linux/net/core/sock.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Generic socket support routines. Memory allocators, socket lock/release
   7 *              handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Numerous verify_area() problems
  17 *              Alan Cox        :       Connecting on a connecting socket
  18 *                                      now returns an error for tcp.
  19 *              Alan Cox        :       sock->protocol is set correctly.
  20 *                                      and is not sometimes left as 0.
  21 *              Alan Cox        :       connect handles icmp errors on a
  22 *                                      connect properly. Unfortunately there
  23 *                                      is a restart syscall nasty there. I
  24 *                                      can't match BSD without hacking the C
  25 *                                      library. Ideas urgently sought!
  26 *              Alan Cox        :       Disallow bind() to addresses that are
  27 *                                      not ours - especially broadcast ones!!
  28 *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
  29 *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
  30 *                                      instead they leave that for the DESTROY timer.
  31 *              Alan Cox        :       Clean up error flag in accept
  32 *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
  33 *                                      was buggy. Put a remove_sock() in the handler
  34 *                                      for memory when we hit 0. Also altered the timer
  35 *                                      code. The ACK stuff can wait and needs major
  36 *                                      TCP layer surgery.
  37 *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
  38 *                                      and fixed timer/inet_bh race.
  39 *              Alan Cox        :       Added zapped flag for TCP
  40 *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
  41 *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
  46 *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
  47 *      Pauline Middelink       :       identd support
  48 *              Alan Cox        :       Fixed connect() taking signals I think.
  49 *              Alan Cox        :       SO_LINGER supported
  50 *              Alan Cox        :       Error reporting fixes
  51 *              Anonymous       :       inet_create tidied up (sk->reuse setting)
  52 *              Alan Cox        :       inet sockets don't set sk->type!
  53 *              Alan Cox        :       Split socket option code
  54 *              Alan Cox        :       Callbacks
  55 *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
  56 *              Alex            :       Removed restriction on inet fioctl
  57 *              Alan Cox        :       Splitting INET from NET core
  58 *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
  59 *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *              Alan Cox        :       Split IP from generic code
  61 *              Alan Cox        :       New kfree_skbmem()
  62 *              Alan Cox        :       Make SO_DEBUG superuser only.
  63 *              Alan Cox        :       Allow anyone to clear SO_DEBUG
  64 *                                      (compatibility fix)
  65 *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
  66 *              Alan Cox        :       Allocator for a socket is settable.
  67 *              Alan Cox        :       SO_ERROR includes soft errors.
  68 *              Alan Cox        :       Allow NULL arguments on some SO_ opts
  69 *              Alan Cox        :       Generic socket allocation to make hooks
  70 *                                      easier (suggested by Craig Metz).
  71 *              Michael Pall    :       SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
  79 *              Andi Kleen      :       Fix write_space callback
  80 *              Chris Evans     :       Security fixes - signedness again
  81 *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *              This program is free software; you can redistribute it and/or
  87 *              modify it under the terms of the GNU General Public License
  88 *              as published by the Free Software Foundation; either version
  89 *              2 of the License, or (at your option) any later version.
  90 */
  91
  92#include <linux/capability.h>
  93#include <linux/errno.h>
  94#include <linux/types.h>
  95#include <linux/socket.h>
  96#include <linux/in.h>
  97#include <linux/kernel.h>
  98#include <linux/module.h>
  99#include <linux/proc_fs.h>
 100#include <linux/seq_file.h>
 101#include <linux/sched.h>
 102#include <linux/timer.h>
 103#include <linux/string.h>
 104#include <linux/sockios.h>
 105#include <linux/net.h>
 106#include <linux/mm.h>
 107#include <linux/slab.h>
 108#include <linux/interrupt.h>
 109#include <linux/poll.h>
 110#include <linux/tcp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116
 117#include <asm/uaccess.h>
 118
 119#include <linux/netdevice.h>
 120#include <net/protocol.h>
 121#include <linux/skbuff.h>
 122#include <net/net_namespace.h>
 123#include <net/request_sock.h>
 124#include <net/sock.h>
 125#include <linux/net_tstamp.h>
 126#include <net/xfrm.h>
 127#include <linux/ipsec.h>
 128#include <net/cls_cgroup.h>
 129#include <net/netprio_cgroup.h>
 130
 131#include <linux/filter.h>
 132
 133#include <trace/events/sock.h>
 134
 135#ifdef CONFIG_INET
 136#include <net/tcp.h>
 137#endif
 138
 139static DEFINE_MUTEX(proto_list_mutex);
 140static LIST_HEAD(proto_list);
 141
 142#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 143int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
 144{
 145        struct proto *proto;
 146        int ret = 0;
 147
 148        mutex_lock(&proto_list_mutex);
 149        list_for_each_entry(proto, &proto_list, node) {
 150                if (proto->init_cgroup) {
 151                        ret = proto->init_cgroup(cgrp, ss);
 152                        if (ret)
 153                                goto out;
 154                }
 155        }
 156
 157        mutex_unlock(&proto_list_mutex);
 158        return ret;
 159out:
 160        list_for_each_entry_continue_reverse(proto, &proto_list, node)
 161                if (proto->destroy_cgroup)
 162                        proto->destroy_cgroup(cgrp);
 163        mutex_unlock(&proto_list_mutex);
 164        return ret;
 165}
 166
 167void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
 168{
 169        struct proto *proto;
 170
 171        mutex_lock(&proto_list_mutex);
 172        list_for_each_entry_reverse(proto, &proto_list, node)
 173                if (proto->destroy_cgroup)
 174                        proto->destroy_cgroup(cgrp);
 175        mutex_unlock(&proto_list_mutex);
 176}
 177#endif
 178
 179/*
 180 * Each address family might have different locking rules, so we have
 181 * one slock key per address family:
 182 */
 183static struct lock_class_key af_family_keys[AF_MAX];
 184static struct lock_class_key af_family_slock_keys[AF_MAX];
 185
 186struct static_key memcg_socket_limit_enabled;
 187EXPORT_SYMBOL(memcg_socket_limit_enabled);
 188
 189/*
 190 * Make lock validator output more readable. (we pre-construct these
 191 * strings build-time, so that runtime initialization of socket
 192 * locks is fast):
 193 */
 194static const char *const af_family_key_strings[AF_MAX+1] = {
 195  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 196  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 197  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 198  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 199  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 200  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 201  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 202  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 203  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 204  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 205  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 206  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 207  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 208  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
 209};
 210static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 211  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 212  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 213  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 214  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 215  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 216  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 217  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 218  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 219  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 220  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 221  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 222  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 223  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 224  "slock-AF_NFC"   , "slock-AF_MAX"
 225};
 226static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 227  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 228  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 229  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 230  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 231  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 232  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 233  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 234  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 235  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 236  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 237  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 238  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 239  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 240  "clock-AF_NFC"   , "clock-AF_MAX"
 241};
 242
 243/*
 244 * sk_callback_lock locking rules are per-address-family,
 245 * so split the lock classes by using a per-AF key:
 246 */
 247static struct lock_class_key af_callback_keys[AF_MAX];
 248
 249/* Take into consideration the size of the struct sk_buff overhead in the
 250 * determination of these values, since that is non-constant across
 251 * platforms.  This makes socket queueing behavior and performance
 252 * not depend upon such differences.
 253 */
 254#define _SK_MEM_PACKETS         256
 255#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
 256#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 257#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 258
 259/* Run time adjustable parameters. */
 260__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 261__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 262__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 263__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 264
 265/* Maximal space eaten by iovec or ancillary data plus some space */
 266int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 267EXPORT_SYMBOL(sysctl_optmem_max);
 268
 269#if defined(CONFIG_CGROUPS)
 270#if !defined(CONFIG_NET_CLS_CGROUP)
 271int net_cls_subsys_id = -1;
 272EXPORT_SYMBOL_GPL(net_cls_subsys_id);
 273#endif
 274#if !defined(CONFIG_NETPRIO_CGROUP)
 275int net_prio_subsys_id = -1;
 276EXPORT_SYMBOL_GPL(net_prio_subsys_id);
 277#endif
 278#endif
 279
 280static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 281{
 282        struct timeval tv;
 283
 284        if (optlen < sizeof(tv))
 285                return -EINVAL;
 286        if (copy_from_user(&tv, optval, sizeof(tv)))
 287                return -EFAULT;
 288        if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 289                return -EDOM;
 290
 291        if (tv.tv_sec < 0) {
 292                static int warned __read_mostly;
 293
 294                *timeo_p = 0;
 295                if (warned < 10 && net_ratelimit()) {
 296                        warned++;
 297                        printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
 298                               "tries to set negative timeout\n",
 299                                current->comm, task_pid_nr(current));
 300                }
 301                return 0;
 302        }
 303        *timeo_p = MAX_SCHEDULE_TIMEOUT;
 304        if (tv.tv_sec == 0 && tv.tv_usec == 0)
 305                return 0;
 306        if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 307                *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 308        return 0;
 309}
 310
 311static void sock_warn_obsolete_bsdism(const char *name)
 312{
 313        static int warned;
 314        static char warncomm[TASK_COMM_LEN];
 315        if (strcmp(warncomm, current->comm) && warned < 5) {
 316                strcpy(warncomm,  current->comm);
 317                printk(KERN_WARNING "process `%s' is using obsolete "
 318                       "%s SO_BSDCOMPAT\n", warncomm, name);
 319                warned++;
 320        }
 321}
 322
 323#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 324
 325static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 326{
 327        if (sk->sk_flags & flags) {
 328                sk->sk_flags &= ~flags;
 329                if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 330                        net_disable_timestamp();
 331        }
 332}
 333
 334
 335int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 336{
 337        int err;
 338        int skb_len;
 339        unsigned long flags;
 340        struct sk_buff_head *list = &sk->sk_receive_queue;
 341
 342        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 343                atomic_inc(&sk->sk_drops);
 344                trace_sock_rcvqueue_full(sk, skb);
 345                return -ENOMEM;
 346        }
 347
 348        err = sk_filter(sk, skb);
 349        if (err)
 350                return err;
 351
 352        if (!sk_rmem_schedule(sk, skb->truesize)) {
 353                atomic_inc(&sk->sk_drops);
 354                return -ENOBUFS;
 355        }
 356
 357        skb->dev = NULL;
 358        skb_set_owner_r(skb, sk);
 359
 360        /* Cache the SKB length before we tack it onto the receive
 361         * queue.  Once it is added it no longer belongs to us and
 362         * may be freed by other threads of control pulling packets
 363         * from the queue.
