linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages and page_cache_release */
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
  33
  34extern int  data_start;
  35
  36#if PT_NLEVELS == 3
  37/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  39 * guarantee that global objects will be laid out in memory in the same order
  40 * as the order of declaration, so put these in different sections and use
  41 * the linker script to order them. */
  42pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  43#endif
  44
  45pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  46pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  47
  48#ifdef CONFIG_DISCONTIGMEM
  49struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  50unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  51#endif
  52
  53static struct resource data_resource = {
  54        .name   = "Kernel data",
  55        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource code_resource = {
  59        .name   = "Kernel code",
  60        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  61};
  62
  63static struct resource pdcdata_resource = {
  64        .name   = "PDC data (Page Zero)",
  65        .start  = 0,
  66        .end    = 0x9ff,
  67        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  68};
  69
  70static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  71
  72/* The following array is initialized from the firmware specific
  73 * information retrieved in kernel/inventory.c.
  74 */
  75
  76physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  77int npmem_ranges __read_mostly;
  78
  79#ifdef CONFIG_64BIT
  80#define MAX_MEM         (~0UL)
  81#else /* !CONFIG_64BIT */
  82#define MAX_MEM         (3584U*1024U*1024U)
  83#endif /* !CONFIG_64BIT */
  84
  85static unsigned long mem_limit __read_mostly = MAX_MEM;
  86
  87static void __init mem_limit_func(void)
  88{
  89        char *cp, *end;
  90        unsigned long limit;
  91
  92        /* We need this before __setup() functions are called */
  93
  94        limit = MAX_MEM;
  95        for (cp = boot_command_line; *cp; ) {
  96                if (memcmp(cp, "mem=", 4) == 0) {
  97                        cp += 4;
  98                        limit = memparse(cp, &end);
  99                        if (end != cp)
 100                                break;
 101                        cp = end;
 102                } else {
 103                        while (*cp != ' ' && *cp)
 104                                ++cp;
 105                        while (*cp == ' ')
 106                                ++cp;
 107                }
 108        }
 109
 110        if (limit < mem_limit)
 111                mem_limit = limit;
 112}
 113
 114#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 115
 116static void __init setup_bootmem(void)
 117{
 118        unsigned long bootmap_size;
 119        unsigned long mem_max;
 120        unsigned long bootmap_pages;
 121        unsigned long bootmap_start_pfn;
 122        unsigned long bootmap_pfn;
 123#ifndef CONFIG_DISCONTIGMEM
 124        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 125        int npmem_holes;
 126#endif
 127        int i, sysram_resource_count;
 128
 129        disable_sr_hashing(); /* Turn off space register hashing */
 130
 131        /*
 132         * Sort the ranges. Since the number of ranges is typically
 133         * small, and performance is not an issue here, just do
 134         * a simple insertion sort.
 135         */
 136
 137        for (i = 1; i < npmem_ranges; i++) {
 138                int j;
 139
 140                for (j = i; j > 0; j--) {
 141                        unsigned long tmp;
 142
 143                        if (pmem_ranges[j-1].start_pfn <
 144                            pmem_ranges[j].start_pfn) {
 145
 146                                break;
 147                        }
 148                        tmp = pmem_ranges[j-1].start_pfn;
 149                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 150                        pmem_ranges[j].start_pfn = tmp;
 151                        tmp = pmem_ranges[j-1].pages;
 152                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 153                        pmem_ranges[j].pages = tmp;
 154                }
 155        }
 156
 157#ifndef CONFIG_DISCONTIGMEM
 158        /*
 159         * Throw out ranges that are too far apart (controlled by
 160         * MAX_GAP).
