1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34#include <linux/errno.h>
35#include <linux/export.h>
36#include <linux/sched.h>
37#include <linux/kernel.h>
38#include <linux/param.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/timex.h>
43#include <linux/kernel_stat.h>
44#include <linux/time.h>
45#include <linux/init.h>
46#include <linux/profile.h>
47#include <linux/cpu.h>
48#include <linux/security.h>
49#include <linux/percpu.h>
50#include <linux/rtc.h>
51#include <linux/jiffies.h>
52#include <linux/posix-timers.h>
53#include <linux/irq.h>
54#include <linux/delay.h>
55#include <linux/irq_work.h>
56#include <asm/trace.h>
57
58#include <asm/io.h>
59#include <asm/processor.h>
60#include <asm/nvram.h>
61#include <asm/cache.h>
62#include <asm/machdep.h>
63#include <asm/uaccess.h>
64#include <asm/time.h>
65#include <asm/prom.h>
66#include <asm/irq.h>
67#include <asm/div64.h>
68#include <asm/smp.h>
69#include <asm/vdso_datapage.h>
70#include <asm/firmware.h>
71#include <asm/cputime.h>
72
73
74
75#include <linux/clockchips.h>
76#include <linux/clocksource.h>
77
78static cycle_t rtc_read(struct clocksource *);
79static struct clocksource clocksource_rtc = {
80 .name = "rtc",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
84 .read = rtc_read,
85};
86
87static cycle_t timebase_read(struct clocksource *);
88static struct clocksource clocksource_timebase = {
89 .name = "timebase",
90 .rating = 400,
91 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
92 .mask = CLOCKSOURCE_MASK(64),
93 .read = timebase_read,
94};
95
96#define DECREMENTER_MAX 0x7fffffff
97
98static int decrementer_set_next_event(unsigned long evt,
99 struct clock_event_device *dev);
100static void decrementer_set_mode(enum clock_event_mode mode,
101 struct clock_event_device *dev);
102
103struct clock_event_device decrementer_clockevent = {
104 .name = "decrementer",
105 .rating = 200,
106 .irq = 0,
107 .set_next_event = decrementer_set_next_event,
108 .set_mode = decrementer_set_mode,
109 .features = CLOCK_EVT_FEAT_ONESHOT,
110};
111EXPORT_SYMBOL(decrementer_clockevent);
112
113DEFINE_PER_CPU(u64, decrementers_next_tb);
114static DEFINE_PER_CPU(struct clock_event_device, decrementers);
115
116#define XSEC_PER_SEC (1024*1024)
117
118#ifdef CONFIG_PPC64
119#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
120#else
121
122#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
123#endif
124
125unsigned long tb_ticks_per_jiffy;
126unsigned long tb_ticks_per_usec = 100;
127EXPORT_SYMBOL(tb_ticks_per_usec);
128unsigned long tb_ticks_per_sec;
129EXPORT_SYMBOL(tb_ticks_per_sec);
130
131DEFINE_SPINLOCK(rtc_lock);
132EXPORT_SYMBOL_GPL(rtc_lock);
133
134static u64 tb_to_ns_scale __read_mostly;
135static unsigned tb_to_ns_shift __read_mostly;
136static u64 boot_tb __read_mostly;
137
138extern struct timezone sys_tz;
139static long timezone_offset;
140
141unsigned long ppc_proc_freq;
142EXPORT_SYMBOL_GPL(ppc_proc_freq);
143unsigned long ppc_tb_freq;
144EXPORT_SYMBOL_GPL(ppc_tb_freq);
145
146#ifdef CONFIG_VIRT_CPU_ACCOUNTING
147
148
149
150
151
152u64 __cputime_jiffies_factor;
153EXPORT_SYMBOL(__cputime_jiffies_factor);
154u64 __cputime_usec_factor;
155EXPORT_SYMBOL(__cputime_usec_factor);
156u64 __cputime_sec_factor;
157EXPORT_SYMBOL(__cputime_sec_factor);
158u64 __cputime_clockt_factor;
159EXPORT_SYMBOL(__cputime_clockt_factor);
160DEFINE_PER_CPU(unsigned long, cputime_last_delta);
161DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
162
163cputime_t cputime_one_jiffy;
164
165void (*dtl_consumer)(struct dtl_entry *, u64);
166
167static void calc_cputime_factors(void)