 364         */
 365        skb_len = skb->len;
 366
 367        /* we escape from rcu protected region, make sure we dont leak
 368         * a norefcounted dst
 369         */
 370        skb_dst_force(skb);
 371
 372        spin_lock_irqsave(&list->lock, flags);
 373        skb->dropcount = atomic_read(&sk->sk_drops);
 374        __skb_queue_tail(list, skb);
 375        spin_unlock_irqrestore(&list->lock, flags);
 376
 377        if (!sock_flag(sk, SOCK_DEAD))
 378                sk->sk_data_ready(sk, skb_len);
 379        return 0;
 380}
 381EXPORT_SYMBOL(sock_queue_rcv_skb);
 382
 383int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 384{
 385        int rc = NET_RX_SUCCESS;
 386
 387        if (sk_filter(sk, skb))
 388                goto discard_and_relse;
 389
 390        skb->dev = NULL;
 391
 392        if (sk_rcvqueues_full(sk, skb)) {
 393                atomic_inc(&sk->sk_drops);
 394                goto discard_and_relse;
 395        }
 396        if (nested)
 397                bh_lock_sock_nested(sk);
 398        else
 399                bh_lock_sock(sk);
 400        if (!sock_owned_by_user(sk)) {
 401                /*
 402                 * trylock + unlock semantics:
 403                 */
 404                mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 405
 406                rc = sk_backlog_rcv(sk, skb);
 407
 408                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 409        } else if (sk_add_backlog(sk, skb)) {
 410                bh_unlock_sock(sk);
 411                atomic_inc(&sk->sk_drops);
 412                goto discard_and_relse;
 413        }
 414
 415        bh_unlock_sock(sk);
 416out:
 417        sock_put(sk);
 418        return rc;
 419discard_and_relse:
 420        kfree_skb(skb);
 421        goto out;
 422}
 423EXPORT_SYMBOL(sk_receive_skb);
 424
 425void sk_reset_txq(struct sock *sk)
 426{
 427        sk_tx_queue_clear(sk);
 428}
 429EXPORT_SYMBOL(sk_reset_txq);
 430
 431struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 432{
 433        struct dst_entry *dst = __sk_dst_get(sk);
 434
 435        if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 436                sk_tx_queue_clear(sk);
 437                RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 438                dst_release(dst);
 439                return NULL;
 440        }
 441
 442        return dst;
 443}
 444EXPORT_SYMBOL(__sk_dst_check);
 445
 446struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 447{
 448        struct dst_entry *dst = sk_dst_get(sk);
 449
 450        if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 451                sk_dst_reset(sk);
 452                dst_release(dst);
 453                return NULL;
 454        }
 455
 456        return dst;
 457}
 458EXPORT_SYMBOL(sk_dst_check);
 459
 460static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
 461{
 462        int ret = -ENOPROTOOPT;
 463#ifdef CONFIG_NETDEVICES
 464        struct net *net = sock_net(sk);
 465        char devname[IFNAMSIZ];
 466        int index;
 467
 468        /* Sorry... */
 469        ret = -EPERM;
 470        if (!capable(CAP_NET_RAW))
 471                goto out;
 472
 473        ret = -EINVAL;
 474        if (optlen < 0)
 475                goto out;
 476
 477        /* Bind this socket to a particular device like "eth0",
 478         * as specified in the passed interface name. If the
 479         * name is "" or the option length is zero the socket
 480         * is not bound.
 481         */
 482        if (optlen > IFNAMSIZ - 1)
 483                optlen = IFNAMSIZ - 1;
 484        memset(devname, 0, sizeof(devname));
 485
 486        ret = -EFAULT;
 487        if (copy_from_user(devname, optval, optlen))
 488                goto out;
 489
 490        index = 0;
 491        if (devname[0] != '\0') {
 492                struct net_device *dev;
 493
 494                rcu_read_lock();
 495                dev = dev_get_by_name_rcu(net, devname);
 496                if (dev)
 497                        index = dev->ifindex;
 498                rcu_read_unlock();
 499                ret = -ENODEV;
 500                if (!dev)
 501                        goto out;
 502        }
 503
 504        lock_sock(sk);
 505        sk->sk_bound_dev_if = index;
 506        sk_dst_reset(sk);
 507        release_sock(sk);
 508
 509        ret = 0;
 510
 511out:
 512#endif
 513
 514        return ret;
 515}
 516
 517static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 518{
 519        if (valbool)
 520                sock_set_flag(sk, bit);
 521        else
 522                sock_reset_flag(sk, bit);
 523}
 524
 525/*
 526 *      This is meant for all protocols to use and covers goings on
 527 *      at the socket level. Everything here is generic.
 528 */
 529
 530int sock_setsockopt(struct socket *sock, int level, int optname,
 531                    char __user *optval, unsigned int optlen)
 532{
 533        struct sock *sk = sock->sk;
 534        int val;
 535        int valbool;
 536        struct linger ling;
 537        int ret = 0;
 538
 539        /*
 540         *      Options without arguments
 541         */
 542
 543        if (optname == SO_BINDTODEVICE)
 544                return sock_bindtodevice(sk, optval, optlen);
 545
 546        if (optlen < sizeof(int))
 547                return -EINVAL;
 548
 549        if (get_user(val, (int __user *)optval))
 550                return -EFAULT;
 551
 552        valbool = val ? 1 : 0;
 553
 554        lock_sock(sk);
 555
 556        switch (optname) {
 557        case SO_DEBUG:
 558                if (val && !capable(CAP_NET_ADMIN))
 559                        ret = -EACCES;
 560                else
 561                        sock_valbool_flag(sk, SOCK_DBG, valbool);
 562                break;
 563        case SO_REUSEADDR:
 564                sk->sk_reuse = valbool;
 565                break;
 566        case SO_TYPE:
 567        case SO_PROTOCOL:
 568        case SO_DOMAIN:
 569        case SO_ERROR:
 570                ret = -ENOPROTOOPT;
 571                break;
 572        case SO_DONTROUTE:
 573                sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 574                break;
 575        case SO_BROADCAST:
 576                sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 577                break;
 578        case SO_SNDBUF:
 579                /* Don't error on this BSD doesn't and if you think
 580                   about it this is right. Otherwise apps have to
 581                   play 'guess the biggest size' games. RCVBUF/SNDBUF
 582                   are treated in BSD as hints */
 583
 584                if (val > sysctl_wmem_max)
 585                        val = sysctl_wmem_max;
 586set_sndbuf:
 587                sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 588                if ((val * 2) < SOCK_MIN_SNDBUF)
 589                        sk->sk_sndbuf = SOCK_MIN_SNDBUF;
 590                else
 591                        sk->sk_sndbuf = val * 2;
 592
 593                /*
 594                 *      Wake up sending tasks if we
 595                 *      upped the value.
 596                 */
 597                sk->sk_write_space(sk);
 598                break;
 599
 600        case SO_SNDBUFFORCE:
 601                if (!capable(CAP_NET_ADMIN)) {
 602                        ret = -EPERM;
 603                        break;
 604                }
 605                goto set_sndbuf;
 606
 607        case SO_RCVBUF:
 608                /* Don't error on this BSD doesn't and if you think
 609                   about it this is right. Otherwise apps have to
 610                   play 'guess the biggest size' games. RCVBUF/SNDBUF
 611                   are treated in BSD as hints */
 612
 613                if (val > sysctl_rmem_max)
 614                        val = sysctl_rmem_max;
 615set_rcvbuf:
 616                sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 617                /*
 618                 * We double it on the way in to account for
 619                 * "struct sk_buff" etc. overhead.   Applications
 620                 * assume that the SO_RCVBUF setting they make will
 621                 * allow that much actual data to be received on that
 622                 * socket.
 623                 *
 624                 * Applications are unaware that "struct sk_buff" and
 625                 * other overheads allocate from the receive buffer
 626                 * during socket buffer allocation.
 627                 *
 628                 * And after considering the possible alternatives,
 629                 * returning the value we actually used in getsockopt
 630                 * is the most desirable behavior.
