linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/init.h>
  29#include <linux/prctl.h>
  30#include <linux/init_task.h>
  31#include <linux/export.h>
  32#include <linux/kallsyms.h>
  33#include <linux/mqueue.h>
  34#include <linux/hardirq.h>
  35#include <linux/utsname.h>
  36#include <linux/ftrace.h>
  37#include <linux/kernel_stat.h>
  38#include <linux/personality.h>
  39#include <linux/random.h>
  40#include <linux/hw_breakpoint.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/uaccess.h>
  44#include <asm/io.h>
  45#include <asm/processor.h>
  46#include <asm/mmu.h>
  47#include <asm/prom.h>
  48#include <asm/machdep.h>
  49#include <asm/time.h>
  50#include <asm/runlatch.h>
  51#include <asm/syscalls.h>
  52#include <asm/switch_to.h>
  53#include <asm/debug.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/firmware.h>
  56#endif
  57#include <linux/kprobes.h>
  58#include <linux/kdebug.h>
  59
  60extern unsigned long _get_SP(void);
  61
  62#ifndef CONFIG_SMP
  63struct task_struct *last_task_used_math = NULL;
  64struct task_struct *last_task_used_altivec = NULL;
  65struct task_struct *last_task_used_vsx = NULL;
  66struct task_struct *last_task_used_spe = NULL;
  67#endif
  68
  69/*
  70 * Make sure the floating-point register state in the
  71 * the thread_struct is up to date for task tsk.
  72 */
  73void flush_fp_to_thread(struct task_struct *tsk)
  74{
  75        if (tsk->thread.regs) {
  76                /*
  77                 * We need to disable preemption here because if we didn't,
  78                 * another process could get scheduled after the regs->msr
  79                 * test but before we have finished saving the FP registers
  80                 * to the thread_struct.  That process could take over the
  81                 * FPU, and then when we get scheduled again we would store
  82                 * bogus values for the remaining FP registers.
  83                 */
  84                preempt_disable();
  85                if (tsk->thread.regs->msr & MSR_FP) {
  86#ifdef CONFIG_SMP
  87                        /*
  88                         * This should only ever be called for current or
  89                         * for a stopped child process.  Since we save away
  90                         * the FP register state on context switch on SMP,
  91                         * there is something wrong if a stopped child appears
  92                         * to still have its FP state in the CPU registers.
  93                         */
  94                        BUG_ON(tsk != current);
  95#endif
  96                        giveup_fpu(tsk);
  97                }
  98                preempt_enable();
  99        }
 100}
 101EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 102
 103void enable_kernel_fp(void)
 104{
 105        WARN_ON(preemptible());
 106
 107#ifdef CONFIG_SMP
 108        if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 109                giveup_fpu(current);
 110        else
 111                giveup_fpu(NULL);       /* just enables FP for kernel */
 112#else
 113        giveup_fpu(last_task_used_math);
 114#endif /* CONFIG_SMP */
 115}
 116EXPORT_SYMBOL(enable_kernel_fp);
 117
 118#ifdef CONFIG_ALTIVEC
 119void enable_kernel_altivec(void)
 120{
 121        WARN_ON(preemptible());
 122
 123#ifdef CONFIG_SMP
 124        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 125                giveup_altivec(current);
 126        else
 127                giveup_altivec_notask();
 128#else
 129        giveup_altivec(last_task_used_altivec);
 130#endif /* CONFIG_SMP */
 131}
 132EXPORT_SYMBOL(enable_kernel_altivec);
 133
 134/*
 135 * Make sure the VMX/Altivec register state in the
 136 * the thread_struct is up to date for task tsk.
 137 */
 138void flush_altivec_to_thread(struct task_struct *tsk)
 139{
 140        if (tsk->thread.regs) {
 141                preempt_disable();
 142                if (tsk->thread.regs->msr & MSR_VEC) {
 143#ifdef CONFIG_SMP
 144                        BUG_ON(tsk != current);
 145#endif
 146                        giveup_altivec(tsk);
 147                }
 148                preempt_enable();
 149        }
 150}
 151EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 152#endif /* CONFIG_ALTIVEC */
 153
 154#ifdef CONFIG_VSX
 155#if 0
 156/* not currently used, but some crazy RAID module might want to later */
 157void enable_kernel_vsx(void)
 158{
 159        WARN_ON(preemptible());
 160
 161#ifdef CONFIG_SMP
 162        if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 163                giveup_vsx(current);
 164        else
 165                giveup_vsx(NULL);       /* just enable vsx for kernel - force */
 166#else
 167        giveup_vsx(last_task_used_vsx);
 168#endif /* CONFIG_SMP */
 169}
 170EXPORT_SYMBOL(enable_kernel_vsx);
 171#endif
 172
 173void giveup_vsx(struct task_struct *tsk)
 174{
 175        giveup_fpu(tsk);
 176        giveup_altivec(tsk);
 177        __giveup_vsx(tsk);
 178}
 179
 180void flush_vsx_to_thread(struct task_struct *tsk)
 181{
 182        if (tsk->thread.regs) {
 183                preempt_disable();
 184                if (tsk->thread.regs->msr & MSR_VSX) {
 185#ifdef CONFIG_SMP
 186                        BUG_ON(tsk != current);
 187#endif
 188                        giveup_vsx(tsk);
 189                }
 190                preempt_enable();
 191        }
 192}
 193EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 194#endif /* CONFIG_VSX */
 195
 196#ifdef CONFIG_SPE
 197
 198void enable_kernel_spe(void)
 199{
 200        WARN_ON(preemptible());
 201
 202#ifdef CONFIG_SMP
 203        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 204                giveup_spe(current);
 205        else
 206                giveup_spe(NULL);       /* just enable SPE for kernel - force */
 207#else
 208        giveup_spe(last_task_used_spe);
 209#endif /* __SMP __ */
 210}
 211EXPORT_SYMBOL(enable_kernel_spe);
 212
 213void flush_spe_to_thread(struct task_struct *tsk)
 214{
 215        if (tsk->thread.regs) {
 216                preempt_disable();
 217                if (tsk->thread.regs->msr & MSR_SPE) {
 218#ifdef CONFIG_SMP
 219                        BUG_ON(tsk != current);
 220#endif
 221                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 222                        giveup_spe(tsk);
 223                }
 224                preempt_enable();
 225        }
 226}
 227#endif /* CONFIG_SPE */
 228
 229#ifndef CONFIG_SMP
 230/*
 231 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 232 * and the current task has some state, discard it.