168{
169 struct div_result res;
170
171 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
172 __cputime_jiffies_factor = res.result_low;
173 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
174 __cputime_usec_factor = res.result_low;
175 div128_by_32(1, 0, tb_ticks_per_sec, &res);
176 __cputime_sec_factor = res.result_low;
177 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
178 __cputime_clockt_factor = res.result_low;
179}
180
181
182
183
184
185static u64 read_spurr(u64 tb)
186{
187 if (cpu_has_feature(CPU_FTR_SPURR))
188 return mfspr(SPRN_SPURR);
189 if (cpu_has_feature(CPU_FTR_PURR))
190 return mfspr(SPRN_PURR);
191 return tb;
192}
193
194#ifdef CONFIG_PPC_SPLPAR
195
196
197
198
199
200static u64 scan_dispatch_log(u64 stop_tb)
201{
202 u64 i = local_paca->dtl_ridx;
203 struct dtl_entry *dtl = local_paca->dtl_curr;
204 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
205 struct lppaca *vpa = local_paca->lppaca_ptr;
206 u64 tb_delta;
207 u64 stolen = 0;
208 u64 dtb;
209
210 if (!dtl)
211 return 0;
212
213 if (i == vpa->dtl_idx)
214 return 0;
215 while (i < vpa->dtl_idx) {
216 if (dtl_consumer)
217 dtl_consumer(dtl, i);
218 dtb = dtl->timebase;
219 tb_delta = dtl->enqueue_to_dispatch_time +
220 dtl->ready_to_enqueue_time;
221 barrier();
222 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
223
224 i = vpa->dtl_idx - N_DISPATCH_LOG;
225 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
226 continue;
227 }
228 if (dtb > stop_tb)
229 break;
230 stolen += tb_delta;
231 ++i;
232 ++dtl;
233 if (dtl == dtl_end)
234 dtl = local_paca->dispatch_log;
235 }
236 local_paca->dtl_ridx = i;
237 local_paca->dtl_curr = dtl;
238 return stolen;
239}
240
241
242
243
244
245void accumulate_stolen_time(void)
246{
247 u64 sst, ust;
248
249 u8 save_soft_enabled = local_paca->soft_enabled;
250
251
252
253
254
255
256
257 local_paca->soft_enabled = 0;
258
259 sst = scan_dispatch_log(local_paca->starttime_user);
260 ust = scan_dispatch_log(local_paca->starttime);
261 local_paca->system_time -= sst;
262 local_paca->user_time -= ust;
263 local_paca->stolen_time += ust + sst;
264
265 local_paca->soft_enabled = save_soft_enabled;
266}
267
268static inline u64 calculate_stolen_time(u64 stop_tb)
269{
270 u64 stolen = 0;
271
272 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
273 stolen = scan_dispatch_log(stop_tb);
274 get_paca()->system_time -= stolen;
275 }
276
277 stolen += get_paca()->stolen_time;
278 get_paca()->stolen_time = 0;
279 return stolen;
280}
281
282#else
283static inline u64 calculate_stolen_time(u64 stop_tb)
284{
285 return 0;
286}
287
288#endif
289
290
291
292
293
294void account_system_vtime(struct task_struct *tsk)
295{
296 u64 now, nowscaled, delta, deltascaled;
297 unsigned long flags;
298 u64 stolen, udelta, sys_scaled, user_scaled;
299
300 local_irq_save(flags);
301 now = mftb();
302 nowscaled = read_spurr(now);
303 get_paca()->system_time += now - get_paca()->starttime;
304 get_paca()->starttime = now;
305 deltascaled = nowscaled - get_paca()->startspurr;
306 get_paca()->startspurr = nowscaled;
307
308 stolen = calculate_stolen_time(now);
309
310 delta = get_paca()->system_time;
311 get_paca()->system_time = 0;
312 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
313 get_paca()->utime_sspurr = get_paca()->user_time;
314
315
316
317
318
319
320
321
322
323
324
325 sys_scaled = delta;
326 user_scaled = udelta;
327 if (deltascaled != delta + udelta) {
328 if (udelta) {
329 sys_scaled = deltascaled * delta / (delta + udelta);
330 user_scaled = deltascaled - sys_scaled;
331 } else {
