);
1893                        page = ERR_PTR(-EIO);
1894                }
1895        }
1896        return page;
1897}
1898
1899/**
1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901 * @mapping:    the page's address_space
1902 * @index:      the page index
1903 * @gfp:        the page allocator flags to use if allocating
1904 *
1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1906 * any new page allocations done using the specified allocation flags.
1907 *
1908 * If the page does not get brought uptodate, return -EIO.
1909 */
1910struct page *read_cache_page_gfp(struct address_space *mapping,
1911                                pgoff_t index,
1912                                gfp_t gfp)
1913{
1914        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1915
1916        return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1917}
1918EXPORT_SYMBOL(read_cache_page_gfp);
1919
1920/**
1921 * read_cache_page - read into page cache, fill it if needed
1922 * @mapping:    the page's address_space
1923 * @index:      the page index
1924 * @filler:     function to perform the read
1925 * @data:       first arg to filler(data, page) function, often left as NULL
1926 *
1927 * Read into the page cache. If a page already exists, and PageUptodate() is
1928 * not set, try to fill the page then wait for it to become unlocked.
1929 *
1930 * If the page does not get brought uptodate, return -EIO.
1931 */
1932struct page *read_cache_page(struct address_space *mapping,
1933                                pgoff_t index,
1934                                int (*filler)(void *, struct page *),
1935                                void *data)
1936{
1937        return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1938}
1939EXPORT_SYMBOL(read_cache_page);
1940
1941/*
1942 * The logic we want is
1943 *
1944 *      if suid or (sgid and xgrp)
1945 *              remove privs
1946 */
1947int should_remove_suid(struct dentry *dentry)
1948{
1949        umode_t mode = dentry->d_inode->i_mode;
1950        int kill = 0;
1951
1952        /* suid always must be killed */
1953        if (unlikely(mode & S_ISUID))
1954                kill = ATTR_KILL_SUID;
1955
1956        /*
1957         * sgid without any exec bits is just a mandatory locking mark; leave
1958         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1959         */
1960        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1961                kill |= ATTR_KILL_SGID;
1962
1963        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1964                return kill;
1965
1966        return 0;
1967}
1968EXPORT_SYMBOL(should_remove_suid);
1969
1970static int __remove_suid(struct dentry *dentry, int kill)
1971{
1972        struct iattr newattrs;
1973
1974        newattrs.ia_valid = ATTR_FORCE | kill;
1975        return notify_change(dentry, &newattrs);
1976}
1977
1978int file_remove_suid(struct file *file)
1979{
1980        struct dentry *dentry = file->f_path.dentry;
1981        struct inode *inode = dentry->d_inode;
1982        int killsuid;
1983        int killpriv;
1984        int error = 0;
1985
1986        /* Fast path for nothing security related */
1987        if (IS_NOSEC(inode))
1988                return 0;
1989
1990        killsuid = should_remove_suid(dentry);
1991        killpriv = security_inode_need_killpriv(dentry);
1992
1993        if (killpriv < 0)
1994                return killpriv;
1995        if (killpriv)
1996                error = security_inode_killpriv(dentry);
1997        if (!error && killsuid)
1998                error = __remove_suid(dentry, killsuid);
1999        if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2000                inode->i_flags |= S_NOSEC;
2001
2002        return error;
2003}
2004EXPORT_SYMBOL(file_remove_suid);
2005
2006static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2007                        const struct iovec *iov, size_t base, size_t bytes)
2008{
2009        size_t copied = 0, left = 0;
2010
2011        while (bytes) {
2012                char __user *buf = iov->iov_base + base;
2013                int copy = min(bytes, iov->iov_len - base);
2014
2015                base = 0;
2016                left = __copy_from_user_inatomic(vaddr, buf, copy);
2017                copied += copy;
2018                bytes -= copy;
2019                vaddr += copy;
2020                iov++;
2021
2022                if (unlikely(left))
2023                        break;
2024        }
2025        return copied - left;
2026}
2027
2028/*
2029 * Copy as much as we can into the page and return the number of bytes which
2030 * were successfully copied.  If a fault is encountered then return the number of
2031 * bytes which were copied.