 233 */
 234void discard_lazy_cpu_state(void)
 235{
 236        preempt_disable();
 237        if (last_task_used_math == current)
 238                last_task_used_math = NULL;
 239#ifdef CONFIG_ALTIVEC
 240        if (last_task_used_altivec == current)
 241                last_task_used_altivec = NULL;
 242#endif /* CONFIG_ALTIVEC */
 243#ifdef CONFIG_VSX
 244        if (last_task_used_vsx == current)
 245                last_task_used_vsx = NULL;
 246#endif /* CONFIG_VSX */
 247#ifdef CONFIG_SPE
 248        if (last_task_used_spe == current)
 249                last_task_used_spe = NULL;
 250#endif
 251        preempt_enable();
 252}
 253#endif /* CONFIG_SMP */
 254
 255#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 256void do_send_trap(struct pt_regs *regs, unsigned long address,
 257                  unsigned long error_code, int signal_code, int breakpt)
 258{
 259        siginfo_t info;
 260
 261        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 262                        11, SIGSEGV) == NOTIFY_STOP)
 263                return;
 264
 265        /* Deliver the signal to userspace */
 266        info.si_signo = SIGTRAP;
 267        info.si_errno = breakpt;        /* breakpoint or watchpoint id */
 268        info.si_code = signal_code;
 269        info.si_addr = (void __user *)address;
 270        force_sig_info(SIGTRAP, &info, current);
 271}
 272#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 273void do_dabr(struct pt_regs *regs, unsigned long address,
 274                    unsigned long error_code)
 275{
 276        siginfo_t info;
 277
 278        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 279                        11, SIGSEGV) == NOTIFY_STOP)
 280                return;
 281
 282        if (debugger_dabr_match(regs))
 283                return;
 284
 285        /* Clear the DABR */
 286        set_dabr(0);
 287
 288        /* Deliver the signal to userspace */
 289        info.si_signo = SIGTRAP;
 290        info.si_errno = 0;
 291        info.si_code = TRAP_HWBKPT;
 292        info.si_addr = (void __user *)address;
 293        force_sig_info(SIGTRAP, &info, current);
 294}
 295#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 296
 297static DEFINE_PER_CPU(unsigned long, current_dabr);
 298
 299#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 300/*
 301 * Set the debug registers back to their default "safe" values.
 302 */
 303static void set_debug_reg_defaults(struct thread_struct *thread)
 304{
 305        thread->iac1 = thread->iac2 = 0;
 306#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 307        thread->iac3 = thread->iac4 = 0;
 308#endif
 309        thread->dac1 = thread->dac2 = 0;
 310#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 311        thread->dvc1 = thread->dvc2 = 0;
 312#endif
 313        thread->dbcr0 = 0;
 314#ifdef CONFIG_BOOKE
 315        /*
 316         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 317         */
 318        thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
 319                        DBCR1_IAC3US | DBCR1_IAC4US;
 320        /*
 321         * Force Data Address Compare User/Supervisor bits to be User-only
 322         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 323         */
 324        thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 325#else
 326        thread->dbcr1 = 0;
 327#endif
 328}
 329
 330static void prime_debug_regs(struct thread_struct *thread)
 331{
 332        mtspr(SPRN_IAC1, thread->iac1);
 333        mtspr(SPRN_IAC2, thread->iac2);
 334#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 335        mtspr(SPRN_IAC3, thread->iac3);
 336        mtspr(SPRN_IAC4, thread->iac4);
 337#endif
 338        mtspr(SPRN_DAC1, thread->dac1);
 339        mtspr(SPRN_DAC2, thread->dac2);
 340#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 341        mtspr(SPRN_DVC1, thread->dvc1);
 342        mtspr(SPRN_DVC2, thread->dvc2);
 343#endif
 344        mtspr(SPRN_DBCR0, thread->dbcr0);
 345        mtspr(SPRN_DBCR1, thread->dbcr1);
 346#ifdef CONFIG_BOOKE
 347        mtspr(SPRN_DBCR2, thread->dbcr2);
 348#endif
 349}
 350/*
 351 * Unless neither the old or new thread are making use of the
 352 * debug registers, set the debug registers from the values
 353 * stored in the new thread.