 631                 */
 632                if ((val * 2) < SOCK_MIN_RCVBUF)
 633                        sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
 634                else
 635                        sk->sk_rcvbuf = val * 2;
 636                break;
 637
 638        case SO_RCVBUFFORCE:
 639                if (!capable(CAP_NET_ADMIN)) {
 640                        ret = -EPERM;
 641                        break;
 642                }
 643                goto set_rcvbuf;
 644
 645        case SO_KEEPALIVE:
 646#ifdef CONFIG_INET
 647                if (sk->sk_protocol == IPPROTO_TCP)
 648                        tcp_set_keepalive(sk, valbool);
 649#endif
 650                sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 651                break;
 652
 653        case SO_OOBINLINE:
 654                sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 655                break;
 656
 657        case SO_NO_CHECK:
 658                sk->sk_no_check = valbool;
 659                break;
 660
 661        case SO_PRIORITY:
 662                if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
 663                        sk->sk_priority = val;
 664                else
 665                        ret = -EPERM;
 666                break;
 667
 668        case SO_LINGER:
 669                if (optlen < sizeof(ling)) {
 670                        ret = -EINVAL;  /* 1003.1g */
 671                        break;
 672                }
 673                if (copy_from_user(&ling, optval, sizeof(ling))) {
 674                        ret = -EFAULT;
 675                        break;
 676                }
 677                if (!ling.l_onoff)
 678                        sock_reset_flag(sk, SOCK_LINGER);
 679                else {
 680#if (BITS_PER_LONG == 32)
 681                        if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 682                                sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 683                        else
 684#endif
 685                                sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 686                        sock_set_flag(sk, SOCK_LINGER);
 687                }
 688                break;
 689
 690        case SO_BSDCOMPAT:
 691                sock_warn_obsolete_bsdism("setsockopt");
 692                break;
 693
 694        case SO_PASSCRED:
 695                if (valbool)
 696                        set_bit(SOCK_PASSCRED, &sock->flags);
 697                else
 698                        clear_bit(SOCK_PASSCRED, &sock->flags);
 699                break;
 700
 701        case SO_TIMESTAMP:
 702        case SO_TIMESTAMPNS:
 703                if (valbool)  {
 704                        if (optname == SO_TIMESTAMP)
 705                                sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 706                        else
 707                                sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 708                        sock_set_flag(sk, SOCK_RCVTSTAMP);
 709                        sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 710                } else {
 711                        sock_reset_flag(sk, SOCK_RCVTSTAMP);
 712                        sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 713                }
 714                break;
 715
 716        case SO_TIMESTAMPING:
 717                if (val & ~SOF_TIMESTAMPING_MASK) {
 718                        ret = -EINVAL;
 719                        break;
 720                }
 721                sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 722                                  val & SOF_TIMESTAMPING_TX_HARDWARE);
 723                sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 724                                  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 725                sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 726                                  val & SOF_TIMESTAMPING_RX_HARDWARE);
 727                if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 728                        sock_enable_timestamp(sk,
 729                                              SOCK_TIMESTAMPING_RX_SOFTWARE);
 730                else
 731                        sock_disable_timestamp(sk,
 732                                               (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 733                sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 734                                  val & SOF_TIMESTAMPING_SOFTWARE);
 735                sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 736                                  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 737                sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 738                                  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 739                break;
 740
 741        case SO_RCVLOWAT:
 742                if (val < 0)
 743                        val = INT_MAX;
 744                sk->sk_rcvlowat = val ? : 1;
 745                break;
 746
 747        case SO_RCVTIMEO:
 748                ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 749                break;
 750
 751        case SO_SNDTIMEO:
 752                ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 753                break;
 754
 755        case SO_ATTACH_FILTER:
 756                ret = -EINVAL;
 757                if (optlen == sizeof(struct sock_fprog)) {
 758                        struct sock_fprog fprog;
 759
 760                        ret = -EFAULT;
 761                        if (copy_from_user(&fprog, optval, sizeof(fprog)))
 762                                break;
 763
 764                        ret = sk_attach_filter(&fprog, sk);
 765                }
 766                break;
 767
 768        case SO_DETACH_FILTER:
 769                ret = sk_detach_filter(sk);
 770                break;
 771
 772        case SO_PASSSEC:
 773                if (valbool)
 774                        set_bit(SOCK_PASSSEC, &sock->flags);
 775                else
 776                        clear_bit(SOCK_PASSSEC, &sock->flags);
 777                break;
 778        case SO_MARK:
 779                if (!capable(CAP_NET_ADMIN))
 780                        ret = -EPERM;
 781                else
 782                        sk->sk_mark = val;
 783                break;
 784
 785                /* We implement the SO_SNDLOWAT etc to
 786                   not be settable (1003.1g 5.3) */
 787        case SO_RXQ_OVFL:
 788                sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 789                break;
 790
 791        case SO_WIFI_STATUS:
 792                sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
 793                break;
 794
 795        case SO_PEEK_OFF:
 796                if (sock->ops->set_peek_off)
 797                        sock->ops->set_peek_off(sk, val);
 798                else
 799                        ret = -EOPNOTSUPP;
 800                break;
 801
 802        case SO_NOFCS:
 803                sock_valbool_flag(sk, SOCK_NOFCS, valbool);
 804                break;
 805
 806        default:
 807                ret = -ENOPROTOOPT;
 808                break;
 809        }
 810        release_sock(sk);
 811        return ret;
 812}
 813EXPORT_SYMBOL(sock_setsockopt);
 814
 815
 816void cred_to_ucred(struct pid *pid, const struct cred *cred,
 817                   struct ucred *ucred)
 818{
 819        ucred->pid = pid_vnr(pid);
 820        ucred->uid = ucred->gid = -1;
 821        if (cred) {
 822                struct user_namespace *current_ns = current_user_ns();
 823
 824                ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
 825                ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
 826        }
 827}
 828EXPORT_SYMBOL_GPL(cred_to_ucred);
 829
 830int sock_getsockopt(struct socket *sock, int level, int optname,
 831                    char __user *optval, int __user *optlen)
 832{
 833        struct sock *sk = sock->sk;
 834
 835        union {
 836                int val;
 837                struct linger ling;
 838                struct timeval tm;
 839        } v;
 840
 841        int lv = sizeof(int);
 842        int len;
 843
 844        if (get_user(len, optlen))
 845                return -EFAULT;
 846        if (len < 0)
 847                return -EINVAL;
 848
 849        memset(&v, 0, sizeof(v));
 850
 851        switch (optname) {
 852        case SO_DEBUG:
 853                v.val = sock_flag(sk, SOCK_DBG);
 854                break;
 855
 856        case SO_DONTROUTE:
 857                v.val = sock_flag(sk, SOCK_LOCALROUTE);
 858                break;
 859
 860        case SO_BROADCAST:
 861                v.val = !!sock_flag(sk, SOCK_BROADCAST);
 862                break;
 863
 864        case SO_SNDBUF:
 865                v.val = sk->sk_sndbuf;
 866                break;
 867
 868        case SO_RCVBUF:
 869                v.val = sk->sk_rcvbuf;
 870                break;
 871
 872        case SO_REUSEADDR:
 873                v.val = sk->sk_reuse;
 874                break;
 875
 876        case SO_KEEPALIVE:
 877                v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
 878                break;
 879
 880        case SO_TYPE:
 881                v.val = sk->sk_type;
 882                break;
 883
 884        case SO_PROTOCOL:
 885                v.val = sk->sk_protocol;
 886                break;
 887
 888        case SO_DOMAIN:
 889                v.val = sk->sk_family;
 890                break;
 891
 892        case SO_ERROR:
 893                v.val = -sock_error(sk);
 894                if (v.val == 0)
 895                        v.val = xchg(&sk->sk_err_soft, 0);
 896                break;
 897
 898        case SO_OOBINLINE:
 899                v.val = !!sock_flag(sk, SOCK_URGINLINE);
 900                break;
 901
 902        case SO_NO_CHECK:
 903                v.val = sk->sk_no_check;
 904                break;
 905
 906        case SO_PRIORITY:
 907                v.val = sk->sk_priority;
 908                break;
 909
 910        case SO_LINGER:
 911                lv              = sizeof(v.ling);
 912                v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
 913                v.ling.l_linger = sk->sk_lingertime / HZ;
 914                break;
 915
 916        case SO_BSDCOMPAT:
 917                sock_warn_obsolete_bsdism("getsockopt");
 918                break;
 919
 920        case SO_TIMESTAMP:
 921                v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 922                                !sock_flag(sk, SOCK_RCVTSTAMPNS);
 923                break;
 924
 925        case SO_TIMESTAMPNS:
 926                v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 927                break;
 928
 929        case SO_TIMESTAMPING:
 930                v.val = 0;
 931                if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 932                        v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
 933                if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 934                        v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
 935                if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
 936                        v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
 937                if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
 938                        v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
 939                if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
 940                        v.val |= SOF_TIMESTAMPING_SOFTWARE;
 941                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
 942                        v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
 943                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
 944                        v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
 945                break;
 946
 947        case SO_RCVTIMEO:
 948                lv = sizeof(struct timeval);
 949                if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
 950                        v.tm.tv_sec = 0;
 951                        v.tm.tv_usec = 0;
 952                } else {
 953                        v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
 954                        v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
 955                }
 956                break;
 957
 958        case SO_SNDTIMEO:
 959                lv = sizeof(struct timeval);
 960                if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
 961                        v.tm.tv_sec = 0;
 962                        v.tm.tv_usec = 0;
 963                } else {
 964                        v.tm.tv_sec = sk->sk_sndtimeo / HZ;
 965                        v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
 966                }
 967                break;
 968
 969        case SO_RCVLOWAT:
 970                v.val = sk->sk_rcvlowat;
 971                break;
 972
 973        case SO_SNDLOWAT:
 974                v.val = 1;
 975                break;
 976
 977        case SO_PASSCRED:
 978                v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
 979                break;
 980
 981        case SO_PEERCRED:
 982        {
 983                struct ucred peercred;
 984                if (len > sizeof(peercred))
 985                        len = sizeof(peercred);
 986                cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 987                if (copy_to_user(optval, &peercred, len))
 988                        return -EFAULT;
 989                goto lenout;
 990        }
 991
 992        case SO_PEERNAME:
 993        {
 994                char address[128];
 995
 996                if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 997                        return -ENOTCONN;
 998                if (lv < len)
 999                        return -EINVAL;
1000                if (copy_to_user(optval, address, len))
1001                        return -EFAULT;
1002                goto lenout;
1003        }
1004
1005        /* Dubious BSD thing... Probably nobody even uses it, but
1006         * the UNIX standard wants it for whatever reason... -DaveM
1007         */
1008        case SO_ACCEPTCONN:
1009                v.val = sk->sk_state == TCP_LISTEN;
1010                break;
1011
1012        case SO_PASSSEC:
1013                v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1014                break;
1015
1016        case SO_PEERSEC:
1017                return security_socket_getpeersec_stream(sock, optval, optlen, len);
1018
1019        case SO_MARK:
1020                v.val = sk->sk_mark;
1021                break;
1022
1023        case SO_RXQ_OVFL:
1024                v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1025                break;
1026
1027        case SO_WIFI_STATUS:
1028                v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1029                break;
1030
1031        case SO_PEEK_OFF:
1032                if (!sock->ops->set_peek_off)
1033                        return -EOPNOTSUPP;
1034
1035                v.val = sk->sk_peek_off;
1036                break;
1037        case SO_NOFCS:
1038                v.val = !!sock_flag(sk, SOCK_NOFCS);
1039                break;
1040        default:
1041                return -ENOPROTOOPT;
1042        }
1043
1044        if (len > lv)
1045                len = lv;
1046        if (copy_to_user(optval, &v, len))
1047                return -EFAULT;
1048lenout:
1049        if (put_user(len, optlen))
1050                return -EFAULT;
1051        return 0;
1052}
1053
1054/*
1055 * Initialize an sk_lock.