2032 */
2033size_t iov_iter_copy_from_user_atomic(struct page *page,
2034                struct iov_iter *i, unsigned long offset, size_t bytes)
2035{
2036        char *kaddr;
2037        size_t copied;
2038
2039        BUG_ON(!in_atomic());
2040        kaddr = kmap_atomic(page);
2041        if (likely(i->nr_segs == 1)) {
2042                int left;
2043                char __user *buf = i->iov->iov_base + i->iov_offset;
2044                left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2045                copied = bytes - left;
2046        } else {
2047                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2048                                                i->iov, i->iov_offset, bytes);
2049        }
2050        kunmap_atomic(kaddr);
2051
2052        return copied;
2053}
2054EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2055
2056/*
2057 * This has the same sideeffects and return value as
2058 * iov_iter_copy_from_user_atomic().
2059 * The difference is that it attempts to resolve faults.
2060 * Page must not be locked.
2061 */
2062size_t iov_iter_copy_from_user(struct page *page,
2063                struct iov_iter *i, unsigned long offset, size_t bytes)
2064{
2065        char *kaddr;
2066        size_t copied;
2067
2068        kaddr = kmap(page);
2069        if (likely(i->nr_segs == 1)) {
2070                int left;
2071                char __user *buf = i->iov->iov_base + i->iov_offset;
2072                left = __copy_from_user(kaddr + offset, buf, bytes);
2073                copied = bytes - left;
2074        } else {
2075                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2076                                                i->iov, i->iov_offset, bytes);
2077        }
2078        kunmap(page);
2079        return copied;
2080}
2081EXPORT_SYMBOL(iov_iter_copy_from_user);
2082
2083void iov_iter_advance(struct iov_iter *i, size_t bytes)
2084{
2085        BUG_ON(i->count < bytes);
2086
2087        if (likely(i->nr_segs == 1)) {
2088                i->iov_offset += bytes;
2089                i->count -= bytes;
2090        } else {
2091                const struct iovec *iov = i->iov;
2092                size_t base = i->iov_offset;
2093                unsigned long nr_segs = i->nr_segs;
2094
2095                /*
2096                 * The !iov->iov_len check ensures we skip over unlikely
2097                 * zero-length segments (without overruning the iovec).
2098                 */
2099                while (bytes || unlikely(i->count && !iov->iov_len)) {
2100                        int copy;
2101
2102                        copy = min(bytes, iov->iov_len - base);
2103                        BUG_ON(!i->count || i->count < copy);
2104                        i->count -= copy;
2105                        bytes -= copy;
2106                        base += copy;
2107                        if (iov->iov_len == base) {
2108                                iov++;
2109                                nr_segs--;
2110                                base = 0;
2111                        }
2112                }
2113                i->iov = iov;
2114                i->iov_offset = base;
2115                i->nr_segs = nr_segs;
2116        }
2117}
2118EXPORT_SYMBOL(iov_iter_advance);
2119
2120/*
2121 * Fault in the first iovec of the given iov_iter, to a maximum length
2122 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2123 * accessed (ie. because it is an invalid address).
2124 *
2125 * writev-intensive code may want this to prefault several iovecs -- that
2126 * would be possible (callers must not rely on the fact that _only_ the
2127 * first iovec will be faulted with the current implementation).
2128 */
2129int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2130{
2131        char __user *buf = i->iov->iov_base + i->iov_offset;
2132        bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2133        return fault_in_pages_readable(buf, bytes);
2134}
2135EXPORT_SYMBOL(iov_iter_fault_in_readable);
2136
2137/*
2138 * Return the count of just the current iov_iter segment.
2139 */
2140size_t iov_iter_single_seg_count(struct iov_iter *i)
2141{
2142        const struct iovec *iov = i->iov;
2143        if (i->nr_segs == 1)
2144                return i->count;
2145        else
2146                return min(i->count, iov->iov_len - i->iov_offset);
2147}
2148EXPORT_SYMBOL(iov_iter_single_seg_count);
2149
2150/*
2151 * Performs necessary checks before doing a write
2152 *
2153 * Can adjust writing position or amount of bytes to write.
2154 * Returns appropriate error code that caller should return or
2155 * zero in case that write should be allowed.
