linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/init.h>
  46#include <linux/profile.h>
  47#include <linux/cpu.h>
  48#include <linux/security.h>
  49#include <linux/percpu.h>
  50#include <linux/rtc.h>
  51#include <linux/jiffies.h>
  52#include <linux/posix-timers.h>
  53#include <linux/irq.h>
  54#include <linux/delay.h>
  55#include <linux/irq_work.h>
  56#include <asm/trace.h>
  57
  58#include <asm/io.h>
  59#include <asm/processor.h>
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <asm/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/cputime.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/clocksource.h>
  77
  78static cycle_t rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80        .name         = "rtc",
  81        .rating       = 400,
  82        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83        .mask         = CLOCKSOURCE_MASK(64),
  84        .read         = rtc_read,
  85};
  86
  87static cycle_t timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89        .name         = "timebase",
  90        .rating       = 400,
  91        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92        .mask         = CLOCKSOURCE_MASK(64),
  93        .read         = timebase_read,
  94};
  95
  96#define DECREMENTER_MAX 0x7fffffff
  97
  98static int decrementer_set_next_event(unsigned long evt,
  99                                      struct clock_event_device *dev);
 100static void decrementer_set_mode(enum clock_event_mode mode,
 101                                 struct clock_event_device *dev);
 102
 103struct clock_event_device decrementer_clockevent = {
 104        .name           = "decrementer",
 105        .rating         = 200,
 106        .irq            = 0,
 107        .set_next_event = decrementer_set_next_event,
 108        .set_mode       = decrementer_set_mode,
 109        .features       = CLOCK_EVT_FEAT_ONESHOT,
 110};
 111EXPORT_SYMBOL(decrementer_clockevent);
 112
 113DEFINE_PER_CPU(u64, decrementers_next_tb);
 114static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 115
 116#define XSEC_PER_SEC (1024*1024)
 117
 118#ifdef CONFIG_PPC64
 119#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 120#else
 121/* compute ((xsec << 12) * max) >> 32 */
 122#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 123#endif
 124
 125unsigned long tb_ticks_per_jiffy;
 126unsigned long tb_ticks_per_usec = 100; /* sane default */
 127EXPORT_SYMBOL(tb_ticks_per_usec);
 128unsigned long tb_ticks_per_sec;
 129EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 130
 131DEFINE_SPINLOCK(rtc_lock);
 132EXPORT_SYMBOL_GPL(rtc_lock);
 133
 134static u64 tb_to_ns_scale __read_mostly;
 135static unsigned tb_to_ns_shift __read_mostly;
 136static u64 boot_tb __read_mostly;
 137
 138extern struct timezone sys_tz;
 139static long timezone_offset;
 140
 141unsigned long ppc_proc_freq;
 142EXPORT_SYMBOL_GPL(ppc_proc_freq);
 143unsigned long ppc_tb_freq;
 144EXPORT_SYMBOL_GPL(ppc_tb_freq);
 145
 146#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 147/*
 148 * Factors for converting from cputime_t (timebase ticks) to
 149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 150 * These are all stored as 0.64 fixed-point binary fractions.
 151 */
 152u64 __cputime_jiffies_factor;
 153EXPORT_SYMBOL(__cputime_jiffies_factor);
 154u64 __cputime_usec_factor;
 155EXPORT_SYMBOL(__cputime_usec_factor);
 156u64 __cputime_sec_factor;
 157EXPORT_SYMBOL(__cputime_sec_factor);
 158u64 __cputime_clockt_factor;
 159EXPORT_SYMBOL(__cputime_clockt_factor);
 160DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 161DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 162
 163cputime_t cputime_one_jiffy;
 164
 165void (*dtl_consumer)(struct dtl_entry *, u64);
 166
 167static void calc_cputime_factors(void)
 168{
 169        struct div_result res;
 170
 171        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 172        __cputime_jiffies_factor = res.result_low;
 173        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 174        __cputime_usec_factor = res.result_low;
 175        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 176        __cputime_sec_factor = res.result_low;
 177        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 178        __cputime_clockt_factor = res.result_low;
 179}
 180
 181/*
 182 * Read the SPURR on systems that have it, otherwise the PURR,
 183 * or if that doesn't exist return the timebase value passed in.