 354 */
 355static void switch_booke_debug_regs(struct thread_struct *new_thread)
 356{
 357        if ((current->thread.dbcr0 & DBCR0_IDM)
 358                || (new_thread->dbcr0 & DBCR0_IDM))
 359                        prime_debug_regs(new_thread);
 360}
 361#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 362#ifndef CONFIG_HAVE_HW_BREAKPOINT
 363static void set_debug_reg_defaults(struct thread_struct *thread)
 364{
 365        if (thread->dabr) {
 366                thread->dabr = 0;
 367                set_dabr(0);
 368        }
 369}
 370#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 371#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 372
 373int set_dabr(unsigned long dabr)
 374{
 375        __get_cpu_var(current_dabr) = dabr;
 376
 377        if (ppc_md.set_dabr)
 378                return ppc_md.set_dabr(dabr);
 379
 380        /* XXX should we have a CPU_FTR_HAS_DABR ? */
 381#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 382        mtspr(SPRN_DAC1, dabr);
 383#ifdef CONFIG_PPC_47x
 384        isync();
 385#endif
 386#elif defined(CONFIG_PPC_BOOK3S)
 387        mtspr(SPRN_DABR, dabr);
 388#endif
 389
 390
 391        return 0;
 392}
 393
 394#ifdef CONFIG_PPC64
 395DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 396#endif
 397
 398struct task_struct *__switch_to(struct task_struct *prev,
 399        struct task_struct *new)
 400{
 401        struct thread_struct *new_thread, *old_thread;
 402        unsigned long flags;
 403        struct task_struct *last;
 404#ifdef CONFIG_PPC_BOOK3S_64
 405        struct ppc64_tlb_batch *batch;
 406#endif
 407
 408#ifdef CONFIG_SMP
 409        /* avoid complexity of lazy save/restore of fpu
 410         * by just saving it every time we switch out if
 411         * this task used the fpu during the last quantum.
 412         *
 413         * If it tries to use the fpu again, it'll trap and
 414         * reload its fp regs.  So we don't have to do a restore
 415         * every switch, just a save.
 416         *  -- Cort
 417         */
 418        if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 419                giveup_fpu(prev);
 420#ifdef CONFIG_ALTIVEC
 421        /*
 422         * If the previous thread used altivec in the last quantum
 423         * (thus changing altivec regs) then save them.
 424         * We used to check the VRSAVE register but not all apps
 425         * set it, so we don't rely on it now (and in fact we need
 426         * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 427         *
 428         * On SMP we always save/restore altivec regs just to avoid the
 429         * complexity of changing processors.
 430         *  -- Cort
 431         */
 432        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 433                giveup_altivec(prev);
 434#endif /* CONFIG_ALTIVEC */
 435#ifdef CONFIG_VSX
 436        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 437                /* VMX and FPU registers are already save here */
 438                __giveup_vsx(prev);
 439#endif /* CONFIG_VSX */
 440#ifdef CONFIG_SPE
 441        /*
 442         * If the previous thread used spe in the last quantum
 443         * (thus changing spe regs) then save them.
 444         *
 445         * On SMP we always save/restore spe regs just to avoid the
 446         * complexity of changing processors.
 447         */
 448        if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 449                giveup_spe(prev);
 450#endif /* CONFIG_SPE */
 451
 452#else  /* CONFIG_SMP */
 453#ifdef CONFIG_ALTIVEC
 454        /* Avoid the trap.  On smp this this never happens since
 455         * we don't set last_task_used_altivec -- Cort
 456         */
 457        if (new->thread.regs && last_task_used_altivec == new)
 458                new->thread.regs->msr |= MSR_VEC;
 459#endif /* CONFIG_ALTIVEC */
 460#ifdef CONFIG_VSX
 461        if (new->thread.regs && last_task_used_vsx == new)
 462                new->thread.regs->msr |= MSR_VSX;
 463#endif /* CONFIG_VSX */
 464#ifdef CONFIG_SPE
 465        /* Avoid the trap.  On smp this this never happens since
 466         * we don't set last_task_used_spe
 467         */
 468        if (new->thread.regs && last_task_used_spe == new)
 469                new->thread.regs->msr |= MSR_SPE;
 470#endif /* CONFIG_SPE */
 471
 472#endif /* CONFIG_SMP */
 473
 474#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 475        switch_booke_debug_regs(&new->thread);
 476#else
 477/*
 478 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 479 * schedule DABR
 480 */
 481#ifndef CONFIG_HAVE_HW_BREAKPOINT
 482        if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
 483                set_dabr(new->thread.dabr);
 484#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 485#endif
 486
 487
 488        new_thread = &new->thread;
 489        old_thread = &current->thread;
 490
 491#ifdef CONFIG_PPC64
 492        /*
 493         * Collect processor utilization data per process
 494         */
 495        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 496                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 497                long unsigned start_tb, current_tb;
 498                start_tb = old_thread->start_tb;
 499                cu->current_tb = current_tb = mfspr(SPRN_PURR);
 500                old_thread->accum_tb += (current_tb - start_tb);
 501                new_thread->start_tb = current_tb;
 502        }
 503#endif /* CONFIG_PPC64 */
 504
 505#ifdef CONFIG_PPC_BOOK3S_64
 506        batch = &__get_cpu_var(ppc64_tlb_batch);
 507        if (batch->active) {
 508                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
 509                if (batch->index)
 510                        __flush_tlb_pending(batch);
 511                batch->active = 0;
 512        }
 513#endif /* CONFIG_PPC_BOOK3S_64 */
 514
 515        local_irq_save(flags);
 516
 517        account_system_vtime(current);
 518        account_process_vtime(current);
 519
 520        /*
 521         * We can't take a PMU exception inside _switch() since there is a
 522         * window where the kernel stack SLB and the kernel stack are out
 523         * of sync. Hard disable here.