 161         */
 162
 163        for (i = 1; i < npmem_ranges; i++) {
 164                if (pmem_ranges[i].start_pfn -
 165                        (pmem_ranges[i-1].start_pfn +
 166                         pmem_ranges[i-1].pages) > MAX_GAP) {
 167                        npmem_ranges = i;
 168                        printk("Large gap in memory detected (%ld pages). "
 169                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 170                               pmem_ranges[i].start_pfn -
 171                               (pmem_ranges[i-1].start_pfn +
 172                                pmem_ranges[i-1].pages));
 173                        break;
 174                }
 175        }
 176#endif
 177
 178        if (npmem_ranges > 1) {
 179
 180                /* Print the memory ranges */
 181
 182                printk(KERN_INFO "Memory Ranges:\n");
 183
 184                for (i = 0; i < npmem_ranges; i++) {
 185                        unsigned long start;
 186                        unsigned long size;
 187
 188                        size = (pmem_ranges[i].pages << PAGE_SHIFT);
 189                        start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 190                        printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 191                                i,start, start + (size - 1), size >> 20);
 192                }
 193        }
 194
 195        sysram_resource_count = npmem_ranges;
 196        for (i = 0; i < sysram_resource_count; i++) {
 197                struct resource *res = &sysram_resources[i];
 198                res->name = "System RAM";
 199                res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 200                res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 201                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 202                request_resource(&iomem_resource, res);
 203        }
 204
 205        /*
 206         * For 32 bit kernels we limit the amount of memory we can
 207         * support, in order to preserve enough kernel address space
 208         * for other purposes. For 64 bit kernels we don't normally
 209         * limit the memory, but this mechanism can be used to
 210         * artificially limit the amount of memory (and it is written
 211         * to work with multiple memory ranges).
 212         */
 213
 214        mem_limit_func();       /* check for "mem=" argument */
 215
 216        mem_max = 0;
 217        num_physpages = 0;
 218        for (i = 0; i < npmem_ranges; i++) {
 219                unsigned long rsize;
 220
 221                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222                if ((mem_max + rsize) > mem_limit) {
 223                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224                        if (mem_max == mem_limit)
 225                                npmem_ranges = i;
 226                        else {
 227                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228                                                       - (mem_max >> PAGE_SHIFT);
 229                                npmem_ranges = i + 1;
 230                                mem_max = mem_limit;
 231                        }
 232                num_physpages += pmem_ranges[i].pages;
 233                        break;
 234                }
 235            num_physpages += pmem_ranges[i].pages;
 236                mem_max += rsize;
 237        }
 238
 239        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 240
 241#ifndef CONFIG_DISCONTIGMEM
 242        /* Merge the ranges, keeping track of the holes */
 243
 244        {
 245                unsigned long end_pfn;
 246                unsigned long hole_pages;
 247
 248                npmem_holes = 0;
 249                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 250                for (i = 1; i < npmem_ranges; i++) {
 251
 252                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 253                        if (hole_pages) {
 254                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 255                                pmem_holes[npmem_holes++].pages = hole_pages;
 256                                end_pfn += hole_pages;
 257                        }
 258                        end_pfn += pmem_ranges[i].pages;
 259                }
 260
 261                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 262                npmem_ranges = 1;
 263        }
 264#endif
 265
 266        bootmap_pages = 0;
 267        for (i = 0; i < npmem_ranges; i++)
 268                bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 269
 270        bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 271
 272#ifdef CONFIG_DISCONTIGMEM
 273        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 274                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 275                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 276        }
 277        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 278
 279        for (i = 0; i < npmem_ranges; i++) {
 280                node_set_state(i, N_NORMAL_MEMORY);
 281                node_set_online(i);
 282        }
 283#endif
 284
 285        /*
 286         * Initialize and free the full range of memory in each range.
 287         * Note that the only writing these routines do are to the bootmap,
 288         * and we've made sure to locate the bootmap properly so that they
 289         * won't be writing over anything important.