 184 */
 185static u64 read_spurr(u64 tb)
 186{
 187        if (cpu_has_feature(CPU_FTR_SPURR))
 188                return mfspr(SPRN_SPURR);
 189        if (cpu_has_feature(CPU_FTR_PURR))
 190                return mfspr(SPRN_PURR);
 191        return tb;
 192}
 193
 194#ifdef CONFIG_PPC_SPLPAR
 195
 196/*
 197 * Scan the dispatch trace log and count up the stolen time.
 198 * Should be called with interrupts disabled.
 199 */
 200static u64 scan_dispatch_log(u64 stop_tb)
 201{
 202        u64 i = local_paca->dtl_ridx;
 203        struct dtl_entry *dtl = local_paca->dtl_curr;
 204        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 205        struct lppaca *vpa = local_paca->lppaca_ptr;
 206        u64 tb_delta;
 207        u64 stolen = 0;
 208        u64 dtb;
 209
 210        if (!dtl)
 211                return 0;
 212
 213        if (i == vpa->dtl_idx)
 214                return 0;
 215        while (i < vpa->dtl_idx) {
 216                if (dtl_consumer)
 217                        dtl_consumer(dtl, i);
 218                dtb = dtl->timebase;
 219                tb_delta = dtl->enqueue_to_dispatch_time +
 220                        dtl->ready_to_enqueue_time;
 221                barrier();
 222                if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
 223                        /* buffer has overflowed */
 224                        i = vpa->dtl_idx - N_DISPATCH_LOG;
 225                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 226                        continue;
 227                }
 228                if (dtb > stop_tb)
 229                        break;
 230                stolen += tb_delta;
 231                ++i;
 232                ++dtl;
 233                if (dtl == dtl_end)
 234                        dtl = local_paca->dispatch_log;
 235        }
 236        local_paca->dtl_ridx = i;
 237        local_paca->dtl_curr = dtl;
 238        return stolen;
 239}
 240
 241/*
 242 * Accumulate stolen time by scanning the dispatch trace log.
 243 * Called on entry from user mode.
 244 */
 245void accumulate_stolen_time(void)
 246{
 247        u64 sst, ust;
 248
 249        u8 save_soft_enabled = local_paca->soft_enabled;
 250
 251        /* We are called early in the exception entry, before
 252         * soft/hard_enabled are sync'ed to the expected state
 253         * for the exception. We are hard disabled but the PACA
 254         * needs to reflect that so various debug stuff doesn't
 255         * complain
 256         */
 257        local_paca->soft_enabled = 0;
 258
 259        sst = scan_dispatch_log(local_paca->starttime_user);
 260        ust = scan_dispatch_log(local_paca->starttime);
 261        local_paca->system_time -= sst;
 262        local_paca->user_time -= ust;
 263        local_paca->stolen_time += ust + sst;
 264
 265        local_paca->soft_enabled = save_soft_enabled;
 266}
 267
 268static inline u64 calculate_stolen_time(u64 stop_tb)
 269{
 270        u64 stolen = 0;
 271
 272        if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
 273                stolen = scan_dispatch_log(stop_tb);
 274                get_paca()->system_time -= stolen;
 275        }
 276
 277        stolen += get_paca()->stolen_time;
 278        get_paca()->stolen_time = 0;
 279        return stolen;
 280}
 281
 282#else /* CONFIG_PPC_SPLPAR */
 283static inline u64 calculate_stolen_time(u64 stop_tb)
 284{
 285        return 0;
 286}
 287
 288#endif /* CONFIG_PPC_SPLPAR */
 289
 290/*
 291 * Account time for a transition between system, hard irq
 292 * or soft irq state.
 293 */
 294void account_system_vtime(struct task_struct *tsk)
 295{
 296        u64 now, nowscaled, delta, deltascaled;
 297        unsigned long flags;
 298        u64 stolen, udelta, sys_scaled, user_scaled;
 299
 300        local_irq_save(flags);
 301        now = mftb();
 302        nowscaled = read_spurr(now);
 303        get_paca()->system_time += now - get_paca()->starttime;
 304        get_paca()->starttime = now;
 305        deltascaled = nowscaled - get_paca()->startspurr;
 306        get_paca()->startspurr = nowscaled;
 307
 308        stolen = calculate_stolen_time(now);
 309
 310        delta = get_paca()->system_time;
 311        get_paca()->system_time = 0;
 312        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 313        get_paca()->utime_sspurr = get_paca()->user_time;
 314
 315        /*
 316         * Because we don't read the SPURR on every kernel entry/exit,
 317         * deltascaled includes both user and system SPURR ticks.