1056 *
1057 * (We also register the sk_lock with the lock validator.)
1058 */
1059static inline void sock_lock_init(struct sock *sk)
1060{
1061        sock_lock_init_class_and_name(sk,
1062                        af_family_slock_key_strings[sk->sk_family],
1063                        af_family_slock_keys + sk->sk_family,
1064                        af_family_key_strings[sk->sk_family],
1065                        af_family_keys + sk->sk_family);
1066}
1067
1068/*
1069 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1070 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1071 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1072 */
1073static void sock_copy(struct sock *nsk, const struct sock *osk)
1074{
1075#ifdef CONFIG_SECURITY_NETWORK
1076        void *sptr = nsk->sk_security;
1077#endif
1078        memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1079
1080        memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1081               osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1082
1083#ifdef CONFIG_SECURITY_NETWORK
1084        nsk->sk_security = sptr;
1085        security_sk_clone(osk, nsk);
1086#endif
1087}
1088
1089/*
1090 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1091 * un-modified. Special care is taken when initializing object to zero.
1092 */
1093static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1094{
1095        if (offsetof(struct sock, sk_node.next) != 0)
1096                memset(sk, 0, offsetof(struct sock, sk_node.next));
1097        memset(&sk->sk_node.pprev, 0,
1098               size - offsetof(struct sock, sk_node.pprev));
1099}
1100
1101void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1102{
1103        unsigned long nulls1, nulls2;
1104
1105        nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1106        nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1107        if (nulls1 > nulls2)
1108                swap(nulls1, nulls2);
1109
1110        if (nulls1 != 0)
1111                memset((char *)sk, 0, nulls1);
1112        memset((char *)sk + nulls1 + sizeof(void *), 0,
1113               nulls2 - nulls1 - sizeof(void *));
1114        memset((char *)sk + nulls2 + sizeof(void *), 0,
1115               size - nulls2 - sizeof(void *));
1116}
1117EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1118
1119static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1120                int family)
1121{
1122        struct sock *sk;
1123        struct kmem_cache *slab;
1124
1125        slab = prot->slab;
1126        if (slab != NULL) {
1127                sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1128                if (!sk)
1129                        return sk;
1130                if (priority & __GFP_ZERO) {
1131                        if (prot->clear_sk)
1132                                prot->clear_sk(sk, prot->obj_size);
1133                        else
1134                                sk_prot_clear_nulls(sk, prot->obj_size);
1135                }
1136        } else
1137                sk = kmalloc(prot->obj_size, priority);
1138
1139        if (sk != NULL) {
1140                kmemcheck_annotate_bitfield(sk, flags);
1141
1142                if (security_sk_alloc(sk, family, priority))
1143                        goto out_free;
1144
1145                if (!try_module_get(prot->owner))
1146                        goto out_free_sec;
1147                sk_tx_queue_clear(sk);
1148        }
1149
1150        return sk;
1151
1152out_free_sec:
1153        security_sk_free(sk);
1154out_free:
1155        if (slab != NULL)
1156                kmem_cache_free(slab, sk);
1157        else
1158                kfree(sk);
1159        return NULL;
1160}
1161
1162static void sk_prot_free(struct proto *prot, struct sock *sk)
1163{
1164        struct kmem_cache *slab;
1165        struct module *owner;
1166
1167        owner = prot->owner;
1168        slab = prot->slab;
1169
1170        security_sk_free(sk);
1171        if (slab != NULL)
1172                kmem_cache_free(slab, sk);
1173        else
1174                kfree(sk);
1175        module_put(owner);
1176}
1177
1178#ifdef CONFIG_CGROUPS
1179void sock_update_classid(struct sock *sk)
1180{
1181        u32 classid;
1182
1183        rcu_read_lock();  /* doing current task, which cannot vanish. */
1184        classid = task_cls_classid(current);
1185        rcu_read_unlock();
1186        if (classid && classid != sk->sk_classid)
1187                sk->sk_classid = classid;
1188}
1189EXPORT_SYMBOL(sock_update_classid);
1190
1191void sock_update_netprioidx(struct sock *sk)
1192{
1193        if (in_interrupt())
1194                return;
1195
1196        sk->sk_cgrp_prioidx = task_netprioidx(current);
1197}
1198EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1199#endif
1200
1201/**
1202 *      sk_alloc - All socket objects are allocated here
1203 *      @net: the applicable net namespace
1204 *      @family: protocol family
1205 *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1206 *      @prot: struct proto associated with this new sock instance
1207 */
1208struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1209                      struct proto *prot)
1210{
1211        struct sock *sk;
1212
1213        sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1214        if (sk) {
1215                sk->sk_family = family;
1216                /*
1217                 * See comment in struct sock definition to understand
1218                 * why we need sk_prot_creator -acme
1219                 */
1220                sk->sk_prot = sk->sk_prot_creator = prot;
1221                sock_lock_init(sk);
1222                sock_net_set(sk, get_net(net));
1223                atomic_set(&sk->sk_wmem_alloc, 1);
1224
1225                sock_update_classid(sk);
1226                sock_update_netprioidx(sk);
1227        }
1228
1229        return sk;
1230}
1231EXPORT_SYMBOL(sk_alloc);
1232
1233static void __sk_free(struct sock *sk)
1234{
1235        struct sk_filter *filter;
1236
1237        if (sk->sk_destruct)
1238                sk->sk_destruct(sk);
1239
1240        filter = rcu_dereference_check(sk->sk_filter,
1241                                       atomic_read(&sk->sk_wmem_alloc) == 0);
1242        if (filter) {
1243                sk_filter_uncharge(sk, filter);
1244                RCU_INIT_POINTER(sk->sk_filter, NULL);
1245        }
1246
1247        sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1248
1249        if (atomic_read(&sk->sk_omem_alloc))
1250                printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1251                       __func__, atomic_read(&sk->sk_omem_alloc));
1252
1253        if (sk->sk_peer_cred)
1254                put_cred(sk->sk_peer_cred);
1255        put_pid(sk->sk_peer_pid);
1256        put_net(sock_net(sk));
1257        sk_prot_free(sk->sk_prot_creator, sk);
1258}
1259
1260void sk_free(struct sock *sk)
1261{
1262        /*
1263         * We subtract one from sk_wmem_alloc and can know if
1264         * some packets are still in some tx queue.
1265         * If not null, sock_wfree() will call __sk_free(sk) later
1266         */
1267        if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1268                __sk_free(sk);
1269}
1270EXPORT_SYMBOL(sk_free);
1271
1272/*
1273 * Last sock_put should drop reference to sk->sk_net. It has already
1274 * been dropped in sk_change_net. Taking reference to stopping namespace
1275 * is not an option.
1276 * Take reference to a socket to remove it from hash _alive_ and after that
1277 * destroy it in the context of init_net.
1278 */
1279void sk_release_kernel(struct sock *sk)
1280{
1281        if (sk == NULL || sk->sk_socket == NULL)
1282                return;
1283
1284        sock_hold(sk);
1285        sock_release(sk->sk_socket);
1286        release_net(sock_net(sk));
1287        sock_net_set(sk, get_net(&init_net));
1288        sock_put(sk);
1289}
1290EXPORT_SYMBOL(sk_release_kernel);
1291
1292static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1293{
1294        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1295                sock_update_memcg(newsk);
1296}
1297
1298/**
1299 *      sk_clone_lock - clone a socket, and lock its clone
1300 *      @sk: the socket to clone
1301 *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1302 *
1303 *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1304 */
1305struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1306{
1307        struct sock *newsk;
1308
1309        newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1310        if (newsk != NULL) {
1311                struct sk_filter *filter;
1312
1313                sock_copy(newsk, sk);
1314
1315                /* SANITY */
1316                get_net(sock_net(newsk));
1317                sk_node_init(&newsk->sk_node);
1318                sock_lock_init(newsk);
1319                bh_lock_sock(newsk);
1320                newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1321                newsk->sk_backlog.len = 0;
1322
1323                atomic_set(&newsk->sk_rmem_alloc, 0);
1324                /*
1325                 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1326                 */
1327                atomic_set(&newsk->sk_wmem_alloc, 1);
1328                atomic_set(&newsk->sk_omem_alloc, 0);
1329                skb_queue_head_init(&newsk->sk_receive_queue);
1330                skb_queue_head_init(&newsk->sk_write_queue);
1331#ifdef CONFIG_NET_DMA
1332                skb_queue_head_init(&newsk->sk_async_wait_queue);
1333#endif
1334
1335                spin_lock_init(&newsk->sk_dst_lock);
1336                rwlock_init(&newsk->sk_callback_lock);
1337                lockdep_set_class_and_name(&newsk->sk_callback_lock,
1338                                af_callback_keys + newsk->sk_family,
1339                                af_family_clock_key_strings[newsk->sk_family]);
1340
1341                newsk->sk_dst_cache     = NULL;
1342                newsk->sk_wmem_queued   = 0;
1343                newsk->sk_forward_alloc = 0;
1344                newsk->sk_send_head     = NULL;
1345                newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1346
1347                sock_reset_flag(newsk, SOCK_DONE);
1348                skb_queue_head_init(&newsk->sk_error_queue);
1349
1350                filter = rcu_dereference_protected(newsk->sk_filter, 1);
1351                if (filter != NULL)
1352                        sk_filter_charge(newsk, filter);
1353
1354                if (unlikely(xfrm_sk_clone_policy(newsk))) {
1355                        /* It is still raw copy of parent, so invalidate
1356                         * destructor and make plain sk_free() */
1357                        newsk->sk_destruct = NULL;
1358                        bh_unlock_sock(newsk);
1359                        sk_free(newsk);
1360                        newsk = NULL;
1361                        goto out;
1362                }
1363
1364                newsk->sk_err      = 0;
1365                newsk->sk_priority = 0;
1366                /*
1367                 * Before updating sk_refcnt, we must commit prior changes to memory
1368                 * (Documentation/RCU/rculist_nulls.txt for details)
1369                 */
1370                smp_wmb();
1371                atomic_set(&newsk->sk_refcnt, 2);
1372
1373                /*
1374                 * Increment the counter in the same struct proto as the master
1375                 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1376                 * is the same as sk->sk_prot->socks, as this field was copied
1377                 * with memcpy).