 290         */
 291
 292        bootmap_pfn = bootmap_start_pfn;
 293        max_pfn = 0;
 294        for (i = 0; i < npmem_ranges; i++) {
 295                unsigned long start_pfn;
 296                unsigned long npages;
 297
 298                start_pfn = pmem_ranges[i].start_pfn;
 299                npages = pmem_ranges[i].pages;
 300
 301                bootmap_size = init_bootmem_node(NODE_DATA(i),
 302                                                bootmap_pfn,
 303                                                start_pfn,
 304                                                (start_pfn + npages) );
 305                free_bootmem_node(NODE_DATA(i),
 306                                  (start_pfn << PAGE_SHIFT),
 307                                  (npages << PAGE_SHIFT) );
 308                bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 309                if ((start_pfn + npages) > max_pfn)
 310                        max_pfn = start_pfn + npages;
 311        }
 312
 313        /* IOMMU is always used to access "high mem" on those boxes
 314         * that can support enough mem that a PCI device couldn't
 315         * directly DMA to any physical addresses.
 316         * ISA DMA support will need to revisit this.
 317         */
 318        max_low_pfn = max_pfn;
 319
 320        /* bootmap sizing messed up? */
 321        BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 322
 323        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 324
 325#define PDC_CONSOLE_IO_IODC_SIZE 32768
 326
 327        reserve_bootmem_node(NODE_DATA(0), 0UL,
 328                        (unsigned long)(PAGE0->mem_free +
 329                                PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 330        reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 331                        (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 332        reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 333                        ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 334                        BOOTMEM_DEFAULT);
 335
 336#ifndef CONFIG_DISCONTIGMEM
 337
 338        /* reserve the holes */
 339
 340        for (i = 0; i < npmem_holes; i++) {
 341                reserve_bootmem_node(NODE_DATA(0),
 342                                (pmem_holes[i].start_pfn << PAGE_SHIFT),
 343                                (pmem_holes[i].pages << PAGE_SHIFT),
 344                                BOOTMEM_DEFAULT);
 345        }
 346#endif
 347
 348#ifdef CONFIG_BLK_DEV_INITRD
 349        if (initrd_start) {
 350                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 351                if (__pa(initrd_start) < mem_max) {
 352                        unsigned long initrd_reserve;
 353
 354                        if (__pa(initrd_end) > mem_max) {
 355                                initrd_reserve = mem_max - __pa(initrd_start);
 356                        } else {
 357                                initrd_reserve = initrd_end - initrd_start;
 358                        }
 359                        initrd_below_start_ok = 1;
 360                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 361
 362                        reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 363                                        initrd_reserve, BOOTMEM_DEFAULT);
 364                }
 365        }
 366#endif
 367
 368        data_resource.start =  virt_to_phys(&data_start);
 369        data_resource.end = virt_to_phys(_end) - 1;
 370        code_resource.start = virt_to_phys(_text);
 371        code_resource.end = virt_to_phys(&data_start)-1;
 372
 373        /* We don't know which region the kernel will be in, so try
 374         * all of them.