 524         */
 525        hard_irq_disable();
 526        last = _switch(old_thread, new_thread);
 527
 528#ifdef CONFIG_PPC_BOOK3S_64
 529        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
 530                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
 531                batch = &__get_cpu_var(ppc64_tlb_batch);
 532                batch->active = 1;
 533        }
 534#endif /* CONFIG_PPC_BOOK3S_64 */
 535
 536        local_irq_restore(flags);
 537
 538        return last;
 539}
 540
 541static int instructions_to_print = 16;
 542
 543static void show_instructions(struct pt_regs *regs)
 544{
 545        int i;
 546        unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 547                        sizeof(int));
 548
 549        printk("Instruction dump:");
 550
 551        for (i = 0; i < instructions_to_print; i++) {
 552                int instr;
 553
 554                if (!(i % 8))
 555                        printk("\n");
 556
 557#if !defined(CONFIG_BOOKE)
 558                /* If executing with the IMMU off, adjust pc rather
 559                 * than print XXXXXXXX.
 560                 */
 561                if (!(regs->msr & MSR_IR))
 562                        pc = (unsigned long)phys_to_virt(pc);
 563#endif
 564
 565                /* We use __get_user here *only* to avoid an OOPS on a
 566                 * bad address because the pc *should* only be a
 567                 * kernel address.
 568                 */
 569                if (!__kernel_text_address(pc) ||
 570                     __get_user(instr, (unsigned int __user *)pc)) {
 571                        printk(KERN_CONT "XXXXXXXX ");
 572                } else {
 573                        if (regs->nip == pc)
 574                                printk(KERN_CONT "<%08x> ", instr);
 575                        else
 576                                printk(KERN_CONT "%08x ", instr);
 577                }
 578
 579                pc += sizeof(int);
 580        }
 581
 582        printk("\n");
 583}
 584
 585static struct regbit {
 586        unsigned long bit;
 587        const char *name;
 588} msr_bits[] = {
 589#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
 590        {MSR_SF,        "SF"},
 591        {MSR_HV,        "HV"},
 592#endif
 593        {MSR_VEC,       "VEC"},
 594        {MSR_VSX,       "VSX"},
 595#ifdef CONFIG_BOOKE
 596        {MSR_CE,        "CE"},
 597#endif
 598        {MSR_EE,        "EE"},
 599        {MSR_PR,        "PR"},
 600        {MSR_FP,        "FP"},
 601        {MSR_ME,        "ME"},
 602#ifdef CONFIG_BOOKE
 603        {MSR_DE,        "DE"},
 604#else
 605        {MSR_SE,        "SE"},
 606        {MSR_BE,        "BE"},
 607#endif
 608        {MSR_IR,        "IR"},
 609        {MSR_DR,        "DR"},
 610        {MSR_PMM,       "PMM"},
 611#ifndef CONFIG_BOOKE
 612        {MSR_RI,        "RI"},
 613        {MSR_LE,        "LE"},
 614#endif
 615        {0,             NULL}
 616};
 617
 618static void printbits(unsigned long val, struct regbit *bits)
 619{
 620        const char *sep = "";
 621
 622        printk("<");
 623        for (; bits->bit; ++bits)
 624                if (val & bits->bit) {
 625                        printk("%s%s", sep, bits->name);
 626                        sep = ",";
 627                }
 628        printk(">");
 629}
 630
 631#ifdef CONFIG_PPC64
 632#define REG             "%016lx"
 633#define REGS_PER_LINE   4
 634#define LAST_VOLATILE   13
 635#else
 636#define REG             "%08lx"
 637#define REGS_PER_LINE   8
 638#define LAST_VOLATILE   12
 639#endif
 640
 641void show_regs(struct pt_regs * regs)
 642{
 643        int i, trap;
 644
 645        printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
 646               regs->nip, regs->link, regs->ctr);
 647        printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
 648               regs, regs->trap, print_tainted(), init_utsname()->release);
 649        printk("MSR: "REG" ", regs->msr);
 650        printbits(regs->msr, msr_bits);
 651        printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
 652#ifdef CONFIG_PPC64
 653        printk("SOFTE: %ld\n", regs->softe);
 654#endif
 655        trap = TRAP(regs);
 656        if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
 657                printk("CFAR: "REG"\n", regs->orig_gpr3);
 658        if (trap == 0x300 || trap == 0x600)
 659#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
 660                printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
 661#else
 662                printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
 663#endif
 664        printk("TASK = %p[%d] '%s' THREAD: %p",
 665               current, task_pid_nr(current), current->comm, task_thread_info(current));
 666
 667#ifdef CONFIG_SMP
 668        printk(" CPU: %d", raw_smp_processor_id());
 669#endif /* CONFIG_SMP */
 670
 671        for (i = 0;  i < 32;  i++) {
 672                if ((i % REGS_PER_LINE) == 0)
 673                        printk("\nGPR%02d: ", i);
 674                printk(REG " ", regs->gpr[i]);
 675                if (i == LAST_VOLATILE && !FULL_REGS(regs))
 676                        break;
 677        }
 678        printk("\n");
 679#ifdef CONFIG_KALLSYMS
 680        /*
 681         * Lookup NIP late so we have the best change of getting the
 682         * above info out without failing