332 sys_scaled = deltascaled;
333 }
334 }
335 get_paca()->user_time_scaled += user_scaled;
336
337 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
338 account_system_time(tsk, 0, delta, sys_scaled);
339 if (stolen)
340 account_steal_time(stolen);
341 } else {
342 account_idle_time(delta + stolen);
343 }
344 local_irq_restore(flags);
345}
346EXPORT_SYMBOL_GPL(account_system_vtime);
347
348
349
350
351
352
353
354
355
356
357void account_process_tick(struct task_struct *tsk, int user_tick)
358{
359 cputime_t utime, utimescaled;
360
361 utime = get_paca()->user_time;
362 utimescaled = get_paca()->user_time_scaled;
363 get_paca()->user_time = 0;
364 get_paca()->user_time_scaled = 0;
365 get_paca()->utime_sspurr = 0;
366 account_user_time(tsk, utime, utimescaled);
367}
368
369#else
370#define calc_cputime_factors()
371#endif
372
373void __delay(unsigned long loops)
374{
375 unsigned long start;
376 int diff;
377
378 if (__USE_RTC()) {
379 start = get_rtcl();
380 do {
381
382 diff = get_rtcl() - start;
383 if (diff < 0)
384 diff += 1000000000;
385 } while (diff < loops);
386 } else {
387 start = get_tbl();
388 while (get_tbl() - start < loops)
389 HMT_low();
390 HMT_medium();
391 }
392}
393EXPORT_SYMBOL(__delay);
394
395void udelay(unsigned long usecs)
396{
397 __delay(tb_ticks_per_usec * usecs);
398}
399EXPORT_SYMBOL(udelay);
400
401#ifdef CONFIG_SMP
402unsigned long profile_pc(struct pt_regs *regs)
403{
404 unsigned long pc = instruction_pointer(regs);
405
406 if (in_lock_functions(pc))
407 return regs->link;
408
409 return pc;
410}
411EXPORT_SYMBOL(profile_pc);
412#endif
413
414#ifdef CONFIG_IRQ_WORK
415
416
417
418
419#ifdef CONFIG_PPC64
420static inline unsigned long test_irq_work_pending(void)
421{
422 unsigned long x;
423
424 asm volatile("lbz %0,%1(13)"
425 : "=r" (x)
426 : "i" (offsetof(struct paca_struct, irq_work_pending)));
427 return x;
428}
429
430static inline void set_irq_work_pending_flag(void)
431{
432 asm volatile("stb %0,%1(13)" : :
433 "r" (1),
434 "i" (offsetof(struct paca_struct, irq_work_pending)));
435}
436
437static inline void clear_irq_work_pending(void)
438{
439 asm volatile("stb %0,%1(13)" : :
440 "r" (0),
441 "i" (offsetof(struct paca_struct, irq_work_pending)));
442}
443
444#else
445
446DEFINE_PER_CPU(u8, irq_work_pending);
447
448#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
449#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
450#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
451
452#endif
453
454void arch_irq_work_raise(void)
455{
456 preempt_disable();
457 set_irq_work_pending_flag();
458 set_dec(1);
459 preempt_enable();
460}
461
462#else
463
464#define test_irq_work_pending() 0
465#define clear_irq_work_pending()
466
467#endif
468
469
470
471
472
473void timer_interrupt(struct pt_regs * regs)
474{
475 struct pt_regs *old_regs;
476 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
477 struct clock_event_device *evt = &__get_cpu_var(decrementers);
478 u64 now;
479
480
481
482
483 set_dec(DECREMENTER_MAX);
484
485
486
487
488 if (!cpu_online(smp_processor_id()))
489 return;
490
491
492
493
494 may_hard_irq_enable();
495
496 trace_timer_interrupt_entry(regs);
497
498 __get_cpu_var(irq_stat).timer_irqs++;
499
500#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
501 if (atomic_read(&ppc_n_lost_interrupts) != 0)
502 do_IRQ(regs);
503#endif
504
505 old_regs = set_irq_regs(regs);
506 irq_enter();
507
508 if (test_irq_work_pending()) {
509 clear_irq_work_pending();
510 irq_work_run();
511 }
512
513 now = get_tb_or_rtc();
514 if (now >= *next_tb) {
515 *next_tb = ~(u64)0;
516 if (evt->event_handler)