 375         */
 376        for (i = 0; i < sysram_resource_count; i++) {
 377                struct resource *res = &sysram_resources[i];
 378                request_resource(res, &code_resource);
 379                request_resource(res, &data_resource);
 380        }
 381        request_resource(&sysram_resources[0], &pdcdata_resource);
 382}
 383
 384static void __init map_pages(unsigned long start_vaddr,
 385                             unsigned long start_paddr, unsigned long size,
 386                             pgprot_t pgprot, int force)
 387{
 388        pgd_t *pg_dir;
 389        pmd_t *pmd;
 390        pte_t *pg_table;
 391        unsigned long end_paddr;
 392        unsigned long start_pmd;
 393        unsigned long start_pte;
 394        unsigned long tmp1;
 395        unsigned long tmp2;
 396        unsigned long address;
 397        unsigned long vaddr;
 398        unsigned long ro_start;
 399        unsigned long ro_end;
 400        unsigned long fv_addr;
 401        unsigned long gw_addr;
 402        extern const unsigned long fault_vector_20;
 403        extern void * const linux_gateway_page;
 404
 405        ro_start = __pa((unsigned long)_text);
 406        ro_end   = __pa((unsigned long)&data_start);
 407        fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 408        gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 409
 410        end_paddr = start_paddr + size;
 411
 412        pg_dir = pgd_offset_k(start_vaddr);
 413
 414#if PTRS_PER_PMD == 1
 415        start_pmd = 0;
 416#else
 417        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 418#endif
 419        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 420
 421        address = start_paddr;
 422        vaddr = start_vaddr;
 423        while (address < end_paddr) {
 424#if PTRS_PER_PMD == 1
 425                pmd = (pmd_t *)__pa(pg_dir);
 426#else
 427                pmd = (pmd_t *)pgd_address(*pg_dir);
 428
 429                /*
 430                 * pmd is physical at this point
 431                 */
 432
 433                if (!pmd) {
 434                        pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 435                        pmd = (pmd_t *) __pa(pmd);
 436                }
 437
 438                pgd_populate(NULL, pg_dir, __va(pmd));
 439#endif
 440                pg_dir++;
 441
 442                /* now change pmd to kernel virtual addresses */
 443
 444                pmd = (pmd_t *)__va(pmd) + start_pmd;
 445                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 446
 447                        /*
 448                         * pg_table is physical at this point
 449                         */
 450
 451                        pg_table = (pte_t *)pmd_address(*pmd);
 452                        if (!pg_table) {
 453                                pg_table = (pte_t *)
 454                                        alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 455                                pg_table = (pte_t *) __pa(pg_table);
 456                        }
 457
 458                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 459
 460                        /* now change pg_table to kernel virtual addresses */
 461
 462                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 463                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 464                                pte_t pte;
 465
 466                                /*
 467                                 * Map the fault vector writable so we can
 468                                 * write the HPMC checksum.
 469                                 */
 470                                if (force)
 471                                        pte =  __mk_pte(address, pgprot);
 472                                else if (core_kernel_text(vaddr) &&
 473                                         address != fv_addr)
 474                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 475                                else
 476#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 477                                if (address >= ro_start && address < ro_end
 478                                                        && address != fv_addr
 479                                                        && address != gw_addr)
 480                                        pte = __mk_pte(address, PAGE_KERNEL_RO);
 481                                else
 482#endif
 483                                        pte = __mk_pte(address, pgprot);
 484
 485                                if (address >= end_paddr) {
 486                                        if (force)
 487                                                break;
 488                                        else
 489                                                pte_val(pte) = 0;
 490                                }
 491
 492                                set_pte(pg_table, pte);
 493
 494                                address += PAGE_SIZE;
 495                                vaddr += PAGE_SIZE;
 496                        }
 497                        start_pte = 0;
 498
 499                        if (address >= end_paddr)
 500                            break;
 501                }
 502                start_pmd = 0;
 503        }
 504}
 505
 506void free_initmem(void)
 507{
 508        unsigned long addr;
 509        unsigned long init_begin = (unsigned long)__init_begin;
 510        unsigned long init_end = (unsigned long)__init_end;
 511
 512        /* The init text pages are marked R-X.  We have to
 513         * flush the icache and mark them RW-
 514         *
 515         * This is tricky, because map_pages is in the init section.
 516         * Do a dummy remap of the data section first (the data
 517         * section is already PAGE_KERNEL) to pull in the TLB entries
 518         * for map_kernel */
 519        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 520                  PAGE_KERNEL_RWX, 1);
 521        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 522         * map_pages */
 523        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 524                  PAGE_KERNEL, 1);
 525
 526        /* force the kernel to see the new TLB entries */
 527        __flush_tlb_range(0, init_begin, init_end);
 528        /* Attempt to catch anyone trying to execute code here
 529         * by filling the page with BRK insns.
