linux/arch/m32r/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/m32r/mm/fault.c
   3 *
   4 *  Copyright (c) 2001, 2002  Hitoshi Yamamoto, and H. Kondo
   5 *  Copyright (c) 2004  Naoto Sugai, NIIBE Yutaka
   6 *
   7 *  Some code taken from i386 version.
   8 *    Copyright (C) 1995  Linus Torvalds
   9 */
  10
  11#include <linux/signal.h>
  12#include <linux/sched.h>
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/string.h>
  16#include <linux/types.h>
  17#include <linux/ptrace.h>
  18#include <linux/mman.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/interrupt.h>
  22#include <linux/init.h>
  23#include <linux/tty.h>
  24#include <linux/vt_kern.h>              /* For unblank_screen() */
  25#include <linux/highmem.h>
  26#include <linux/module.h>
  27
  28#include <asm/m32r.h>
  29#include <asm/uaccess.h>
  30#include <asm/hardirq.h>
  31#include <asm/mmu_context.h>
  32#include <asm/tlbflush.h>
  33
  34extern void die(const char *, struct pt_regs *, long);
  35
  36#ifndef CONFIG_SMP
  37asmlinkage unsigned int tlb_entry_i_dat;
  38asmlinkage unsigned int tlb_entry_d_dat;
  39#define tlb_entry_i tlb_entry_i_dat
  40#define tlb_entry_d tlb_entry_d_dat
  41#else
  42unsigned int tlb_entry_i_dat[NR_CPUS];
  43unsigned int tlb_entry_d_dat[NR_CPUS];
  44#define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
  45#define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
  46#endif
  47
  48extern void init_tlb(void);
  49
  50/*======================================================================*
  51 * do_page_fault()
  52 *======================================================================*
  53 * This routine handles page faults.  It determines the address,
  54 * and the problem, and then passes it off to one of the appropriate
  55 * routines.
  56 *
  57 * ARGUMENT:
  58 *  regs       : M32R SP reg.
  59 *  error_code : See below
  60 *  address    : M32R MMU MDEVA reg. (Operand ACE)
  61 *             : M32R BPC reg. (Instruction ACE)
  62 *
  63 * error_code :
  64 *  bit 0 == 0 means no page found, 1 means protection fault
  65 *  bit 1 == 0 means read, 1 means write
  66 *  bit 2 == 0 means kernel, 1 means user-mode
  67 *  bit 3 == 0 means data, 1 means instruction
  68 *======================================================================*/
  69#define ACE_PROTECTION          1
  70#define ACE_WRITE               2
  71#define ACE_USERMODE            4
  72#define ACE_INSTRUCTION         8
  73
  74asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
  75  unsigned long address)
  76{
  77        struct task_struct *tsk;
  78        struct mm_struct *mm;
  79        struct vm_area_struct * vma;
  80        unsigned long page, addr;
  81        int write;
  82        int fault;
  83        siginfo_t info;
  84
  85        /*
  86         * If BPSW IE bit enable --> set PSW IE bit
  87         */
  88        if (regs->psw & M32R_PSW_BIE)
  89                local_irq_enable();
  90
  91        tsk = current;
  92
  93        info.si_code = SEGV_MAPERR;
  94
  95        /*
  96         * We fault-in kernel-space virtual memory on-demand. The
  97         * 'reference' page table is init_mm.pgd.
  98         *
  99         * NOTE! We MUST NOT take any locks for this case. We may
 100         * be in an interrupt or a critical region, and should
 101         * only copy the information from the master page table,
 102         * nothing more.
 103         *
 104         * This verifies that the fault happens in kernel space
 105         * (error_code & ACE_USERMODE) == 0, and that the fault was not a
 106         * protection error (error_code & ACE_PROTECTION) == 0.
 107         */
 108        if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
 109                goto vmalloc_fault;
 110
 111        mm = tsk->mm;
 112
 113        /*
 114         * If we're in an interrupt or have no user context or are running in an
 115         * atomic region then we must not take the fault..
 116         */
 117        if (in_atomic() || !mm)
 118                goto bad_area_nosemaphore;
 119
 120        /* When running in the kernel we expect faults to occur only to
 121         * addresses in user space.  All other faults represent errors in the
 122         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 123         * erroneous fault occurring in a code path which already holds mmap_sem
 124         * we will deadlock attempting to validate the fault against the
 125         * address space.  Luckily the kernel only validly references user
 126         * space from well defined areas of code, which are listed in the
 127         * exceptions table.
 128         *
 129         * As the vast majority of faults will be valid we will only perform
 130         * the source reference check when there is a possibility of a deadlock.