 683         */
 684        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
 685        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
 686#endif
 687        show_stack(current, (unsigned long *) regs->gpr[1]);
 688        if (!user_mode(regs))
 689                show_instructions(regs);
 690}
 691
 692void exit_thread(void)
 693{
 694        discard_lazy_cpu_state();
 695}
 696
 697void flush_thread(void)
 698{
 699        discard_lazy_cpu_state();
 700
 701#ifdef CONFIG_HAVE_HW_BREAKPOINT
 702        flush_ptrace_hw_breakpoint(current);
 703#else /* CONFIG_HAVE_HW_BREAKPOINT */
 704        set_debug_reg_defaults(&current->thread);
 705#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 706}
 707
 708void
 709release_thread(struct task_struct *t)
 710{
 711}
 712
 713/*
 714 * this gets called so that we can store coprocessor state into memory and
 715 * copy the current task into the new thread.
 716 */
 717int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 718{
 719        flush_fp_to_thread(src);
 720        flush_altivec_to_thread(src);
 721        flush_vsx_to_thread(src);
 722        flush_spe_to_thread(src);
 723#ifdef CONFIG_HAVE_HW_BREAKPOINT
 724        flush_ptrace_hw_breakpoint(src);
 725#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 726
 727        *dst = *src;
 728        return 0;
 729}
 730
 731/*
 732 * Copy a thread..
 733 */
 734extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
 735
 736int copy_thread(unsigned long clone_flags, unsigned long usp,
 737                unsigned long unused, struct task_struct *p,
 738                struct pt_regs *regs)
 739{
 740        struct pt_regs *childregs, *kregs;
 741        extern void ret_from_fork(void);
 742        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 743
 744        CHECK_FULL_REGS(regs);
 745        /* Copy registers */
 746        sp -= sizeof(struct pt_regs);
 747        childregs = (struct pt_regs *) sp;
 748        *childregs = *regs;
 749        if ((childregs->msr & MSR_PR) == 0) {
 750                /* for kernel thread, set `current' and stackptr in new task */
 751                childregs->gpr[1] = sp + sizeof(struct pt_regs);
 752#ifdef CONFIG_PPC32
 753                childregs->gpr[2] = (unsigned long) p;
 754#else
 755                clear_tsk_thread_flag(p, TIF_32BIT);
 756#endif
 757                p->thread.regs = NULL;  /* no user register state */
 758        } else {
 759                childregs->gpr[1] = usp;
 760                p->thread.regs = childregs;
 761                if (clone_flags & CLONE_SETTLS) {
 762#ifdef CONFIG_PPC64
 763                        if (!is_32bit_task())
 764                                childregs->gpr[13] = childregs->gpr[6];
 765                        else
 766#endif
 767                                childregs->gpr[2] = childregs->gpr[6];
 768                }
 769        }
 770        childregs->gpr[3] = 0;  /* Result from fork() */
 771        sp -= STACK_FRAME_OVERHEAD;
 772
 773        /*
 774         * The way this works is that at some point in the future
 775         * some task will call _switch to switch to the new task.
 776         * That will pop off the stack frame created below and start
 777         * the new task running at ret_from_fork.  The new task will
 778         * do some house keeping and then return from the fork or clone
 779         * system call, using the stack frame created above.
 780         */
 781        sp -= sizeof(struct pt_regs);
 782        kregs = (struct pt_regs *) sp;
 783        sp -= STACK_FRAME_OVERHEAD;
 784        p->thread.ksp = sp;
 785        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
 786                                _ALIGN_UP(sizeof(struct thread_info), 16);
 787
 788#ifdef CONFIG_PPC_STD_MMU_64
 789        if (mmu_has_feature(MMU_FTR_SLB)) {
 790                unsigned long sp_vsid;
 791                unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
 792
 793                if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
 794                        sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
 795                                << SLB_VSID_SHIFT_1T;
 796                else
 797                        sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
 798                                << SLB_VSID_SHIFT;
 799                sp_vsid |= SLB_VSID_KERNEL | llp;
 800                p->thread.ksp_vsid = sp_vsid;
 801        }
 802#endif /* CONFIG_PPC_STD_MMU_64 */
 803#ifdef CONFIG_PPC64 
 804        if (cpu_has_feature(CPU_FTR_DSCR)) {
 805                if (current->thread.dscr_inherit) {
 806                        p->thread.dscr_inherit = 1;
 807                        p->thread.dscr = current->thread.dscr;
 808                } else if (0 != dscr_default) {
 809                        p->thread.dscr_inherit = 1;
 810                        p->thread.dscr = dscr_default;
 811                } else {
 812                        p->thread.dscr_inherit = 0;
 813                        p->thread.dscr = 0;
 814                }
 815        }
 816#endif
 817
 818        /*
 819         * The PPC64 ABI makes use of a TOC to contain function 
 820         * pointers.  The function (ret_from_except) is actually a pointer
 821         * to the TOC entry.  The first entry is a pointer to the actual
 822         * function.