 530         */
 531        memset((void *)init_begin, 0x00, init_end - init_begin);
 532        /* finally dump all the instructions which were cached, since the
 533         * pages are no-longer executable */
 534        flush_icache_range(init_begin, init_end);
 535        
 536        for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
 537                ClearPageReserved(virt_to_page(addr));
 538                init_page_count(virt_to_page(addr));
 539                free_page(addr);
 540                num_physpages++;
 541                totalram_pages++;
 542        }
 543
 544        /* set up a new led state on systems shipped LED State panel */
 545        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 546        
 547        printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
 548                (init_end - init_begin) >> 10);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555        /* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582                                     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 593        int codesize, reservedpages, datasize, initsize;
 594
 595        /* Do sanity checks on page table constants */
 596        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 597        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 598        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 599        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 600                        > BITS_PER_LONG);
 601
 602        high_memory = __va((max_pfn << PAGE_SHIFT));
 603
 604#ifndef CONFIG_DISCONTIGMEM
 605        max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
 606        totalram_pages += free_all_bootmem();
 607#else
 608        {
 609                int i;
 610
 611                for (i = 0; i < npmem_ranges; i++)
 612                        totalram_pages += free_all_bootmem_node(NODE_DATA(i));
 613        }
 614#endif
 615
 616        codesize = (unsigned long)_etext - (unsigned long)_text;
 617        datasize = (unsigned long)_edata - (unsigned long)_etext;
 618        initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 619
 620        reservedpages = 0;
 621{
 622        unsigned long pfn;
 623#ifdef CONFIG_DISCONTIGMEM
 624        int i;
 625
 626        for (i = 0; i < npmem_ranges; i++) {
 627                for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
 628                        if (PageReserved(pfn_to_page(pfn)))
 629                                reservedpages++;
 630                }
 631        }
 632#else /* !CONFIG_DISCONTIGMEM */
 633        for (pfn = 0; pfn < max_pfn; pfn++) {
 634                /*
 635                 * Only count reserved RAM pages
 636                 */
 637                if (PageReserved(pfn_to_page(pfn)))
 638                        reservedpages++;
 639        }
 640#endif
 641}
 642
 643#ifdef CONFIG_PA11
 644        if (hppa_dma_ops == &pcxl_dma_ops) {
 645                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 646                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 647                                                + PCXL_DMA_MAP_SIZE);
 648        } else {
 649                pcxl_dma_start = 0;
 650                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 651        }
 652#else
 653        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 654#endif
 655
 656        printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
 657                nr_free_pages() << (PAGE_SHIFT-10),
 658                num_physpages << (PAGE_SHIFT-10),
 659                codesize >> 10,
 660                reservedpages << (PAGE_SHIFT-10),
 661                datasize >> 10,
 662                initsize >> 10
 663        );
 664
 665#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 666        printk("virtual kernel memory layout:\n"
 667               "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 668               "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 669               "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 670               "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 671               "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 672
 673               (void*)VMALLOC_START, (void*)VMALLOC_END,
 674               (VMALLOC_END - VMALLOC_START) >> 20,
 675
 676               __va(0), high_memory,
 677               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 678
 679               __init_begin, __init_end,
 680               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 681
 682               _etext, _edata,
 683               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 684
 685               _text, _etext,
 686               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 687#endif
 688}
 689
 690unsigned long *empty_zero_page __read_mostly;