1378                 *
1379                 * This _changes_ the previous behaviour, where
1380                 * tcp_create_openreq_child always was incrementing the
1381                 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1382                 * to be taken into account in all callers. -acme
1383                 */
1384                sk_refcnt_debug_inc(newsk);
1385                sk_set_socket(newsk, NULL);
1386                newsk->sk_wq = NULL;
1387
1388                sk_update_clone(sk, newsk);
1389
1390                if (newsk->sk_prot->sockets_allocated)
1391                        sk_sockets_allocated_inc(newsk);
1392
1393                if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1394                        net_enable_timestamp();
1395        }
1396out:
1397        return newsk;
1398}
1399EXPORT_SYMBOL_GPL(sk_clone_lock);
1400
1401void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1402{
1403        __sk_dst_set(sk, dst);
1404        sk->sk_route_caps = dst->dev->features;
1405        if (sk->sk_route_caps & NETIF_F_GSO)
1406                sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1407        sk->sk_route_caps &= ~sk->sk_route_nocaps;
1408        if (sk_can_gso(sk)) {
1409                if (dst->header_len) {
1410                        sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1411                } else {
1412                        sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1413                        sk->sk_gso_max_size = dst->dev->gso_max_size;
1414                }
1415        }
1416}
1417EXPORT_SYMBOL_GPL(sk_setup_caps);
1418
1419void __init sk_init(void)
1420{
1421        if (totalram_pages <= 4096) {
1422                sysctl_wmem_max = 32767;
1423                sysctl_rmem_max = 32767;
1424                sysctl_wmem_default = 32767;
1425                sysctl_rmem_default = 32767;
1426        } else if (totalram_pages >= 131072) {
1427                sysctl_wmem_max = 131071;
1428                sysctl_rmem_max = 131071;
1429        }
1430}
1431
1432/*
1433 *      Simple resource managers for sockets.
1434 */
1435
1436
1437/*
1438 * Write buffer destructor automatically called from kfree_skb.
1439 */
1440void sock_wfree(struct sk_buff *skb)
1441{
1442        struct sock *sk = skb->sk;
1443        unsigned int len = skb->truesize;
1444
1445        if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1446                /*
1447                 * Keep a reference on sk_wmem_alloc, this will be released
1448                 * after sk_write_space() call
1449                 */
1450                atomic_sub(len - 1, &sk->sk_wmem_alloc);
1451                sk->sk_write_space(sk);
1452                len = 1;
1453        }
1454        /*
1455         * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1456         * could not do because of in-flight packets
1457         */
1458        if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1459                __sk_free(sk);
1460}
1461EXPORT_SYMBOL(sock_wfree);
1462
1463/*
1464 * Read buffer destructor automatically called from kfree_skb.
1465 */
1466void sock_rfree(struct sk_buff *skb)
1467{
1468        struct sock *sk = skb->sk;
1469        unsigned int len = skb->truesize;
1470
1471        atomic_sub(len, &sk->sk_rmem_alloc);
1472        sk_mem_uncharge(sk, len);
1473}
1474EXPORT_SYMBOL(sock_rfree);
1475
1476
1477int sock_i_uid(struct sock *sk)
1478{
1479        int uid;
1480
1481        read_lock_bh(&sk->sk_callback_lock);
1482        uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1483        read_unlock_bh(&sk->sk_callback_lock);
1484        return uid;
1485}
1486EXPORT_SYMBOL(sock_i_uid);
1487
1488unsigned long sock_i_ino(struct sock *sk)
1489{
1490        unsigned long ino;
1491
1492        read_lock_bh(&sk->sk_callback_lock);
1493        ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1494        read_unlock_bh(&sk->sk_callback_lock);
1495        return ino;
1496}
1497EXPORT_SYMBOL(sock_i_ino);
1498
1499/*
1500 * Allocate a skb from the socket's send buffer.
1501 */
1502struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1503                             gfp_t priority)
1504{
1505        if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1506                struct sk_buff *skb = alloc_skb(size, priority);
1507                if (skb) {
1508                        skb_set_owner_w(skb, sk);
1509                        return skb;
1510                }
1511        }
1512        return NULL;
1513}
1514EXPORT_SYMBOL(sock_wmalloc);
1515
1516/*
1517 * Allocate a skb from the socket's receive buffer.
1518 */
1519struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1520                             gfp_t priority)
1521{
1522        if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1523                struct sk_buff *skb = alloc_skb(size, priority);
1524                if (skb) {
1525                        skb_set_owner_r(skb, sk);
1526                        return skb;
1527                }
1528        }
1529        return NULL;
1530}
1531
1532/*
1533 * Allocate a memory block from the socket's option memory buffer.
1534 */
1535void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1536{
1537        if ((unsigned)size <= sysctl_optmem_max &&
1538            atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1539                void *mem;
1540                /* First do the add, to avoid the race if kmalloc
1541                 * might sleep.
1542                 */
1543                atomic_add(size, &sk->sk_omem_alloc);
1544                mem = kmalloc(size, priority);
1545                if (mem)
1546                        return mem;
1547                atomic_sub(size, &sk->sk_omem_alloc);
1548        }
1549        return NULL;
1550}
1551EXPORT_SYMBOL(sock_kmalloc);
1552
1553/*
1554 * Free an option memory block.
1555 */
1556void sock_kfree_s(struct sock *sk, void *mem, int size)
1557{
1558        kfree(mem);
1559        atomic_sub(size, &sk->sk_omem_alloc);
1560}
1561EXPORT_SYMBOL(sock_kfree_s);
1562
1563/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1564   I think, these locks should be removed for datagram sockets.
1565 */
1566static long sock_wait_for_wmem(struct sock *sk, long timeo)
1567{
1568        DEFINE_WAIT(wait);
1569
1570        clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1571        for (;;) {
1572                if (!timeo)
1573                        break;
1574                if (signal_pending(current))
1575                        break;
1576                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1577                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1578                if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1579                        break;
1580                if (sk->sk_shutdown & SEND_SHUTDOWN)
1581                        break;
1582                if (sk->sk_err)
1583                        break;
1584                timeo = schedule_timeout(timeo);
1585        }
1586        finish_wait(sk_sleep(sk), &wait);
1587        return timeo;
1588}
1589
1590
1591/*
1592 *      Generic send/receive buffer handlers
1593 */
1594
1595struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1596                                     unsigned long data_len, int noblock,
1597                                     int *errcode)
1598{
1599        struct sk_buff *skb;
1600        gfp_t gfp_mask;
1601        long timeo;
1602        int err;
1603
1604        gfp_mask = sk->sk_allocation;
1605        if (gfp_mask & __GFP_WAIT)
1606                gfp_mask |= __GFP_REPEAT;
1607
1608        timeo = sock_sndtimeo(sk, noblock);
1609        while (1) {
1610                err = sock_error(sk);
1611                if (err != 0)
1612                        goto failure;
1613
1614                err = -EPIPE;
1615                if (sk->sk_shutdown & SEND_SHUTDOWN)
1616                        goto failure;
1617
1618                if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1619                        skb = alloc_skb(header_len, gfp_mask);
1620                        if (skb) {
1621                                int npages;
1622                                int i;
1623
1624                                /* No pages, we're done... */
1625                                if (!data_len)
1626                                        break;
1627
1628                                npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1629                                skb->truesize += data_len;
1630                                skb_shinfo(skb)->nr_frags = npages;
1631                                for (i = 0; i < npages; i++) {
1632                                        struct page *page;
1633
1634                                        page = alloc_pages(sk->sk_allocation, 0);
1635                                        if (!page) {
1636                                                err = -ENOBUFS;
1637                                                skb_shinfo(skb)->nr_frags = i;
1638                                                kfree_skb(skb);
1639                                                goto failure;
1640                                        }
1641
1642                                        __skb_fill_page_desc(skb, i,
1643                                                        page, 0,
1644                                                        (data_len >= PAGE_SIZE ?
1645                                                         PAGE_SIZE :
1646                                                         data_len));
1647                                        data_len -= PAGE_SIZE;
1648                                }
1649
1650                                /* Full success... */
1651                                break;
1652                        }
1653                        err = -ENOBUFS;
1654                        goto failure;
1655                }
1656                set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1657                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658                err = -EAGAIN;
1659                if (!timeo)
1660                        goto failure;
1661                if (signal_pending(current))
1662                        goto interrupted;
1663                timeo = sock_wait_for_wmem(sk, timeo);
1664        }
1665
1666        skb_set_owner_w(skb, sk);
1667        return skb;
1668
1669interrupted:
1670        err = sock_intr_errno(timeo);
1671failure:
1672        *errcode = err;
1673        return NULL;
1674}
1675EXPORT_SYMBOL(sock_alloc_send_pskb);
1676
1677struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1678                                    int noblock, int *errcode)
1679{
1680        return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1681}
1682EXPORT_SYMBOL(sock_alloc_send_skb);
1683
1684static void __lock_sock(struct sock *sk)
1685        __releases(&sk->sk_lock.slock)
1686        __acquires(&sk->sk_lock.slock)
1687{
1688        DEFINE_WAIT(wait);
1689
1690        for (;;) {
1691                prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1692                                        TASK_UNINTERRUPTIBLE);
1693                spin_unlock_bh(&sk->sk_lock.slock);
1694                schedule();
1695                spin_lock_bh(&sk->sk_lock.slock);
1696                if (!sock_owned_by_user(sk))
1697                        break;
1698        }
1699        finish_wait(&sk->sk_lock.wq, &wait);
1700}
1701
1702static void __release_sock(struct sock *sk)
1703        __releases(&sk->sk_lock.slock)
1704        __acquires(&sk->sk_lock.slock)
1705{
1706        struct sk_buff *skb = sk->sk_backlog.head;
1707
1708        do {
1709                sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1710                bh_unlock_sock(sk);
1711
1712                do {
1713                        struct sk_buff *next = skb->next;
1714
1715                        WARN_ON_ONCE(skb_dst_is_noref(skb));
1716                        skb->next = NULL;
1717                        sk_backlog_rcv(sk, skb);
1718
1719                        /*
1720                         * We are in process context here with softirqs
1721                         * disabled, use cond_resched_softirq() to preempt.