2156 */
2157inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2158{
2159        struct inode *inode = file->f_mapping->host;
2160        unsigned long limit = rlimit(RLIMIT_FSIZE);
2161
2162        if (unlikely(*pos < 0))
2163                return -EINVAL;
2164
2165        if (!isblk) {
2166                /* FIXME: this is for backwards compatibility with 2.4 */
2167                if (file->f_flags & O_APPEND)
2168                        *pos = i_size_read(inode);
2169
2170                if (limit != RLIM_INFINITY) {
2171                        if (*pos >= limit) {
2172                                send_sig(SIGXFSZ, current, 0);
2173                                return -EFBIG;
2174                        }
2175                        if (*count > limit - (typeof(limit))*pos) {
2176                                *count = limit - (typeof(limit))*pos;
2177                        }
2178                }
2179        }
2180
2181        /*
2182         * LFS rule
2183         */
2184        if (unlikely(*pos + *count > MAX_NON_LFS &&
2185                                !(file->f_flags & O_LARGEFILE))) {
2186                if (*pos >= MAX_NON_LFS) {
2187                        return -EFBIG;
2188                }
2189                if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2190                        *count = MAX_NON_LFS - (unsigned long)*pos;
2191                }
2192        }
2193
2194        /*
2195         * Are we about to exceed the fs block limit ?
2196         *
2197         * If we have written data it becomes a short write.  If we have
2198         * exceeded without writing data we send a signal and return EFBIG.
2199         * Linus frestrict idea will clean these up nicely..
2200         */
2201        if (likely(!isblk)) {
2202                if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2203                        if (*count || *pos > inode->i_sb->s_maxbytes) {
2204                                return -EFBIG;
2205                        }
2206                        /* zero-length writes at ->s_maxbytes are OK */
2207                }
2208
2209                if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2210                        *count = inode->i_sb->s_maxbytes - *pos;
2211        } else {
2212#ifdef CONFIG_BLOCK
2213                loff_t isize;
2214                if (bdev_read_only(I_BDEV(inode)))
2215                        return -EPERM;
2216                isize = i_size_read(inode);
2217                if (*pos >= isize) {
2218                        if (*count || *pos > isize)
2219                                return -ENOSPC;
2220                }
2221
2222                if (*pos + *count > isize)
2223                        *count = isize - *pos;
2224#else
2225                return -EPERM;
2226#endif
2227        }
2228        return 0;
2229}
2230EXPORT_SYMBOL(generic_write_checks);
2231
2232int pagecache_write_begin(struct file *file, struct address_space *mapping,
2233                                loff_t pos, unsigned len, unsigned flags,
2234                                struct page **pagep, void **fsdata)
2235{
2236        const struct address_space_operations *aops = mapping->a_ops;
2237
2238        return aops->write_begin(file, mapping, pos, len, flags,
2239                                                        pagep, fsdata);
2240}
2241EXPORT_SYMBOL(pagecache_write_begin);
2242
2243int pagecache_write_end(struct file *file, struct address_space *mapping,
2244                                loff_t pos, unsigned len, unsigned copied,
2245                                struct page *page, void *fsdata)
2246{
2247        const struct address_space_operations *aops = mapping->a_ops;
2248
2249        mark_page_accessed(page);
2250        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2251}
2252EXPORT_SYMBOL(pagecache_write_end);
2253
2254ssize_t
2255generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2256                unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2257                size_t count, size_t ocount)
2258{
2259        struct file     *file = iocb->ki_filp;
2260        struct address_space *mapping = file->f_mapping;
2261        struct inode    *inode = mapping->host;
2262        ssize_t         written;
2263        size_t          write_len;
2264        pgoff_t         end;
2265
2266        if (count != ocount)
2267                *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2268
2269        write_len = iov_length(iov, *nr_segs);
2270        end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2271
2272        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2273        if (written)
2274                goto out;
2275
2276        /*
2277         * After a write we want buffered reads to be sure to go to disk to get
2278         * the new data.  We invalidate clean cached page from the region we're
2279         * about to write.  We do this *before* the write so that we can return
2280         * without clobbering -EIOCBQUEUED from ->direct_IO().