 691EXPORT_SYMBOL(empty_zero_page);
 692
 693void show_mem(unsigned int filter)
 694{
 695        int i,free = 0,total = 0,reserved = 0;
 696        int shared = 0, cached = 0;
 697
 698        printk(KERN_INFO "Mem-info:\n");
 699        show_free_areas(filter);
 700#ifndef CONFIG_DISCONTIGMEM
 701        i = max_mapnr;
 702        while (i-- > 0) {
 703                total++;
 704                if (PageReserved(mem_map+i))
 705                        reserved++;
 706                else if (PageSwapCache(mem_map+i))
 707                        cached++;
 708                else if (!page_count(&mem_map[i]))
 709                        free++;
 710                else
 711                        shared += page_count(&mem_map[i]) - 1;
 712        }
 713#else
 714        for (i = 0; i < npmem_ranges; i++) {
 715                int j;
 716
 717                for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 718                        struct page *p;
 719                        unsigned long flags;
 720
 721                        pgdat_resize_lock(NODE_DATA(i), &flags);
 722                        p = nid_page_nr(i, j) - node_start_pfn(i);
 723
 724                        total++;
 725                        if (PageReserved(p))
 726                                reserved++;
 727                        else if (PageSwapCache(p))
 728                                cached++;
 729                        else if (!page_count(p))
 730                                free++;
 731                        else
 732                                shared += page_count(p) - 1;
 733                        pgdat_resize_unlock(NODE_DATA(i), &flags);
 734                }
 735        }
 736#endif
 737        printk(KERN_INFO "%d pages of RAM\n", total);
 738        printk(KERN_INFO "%d reserved pages\n", reserved);
 739        printk(KERN_INFO "%d pages shared\n", shared);
 740        printk(KERN_INFO "%d pages swap cached\n", cached);
 741
 742
 743#ifdef CONFIG_DISCONTIGMEM
 744        {
 745                struct zonelist *zl;
 746                int i, j;
 747
 748                for (i = 0; i < npmem_ranges; i++) {
 749                        zl = node_zonelist(i, 0);
 750                        for (j = 0; j < MAX_NR_ZONES; j++) {
 751                                struct zoneref *z;
 752                                struct zone *zone;
 753
 754                                printk("Zone list for zone %d on node %d: ", j, i);
 755                                for_each_zone_zonelist(zone, z, zl, j)
 756                                        printk("[%d/%s] ", zone_to_nid(zone),
 757                                                                zone->name);
 758                                printk("\n");
 759                        }
 760                }
 761        }
 762#endif
 763}
 764
 765/*
 766 * pagetable_init() sets up the page tables
 767 *
 768 * Note that gateway_init() places the Linux gateway page at page 0.
 769 * Since gateway pages cannot be dereferenced this has the desirable
 770 * side effect of trapping those pesky NULL-reference errors in the
 771 * kernel.
 772 */
 773static void __init pagetable_init(void)
 774{
 775        int range;
 776
 777        /* Map each physical memory range to its kernel vaddr */
 778
 779        for (range = 0; range < npmem_ranges; range++) {
 780                unsigned long start_paddr;
 781                unsigned long end_paddr;
 782                unsigned long size;
 783
 784                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 785                end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 786                size = pmem_ranges[range].pages << PAGE_SHIFT;
 787
 788                map_pages((unsigned long)__va(start_paddr), start_paddr,
 789                          size, PAGE_KERNEL, 0);
 790        }
 791
 792#ifdef CONFIG_BLK_DEV_INITRD
 793        if (initrd_end && initrd_end > mem_limit) {
 794                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 795                map_pages(initrd_start, __pa(initrd_start),
 796                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 797        }
 798#endif
 799
 800        empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 801        memset(empty_zero_page, 0, PAGE_SIZE);
 802}
 803
 804static void __init gateway_init(void)
 805{
 806        unsigned long linux_gateway_page_addr;
 807        /* FIXME: This is 'const' in order to trick the compiler
 808           into not treating it as DP-relative data. */
 809        extern void * const linux_gateway_page;
 810
 811        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 812
 813        /*
 814         * Setup Linux Gateway page.
 815         *
 816         * The Linux gateway page will reside in kernel space (on virtual
 817         * page 0), so it doesn't need to be aliased into user space.