1722                         * This is safe to do because we've taken the backlog
1723                         * queue private:
1724                         */
1725                        cond_resched_softirq();
1726
1727                        skb = next;
1728                } while (skb != NULL);
1729
1730                bh_lock_sock(sk);
1731        } while ((skb = sk->sk_backlog.head) != NULL);
1732
1733        /*
1734         * Doing the zeroing here guarantee we can not loop forever
1735         * while a wild producer attempts to flood us.
1736         */
1737        sk->sk_backlog.len = 0;
1738}
1739
1740/**
1741 * sk_wait_data - wait for data to arrive at sk_receive_queue
1742 * @sk:    sock to wait on
1743 * @timeo: for how long
1744 *
1745 * Now socket state including sk->sk_err is changed only under lock,
1746 * hence we may omit checks after joining wait queue.
1747 * We check receive queue before schedule() only as optimization;
1748 * it is very likely that release_sock() added new data.
1749 */
1750int sk_wait_data(struct sock *sk, long *timeo)
1751{
1752        int rc;
1753        DEFINE_WAIT(wait);
1754
1755        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756        set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1757        rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1758        clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1759        finish_wait(sk_sleep(sk), &wait);
1760        return rc;
1761}
1762EXPORT_SYMBOL(sk_wait_data);
1763
1764/**
1765 *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1766 *      @sk: socket
1767 *      @size: memory size to allocate
1768 *      @kind: allocation type
1769 *
1770 *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1771 *      rmem allocation. This function assumes that protocols which have
1772 *      memory_pressure use sk_wmem_queued as write buffer accounting.
1773 */
1774int __sk_mem_schedule(struct sock *sk, int size, int kind)
1775{
1776        struct proto *prot = sk->sk_prot;
1777        int amt = sk_mem_pages(size);
1778        long allocated;
1779        int parent_status = UNDER_LIMIT;
1780
1781        sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1782
1783        allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1784
1785        /* Under limit. */
1786        if (parent_status == UNDER_LIMIT &&
1787                        allocated <= sk_prot_mem_limits(sk, 0)) {
1788                sk_leave_memory_pressure(sk);
1789                return 1;
1790        }
1791
1792        /* Under pressure. (we or our parents) */
1793        if ((parent_status > SOFT_LIMIT) ||
1794                        allocated > sk_prot_mem_limits(sk, 1))
1795                sk_enter_memory_pressure(sk);
1796
1797        /* Over hard limit (we or our parents) */
1798        if ((parent_status == OVER_LIMIT) ||
1799                        (allocated > sk_prot_mem_limits(sk, 2)))
1800                goto suppress_allocation;
1801
1802        /* guarantee minimum buffer size under pressure */
1803        if (kind == SK_MEM_RECV) {
1804                if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1805                        return 1;
1806
1807        } else { /* SK_MEM_SEND */
1808                if (sk->sk_type == SOCK_STREAM) {
1809                        if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1810                                return 1;
1811                } else if (atomic_read(&sk->sk_wmem_alloc) <
1812                           prot->sysctl_wmem[0])
1813                                return 1;
1814        }
1815
1816        if (sk_has_memory_pressure(sk)) {
1817                int alloc;
1818
1819                if (!sk_under_memory_pressure(sk))
1820                        return 1;
1821                alloc = sk_sockets_allocated_read_positive(sk);
1822                if (sk_prot_mem_limits(sk, 2) > alloc *
1823                    sk_mem_pages(sk->sk_wmem_queued +
1824                                 atomic_read(&sk->sk_rmem_alloc) +
1825                                 sk->sk_forward_alloc))
1826                        return 1;
1827        }
1828
1829suppress_allocation:
1830
1831        if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1832                sk_stream_moderate_sndbuf(sk);
1833
1834                /* Fail only if socket is _under_ its sndbuf.
1835                 * In this case we cannot block, so that we have to fail.
1836                 */
1837                if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1838                        return 1;
1839        }
1840
1841        trace_sock_exceed_buf_limit(sk, prot, allocated);
1842
1843        /* Alas. Undo changes. */
1844        sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1845
1846        sk_memory_allocated_sub(sk, amt);
1847
1848        return 0;
1849}
1850EXPORT_SYMBOL(__sk_mem_schedule);
1851
1852/**
1853 *      __sk_reclaim - reclaim memory_allocated
1854 *      @sk: socket
1855 */
1856void __sk_mem_reclaim(struct sock *sk)
1857{
1858        sk_memory_allocated_sub(sk,
1859                                sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1860        sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1861
1862        if (sk_under_memory_pressure(sk) &&
1863            (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1864                sk_leave_memory_pressure(sk);
1865}
1866EXPORT_SYMBOL(__sk_mem_reclaim);
1867
1868
1869/*
1870 * Set of default routines for initialising struct proto_ops when
1871 * the protocol does not support a particular function. In certain
1872 * cases where it makes no sense for a protocol to have a "do nothing"
1873 * function, some default processing is provided.
1874 */
1875
1876int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1877{
1878        return -EOPNOTSUPP;
1879}
1880EXPORT_SYMBOL(sock_no_bind);
1881
1882int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1883                    int len, int flags)
1884{
1885        return -EOPNOTSUPP;
1886}
1887EXPORT_SYMBOL(sock_no_connect);
1888
1889int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1890{
1891        return -EOPNOTSUPP;
1892}
1893EXPORT_SYMBOL(sock_no_socketpair);
1894
1895int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1896{
1897        return -EOPNOTSUPP;
1898}
1899EXPORT_SYMBOL(sock_no_accept);
1900
1901int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1902                    int *len, int peer)
1903{
1904        return -EOPNOTSUPP;
1905}
1906EXPORT_SYMBOL(sock_no_getname);
1907
1908unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1909{
1910        return 0;
1911}
1912EXPORT_SYMBOL(sock_no_poll);
1913
1914int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1915{
1916        return -EOPNOTSUPP;
1917}
1918EXPORT_SYMBOL(sock_no_ioctl);
1919
1920int sock_no_listen(struct socket *sock, int backlog)
1921{
1922        return -EOPNOTSUPP;
1923}
1924EXPORT_SYMBOL(sock_no_listen);
1925
1926int sock_no_shutdown(struct socket *sock, int how)
1927{
1928        return -EOPNOTSUPP;
1929}
1930EXPORT_SYMBOL(sock_no_shutdown);
1931
1932int sock_no_setsockopt(struct socket *sock, int level, int optname,
1933                    char __user *optval, unsigned int optlen)
1934{
1935        return -EOPNOTSUPP;
1936}
1937EXPORT_SYMBOL(sock_no_setsockopt);
1938
1939int sock_no_getsockopt(struct socket *sock, int level, int optname,
1940                    char __user *optval, int __user *optlen)
1941{
1942        return -EOPNOTSUPP;
1943}
1944EXPORT_SYMBOL(sock_no_getsockopt);
1945
1946int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1947                    size_t len)
1948{
1949        return -EOPNOTSUPP;
1950}
1951EXPORT_SYMBOL(sock_no_sendmsg);
1952
1953int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1954                    size_t len, int flags)
1955{
1956        return -EOPNOTSUPP;
1957}
1958EXPORT_SYMBOL(sock_no_recvmsg);
1959
1960int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1961{
1962        /* Mirror missing mmap method error code */
1963        return -ENODEV;
1964}
1965EXPORT_SYMBOL(sock_no_mmap);
1966
1967ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1968{
1969        ssize_t res;
1970        struct msghdr msg = {.msg_flags = flags};
1971        struct kvec iov;
1972        char *kaddr = kmap(page);
1973        iov.iov_base = kaddr + offset;
1974        iov.iov_len = size;
1975        res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1976        kunmap(page);
1977        return res;
1978}
1979EXPORT_SYMBOL(sock_no_sendpage);
1980
1981/*
1982 *      Default Socket Callbacks
1983 */
1984
1985static void sock_def_wakeup(struct sock *sk)
1986{
1987        struct socket_wq *wq;
1988
1989        rcu_read_lock();
1990        wq = rcu_dereference(sk->sk_wq);
1991        if (wq_has_sleeper(wq))
1992                wake_up_interruptible_all(&wq->wait);
1993        rcu_read_unlock();
1994}
1995
1996static void sock_def_error_report(struct sock *sk)
1997{
1998        struct socket_wq *wq;
1999
2000        rcu_read_lock();
2001        wq = rcu_dereference(sk->sk_wq);
2002        if (wq_has_sleeper(wq))
2003                wake_up_interruptible_poll(&wq->wait, POLLERR);
2004        sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2005        rcu_read_unlock();
2006}
2007
2008static void sock_def_readable(struct sock *sk, int len)
2009{
2010        struct socket_wq *wq;
2011
2012        rcu_read_lock();
2013        wq = rcu_dereference(sk->sk_wq);
2014        if (wq_has_sleeper(wq))
2015                wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2016                                                POLLRDNORM | POLLRDBAND);
2017        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2018        rcu_read_unlock();
2019}
2020
2021static void sock_def_write_space(struct sock *sk)
2022{
2023        struct socket_wq *wq;
2024
2025        rcu_read_lock();
2026
2027        /* Do not wake up a writer until he can make "significant"
2028         * progress.  --DaveM
2029         */
2030        if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2031                wq = rcu_dereference(sk->sk_wq);
2032                if (wq_has_sleeper(wq))
2033                        wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2034                                                POLLWRNORM | POLLWRBAND);
2035
2036                /* Should agree with poll, otherwise some programs break */
2037                if (sock_writeable(sk))
2038                        sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2039        }
2040
2041        rcu_read_unlock();
2042}
2043
2044static void sock_def_destruct(struct sock *sk)
2045{
2046        kfree(sk->sk_protinfo);
2047}
2048
2049void sk_send_sigurg(struct sock *sk)
2050{
2051        if (sk->sk_socket && sk->sk_socket->file)