517 evt->event_handler(evt);
518 } else {
519 now = *next_tb - now;
520 if (now <= DECREMENTER_MAX)
521 set_dec((int)now);
522 }
523
524#ifdef CONFIG_PPC64
525
526 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
527 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
528 cu->current_tb = mfspr(SPRN_PURR);
529 }
530#endif
531
532 irq_exit();
533 set_irq_regs(old_regs);
534
535 trace_timer_interrupt_exit(regs);
536}
537
538#ifdef CONFIG_SUSPEND
539static void generic_suspend_disable_irqs(void)
540{
541
542
543
544
545 set_dec(DECREMENTER_MAX);
546 local_irq_disable();
547 set_dec(DECREMENTER_MAX);
548}
549
550static void generic_suspend_enable_irqs(void)
551{
552 local_irq_enable();
553}
554
555
556void arch_suspend_disable_irqs(void)
557{
558 if (ppc_md.suspend_disable_irqs)
559 ppc_md.suspend_disable_irqs();
560 generic_suspend_disable_irqs();
561}
562
563
564void arch_suspend_enable_irqs(void)
565{
566 generic_suspend_enable_irqs();
567 if (ppc_md.suspend_enable_irqs)
568 ppc_md.suspend_enable_irqs();
569}
570#endif
571
572
573
574
575
576
577
578
579unsigned long long sched_clock(void)
580{
581 if (__USE_RTC())
582 return get_rtc();
583 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
584}
585
586static int __init get_freq(char *name, int cells, unsigned long *val)
587{
588 struct device_node *cpu;
589 const unsigned int *fp;
590 int found = 0;
591
592
593 cpu = of_find_node_by_type(NULL, "cpu");
594
595 if (cpu) {
596 fp = of_get_property(cpu, name, NULL);
597 if (fp) {
598 found = 1;
599 *val = of_read_ulong(fp, cells);
600 }
601
602 of_node_put(cpu);
603 }
604
605 return found;
606}
607
608
609void start_cpu_decrementer(void)
610{
611#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
612
613 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
614
615
616 mtspr(SPRN_TCR, TCR_DIE);
617#endif
618}
619
620void __init generic_calibrate_decr(void)
621{
622 ppc_tb_freq = DEFAULT_TB_FREQ;
623
624 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
625 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
626
627 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
628 "(not found)\n");
629 }
630
631 ppc_proc_freq = DEFAULT_PROC_FREQ;
632
633 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
634 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
635
636 printk(KERN_ERR "WARNING: Estimating processor frequency "
637 "(not found)\n");
638 }
639}
640
641int update_persistent_clock(struct timespec now)
642{
643 struct rtc_time tm;
644
645 if (!ppc_md.set_rtc_time)
646 return 0;
647
648 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
649 tm.tm_year -= 1900;
650 tm.tm_mon -= 1;
651
652 return ppc_md.set_rtc_time(&tm);
653}
654
655static void __read_persistent_clock(struct timespec *ts)
656{
657 struct rtc_time tm;
658 static int first = 1;
659
660 ts->tv_nsec = 0;
661
662 if (first) {
663 first = 0;
664 if (ppc_md.time_init)
665 timezone_offset = ppc_md.time_init();
666
667
668 if (ppc_md.get_boot_time) {
669 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
670 return;
671 }
672 }
673 if (!ppc_md.get_rtc_time) {
674 ts->tv_sec = 0;
675 return;
676 }
677 ppc_md.get_rtc_time(&tm);
678
679 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
680 tm.tm_hour, tm.tm_min, tm.tm_sec);
681}
682
683void read_persistent_clock(struct timespec *ts)
684{
685 __read_persistent_clock(ts);
686
687
688 if (ts->tv_sec < 0) {
689 ts->tv_sec = 0;
690 ts->tv_nsec = 0;
691 }
692
693}
694
695
696static cycle_t rtc_read(struct clocksource *cs)
697{
698 return (cycle_t)get_rtc();
699}
700