 818         */
 819
 820        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 821                  PAGE_SIZE, PAGE_GATEWAY, 1);
 822}
 823
 824#ifdef CONFIG_HPUX
 825void
 826map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 827{
 828        pgd_t *pg_dir;
 829        pmd_t *pmd;
 830        pte_t *pg_table;
 831        unsigned long start_pmd;
 832        unsigned long start_pte;
 833        unsigned long address;
 834        unsigned long hpux_gw_page_addr;
 835        /* FIXME: This is 'const' in order to trick the compiler
 836           into not treating it as DP-relative data. */
 837        extern void * const hpux_gateway_page;
 838
 839        hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 840
 841        /*
 842         * Setup HP-UX Gateway page.
 843         *
 844         * The HP-UX gateway page resides in the user address space,
 845         * so it needs to be aliased into each process.
 846         */
 847
 848        pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 849
 850#if PTRS_PER_PMD == 1
 851        start_pmd = 0;
 852#else
 853        start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 854#endif
 855        start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 856
 857        address = __pa(&hpux_gateway_page);
 858#if PTRS_PER_PMD == 1
 859        pmd = (pmd_t *)__pa(pg_dir);
 860#else
 861        pmd = (pmd_t *) pgd_address(*pg_dir);
 862
 863        /*
 864         * pmd is physical at this point
 865         */
 866
 867        if (!pmd) {
 868                pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 869                pmd = (pmd_t *) __pa(pmd);
 870        }
 871
 872        __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 873#endif
 874        /* now change pmd to kernel virtual addresses */
 875
 876        pmd = (pmd_t *)__va(pmd) + start_pmd;
 877
 878        /*
 879         * pg_table is physical at this point
 880         */
 881
 882        pg_table = (pte_t *) pmd_address(*pmd);
 883        if (!pg_table)
 884                pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 885
 886        __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 887
 888        /* now change pg_table to kernel virtual addresses */
 889
 890        pg_table = (pte_t *) __va(pg_table) + start_pte;
 891        set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 892}
 893EXPORT_SYMBOL(map_hpux_gateway_page);
 894#endif
 895
 896void __init paging_init(void)
 897{
 898        int i;
 899
 900        setup_bootmem();
 901        pagetable_init();
 902        gateway_init();
 903        flush_cache_all_local(); /* start with known state */
 904        flush_tlb_all_local(NULL);
 905
 906        for (i = 0; i < npmem_ranges; i++) {
 907                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 908
 909                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 910
 911#ifdef CONFIG_DISCONTIGMEM
 912                /* Need to initialize the pfnnid_map before we can initialize
 913                   the zone */
 914                {
 915                    int j;
 916                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 917                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 918                         j++) {
 919                        pfnnid_map[j] = i;
 920                    }
 921                }
 922#endif
 923
 924                free_area_init_node(i, zones_size,
 925                                pmem_ranges[i].start_pfn, NULL);
 926        }
 927}
 928
 929#ifdef CONFIG_PA20
 930
 931/*
 932 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 933 * limiting factor (space ids are 32 bits).
 934 */
 935
 936#define NR_SPACE_IDS 262144
 937
 938#else
 939
 940/*
 941 * Currently we have a one-to-one relationship between space IDs and
 942 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 943 * support 15 bit protection IDs, so that is the limiting factor.
 944 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 945 * probably not worth the effort for a special case here.