 318         * Apportion these ticks to system SPURR ticks and user
 319         * SPURR ticks in the same ratio as the system time (delta)
 320         * and user time (udelta) values obtained from the timebase
 321         * over the same interval.  The system ticks get accounted here;
 322         * the user ticks get saved up in paca->user_time_scaled to be
 323         * used by account_process_tick.
 324         */
 325        sys_scaled = delta;
 326        user_scaled = udelta;
 327        if (deltascaled != delta + udelta) {
 328                if (udelta) {
 329                        sys_scaled = deltascaled * delta / (delta + udelta);
 330                        user_scaled = deltascaled - sys_scaled;
 331                } else {
 332                        sys_scaled = deltascaled;
 333                }
 334        }
 335        get_paca()->user_time_scaled += user_scaled;
 336
 337        if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
 338                account_system_time(tsk, 0, delta, sys_scaled);
 339                if (stolen)
 340                        account_steal_time(stolen);
 341        } else {
 342                account_idle_time(delta + stolen);
 343        }
 344        local_irq_restore(flags);
 345}
 346EXPORT_SYMBOL_GPL(account_system_vtime);
 347
 348/*
 349 * Transfer the user and system times accumulated in the paca
 350 * by the exception entry and exit code to the generic process
 351 * user and system time records.
 352 * Must be called with interrupts disabled.
 353 * Assumes that account_system_vtime() has been called recently
 354 * (i.e. since the last entry from usermode) so that
 355 * get_paca()->user_time_scaled is up to date.
 356 */
 357void account_process_tick(struct task_struct *tsk, int user_tick)
 358{
 359        cputime_t utime, utimescaled;
 360
 361        utime = get_paca()->user_time;
 362        utimescaled = get_paca()->user_time_scaled;
 363        get_paca()->user_time = 0;
 364        get_paca()->user_time_scaled = 0;
 365        get_paca()->utime_sspurr = 0;
 366        account_user_time(tsk, utime, utimescaled);
 367}
 368
 369#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
 370#define calc_cputime_factors()
 371#endif
 372
 373void __delay(unsigned long loops)
 374{
 375        unsigned long start;
 376        int diff;
 377
 378        if (__USE_RTC()) {
 379                start = get_rtcl();
 380                do {
 381                        /* the RTCL register wraps at 1000000000 */
 382                        diff = get_rtcl() - start;
 383                        if (diff < 0)
 384                                diff += 1000000000;
 385                } while (diff < loops);
 386        } else {
 387                start = get_tbl();
 388                while (get_tbl() - start < loops)
 389                        HMT_low();
 390                HMT_medium();
 391        }
 392}
 393EXPORT_SYMBOL(__delay);
 394
 395void udelay(unsigned long usecs)
 396{
 397        __delay(tb_ticks_per_usec * usecs);
 398}
 399EXPORT_SYMBOL(udelay);
 400
 401#ifdef CONFIG_SMP
 402unsigned long profile_pc(struct pt_regs *regs)
 403{
 404        unsigned long pc = instruction_pointer(regs);
 405
 406        if (in_lock_functions(pc))
 407                return regs->link;
 408
 409        return pc;
 410}
 411EXPORT_SYMBOL(profile_pc);
 412#endif
 413
 414#ifdef CONFIG_IRQ_WORK
 415
 416/*
 417 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 418 */
 419#ifdef CONFIG_PPC64
 420static inline unsigned long test_irq_work_pending(void)
 421{
 422        unsigned long x;
 423
 424        asm volatile("lbz %0,%1(13)"
 425                : "=r" (x)
 426                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 427        return x;
 428}
 429
 430static inline void set_irq_work_pending_flag(void)
 431{
 432        asm volatile("stb %0,%1(13)" : :
 433                "r" (1),
 434                "i" (offsetof(struct paca_struct, irq_work_pending)));
 435}
 436
 437static inline void clear_irq_work_pending(void)
 438{
 439        asm volatile("stb %0,%1(13)" : :
 440                "r" (0),
 441                "i" (offsetof(struct paca_struct, irq_work_pending)));
 442}
 443
 444#else /* 32-bit */
 445
 446DEFINE_PER_CPU(u8, irq_work_pending);
 447
 448#define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
 449#define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
 450#define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
 451
 452#endif /* 32 vs 64 bit */
 453
 454void arch_irq_work_raise(void)
 455{
 456        preempt_disable();
 457        set_irq_work_pending_flag();
 458        set_dec(1);
 459        preempt_enable();
 460}
 461
 462#else  /* CONFIG_IRQ_WORK */
 463
 464#define test_irq_work_pending() 0
 465#define clear_irq_work_pending()
 466
 467#endif /* CONFIG_IRQ_WORK */
 468
 469/*
 470 * timer_interrupt - gets called when the decrementer overflows,
 471 * with interrupts disabled.