2281         */
2282        if (mapping->nrpages) {
2283                written = invalidate_inode_pages2_range(mapping,
2284                                        pos >> PAGE_CACHE_SHIFT, end);
2285                /*
2286                 * If a page can not be invalidated, return 0 to fall back
2287                 * to buffered write.
2288                 */
2289                if (written) {
2290                        if (written == -EBUSY)
2291                                return 0;
2292                        goto out;
2293                }
2294        }
2295
2296        written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2297
2298        /*
2299         * Finally, try again to invalidate clean pages which might have been
2300         * cached by non-direct readahead, or faulted in by get_user_pages()
2301         * if the source of the write was an mmap'ed region of the file
2302         * we're writing.  Either one is a pretty crazy thing to do,
2303         * so we don't support it 100%.  If this invalidation
2304         * fails, tough, the write still worked...
2305         */
2306        if (mapping->nrpages) {
2307                invalidate_inode_pages2_range(mapping,
2308                                              pos >> PAGE_CACHE_SHIFT, end);
2309        }
2310
2311        if (written > 0) {
2312                pos += written;
2313                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2314                        i_size_write(inode, pos);
2315                        mark_inode_dirty(inode);
2316                }
2317                *ppos = pos;
2318        }
2319out:
2320        return written;
2321}
2322EXPORT_SYMBOL(generic_file_direct_write);
2323
2324/*
2325 * Find or create a page at the given pagecache position. Return the locked
2326 * page. This function is specifically for buffered writes.
2327 */
2328struct page *grab_cache_page_write_begin(struct address_space *mapping,
2329                                        pgoff_t index, unsigned flags)
2330{
2331        int status;
2332        gfp_t gfp_mask;
2333        struct page *page;
2334        gfp_t gfp_notmask = 0;
2335
2336        gfp_mask = mapping_gfp_mask(mapping);
2337        if (mapping_cap_account_dirty(mapping))
2338                gfp_mask |= __GFP_WRITE;
2339        if (flags & AOP_FLAG_NOFS)
2340                gfp_notmask = __GFP_FS;
2341repeat:
2342        page = find_lock_page(mapping, index);
2343        if (page)
2344                goto found;
2345
2346        page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2347        if (!page)
2348                return NULL;
2349        status = add_to_page_cache_lru(page, mapping, index,
2350                                                GFP_KERNEL & ~gfp_notmask);
2351        if (unlikely(status)) {
2352                page_cache_release(page);
2353                if (status == -EEXIST)
2354                        goto repeat;
2355                return NULL;
2356        }
2357found:
2358        wait_on_page_writeback(page);
2359        return page;
2360}
2361EXPORT_SYMBOL(grab_cache_page_write_begin);
2362
2363static ssize_t generic_perform_write(struct file *file,
2364                                struct iov_iter *i, loff_t pos)
2365{
2366        struct address_space *mapping = file->f_mapping;
2367        const struct address_space_operations *a_ops = mapping->a_ops;
2368        long status = 0;
2369        ssize_t written = 0;
2370        unsigned int flags = 0;
2371
2372        /*
2373         * Copies from kernel address space cannot fail (NFSD is a big user).
2374         */
2375        if (segment_eq(get_fs(), KERNEL_DS))
2376                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2377
2378        do {
2379                struct page *page;
2380                unsigned long offset;   /* Offset into pagecache page */
2381                unsigned long bytes;    /* Bytes to write to page */
2382                size_t copied;          /* Bytes copied from user */
2383                void *fsdata;
2384
2385                offset = (pos & (PAGE_CACHE_SIZE - 1));
2386                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2387                                                iov_iter_count(i));
2388
2389again:
2390                /*
2391                 * Bring in the user page that we will copy from _first_.
2392                 * Otherwise there's a nasty deadlock on copying from the
2393                 * same page as we're writing to, without it being marked
2394                 * up-to-date.
2395                 *
2396                 * Not only is this an optimisation, but it is also required
2397                 * to check that the address is actually valid, when atomic
2398                 * usercopies are used, below.