 823         */
 824#ifdef CONFIG_PPC64
 825        kregs->nip = *((unsigned long *)ret_from_fork);
 826#else
 827        kregs->nip = (unsigned long)ret_from_fork;
 828#endif
 829
 830        return 0;
 831}
 832
 833/*
 834 * Set up a thread for executing a new program
 835 */
 836void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
 837{
 838#ifdef CONFIG_PPC64
 839        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
 840#endif
 841
 842        /*
 843         * If we exec out of a kernel thread then thread.regs will not be
 844         * set.  Do it now.
 845         */
 846        if (!current->thread.regs) {
 847                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
 848                current->thread.regs = regs - 1;
 849        }
 850
 851        memset(regs->gpr, 0, sizeof(regs->gpr));
 852        regs->ctr = 0;
 853        regs->link = 0;
 854        regs->xer = 0;
 855        regs->ccr = 0;
 856        regs->gpr[1] = sp;
 857
 858        /*
 859         * We have just cleared all the nonvolatile GPRs, so make
 860         * FULL_REGS(regs) return true.  This is necessary to allow
 861         * ptrace to examine the thread immediately after exec.
 862         */
 863        regs->trap &= ~1UL;
 864
 865#ifdef CONFIG_PPC32
 866        regs->mq = 0;
 867        regs->nip = start;
 868        regs->msr = MSR_USER;
 869#else
 870        if (!is_32bit_task()) {
 871                unsigned long entry, toc;
 872
 873                /* start is a relocated pointer to the function descriptor for
 874                 * the elf _start routine.  The first entry in the function
 875                 * descriptor is the entry address of _start and the second
 876                 * entry is the TOC value we need to use.
 877                 */
 878                __get_user(entry, (unsigned long __user *)start);
 879                __get_user(toc, (unsigned long __user *)start+1);
 880
 881                /* Check whether the e_entry function descriptor entries
 882                 * need to be relocated before we can use them.
 883                 */
 884                if (load_addr != 0) {
 885                        entry += load_addr;
 886                        toc   += load_addr;
 887                }
 888                regs->nip = entry;
 889                regs->gpr[2] = toc;
 890                regs->msr = MSR_USER64;
 891        } else {
 892                regs->nip = start;
 893                regs->gpr[2] = 0;
 894                regs->msr = MSR_USER32;
 895        }
 896#endif
 897
 898        discard_lazy_cpu_state();
 899#ifdef CONFIG_VSX
 900        current->thread.used_vsr = 0;
 901#endif
 902        memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
 903        current->thread.fpscr.val = 0;
 904#ifdef CONFIG_ALTIVEC
 905        memset(current->thread.vr, 0, sizeof(current->thread.vr));
 906        memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
 907        current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
 908        current->thread.vrsave = 0;
 909        current->thread.used_vr = 0;
 910#endif /* CONFIG_ALTIVEC */
 911#ifdef CONFIG_SPE
 912        memset(current->thread.evr, 0, sizeof(current->thread.evr));
 913        current->thread.acc = 0;
 914        current->thread.spefscr = 0;
 915        current->thread.used_spe = 0;
 916#endif /* CONFIG_SPE */
 917}
 918
 919#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
 920                | PR_FP_EXC_RES | PR_FP_EXC_INV)
 921
 922int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
 923{
 924        struct pt_regs *regs = tsk->thread.regs;
 925
 926        /* This is a bit hairy.  If we are an SPE enabled  processor
 927         * (have embedded fp) we store the IEEE exception enable flags in
 928         * fpexc_mode.  fpexc_mode is also used for setting FP exception
 929         * mode (asyn, precise, disabled) for 'Classic' FP. */
 930        if (val & PR_FP_EXC_SW_ENABLE) {
 931#ifdef CONFIG_SPE
 932                if (cpu_has_feature(CPU_FTR_SPE)) {
 933                        tsk->thread.fpexc_mode = val &
 934                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
 935                        return 0;
 936                } else {
 937                        return -EINVAL;
 938                }
 939#else
 940                return -EINVAL;
 941#endif
 942        }
 943
 944        /* on a CONFIG_SPE this does not hurt us.  The bits that
 945         * __pack_fe01 use do not overlap with bits used for
 946         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
 947         * on CONFIG_SPE implementations are reserved so writing to
 948         * them does not change anything */
 949        if (val > PR_FP_EXC_PRECISE)
 950                return -EINVAL;
 951        tsk->thread.fpexc_mode = __pack_fe01(val);
 952        if (regs != NULL && (regs->msr & MSR_FP) != 0)