 472 */
 473void timer_interrupt(struct pt_regs * regs)
 474{
 475        struct pt_regs *old_regs;
 476        u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 477        struct clock_event_device *evt = &__get_cpu_var(decrementers);
 478        u64 now;
 479
 480        /* Ensure a positive value is written to the decrementer, or else
 481         * some CPUs will continue to take decrementer exceptions.
 482         */
 483        set_dec(DECREMENTER_MAX);
 484
 485        /* Some implementations of hotplug will get timer interrupts while
 486         * offline, just ignore these
 487         */
 488        if (!cpu_online(smp_processor_id()))
 489                return;
 490
 491        /* Conditionally hard-enable interrupts now that the DEC has been
 492         * bumped to its maximum value
 493         */
 494        may_hard_irq_enable();
 495
 496        trace_timer_interrupt_entry(regs);
 497
 498        __get_cpu_var(irq_stat).timer_irqs++;
 499
 500#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
 501        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 502                do_IRQ(regs);
 503#endif
 504
 505        old_regs = set_irq_regs(regs);
 506        irq_enter();
 507
 508        if (test_irq_work_pending()) {
 509                clear_irq_work_pending();
 510                irq_work_run();
 511        }
 512
 513        now = get_tb_or_rtc();
 514        if (now >= *next_tb) {
 515                *next_tb = ~(u64)0;
 516                if (evt->event_handler)
 517                        evt->event_handler(evt);
 518        } else {
 519                now = *next_tb - now;
 520                if (now <= DECREMENTER_MAX)
 521                        set_dec((int)now);
 522        }
 523
 524#ifdef CONFIG_PPC64
 525        /* collect purr register values often, for accurate calculations */
 526        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 527                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 528                cu->current_tb = mfspr(SPRN_PURR);
 529        }
 530#endif
 531
 532        irq_exit();
 533        set_irq_regs(old_regs);
 534
 535        trace_timer_interrupt_exit(regs);
 536}
 537
 538#ifdef CONFIG_SUSPEND
 539static void generic_suspend_disable_irqs(void)
 540{
 541        /* Disable the decrementer, so that it doesn't interfere
 542         * with suspending.
 543         */
 544
 545        set_dec(DECREMENTER_MAX);
 546        local_irq_disable();
 547        set_dec(DECREMENTER_MAX);
 548}
 549
 550static void generic_suspend_enable_irqs(void)
 551{
 552        local_irq_enable();
 553}
 554
 555/* Overrides the weak version in kernel/power/main.c */
 556void arch_suspend_disable_irqs(void)
 557{
 558        if (ppc_md.suspend_disable_irqs)
 559                ppc_md.suspend_disable_irqs();
 560        generic_suspend_disable_irqs();
 561}
 562
 563/* Overrides the weak version in kernel/power/main.c */
 564void arch_suspend_enable_irqs(void)
 565{
 566        generic_suspend_enable_irqs();
 567        if (ppc_md.suspend_enable_irqs)
 568                ppc_md.suspend_enable_irqs();
 569}
 570#endif
 571
 572/*
 573 * Scheduler clock - returns current time in nanosec units.
 574 *
 575 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 576 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 577 * are 64-bit unsigned numbers.