2052                if (send_sigurg(&sk->sk_socket->file->f_owner))
2053                        sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2054}
2055EXPORT_SYMBOL(sk_send_sigurg);
2056
2057void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2058                    unsigned long expires)
2059{
2060        if (!mod_timer(timer, expires))
2061                sock_hold(sk);
2062}
2063EXPORT_SYMBOL(sk_reset_timer);
2064
2065void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2066{
2067        if (timer_pending(timer) && del_timer(timer))
2068                __sock_put(sk);
2069}
2070EXPORT_SYMBOL(sk_stop_timer);
2071
2072void sock_init_data(struct socket *sock, struct sock *sk)
2073{
2074        skb_queue_head_init(&sk->sk_receive_queue);
2075        skb_queue_head_init(&sk->sk_write_queue);
2076        skb_queue_head_init(&sk->sk_error_queue);
2077#ifdef CONFIG_NET_DMA
2078        skb_queue_head_init(&sk->sk_async_wait_queue);
2079#endif
2080
2081        sk->sk_send_head        =       NULL;
2082
2083        init_timer(&sk->sk_timer);
2084
2085        sk->sk_allocation       =       GFP_KERNEL;
2086        sk->sk_rcvbuf           =       sysctl_rmem_default;
2087        sk->sk_sndbuf           =       sysctl_wmem_default;
2088        sk->sk_state            =       TCP_CLOSE;
2089        sk_set_socket(sk, sock);
2090
2091        sock_set_flag(sk, SOCK_ZAPPED);
2092
2093        if (sock) {
2094                sk->sk_type     =       sock->type;
2095                sk->sk_wq       =       sock->wq;
2096                sock->sk        =       sk;
2097        } else
2098                sk->sk_wq       =       NULL;
2099
2100        spin_lock_init(&sk->sk_dst_lock);
2101        rwlock_init(&sk->sk_callback_lock);
2102        lockdep_set_class_and_name(&sk->sk_callback_lock,
2103                        af_callback_keys + sk->sk_family,
2104                        af_family_clock_key_strings[sk->sk_family]);
2105
2106        sk->sk_state_change     =       sock_def_wakeup;
2107        sk->sk_data_ready       =       sock_def_readable;
2108        sk->sk_write_space      =       sock_def_write_space;
2109        sk->sk_error_report     =       sock_def_error_report;
2110        sk->sk_destruct         =       sock_def_destruct;
2111
2112        sk->sk_sndmsg_page      =       NULL;
2113        sk->sk_sndmsg_off       =       0;
2114        sk->sk_peek_off         =       -1;
2115
2116        sk->sk_peer_pid         =       NULL;
2117        sk->sk_peer_cred        =       NULL;
2118        sk->sk_write_pending    =       0;
2119        sk->sk_rcvlowat         =       1;
2120        sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2121        sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2122
2123        sk->sk_stamp = ktime_set(-1L, 0);
2124
2125        /*
2126         * Before updating sk_refcnt, we must commit prior changes to memory
2127         * (Documentation/RCU/rculist_nulls.txt for details)
2128         */
2129        smp_wmb();
2130        atomic_set(&sk->sk_refcnt, 1);
2131        atomic_set(&sk->sk_drops, 0);
2132}
2133EXPORT_SYMBOL(sock_init_data);
2134
2135void lock_sock_nested(struct sock *sk, int subclass)
2136{
2137        might_sleep();
2138        spin_lock_bh(&sk->sk_lock.slock);
2139        if (sk->sk_lock.owned)
2140                __lock_sock(sk);
2141        sk->sk_lock.owned = 1;
2142        spin_unlock(&sk->sk_lock.slock);
2143        /*
2144         * The sk_lock has mutex_lock() semantics here:
2145         */
2146        mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2147        local_bh_enable();
2148}
2149EXPORT_SYMBOL(lock_sock_nested);
2150
2151void release_sock(struct sock *sk)
2152{
2153        /*
2154         * The sk_lock has mutex_unlock() semantics:
2155         */
2156        mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2157
2158        spin_lock_bh(&sk->sk_lock.slock);
2159        if (sk->sk_backlog.tail)
2160                __release_sock(sk);
2161        sk->sk_lock.owned = 0;
2162        if (waitqueue_active(&sk->sk_lock.wq))
2163                wake_up(&sk->sk_lock.wq);
2164        spin_unlock_bh(&sk->sk_lock.slock);
2165}
2166EXPORT_SYMBOL(release_sock);
2167
2168/**
2169 * lock_sock_fast - fast version of lock_sock
2170 * @sk: socket
2171 *
2172 * This version should be used for very small section, where process wont block
2173 * return false if fast path is taken
2174 *   sk_lock.slock locked, owned = 0, BH disabled
2175 * return true if slow path is taken
2176 *   sk_lock.slock unlocked, owned = 1, BH enabled
2177 */
2178bool lock_sock_fast(struct sock *sk)
2179{
2180        might_sleep();
2181        spin_lock_bh(&sk->sk_lock.slock);
2182
2183        if (!sk->sk_lock.owned)
2184                /*
2185                 * Note : We must disable BH
2186                 */
2187                return false;
2188
2189        __lock_sock(sk);
2190        sk->sk_lock.owned = 1;
2191        spin_unlock(&sk->sk_lock.slock);
2192        /*
2193         * The sk_lock has mutex_lock() semantics here:
2194         */
2195        mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2196        local_bh_enable();
2197        return true;
2198}
2199EXPORT_SYMBOL(lock_sock_fast);
2200
2201int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2202{
2203        struct timeval tv;
2204        if (!sock_flag(sk, SOCK_TIMESTAMP))
2205                sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2206        tv = ktime_to_timeval(sk->sk_stamp);
2207        if (tv.tv_sec == -1)
2208                return -ENOENT;
2209        if (tv.tv_sec == 0) {
2210                sk->sk_stamp = ktime_get_real();
2211                tv = ktime_to_timeval(sk->sk_stamp);
2212        }
2213        return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2214}
2215EXPORT_SYMBOL(sock_get_timestamp);
2216
2217int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2218{
2219        struct timespec ts;
2220        if (!sock_flag(sk, SOCK_TIMESTAMP))
2221                sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2222        ts = ktime_to_timespec(sk->sk_stamp);
2223        if (ts.tv_sec == -1)
2224                return -ENOENT;
2225        if (ts.tv_sec == 0) {
2226                sk->sk_stamp = ktime_get_real();
2227                ts = ktime_to_timespec(sk->sk_stamp);
2228        }
2229        return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2230}
2231EXPORT_SYMBOL(sock_get_timestampns);
2232
2233void sock_enable_timestamp(struct sock *sk, int flag)
2234{
2235        if (!sock_flag(sk, flag)) {
2236                unsigned long previous_flags = sk->sk_flags;
2237
2238                sock_set_flag(sk, flag);
2239                /*
2240                 * we just set one of the two flags which require net
2241                 * time stamping, but time stamping might have been on
2242                 * already because of the other one
2243                 */
2244                if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2245                        net_enable_timestamp();
2246        }
2247}
2248
2249/*
2250 *      Get a socket option on an socket.
2251 *
2252 *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2253 *      asynchronous errors should be reported by getsockopt. We assume
2254 *      this means if you specify SO_ERROR (otherwise whats the point of it).
2255 */
2256int sock_common_getsockopt(struct socket *sock, int level, int optname,
2257                           char __user *optval, int __user *optlen)
2258{
2259        struct sock *sk = sock->sk;
2260
2261        return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2262}
2263EXPORT_SYMBOL(sock_common_getsockopt);
2264
2265#ifdef CONFIG_COMPAT
2266int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2267                                  char __user *optval, int __user *optlen)
2268{
2269        struct sock *sk = sock->sk;
2270
2271        if (sk->sk_prot->compat_getsockopt != NULL)
2272                return sk->sk_prot->compat_getsockopt(sk, level, optname,
2273                                                      optval, optlen);
2274        return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2275}
2276EXPORT_SYMBOL(compat_sock_common_getsockopt);
2277#endif
2278
2279int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2280                        struct msghdr *msg, size_t size, int flags)
2281{
2282        struct sock *sk = sock->sk;
2283        int addr_len = 0;
2284        int err;
2285
2286        err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2287                                   flags & ~MSG_DONTWAIT, &addr_len);
2288        if (err >= 0)
2289                msg->msg_namelen = addr_len;
2290        return err;
2291}
2292EXPORT_SYMBOL(sock_common_recvmsg);
2293
2294/*
2295 *      Set socket options on an inet socket.
2296 */
2297int sock_common_setsockopt(struct socket *sock, int level, int optname,
2298                           char __user *optval, unsigned int optlen)
2299{
2300        struct sock *sk = sock->sk;
2301
2302        return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2303}
2304EXPORT_SYMBOL(sock_common_setsockopt);
2305
2306#ifdef CONFIG_COMPAT
2307int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2308                                  char __user *optval, unsigned int optlen)
2309{
2310        struct sock *sk = sock->sk;
2311
2312        if (sk->sk_prot->compat_setsockopt != NULL)
2313                return sk->sk_prot->compat_setsockopt(sk, level, optname,
2314                                                      optval, optlen);
2315        return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2316}
2317EXPORT_SYMBOL(compat_sock_common_setsockopt);
2318#endif
2319
2320void sk_common_release(struct sock *sk)
2321{
2322        if (sk->sk_prot->destroy)
2323                sk->sk_prot->destroy(sk);
2324
2325        /*
2326         * Observation: when sock_common_release is called, processes have
2327         * no access to socket. But net still has.
2328         * Step one, detach it from networking:
2329         *
2330         * A. Remove from hash tables.
2331         */
2332
2333        sk->sk_prot->unhash(sk);
2334
2335        /*
2336         * In this point socket cannot receive new packets, but it is possible
2337         * that some packets are in flight because some CPU runs receiver and
2338         * did hash table lookup before we unhashed socket. They will achieve
2339         * receive queue and will be purged by socket destructor.
2340         *
2341         * Also we still have packets pending on receive queue and probably,
2342         * our own packets waiting in device queues. sock_destroy will drain
2343         * receive queue, but transmitted packets will delay socket destruction
2344         * until the last reference will be released.