 953                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
 954                        | tsk->thread.fpexc_mode;
 955        return 0;
 956}
 957
 958int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
 959{
 960        unsigned int val;
 961
 962        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
 963#ifdef CONFIG_SPE
 964                if (cpu_has_feature(CPU_FTR_SPE))
 965                        val = tsk->thread.fpexc_mode;
 966                else
 967                        return -EINVAL;
 968#else
 969                return -EINVAL;
 970#endif
 971        else
 972                val = __unpack_fe01(tsk->thread.fpexc_mode);
 973        return put_user(val, (unsigned int __user *) adr);
 974}
 975
 976int set_endian(struct task_struct *tsk, unsigned int val)
 977{
 978        struct pt_regs *regs = tsk->thread.regs;
 979
 980        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
 981            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
 982                return -EINVAL;
 983
 984        if (regs == NULL)
 985                return -EINVAL;
 986
 987        if (val == PR_ENDIAN_BIG)
 988                regs->msr &= ~MSR_LE;
 989        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
 990                regs->msr |= MSR_LE;
 991        else
 992                return -EINVAL;
 993
 994        return 0;
 995}
 996
 997int get_endian(struct task_struct *tsk, unsigned long adr)
 998{
 999        struct pt_regs *regs = tsk->thread.regs;
1000        unsigned int val;
1001
1002        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1003            !cpu_has_feature(CPU_FTR_REAL_LE))
1004                return -EINVAL;
1005
1006        if (regs == NULL)
1007                return -EINVAL;
1008
1009        if (regs->msr & MSR_LE) {
1010                if (cpu_has_feature(CPU_FTR_REAL_LE))
1011                        val = PR_ENDIAN_LITTLE;
1012                else
1013                        val = PR_ENDIAN_PPC_LITTLE;
1014        } else
1015                val = PR_ENDIAN_BIG;
1016
1017        return put_user(val, (unsigned int __user *)adr);
1018}
1019
1020int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1021{
1022        tsk->thread.align_ctl = val;
1023        return 0;
1024}
1025
1026int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1027{
1028        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1029}
1030
1031#define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1032
1033int sys_clone(unsigned long clone_flags, unsigned long usp,
1034              int __user *parent_tidp, void __user *child_threadptr,
1035              int __user *child_tidp, int p6,
1036              struct pt_regs *regs)
1037{
1038        CHECK_FULL_REGS(regs);
1039        if (usp == 0)
1040                usp = regs->gpr[1];     /* stack pointer for child */
1041#ifdef CONFIG_PPC64
1042        if (is_32bit_task()) {
1043                parent_tidp = TRUNC_PTR(parent_tidp);
1044                child_tidp = TRUNC_PTR(child_tidp);
1045        }
1046#endif
1047        return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1048}
1049
1050int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1051             unsigned long p4, unsigned long p5, unsigned long p6,
1052             struct pt_regs *regs)
1053{
1054        CHECK_FULL_REGS(regs);
1055        return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1056}
1057
1058int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1059              unsigned long p4, unsigned long p5, unsigned long p6,
1060              struct pt_regs *regs)
1061{
1062        CHECK_FULL_REGS(regs);
1063        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1064                        regs, 0, NULL, NULL);
1065}
1066
1067int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1068               unsigned long a3, unsigned long a4, unsigned long a5,
1069               struct pt_regs *regs)
1070{
1071        int error;
1072        char *filename;
1073
1074        filename = getname((const char __user *) a0);
1075        error = PTR_ERR(filename);
1076        if (IS_ERR(filename))
1077                goto out;
1078        flush_fp_to_thread(current);
1079        flush_altivec_to_thread(current);
1080        flush_spe_to_thread(current);
1081        error = do_execve(filename,
1082                          (const char __user *const __user *) a1,
1083                          (const char __user *const __user *) a2, regs);
1084        putname(filename);
1085out:
1086        return error;
1087}
1088
1089static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1090                                  unsigned long nbytes)
1091{
1092        unsigned long stack_page;
1093        unsigned long cpu = task_cpu(p);
1094
1095        /*
1096         * Avoid crashing if the stack has overflowed and corrupted
1097         * task_cpu(p), which is in the thread_info struct.