 578 */
 579unsigned long long sched_clock(void)
 580{
 581        if (__USE_RTC())
 582                return get_rtc();
 583        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 584}
 585
 586static int __init get_freq(char *name, int cells, unsigned long *val)
 587{
 588        struct device_node *cpu;
 589        const unsigned int *fp;
 590        int found = 0;
 591
 592        /* The cpu node should have timebase and clock frequency properties */
 593        cpu = of_find_node_by_type(NULL, "cpu");
 594
 595        if (cpu) {
 596                fp = of_get_property(cpu, name, NULL);
 597                if (fp) {
 598                        found = 1;
 599                        *val = of_read_ulong(fp, cells);
 600                }
 601
 602                of_node_put(cpu);
 603        }
 604
 605        return found;
 606}
 607
 608/* should become __cpuinit when secondary_cpu_time_init also is */
 609void start_cpu_decrementer(void)
 610{
 611#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 612        /* Clear any pending timer interrupts */
 613        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 614
 615        /* Enable decrementer interrupt */
 616        mtspr(SPRN_TCR, TCR_DIE);
 617#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 618}
 619
 620void __init generic_calibrate_decr(void)
 621{
 622        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 623
 624        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 625            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 626
 627                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 628                                "(not found)\n");
 629        }
 630
 631        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 632
 633        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 634            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 635
 636                printk(KERN_ERR "WARNING: Estimating processor frequency "
 637                                "(not found)\n");
 638        }
 639}
 640
 641int update_persistent_clock(struct timespec now)
 642{
 643        struct rtc_time tm;
 644
 645        if (!ppc_md.set_rtc_time)
 646                return 0;
 647
 648        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 649        tm.tm_year -= 1900;
 650        tm.tm_mon -= 1;
 651
 652        return ppc_md.set_rtc_time(&tm);
 653}
 654
 655static void __read_persistent_clock(struct timespec *ts)
 656{
 657        struct rtc_time tm;
 658        static int first = 1;
 659
 660        ts->tv_nsec = 0;
 661        /* XXX this is a litle fragile but will work okay in the short term */
 662        if (first) {
 663                first = 0;
 664                if (ppc_md.time_init)
 665                        timezone_offset = ppc_md.time_init();
 666
 667                /* get_boot_time() isn't guaranteed to be safe to call late */
 668                if (ppc_md.get_boot_time) {
 669                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 670                        return;
 671                }
 672        }
 673        if (!ppc_md.get_rtc_time) {
 674                ts->tv_sec = 0;
 675                return;
 676        }
 677        ppc_md.get_rtc_time(&tm);
 678
 679        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 680                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 681}
 682
 683void read_persistent_clock(struct timespec *ts)
 684{
 685        __read_persistent_clock(ts);
 686
 687        /* Sanitize it in case real time clock is set below EPOCH */
 688        if (ts->tv_sec < 0) {
 689                ts->tv_sec = 0;
 690                ts->tv_nsec = 0;
 691        }
 692                
 693}
 694
 695/* clocksource code */
 696static cycle_t rtc_read(struct clocksource *cs)
 697{
 698        return (cycle_t)get_rtc();
 699}
 700
 701static cycle_t timebase_read(struct clocksource *cs)
 702{
 703        return (cycle_t)get_tb();
 704}
 705
 706void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 707                        struct clocksource *clock, u32 mult)
 708{
 709        u64 new_tb_to_xs, new_stamp_xsec;
 710        u32 frac_sec;
 711
 712        if (clock != &clocksource_timebase)
 713                return;
 714
 715        /* Make userspace gettimeofday spin until we're done. */
 716        ++vdso_data->tb_update_count;
 717        smp_mb();
 718
 719        /* 19342813113834067 ~= 2^(20+64) / 1e9 */
 720        new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 721        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 722        do_div(new_stamp_xsec, 1000000000);
 723        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 724
 725        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 726        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 727        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 728
 729        /*
 730         * tb_update_count is used to allow the userspace gettimeofday code
 731         * to assure itself that it sees a consistent view of the tb_to_xs and
 732         * stamp_xsec variables.  It reads the tb_update_count, then reads
 733         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 734         * the two values of tb_update_count match and are even then the
 735         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 736         * loops back and reads them again until this criteria is met.
 737         * We expect the caller to have done the first increment of
 738         * vdso_data->tb_update_count already.