2399                 */
2400                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2401                        status = -EFAULT;
2402                        break;
2403                }
2404
2405                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2406                                                &page, &fsdata);
2407                if (unlikely(status))
2408                        break;
2409
2410                if (mapping_writably_mapped(mapping))
2411                        flush_dcache_page(page);
2412
2413                pagefault_disable();
2414                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2415                pagefault_enable();
2416                flush_dcache_page(page);
2417
2418                mark_page_accessed(page);
2419                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2420                                                page, fsdata);
2421                if (unlikely(status < 0))
2422                        break;
2423                copied = status;
2424
2425                cond_resched();
2426
2427                iov_iter_advance(i, copied);
2428                if (unlikely(copied == 0)) {
2429                        /*
2430                         * If we were unable to copy any data at all, we must
2431                         * fall back to a single segment length write.
2432                         *
2433                         * If we didn't fallback here, we could livelock
2434                         * because not all segments in the iov can be copied at
2435                         * once without a pagefault.
2436                         */
2437                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2438                                                iov_iter_single_seg_count(i));
2439                        goto again;
2440                }
2441                pos += copied;
2442                written += copied;
2443
2444                balance_dirty_pages_ratelimited(mapping);
2445                if (fatal_signal_pending(current)) {
2446                        status = -EINTR;
2447                        break;
2448                }
2449        } while (iov_iter_count(i));
2450
2451        return written ? written : status;
2452}
2453
2454ssize_t
2455generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2456                unsigned long nr_segs, loff_t pos, loff_t *ppos,
2457                size_t count, ssize_t written)
2458{
2459        struct file *file = iocb->ki_filp;
2460        ssize_t status;
2461        struct iov_iter i;
2462
2463        iov_iter_init(&i, iov, nr_segs, count, written);
2464        status = generic_perform_write(file, &i, pos);
2465
2466        if (likely(status >= 0)) {
2467                written += status;
2468                *ppos = pos + status;
2469        }
2470        
2471        return written ? written : status;
2472}
2473EXPORT_SYMBOL(generic_file_buffered_write);
2474
2475/**
2476 * __generic_file_aio_write - write data to a file
2477 * @iocb:       IO state structure (file, offset, etc.)
2478 * @iov:        vector with data to write
2479 * @nr_segs:    number of segments in the vector
2480 * @ppos:       position where to write
2481 *
2482 * This function does all the work needed for actually writing data to a
2483 * file. It does all basic checks, removes SUID from the file, updates
2484 * modification times and calls proper subroutines depending on whether we
2485 * do direct IO or a standard buffered write.
2486 *
2487 * It expects i_mutex to be grabbed unless we work on a block device or similar
2488 * object which does not need locking at all.
2489 *
2490 * This function does *not* take care of syncing data in case of O_SYNC write.
2491 * A caller has to handle it. This is mainly due to the fact that we want to
2492 * avoid syncing under i_mutex.
2493 */
2494ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2495                                 unsigned long nr_segs, loff_t *ppos)
2496{
2497        struct file *file = iocb->ki_filp;
2498        struct address_space * mapping = file->f_mapping;
2499        size_t ocount;          /* original count */
2500        size_t count;           /* after file limit checks */
2501        struct inode    *inode = mapping->host;
2502        loff_t          pos;
2503        ssize_t         written;
2504        ssize_t         err;
2505
2506        ocount = 0;
2507        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2508        if (err)
2509                return err;
2510
2511        count = ocount;
2512        pos = *ppos;
2513
2514        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2515
2516        /* We can write back this queue in page reclaim */
2517        current->backing_dev_info = mapping->backing_dev_info;
2518        written = 0;
2519
2520        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2521        if (err)
2522                goto out;
2523
2524        if (count == 0)
2525                goto out;
2526
2527        err = file_remove_suid(file);
2528        if (err)
2529                goto out;
2530
2531        file_update_time(file);
2532
2533        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2534        if (unlikely(file->f_flags & O_DIRECT)) {
2535                loff_t endbyte;
2536                ssize_t written_buffered;
2537
2538                written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2539                                                        ppos, count, ocount);
2540                if (written < 0 || written == count)
2541                        goto out;
2542                /*
2543                 * direct-io write to a hole: fall through to buffered I/O
2544                 * for completing the rest of the request.