701static cycle_t timebase_read(struct clocksource *cs)
702{
703 return (cycle_t)get_tb();
704}
705
706void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
707 struct clocksource *clock, u32 mult)
708{
709 u64 new_tb_to_xs, new_stamp_xsec;
710 u32 frac_sec;
711
712 if (clock != &clocksource_timebase)
713 return;
714
715
716 ++vdso_data->tb_update_count;
717 smp_mb();
718
719
720 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
721 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
722 do_div(new_stamp_xsec, 1000000000);
723 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
724
725 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
726
727 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
728
729
730
731
732
733
734
735
736
737
738
739
740 vdso_data->tb_orig_stamp = clock->cycle_last;
741 vdso_data->stamp_xsec = new_stamp_xsec;
742 vdso_data->tb_to_xs = new_tb_to_xs;
743 vdso_data->wtom_clock_sec = wtm->tv_sec;
744 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
745 vdso_data->stamp_xtime = *wall_time;
746 vdso_data->stamp_sec_fraction = frac_sec;
747 smp_wmb();
748 ++(vdso_data->tb_update_count);
749}
750
751void update_vsyscall_tz(void)
752{
753
754 ++vdso_data->tb_update_count;
755 smp_mb();
756 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
757 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
758 smp_mb();
759 ++vdso_data->tb_update_count;
760}
761
762static void __init clocksource_init(void)
763{
764 struct clocksource *clock;
765
766 if (__USE_RTC())
767 clock = &clocksource_rtc;
768 else
769 clock = &clocksource_timebase;
770
771 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
772 printk(KERN_ERR "clocksource: %s is already registered\n",
773 clock->name);
774 return;
775 }
776
777 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
778 clock->name, clock->mult, clock->shift);
779}
780
781static int decrementer_set_next_event(unsigned long evt,
782 struct clock_event_device *dev)
783{
784 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
785 set_dec(evt);
786 return 0;
787}
788
789static void decrementer_set_mode(enum clock_event_mode mode,
790 struct clock_event_device *dev)
791{
792 if (mode != CLOCK_EVT_MODE_ONESHOT)
793 decrementer_set_next_event(DECREMENTER_MAX, dev);
794}
795
796static void register_decrementer_clockevent(int cpu)
797{
798 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
799
800 *dec = decrementer_clockevent;
801 dec->cpumask = cpumask_of(cpu);
802
803 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
804 dec->name, dec->mult, dec->shift, cpu);
805
806 clockevents_register_device(dec);
807}
808
809static void __init init_decrementer_clockevent(void)
810{
811 int cpu = smp_processor_id();
812
813 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
814
815 decrementer_clockevent.max_delta_ns =
816 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
817 decrementer_clockevent.min_delta_ns =
818 clockevent_delta2ns(2, &decrementer_clockevent);
819
820 register_decrementer_clockevent(cpu);
821}
822
823void secondary_cpu_time_init(void)
824{
825
826
827
828 start_cpu_decrementer();
829
830
831
832 register_decrementer_clockevent(smp_processor_id());
833}
834
835
836void __init time_init(void)
837{
838 struct div_result res;
839 u64 scale;
840 unsigned shift;
841
842 if (__USE_RTC()) {
843
844 ppc_tb_freq = 1000000000;
845 } else {
846
847 ppc_md.calibrate_decr();
848 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
849 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
850 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
851 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