 131         * Attempt to lock the address space, if we cannot we then validate the
 132         * source.  If this is invalid we can skip the address space check,
 133         * thus avoiding the deadlock.
 134         */
 135        if (!down_read_trylock(&mm->mmap_sem)) {
 136                if ((error_code & ACE_USERMODE) == 0 &&
 137                    !search_exception_tables(regs->psw))
 138                        goto bad_area_nosemaphore;
 139                down_read(&mm->mmap_sem);
 140        }
 141
 142        vma = find_vma(mm, address);
 143        if (!vma)
 144                goto bad_area;
 145        if (vma->vm_start <= address)
 146                goto good_area;
 147        if (!(vma->vm_flags & VM_GROWSDOWN))
 148                goto bad_area;
 149
 150        if (error_code & ACE_USERMODE) {
 151                /*
 152                 * accessing the stack below "spu" is always a bug.
 153                 * The "+ 4" is there due to the push instruction
 154                 * doing pre-decrement on the stack and that
 155                 * doesn't show up until later..
 156                 */
 157                if (address + 4 < regs->spu)
 158                        goto bad_area;
 159        }
 160
 161        if (expand_stack(vma, address))
 162                goto bad_area;
 163/*
 164 * Ok, we have a good vm_area for this memory access, so
 165 * we can handle it..
 166 */
 167good_area:
 168        info.si_code = SEGV_ACCERR;
 169        write = 0;
 170        switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
 171                default:        /* 3: write, present */
 172                        /* fall through */
 173                case ACE_WRITE: /* write, not present */
 174                        if (!(vma->vm_flags & VM_WRITE))
 175                                goto bad_area;
 176                        write++;
 177                        break;
 178                case ACE_PROTECTION:    /* read, present */
 179                case 0:         /* read, not present */
 180                        if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
 181                                goto bad_area;
 182        }
 183
 184        /*
 185         * For instruction access exception, check if the area is executable
 186         */
 187        if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
 188          goto bad_area;
 189
 190        /*
 191         * If for any reason at all we couldn't handle the fault,
 192         * make sure we exit gracefully rather than endlessly redo
 193         * the fault.
 194         */
 195        addr = (address & PAGE_MASK);
 196        set_thread_fault_code(error_code);
 197        fault = handle_mm_fault(mm, vma, addr, write ? FAULT_FLAG_WRITE : 0);
 198        if (unlikely(fault & VM_FAULT_ERROR)) {
 199                if (fault & VM_FAULT_OOM)
 200                        goto out_of_memory;
 201                else if (fault & VM_FAULT_SIGBUS)
 202                        goto do_sigbus;
 203                BUG();
 204        }
 205        if (fault & VM_FAULT_MAJOR)
 206                tsk->maj_flt++;
 207        else
 208                tsk->min_flt++;
 209        set_thread_fault_code(0);
 210        up_read(&mm->mmap_sem);
 211        return;
 212
 213/*
 214 * Something tried to access memory that isn't in our memory map..
 215 * Fix it, but check if it's kernel or user first..
 216 */
 217bad_area:
 218        up_read(&mm->mmap_sem);
 219
 220bad_area_nosemaphore:
 221        /* User mode accesses just cause a SIGSEGV */
 222        if (error_code & ACE_USERMODE) {
 223                tsk->thread.address = address;
 224                tsk->thread.error_code = error_code | (address >= TASK_SIZE);
 225                tsk->thread.trap_no = 14;
 226                info.si_signo = SIGSEGV;
 227                info.si_errno = 0;
 228                /* info.si_code has been set above */
 229                info.si_addr = (void __user *)address;
 230                force_sig_info(SIGSEGV, &info, tsk);
 231                return;
 232        }
 233
 234no_context:
 235        /* Are we prepared to handle this kernel fault?  */
 236        if (fixup_exception(regs))
 237                return;
 238
 239/*
 240 * Oops. The kernel tried to access some bad page. We'll have to
 241 * terminate things with extreme prejudice.
 242 */
 243
 244        bust_spinlocks(1);
 245
 246        if (address < PAGE_SIZE)
 247                printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
 248        else
 249                printk(KERN_ALERT "Unable to handle kernel paging request");
 250        printk(" at virtual address %08lx\n",address);
 251        printk(KERN_ALERT " printing bpc:\n");
 252        printk("%08lx\n", regs->bpc);
 253        page = *(unsigned long *)MPTB;
 254        page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
 255        printk(KERN_ALERT "*pde = %08lx\n", page);
 256        if (page & _PAGE_PRESENT) {
 257                page &= PAGE_MASK;
 258                address &= 0x003ff000;
 259                page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
 260                printk(KERN_ALERT "*pte = %08lx\n", page);
 261        }
 262        die("Oops", regs, error_code);
 263        bust_spinlocks(0);
 264        do_exit(SIGKILL);
 265
 266/*
 267 * We ran out of memory, or some other thing happened to us that made
 268 * us unable to handle the page fault gracefully.