 739         */
 740        vdso_data->tb_orig_stamp = clock->cycle_last;
 741        vdso_data->stamp_xsec = new_stamp_xsec;
 742        vdso_data->tb_to_xs = new_tb_to_xs;
 743        vdso_data->wtom_clock_sec = wtm->tv_sec;
 744        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 745        vdso_data->stamp_xtime = *wall_time;
 746        vdso_data->stamp_sec_fraction = frac_sec;
 747        smp_wmb();
 748        ++(vdso_data->tb_update_count);
 749}
 750
 751void update_vsyscall_tz(void)
 752{
 753        /* Make userspace gettimeofday spin until we're done. */
 754        ++vdso_data->tb_update_count;
 755        smp_mb();
 756        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 757        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 758        smp_mb();
 759        ++vdso_data->tb_update_count;
 760}
 761
 762static void __init clocksource_init(void)
 763{
 764        struct clocksource *clock;
 765
 766        if (__USE_RTC())
 767                clock = &clocksource_rtc;
 768        else
 769                clock = &clocksource_timebase;
 770
 771        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 772                printk(KERN_ERR "clocksource: %s is already registered\n",
 773                       clock->name);
 774                return;
 775        }
 776
 777        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 778               clock->name, clock->mult, clock->shift);
 779}
 780
 781static int decrementer_set_next_event(unsigned long evt,
 782                                      struct clock_event_device *dev)
 783{
 784        __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
 785        set_dec(evt);
 786        return 0;
 787}
 788
 789static void decrementer_set_mode(enum clock_event_mode mode,
 790                                 struct clock_event_device *dev)
 791{
 792        if (mode != CLOCK_EVT_MODE_ONESHOT)
 793                decrementer_set_next_event(DECREMENTER_MAX, dev);
 794}
 795
 796static void register_decrementer_clockevent(int cpu)
 797{
 798        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 799
 800        *dec = decrementer_clockevent;
 801        dec->cpumask = cpumask_of(cpu);
 802
 803        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 804                    dec->name, dec->mult, dec->shift, cpu);
 805
 806        clockevents_register_device(dec);
 807}
 808
 809static void __init init_decrementer_clockevent(void)
 810{
 811        int cpu = smp_processor_id();
 812
 813        clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 814
 815        decrementer_clockevent.max_delta_ns =
 816                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 817        decrementer_clockevent.min_delta_ns =
 818                clockevent_delta2ns(2, &decrementer_clockevent);
 819
 820        register_decrementer_clockevent(cpu);
 821}
 822
 823void secondary_cpu_time_init(void)
 824{
 825        /* Start the decrementer on CPUs that have manual control
 826         * such as BookE
 827         */
 828        start_cpu_decrementer();
 829
 830        /* FIME: Should make unrelatred change to move snapshot_timebase
 831         * call here ! */
 832        register_decrementer_clockevent(smp_processor_id());
 833}
 834
 835/* This function is only called on the boot processor */
 836void __init time_init(void)
 837{
 838        struct div_result res;
 839        u64 scale;
 840        unsigned shift;
 841
 842        if (__USE_RTC()) {
 843                /* 601 processor: dec counts down by 128 every 128ns */
 844                ppc_tb_freq = 1000000000;
 845        } else {
 846                /* Normal PowerPC with timebase register */
 847                ppc_md.calibrate_decr();
 848                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 849                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 850                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 851                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 852        }
 853
 854        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 855        tb_ticks_per_sec = ppc_tb_freq;
 856        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 857        calc_cputime_factors();
 858        setup_cputime_one_jiffy();
 859
 860        /*
 861         * Compute scale factor for sched_clock.
 862         * The calibrate_decr() function has set tb_ticks_per_sec,
 863         * which is the timebase frequency.
 864         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 865         * the 128-bit result as a 64.64 fixed-point number.
 866         * We then shift that number right until it is less than 1.0,
 867         * giving us the scale factor and shift count to use in
 868         * sched_clock().