852 }
853
854 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
855 tb_ticks_per_sec = ppc_tb_freq;
856 tb_ticks_per_usec = ppc_tb_freq / 1000000;
857 calc_cputime_factors();
858 setup_cputime_one_jiffy();
859
860
861
862
863
864
865
866
867
868
869
870 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
871 scale = res.result_low;
872 for (shift = 0; res.result_high != 0; ++shift) {
873 scale = (scale >> 1) | (res.result_high << 63);
874 res.result_high >>= 1;
875 }
876 tb_to_ns_scale = scale;
877 tb_to_ns_shift = shift;
878
879 boot_tb = get_tb_or_rtc();
880
881
882 if (timezone_offset) {
883 sys_tz.tz_minuteswest = -timezone_offset / 60;
884 sys_tz.tz_dsttime = 0;
885 }
886
887 vdso_data->tb_update_count = 0;
888 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
889
890
891
892
893 start_cpu_decrementer();
894
895
896 clocksource_init();
897
898 init_decrementer_clockevent();
899}
900
901
902#define FEBRUARY 2
903#define STARTOFTIME 1970
904#define SECDAY 86400L
905#define SECYR (SECDAY * 365)
906#define leapyear(year) ((year) % 4 == 0 && \
907 ((year) % 100 != 0 || (year) % 400 == 0))
908#define days_in_year(a) (leapyear(a) ? 366 : 365)
909#define days_in_month(a) (month_days[(a) - 1])
910
911static int month_days[12] = {
912 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
913};
914
915
916
917
918void GregorianDay(struct rtc_time * tm)
919{
920 int leapsToDate;
921 int lastYear;
922 int day;
923 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
924
925 lastYear = tm->tm_year - 1;
926
927
928
929
930 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
931
932
933
934
935
936
937
938 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
939
940 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
941 tm->tm_mday;
942
943 tm->tm_wday = day % 7;
944}
945
946void to_tm(int tim, struct rtc_time * tm)
947{
948 register int i;
949 register long hms, day;
950
951 day = tim / SECDAY;
952 hms = tim % SECDAY;
953
954
955 tm->tm_hour = hms / 3600;
956 tm->tm_min = (hms % 3600) / 60;
957 tm->tm_sec = (hms % 3600) % 60;
958
959
960 for (i = STARTOFTIME; day >= days_in_year(i); i++)
961 day -= days_in_year(i);
962 tm->tm_year = i;
963
964
965 if (leapyear(tm->tm_year))
966 days_in_month(FEBRUARY) = 29;
967 for (i = 1; day >= days_in_month(i); i++)
968 day -= days_in_month(i);
969 days_in_month(FEBRUARY) = 28;
970 tm->tm_mon = i;
971
972
973 tm->tm_mday = day + 1;
974
975
976
977
978 GregorianDay(tm);
979}
980
981
982
983
984
985void div128_by_32(u64 dividend_high, u64 dividend_low,
986 unsigned divisor, struct div_result *dr)
987{
988 unsigned long a, b, c, d;
989 unsigned long w, x, y, z;
990 u64 ra, rb, rc;
991
992 a = dividend_high >> 32;
993 b = dividend_high & 0xffffffff;
994 c = dividend_low >> 32;
995 d = dividend_low & 0xffffffff;
996
997 w = a / divisor;
998 ra = ((u64)(a - (w * divisor)) << 32) + b;
999
1000 rb = ((u64) do_div(ra, divisor) << 32) + c;
1001 x = ra;
1002
1003 rc = ((u64) do_div(rb, divisor) << 32) + d;
1004 y = rb;
1005
1006 do_div(rc, divisor);
1007 z = rc;
1008
1009 dr->result_high = ((u64)w << 32) + x;
1010 dr->result_low = ((u64)y << 32) + z;
1011
1012}
1013
1014
1015void calibrate_delay(void)
1016{
1017
1018
1019
1020 loops_per_jiffy = tb_ticks_per_jiffy;
1021}
1022
1023static int __init rtc_init(void)
1024{
1025 struct platform_device *pdev;
1026
1027 if (!ppc_md.get_rtc_time)
1028 return -ENODEV;
1029
1030 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1031 if (IS_ERR(pdev))
1032 return PTR_ERR(pdev);
1033
1034 return 0;
1035}
1036
1037module_init(rtc_init);
1038