 269 */
 270out_of_memory:
 271        up_read(&mm->mmap_sem);
 272        if (!(error_code & ACE_USERMODE))
 273                goto no_context;
 274        pagefault_out_of_memory();
 275        return;
 276
 277do_sigbus:
 278        up_read(&mm->mmap_sem);
 279
 280        /* Kernel mode? Handle exception or die */
 281        if (!(error_code & ACE_USERMODE))
 282                goto no_context;
 283
 284        tsk->thread.address = address;
 285        tsk->thread.error_code = error_code;
 286        tsk->thread.trap_no = 14;
 287        info.si_signo = SIGBUS;
 288        info.si_errno = 0;
 289        info.si_code = BUS_ADRERR;
 290        info.si_addr = (void __user *)address;
 291        force_sig_info(SIGBUS, &info, tsk);
 292        return;
 293
 294vmalloc_fault:
 295        {
 296                /*
 297                 * Synchronize this task's top level page-table
 298                 * with the 'reference' page table.
 299                 *
 300                 * Do _not_ use "tsk" here. We might be inside
 301                 * an interrupt in the middle of a task switch..
 302                 */
 303                int offset = pgd_index(address);
 304                pgd_t *pgd, *pgd_k;
 305                pmd_t *pmd, *pmd_k;
 306                pte_t *pte_k;
 307
 308                pgd = (pgd_t *)*(unsigned long *)MPTB;
 309                pgd = offset + (pgd_t *)pgd;
 310                pgd_k = init_mm.pgd + offset;
 311
 312                if (!pgd_present(*pgd_k))
 313                        goto no_context;
 314
 315                /*
 316                 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 317                 * and redundant with the set_pmd() on non-PAE.
 318                 */
 319
 320                pmd = pmd_offset(pgd, address);
 321                pmd_k = pmd_offset(pgd_k, address);
 322                if (!pmd_present(*pmd_k))
 323                        goto no_context;
 324                set_pmd(pmd, *pmd_k);
 325
 326                pte_k = pte_offset_kernel(pmd_k, address);
 327                if (!pte_present(*pte_k))
 328                        goto no_context;
 329
 330                addr = (address & PAGE_MASK);
 331                set_thread_fault_code(error_code);
 332                update_mmu_cache(NULL, addr, pte_k);
 333                set_thread_fault_code(0);
 334                return;
 335        }
 336}
 337
 338/*======================================================================*
 339 * update_mmu_cache()
 340 *======================================================================*/
 341#define TLB_MASK        (NR_TLB_ENTRIES - 1)
 342#define ITLB_END        (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
 343#define DTLB_END        (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
 344void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
 345        pte_t *ptep)
 346{
 347        volatile unsigned long *entry1, *entry2;
 348        unsigned long pte_data, flags;
 349        unsigned int *entry_dat;
 350        int inst = get_thread_fault_code() & ACE_INSTRUCTION;
 351        int i;
 352
 353        /* Ptrace may call this routine. */
 354        if (vma && current->active_mm != vma->vm_mm)
 355                return;
 356
 357        local_irq_save(flags);
 358
 359        vaddr = (vaddr & PAGE_MASK) | get_asid();
 360
 361        pte_data = pte_val(*ptep);
 362
 363#ifdef CONFIG_CHIP_OPSP
 364        entry1 = (unsigned long *)ITLB_BASE;
 365        for (i = 0; i < NR_TLB_ENTRIES; i++) {
 366                if (*entry1++ == vaddr) {
 367                        set_tlb_data(entry1, pte_data);
 368                        break;
 369                }
 370                entry1++;
 371        }
 372        entry2 = (unsigned long *)DTLB_BASE;
 373        for (i = 0; i < NR_TLB_ENTRIES; i++) {
 374                if (*entry2++ == vaddr) {
 375                        set_tlb_data(entry2, pte_data);
 376                        break;
 377                }
 378                entry2++;
 379        }
 380#else
 381        /*
 382         * Update TLB entries
 383         *  entry1: ITLB entry address
 384         *  entry2: DTLB entry address
 385         */
 386        __asm__ __volatile__ (
 387                "seth   %0, #high(%4)   \n\t"
 388                "st     %2, @(%5, %0)   \n\t"
 389                "ldi    %1, #1          \n\t"
 390                "st     %1, @(%6, %0)   \n\t"
 391                "add3   r4, %0, %7      \n\t"
 392                ".fillinsn              \n"
 393                "1:                     \n\t"
 394                "ld     %1, @(%6, %0)   \n\t"
 395                "bnez   %1, 1b          \n\t"
 396                "ld     %0, @r4+        \n\t"
 397                "ld     %1, @r4         \n\t"
 398                "st     %3, @+%0        \n\t"
 399                "st     %3, @+%1        \n\t"
 400                : "=&r" (entry1), "=&r" (entry2)
 401                : "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
 402                "i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
 403                : "r4", "memory"
 404        );
 405#endif
 406
 407        if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