 869         */
 870        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 871        scale = res.result_low;
 872        for (shift = 0; res.result_high != 0; ++shift) {
 873                scale = (scale >> 1) | (res.result_high << 63);
 874                res.result_high >>= 1;
 875        }
 876        tb_to_ns_scale = scale;
 877        tb_to_ns_shift = shift;
 878        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 879        boot_tb = get_tb_or_rtc();
 880
 881        /* If platform provided a timezone (pmac), we correct the time */
 882        if (timezone_offset) {
 883                sys_tz.tz_minuteswest = -timezone_offset / 60;
 884                sys_tz.tz_dsttime = 0;
 885        }
 886
 887        vdso_data->tb_update_count = 0;
 888        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 889
 890        /* Start the decrementer on CPUs that have manual control
 891         * such as BookE
 892         */
 893        start_cpu_decrementer();
 894
 895        /* Register the clocksource */
 896        clocksource_init();
 897
 898        init_decrementer_clockevent();
 899}
 900
 901
 902#define FEBRUARY        2
 903#define STARTOFTIME     1970
 904#define SECDAY          86400L
 905#define SECYR           (SECDAY * 365)
 906#define leapyear(year)          ((year) % 4 == 0 && \
 907                                 ((year) % 100 != 0 || (year) % 400 == 0))
 908#define days_in_year(a)         (leapyear(a) ? 366 : 365)
 909#define days_in_month(a)        (month_days[(a) - 1])
 910
 911static int month_days[12] = {
 912        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 913};
 914
 915/*
 916 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 917 */
 918void GregorianDay(struct rtc_time * tm)
 919{
 920        int leapsToDate;
 921        int lastYear;
 922        int day;
 923        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 924
 925        lastYear = tm->tm_year - 1;
 926
 927        /*
 928         * Number of leap corrections to apply up to end of last year
 929         */
 930        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
 931
 932        /*
 933         * This year is a leap year if it is divisible by 4 except when it is
 934         * divisible by 100 unless it is divisible by 400
 935         *
 936         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
 937         */
 938        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
 939
 940        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
 941                   tm->tm_mday;
 942
 943        tm->tm_wday = day % 7;
 944}
 945
 946void to_tm(int tim, struct rtc_time * tm)
 947{
 948        register int    i;
 949        register long   hms, day;
 950
 951        day = tim / SECDAY;
 952        hms = tim % SECDAY;
 953
 954        /* Hours, minutes, seconds are easy */
 955        tm->tm_hour = hms / 3600;
 956        tm->tm_min = (hms % 3600) / 60;
 957        tm->tm_sec = (hms % 3600) % 60;
 958
 959        /* Number of years in days */
 960        for (i = STARTOFTIME; day >= days_in_year(i); i++)
 961                day -= days_in_year(i);
 962        tm->tm_year = i;
 963
 964        /* Number of months in days left */
 965        if (leapyear(tm->tm_year))
 966                days_in_month(FEBRUARY) = 29;
 967        for (i = 1; day >= days_in_month(i); i++)
 968                day -= days_in_month(i);
 969        days_in_month(FEBRUARY) = 28;
 970        tm->tm_mon = i;
 971
 972        /* Days are what is left over (+1) from all that. */
 973        tm->tm_mday = day + 1;
 974
 975        /*
 976         * Determine the day of week
 977         */
 978        GregorianDay(tm);
 979}
 980
 981/*
 982 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 983 * result.
 984 */
 985void div128_by_32(u64 dividend_high, u64 dividend_low,
 986                  unsigned divisor, struct div_result *dr)
 987{
 988        unsigned long a, b, c, d;
 989        unsigned long w, x, y, z;
 990        u64 ra, rb, rc;
 991
 992        a = dividend_high >> 32;
 993        b = dividend_high & 0xffffffff;
 994        c = dividend_low >> 32;
 995        d = dividend_low & 0xffffffff;
 996
 997        w = a / divisor;
 998        ra = ((u64)(a - (w * divisor)) << 32) + b;
 999
1000        rb = ((u64) do_div(ra, divisor) << 32) + c;
1001        x = ra;
1002
1003        rc = ((u64) do_div(rb, divisor) << 32) + d;
1004        y = rb;
1005
1006        do_div(rc, divisor);
1007        z = rc;
1008
1009        dr->result_high = ((u64)w << 32) + x;
1010        dr->result_low  = ((u64)y << 32) + z;
1011
1012}
1013
1014/* We don't need to calibrate delay, we use the CPU timebase for that */
1015void calibrate_delay(void)
1016{
1017        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1018         * as the number of __delay(1) in a jiffy, so make it so
1019         */
1020        loops_per_jiffy = tb_ticks_per_jiffy;
1021}
1022
1023static int __init rtc_init(void)
1024{
1025        struct platform_device *pdev;
1026
1027        if (!ppc_md.get_rtc_time)
1028                return -ENODEV;
1029
1030        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1031        if (IS_ERR(pdev))
1032                return PTR_ERR(pdev);
1033
1034        return 0;
1035}
1036
1037module_init(rtc_init);
1038