2545                 */
2546                pos += written;
2547                count -= written;
2548                written_buffered = generic_file_buffered_write(iocb, iov,
2549                                                nr_segs, pos, ppos, count,
2550                                                written);
2551                /*
2552                 * If generic_file_buffered_write() retuned a synchronous error
2553                 * then we want to return the number of bytes which were
2554                 * direct-written, or the error code if that was zero.  Note
2555                 * that this differs from normal direct-io semantics, which
2556                 * will return -EFOO even if some bytes were written.
2557                 */
2558                if (written_buffered < 0) {
2559                        err = written_buffered;
2560                        goto out;
2561                }
2562
2563                /*
2564                 * We need to ensure that the page cache pages are written to
2565                 * disk and invalidated to preserve the expected O_DIRECT
2566                 * semantics.
2567                 */
2568                endbyte = pos + written_buffered - written - 1;
2569                err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2570                if (err == 0) {
2571                        written = written_buffered;
2572                        invalidate_mapping_pages(mapping,
2573                                                 pos >> PAGE_CACHE_SHIFT,
2574                                                 endbyte >> PAGE_CACHE_SHIFT);
2575                } else {
2576                        /*
2577                         * We don't know how much we wrote, so just return
2578                         * the number of bytes which were direct-written
2579                         */
2580                }
2581        } else {
2582                written = generic_file_buffered_write(iocb, iov, nr_segs,
2583                                pos, ppos, count, written);
2584        }
2585out:
2586        current->backing_dev_info = NULL;
2587        return written ? written : err;
2588}
2589EXPORT_SYMBOL(__generic_file_aio_write);
2590
2591/**
2592 * generic_file_aio_write - write data to a file
2593 * @iocb:       IO state structure
2594 * @iov:        vector with data to write
2595 * @nr_segs:    number of segments in the vector
2596 * @pos:        position in file where to write
2597 *
2598 * This is a wrapper around __generic_file_aio_write() to be used by most
2599 * filesystems. It takes care of syncing the file in case of O_SYNC file
2600 * and acquires i_mutex as needed.
2601 */
2602ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2603                unsigned long nr_segs, loff_t pos)
2604{
2605        struct file *file = iocb->ki_filp;
2606        struct inode *inode = file->f_mapping->host;
2607        struct blk_plug plug;
2608        ssize_t ret;
2609
2610        BUG_ON(iocb->ki_pos != pos);
2611
2612        mutex_lock(&inode->i_mutex);
2613        blk_start_plug(&plug);
2614        ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2615        mutex_unlock(&inode->i_mutex);
2616
2617        if (ret > 0 || ret == -EIOCBQUEUED) {
2618                ssize_t err;
2619
2620                err = generic_write_sync(file, pos, ret);
2621                if (err < 0 && ret > 0)
2622                        ret = err;
2623        }
2624        blk_finish_plug(&plug);
2625        return ret;
2626}
2627EXPORT_SYMBOL(generic_file_aio_write);
2628
2629/**
2630 * try_to_release_page() - release old fs-specific metadata on a page
2631 *
2632 * @page: the page which the kernel is trying to free
2633 * @gfp_mask: memory allocation flags (and I/O mode)
2634 *
2635 * The address_space is to try to release any data against the page
2636 * (presumably at page->private).  If the release was successful, return `1'.
2637 * Otherwise return zero.
2638 *
2639 * This may also be called if PG_fscache is set on a page, indicating that the
2640 * page is known to the local caching routines.
2641 *
2642 * The @gfp_mask argument specifies whether I/O may be performed to release
2643 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2644 *
2645 */
2646int try_to_release_page(struct page *page, gfp_t gfp_mask)
2647{
2648        struct address_space * const mapping = page->mapping;
2649
2650        BUG_ON(!PageLocked(page));
2651        if (PageWriteback(page))
2652                return 0;
2653
2654        if (mapping && mapping->a_ops->releasepage)
2655                return mapping->a_ops->releasepage(page, gfp_mask);
2656        return try_to_free_buffers(page);
2657}
2658
2659EXPORT_SYMBOL(try_to_release_page);
2660