 408                goto notfound;
 409
 410found:
 411        local_irq_restore(flags);
 412
 413        return;
 414
 415        /* Valid entry not found */
 416notfound:
 417        /*
 418         * Update ITLB or DTLB entry
 419         *  entry1: TLB entry address
 420         *  entry2: TLB base address
 421         */
 422        if (!inst) {
 423                entry2 = (unsigned long *)DTLB_BASE;
 424                entry_dat = &tlb_entry_d;
 425        } else {
 426                entry2 = (unsigned long *)ITLB_BASE;
 427                entry_dat = &tlb_entry_i;
 428        }
 429        entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
 430
 431        for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
 432                if (!(entry1[1] & 2))   /* Valid bit check */
 433                        break;
 434
 435                if (entry1 != entry2)
 436                        entry1 -= 2;
 437                else
 438                        entry1 += TLB_MASK << 1;
 439        }
 440
 441        if (i >= NR_TLB_ENTRIES) {      /* Empty entry not found */
 442                entry1 = entry2 + (*entry_dat << 1);
 443                *entry_dat = (*entry_dat + 1) & TLB_MASK;
 444        }
 445        *entry1++ = vaddr;      /* Set TLB tag */
 446        set_tlb_data(entry1, pte_data);
 447
 448        goto found;
 449}
 450
 451/*======================================================================*
 452 * flush_tlb_page() : flushes one page
 453 *======================================================================*/
 454void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 455{
 456        if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
 457                unsigned long flags;
 458
 459                local_irq_save(flags);
 460                page &= PAGE_MASK;
 461                page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
 462                __flush_tlb_page(page);
 463                local_irq_restore(flags);
 464        }
 465}
 466
 467/*======================================================================*
 468 * flush_tlb_range() : flushes a range of pages
 469 *======================================================================*/
 470void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 471        unsigned long end)
 472{
 473        struct mm_struct *mm;
 474
 475        mm = vma->vm_mm;
 476        if (mm_context(mm) != NO_CONTEXT) {
 477                unsigned long flags;
 478                int size;
 479
 480                local_irq_save(flags);
 481                size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
 482                if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
 483                        mm_context(mm) = NO_CONTEXT;
 484                        if (mm == current->mm)
 485                                activate_context(mm);
 486                } else {
 487                        unsigned long asid;
 488
 489                        asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
 490                        start &= PAGE_MASK;
 491                        end += (PAGE_SIZE - 1);
 492                        end &= PAGE_MASK;
 493
 494                        start |= asid;
 495                        end   |= asid;
 496                        while (start < end) {
 497                                __flush_tlb_page(start);
 498                                start += PAGE_SIZE;
 499                        }
 500                }
 501                local_irq_restore(flags);
 502        }
 503}
 504
 505/*======================================================================*
 506 * flush_tlb_mm() : flushes the specified mm context TLB's
 507 *======================================================================*/
 508void local_flush_tlb_mm(struct mm_struct *mm)
 509{
 510        /* Invalidate all TLB of this process. */
 511        /* Instead of invalidating each TLB, we get new MMU context. */
 512        if (mm_context(mm) != NO_CONTEXT) {
 513                unsigned long flags;
 514
 515                local_irq_save(flags);
 516                mm_context(mm) = NO_CONTEXT;
 517                if (mm == current->mm)
 518                        activate_context(mm);
 519                local_irq_restore(flags);
 520        }
 521}
 522
 523/*======================================================================*
 524 * flush_tlb_all() : flushes all processes TLBs
 525 *======================================================================*/
 526void local_flush_tlb_all(void)
 527{
 528        unsigned long flags;
 529
 530        local_irq_save(flags);
 531        __flush_tlb_all();
 532        local_irq_restore(flags);
 533}
 534
 535/*======================================================================*
 536 * init_mmu()
 537 *======================================================================*/
 538void __init init_mmu(void)
 539{
 540        tlb_entry_i = 0;
 541        tlb_entry_d = 0;
 542        mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
 543        set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
 544        *(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
 545}
 546