1098         */
1099        if (cpu < NR_CPUS && cpu_possible(cpu)) {
1100                stack_page = (unsigned long) hardirq_ctx[cpu];
1101                if (sp >= stack_page + sizeof(struct thread_struct)
1102                    && sp <= stack_page + THREAD_SIZE - nbytes)
1103                        return 1;
1104
1105                stack_page = (unsigned long) softirq_ctx[cpu];
1106                if (sp >= stack_page + sizeof(struct thread_struct)
1107                    && sp <= stack_page + THREAD_SIZE - nbytes)
1108                        return 1;
1109        }
1110        return 0;
1111}
1112
1113int validate_sp(unsigned long sp, struct task_struct *p,
1114                       unsigned long nbytes)
1115{
1116        unsigned long stack_page = (unsigned long)task_stack_page(p);
1117
1118        if (sp >= stack_page + sizeof(struct thread_struct)
1119            && sp <= stack_page + THREAD_SIZE - nbytes)
1120                return 1;
1121
1122        return valid_irq_stack(sp, p, nbytes);
1123}
1124
1125EXPORT_SYMBOL(validate_sp);
1126
1127unsigned long get_wchan(struct task_struct *p)
1128{
1129        unsigned long ip, sp;
1130        int count = 0;
1131
1132        if (!p || p == current || p->state == TASK_RUNNING)
1133                return 0;
1134
1135        sp = p->thread.ksp;
1136        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1137                return 0;
1138
1139        do {
1140                sp = *(unsigned long *)sp;
1141                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1142                        return 0;
1143                if (count > 0) {
1144                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1145                        if (!in_sched_functions(ip))
1146                                return ip;
1147                }
1148        } while (count++ < 16);
1149        return 0;
1150}
1151
1152static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1153
1154void show_stack(struct task_struct *tsk, unsigned long *stack)
1155{
1156        unsigned long sp, ip, lr, newsp;
1157        int count = 0;
1158        int firstframe = 1;
1159#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1160        int curr_frame = current->curr_ret_stack;
1161        extern void return_to_handler(void);
1162        unsigned long rth = (unsigned long)return_to_handler;
1163        unsigned long mrth = -1;
1164#ifdef CONFIG_PPC64
1165        extern void mod_return_to_handler(void);
1166        rth = *(unsigned long *)rth;
1167        mrth = (unsigned long)mod_return_to_handler;
1168        mrth = *(unsigned long *)mrth;
1169#endif
1170#endif
1171
1172        sp = (unsigned long) stack;
1173        if (tsk == NULL)
1174                tsk = current;
1175        if (sp == 0) {
1176                if (tsk == current)
1177                        asm("mr %0,1" : "=r" (sp));
1178                else
1179                        sp = tsk->thread.ksp;
1180        }
1181
1182        lr = 0;
1183        printk("Call Trace:\n");
1184        do {
1185                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1186                        return;
1187
1188                stack = (unsigned long *) sp;
1189                newsp = stack[0];
1190                ip = stack[STACK_FRAME_LR_SAVE];
1191                if (!firstframe || ip != lr) {
1192                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1193#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1194                        if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1195                                printk(" (%pS)",
1196                                       (void *)current->ret_stack[curr_frame].ret);
1197                                curr_frame--;
1198                        }
1199#endif
1200                        if (firstframe)
1201                                printk(" (unreliable)");
1202                        printk("\n");
1203                }
1204                firstframe = 0;
1205
1206                /*
1207                 * See if this is an exception frame.
1208                 * We look for the "regshere" marker in the current frame.
1209                 */
1210                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1211                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1212                        struct pt_regs *regs = (struct pt_regs *)
1213                                (sp + STACK_FRAME_OVERHEAD);
1214                        lr = regs->link;
1215                        printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1216                               regs->trap, (void *)regs->nip, (void *)lr);
1217                        firstframe = 1;
1218                }
1219
1220                sp = newsp;
1221        } while (count++ < kstack_depth_to_print);
1222}
1223
1224void dump_stack(void)
1225{
1226        show_stack(current, NULL);
1227}
1228EXPORT_SYMBOL(dump_stack);
1229
1230#ifdef CONFIG_PPC64
1231/* Called with hard IRQs off */
1232void __ppc64_runlatch_on(void)
1233{
1234        struct thread_info *ti = current_thread_info();
1235        unsigned long ctrl;
1236
1237        ctrl = mfspr(SPRN_CTRLF);
1238        ctrl |= CTRL_RUNLATCH;
1239        mtspr(SPRN_CTRLT, ctrl);
1240
1241        ti->local_flags |= _TLF_RUNLATCH;
1242}
1243
1244/* Called with hard IRQs off */
1245void __ppc64_runlatch_off(void)
1246{
1247        struct thread_info *ti = current_thread_info();
1248        unsigned long ctrl;
1249
1250        ti->local_flags &= ~_TLF_RUNLATCH;
1251
1252        ctrl = mfspr(SPRN_CTRLF);
1253        ctrl &= ~CTRL_RUNLATCH;
1254        mtspr(SPRN_CTRLT, ctrl);
1255}
1256#endif /* CONFIG_PPC64 */
1257
1258unsigned long arch_align_stack(unsigned long sp)
1259{
1260        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1261                sp -= get_random_int() & ~PAGE_MASK;
1262        return sp & ~0xf;
1263}
1264
1265static inline unsigned long brk_rnd(void)
1266{
1267        unsigned long rnd = 0;
1268
1269        /* 8MB for 32bit, 1GB for 64bit */
1270        if (is_32bit_task())
1271                rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1272        else
1273                rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1274
1275        return rnd << PAGE_SHIFT;
1276}
1277
1278unsigned long arch_randomize_brk(struct mm_struct *mm)
1279{
1280        unsigned long base = mm->brk;
1281        unsigned long ret;
1282
1283#ifdef CONFIG_PPC_STD_MMU_64
1284        /*
1285         * If we are using 1TB segments and we are allowed to randomise
1286         * the heap, we can put it above 1TB so it is backed by a 1TB
1287         * segment. Otherwise the heap will be in the bottom 1TB
1288         * which always uses 256MB segments and this may result in a
1289         * performance penalty.
1290         */
1291        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1292                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1293#endif
1294
1295        ret = PAGE_ALIGN(base + brk_rnd());
1296
1297        if (ret < mm->brk)
1298                return mm->brk;
1299
1300        return ret;
1301}
1302
1303unsigned long randomize_et_dyn(unsigned long base)
1304{
1305        unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1306
1307        if (ret < base)
1308                return base;
1309
1310        return ret;
1311}
1312