 946 */
 947
 948#define NR_SPACE_IDS 32768
 949
 950#endif  /* !CONFIG_PA20 */
 951
 952#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 953#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 954
 955static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 956static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 957static unsigned long space_id_index;
 958static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 959static unsigned long dirty_space_ids = 0;
 960
 961static DEFINE_SPINLOCK(sid_lock);
 962
 963unsigned long alloc_sid(void)
 964{
 965        unsigned long index;
 966
 967        spin_lock(&sid_lock);
 968
 969        if (free_space_ids == 0) {
 970                if (dirty_space_ids != 0) {
 971                        spin_unlock(&sid_lock);
 972                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 973                        spin_lock(&sid_lock);
 974                }
 975                BUG_ON(free_space_ids == 0);
 976        }
 977
 978        free_space_ids--;
 979
 980        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 981        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 982        space_id_index = index;
 983
 984        spin_unlock(&sid_lock);
 985
 986        return index << SPACEID_SHIFT;
 987}
 988
 989void free_sid(unsigned long spaceid)
 990{
 991        unsigned long index = spaceid >> SPACEID_SHIFT;
 992        unsigned long *dirty_space_offset;
 993
 994        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 995        index &= (BITS_PER_LONG - 1);
 996
 997        spin_lock(&sid_lock);
 998
 999        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1000
1001        *dirty_space_offset |= (1L << index);
1002        dirty_space_ids++;
1003
1004        spin_unlock(&sid_lock);
1005}
1006
1007
1008#ifdef CONFIG_SMP
1009static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1010{
1011        int i;
1012
1013        /* NOTE: sid_lock must be held upon entry */
1014
1015        *ndirtyptr = dirty_space_ids;
1016        if (dirty_space_ids != 0) {
1017            for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018                dirty_array[i] = dirty_space_id[i];
1019                dirty_space_id[i] = 0;
1020            }
1021            dirty_space_ids = 0;
1022        }
1023
1024        return;
1025}
1026
1027static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1028{
1029        int i;
1030
1031        /* NOTE: sid_lock must be held upon entry */
1032
1033        if (ndirty != 0) {
1034                for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035                        space_id[i] ^= dirty_array[i];
1036                }
1037
1038                free_space_ids += ndirty;
1039                space_id_index = 0;
1040        }
1041}
1042
1043#else /* CONFIG_SMP */
1044
1045static void recycle_sids(void)
1046{
1047        int i;
1048
1049        /* NOTE: sid_lock must be held upon entry */
1050
1051        if (dirty_space_ids != 0) {
1052                for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053                        space_id[i] ^= dirty_space_id[i];
1054                        dirty_space_id[i] = 0;
1055                }
1056
1057                free_space_ids += dirty_space_ids;
1058                dirty_space_ids = 0;
1059                space_id_index = 0;
1060        }
1061}
1062#endif
1063
1064/*
1065 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066 * purged, we can safely reuse the space ids that were released but
1067 * not flushed from the tlb.
1068 */
1069
1070#ifdef CONFIG_SMP
1071
1072static unsigned long recycle_ndirty;
1073static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074static unsigned int recycle_inuse;
1075
1076void flush_tlb_all(void)
1077{
1078        int do_recycle;
1079
1080        do_recycle = 0;
1081        spin_lock(&sid_lock);
1082        if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1084            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085            recycle_inuse++;
1086            do_recycle++;
1087        }
1088        spin_unlock(&sid_lock);
1089        on_each_cpu(flush_tlb_all_local, NULL, 1);
1090        if (do_recycle) {
1091            spin_lock(&sid_lock);
1092            recycle_sids(recycle_ndirty,recycle_dirty_array);
1093            recycle_inuse = 0;
1094            spin_unlock(&sid_lock);
1095        }
1096}
1097#else
1098void flush_tlb_all(void)
1099{
1100        spin_lock(&sid_lock);
1101        flush_tlb_all_local(NULL);
1102        recycle_sids();
1103        spin_unlock(&sid_lock);
1104}
1105#endif
1106
1107#ifdef CONFIG_BLK_DEV_INITRD
1108void free_initrd_mem(unsigned long start, unsigned long end)
1109{
1110        if (start >= end)
1111                return;
1112        printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113        for (; start < end; start += PAGE_SIZE) {
1114                ClearPageReserved(virt_to_page(start));
1115                init_page_count(virt_to_page(start));
1116                free_page(start);
1117                num_physpages++;
1118                totalram_pages++;
1119        }
1120}
1121#endif
1122