2345         */
2346
2347        sock_orphan(sk);
2348
2349        xfrm_sk_free_policy(sk);
2350
2351        sk_refcnt_debug_release(sk);
2352        sock_put(sk);
2353}
2354EXPORT_SYMBOL(sk_common_release);
2355
2356#ifdef CONFIG_PROC_FS
2357#define PROTO_INUSE_NR  64      /* should be enough for the first time */
2358struct prot_inuse {
2359        int val[PROTO_INUSE_NR];
2360};
2361
2362static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2363
2364#ifdef CONFIG_NET_NS
2365void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2366{
2367        __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2368}
2369EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2370
2371int sock_prot_inuse_get(struct net *net, struct proto *prot)
2372{
2373        int cpu, idx = prot->inuse_idx;
2374        int res = 0;
2375
2376        for_each_possible_cpu(cpu)
2377                res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2378
2379        return res >= 0 ? res : 0;
2380}
2381EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2382
2383static int __net_init sock_inuse_init_net(struct net *net)
2384{
2385        net->core.inuse = alloc_percpu(struct prot_inuse);
2386        return net->core.inuse ? 0 : -ENOMEM;
2387}
2388
2389static void __net_exit sock_inuse_exit_net(struct net *net)
2390{
2391        free_percpu(net->core.inuse);
2392}
2393
2394static struct pernet_operations net_inuse_ops = {
2395        .init = sock_inuse_init_net,
2396        .exit = sock_inuse_exit_net,
2397};
2398
2399static __init int net_inuse_init(void)
2400{
2401        if (register_pernet_subsys(&net_inuse_ops))
2402                panic("Cannot initialize net inuse counters");
2403
2404        return 0;
2405}
2406
2407core_initcall(net_inuse_init);
2408#else
2409static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2410
2411void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2412{
2413        __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2414}
2415EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2416
2417int sock_prot_inuse_get(struct net *net, struct proto *prot)
2418{
2419        int cpu, idx = prot->inuse_idx;
2420        int res = 0;
2421
2422        for_each_possible_cpu(cpu)
2423                res += per_cpu(prot_inuse, cpu).val[idx];
2424
2425        return res >= 0 ? res : 0;
2426}
2427EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2428#endif
2429
2430static void assign_proto_idx(struct proto *prot)
2431{
2432        prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2433
2434        if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2435                printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2436                return;
2437        }
2438
2439        set_bit(prot->inuse_idx, proto_inuse_idx);
2440}
2441
2442static void release_proto_idx(struct proto *prot)
2443{
2444        if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2445                clear_bit(prot->inuse_idx, proto_inuse_idx);
2446}
2447#else
2448static inline void assign_proto_idx(struct proto *prot)
2449{
2450}
2451
2452static inline void release_proto_idx(struct proto *prot)
2453{
2454}
2455#endif
2456
2457int proto_register(struct proto *prot, int alloc_slab)
2458{
2459        if (alloc_slab) {
2460                prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2461                                        SLAB_HWCACHE_ALIGN | prot->slab_flags,
2462                                        NULL);
2463
2464                if (prot->slab == NULL) {
2465                        printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2466                               prot->name);
2467                        goto out;
2468                }
2469
2470                if (prot->rsk_prot != NULL) {
2471                        prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2472                        if (prot->rsk_prot->slab_name == NULL)
2473                                goto out_free_sock_slab;
2474
2475                        prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2476                                                                 prot->rsk_prot->obj_size, 0,
2477                                                                 SLAB_HWCACHE_ALIGN, NULL);
2478
2479                        if (prot->rsk_prot->slab == NULL) {
2480                                printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2481                                       prot->name);
2482                                goto out_free_request_sock_slab_name;
2483                        }
2484                }
2485
2486                if (prot->twsk_prot != NULL) {
2487                        prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2488
2489                        if (prot->twsk_prot->twsk_slab_name == NULL)
2490                                goto out_free_request_sock_slab;
2491
2492                        prot->twsk_prot->twsk_slab =
2493                                kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2494                                                  prot->twsk_prot->twsk_obj_size,
2495                                                  0,
2496                                                  SLAB_HWCACHE_ALIGN |
2497                                                        prot->slab_flags,
2498                                                  NULL);
2499                        if (prot->twsk_prot->twsk_slab == NULL)
2500                                goto out_free_timewait_sock_slab_name;
2501                }
2502        }
2503
2504        mutex_lock(&proto_list_mutex);
2505        list_add(&prot->node, &proto_list);
2506        assign_proto_idx(prot);
2507        mutex_unlock(&proto_list_mutex);
2508        return 0;
2509
2510out_free_timewait_sock_slab_name:
2511        kfree(prot->twsk_prot->twsk_slab_name);
2512out_free_request_sock_slab:
2513        if (prot->rsk_prot && prot->rsk_prot->slab) {
2514                kmem_cache_destroy(prot->rsk_prot->slab);
2515                prot->rsk_prot->slab = NULL;
2516        }
2517out_free_request_sock_slab_name:
2518        if (prot->rsk_prot)
2519                kfree(prot->rsk_prot->slab_name);
2520out_free_sock_slab:
2521        kmem_cache_destroy(prot->slab);
2522        prot->slab = NULL;
2523out:
2524        return -ENOBUFS;
2525}
2526EXPORT_SYMBOL(proto_register);
2527
2528void proto_unregister(struct proto *prot)
2529{
2530        mutex_lock(&proto_list_mutex);
2531        release_proto_idx(prot);
2532        list_del(&prot->node);
2533        mutex_unlock(&proto_list_mutex);
2534
2535        if (prot->slab != NULL) {
2536                kmem_cache_destroy(prot->slab);
2537                prot->slab = NULL;
2538        }
2539
2540        if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2541                kmem_cache_destroy(prot->rsk_prot->slab);
2542                kfree(prot->rsk_prot->slab_name);
2543                prot->rsk_prot->slab = NULL;
2544        }
2545
2546        if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2547                kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2548                kfree(prot->twsk_prot->twsk_slab_name);
2549                prot->twsk_prot->twsk_slab = NULL;
2550        }
2551}
2552EXPORT_SYMBOL(proto_unregister);
2553
2554#ifdef CONFIG_PROC_FS
2555static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2556        __acquires(proto_list_mutex)
2557{
2558        mutex_lock(&proto_list_mutex);
2559        return seq_list_start_head(&proto_list, *pos);
2560}
2561
2562static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563{
2564        return seq_list_next(v, &proto_list, pos);
2565}
2566
2567static void proto_seq_stop(struct seq_file *seq, void *v)
2568        __releases(proto_list_mutex)
2569{
2570        mutex_unlock(&proto_list_mutex);
2571}
2572
2573static char proto_method_implemented(const void *method)
2574{
2575        return method == NULL ? 'n' : 'y';
2576}
2577static long sock_prot_memory_allocated(struct proto *proto)
2578{
2579        return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2580}
2581
2582static char *sock_prot_memory_pressure(struct proto *proto)
2583{
2584        return proto->memory_pressure != NULL ?
2585        proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2586}
2587
2588static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2589{
2590
2591        seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2592                        "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2593                   proto->name,
2594                   proto->obj_size,
2595                   sock_prot_inuse_get(seq_file_net(seq), proto),
2596                   sock_prot_memory_allocated(proto),
2597                   sock_prot_memory_pressure(proto),
2598                   proto->max_header,
2599                   proto->slab == NULL ? "no" : "yes",
2600                   module_name(proto->owner),
2601                   proto_method_implemented(proto->close),
2602                   proto_method_implemented(proto->connect),
2603                   proto_method_implemented(proto->disconnect),
2604                   proto_method_implemented(proto->accept),
2605                   proto_method_implemented(proto->ioctl),
2606                   proto_method_implemented(proto->init),
2607                   proto_method_implemented(proto->destroy),
2608                   proto_method_implemented(proto->shutdown),
2609                   proto_method_implemented(proto->setsockopt),
2610                   proto_method_implemented(proto->getsockopt),
2611                   proto_method_implemented(proto->sendmsg),
2612                   proto_method_implemented(proto->recvmsg),
2613                   proto_method_implemented(proto->sendpage),
2614                   proto_method_implemented(proto->bind),
2615                   proto_method_implemented(proto->backlog_rcv),
2616                   proto_method_implemented(proto->hash),
2617                   proto_method_implemented(proto->unhash),
2618                   proto_method_implemented(proto->get_port),
2619                   proto_method_implemented(proto->enter_memory_pressure));
2620}
2621
2622static int proto_seq_show(struct seq_file *seq, void *v)
2623{
2624        if (v == &proto_list)
2625                seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2626                           "protocol",
2627                           "size",
2628                           "sockets",
2629                           "memory",
2630                           "press",
2631                           "maxhdr",
2632                           "slab",
2633                           "module",
2634                           "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2635        else
2636                proto_seq_printf(seq, list_entry(v, struct proto, node));
2637        return 0;
2638}
2639
2640static const struct seq_operations proto_seq_ops = {
2641        .start  = proto_seq_start,
2642        .next   = proto_seq_next,
2643        .stop   = proto_seq_stop,
2644        .show   = proto_seq_show,
2645};
2646
2647static int proto_seq_open(struct inode *inode, struct file *file)
2648{
2649        return seq_open_net(inode, file, &proto_seq_ops,
2650                            sizeof(struct seq_net_private));
2651}
2652
2653static const struct file_operations proto_seq_fops = {
2654        .owner          = THIS_MODULE,
2655        .open           = proto_seq_open,
2656        .read           = seq_read,
2657        .llseek         = seq_lseek,
2658        .release        = seq_release_net,
2659};
2660
2661static __net_init int proto_init_net(struct net *net)
2662{
2663        if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2664                return -ENOMEM;
2665
2666        return 0;
2667}
2668
2669static __net_exit void proto_exit_net(struct net *net)
2670{
2671        proc_net_remove(net, "protocols");
2672}
2673
2674
2675static __net_initdata struct pernet_operations proto_net_ops = {
2676        .init = proto_init_net,
2677        .exit = proto_exit_net,
2678};
2679
2680static int __init proto_init(void)
2681{
2682        return register_pernet_subsys(&proto_net_ops);
2683}
2684
2685subsys_initcall(proto_init);
2686
2687#endif /* PROC_FS */
2688