linux/arch/powerpc/platforms/cell/spufs/file.c
<<
>>
Prefs
   1/*
   2 * SPU file system -- file contents
   3 *
   4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
   5 *
   6 * Author: Arnd Bergmann <arndb@de.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#undef DEBUG
  24
  25#include <linux/fs.h>
  26#include <linux/ioctl.h>
  27#include <linux/export.h>
  28#include <linux/pagemap.h>
  29#include <linux/poll.h>
  30#include <linux/ptrace.h>
  31#include <linux/seq_file.h>
  32#include <linux/slab.h>
  33
  34#include <asm/io.h>
  35#include <asm/time.h>
  36#include <asm/spu.h>
  37#include <asm/spu_info.h>
  38#include <asm/uaccess.h>
  39
  40#include "spufs.h"
  41#include "sputrace.h"
  42
  43#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
  44
  45/* Simple attribute files */
  46struct spufs_attr {
  47        int (*get)(void *, u64 *);
  48        int (*set)(void *, u64);
  49        char get_buf[24];       /* enough to store a u64 and "\n\0" */
  50        char set_buf[24];
  51        void *data;
  52        const char *fmt;        /* format for read operation */
  53        struct mutex mutex;     /* protects access to these buffers */
  54};
  55
  56static int spufs_attr_open(struct inode *inode, struct file *file,
  57                int (*get)(void *, u64 *), int (*set)(void *, u64),
  58                const char *fmt)
  59{
  60        struct spufs_attr *attr;
  61
  62        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  63        if (!attr)
  64                return -ENOMEM;
  65
  66        attr->get = get;
  67        attr->set = set;
  68        attr->data = inode->i_private;
  69        attr->fmt = fmt;
  70        mutex_init(&attr->mutex);
  71        file->private_data = attr;
  72
  73        return nonseekable_open(inode, file);
  74}
  75
  76static int spufs_attr_release(struct inode *inode, struct file *file)
  77{
  78       kfree(file->private_data);
  79        return 0;
  80}
  81
  82static ssize_t spufs_attr_read(struct file *file, char __user *buf,
  83                size_t len, loff_t *ppos)
  84{
  85        struct spufs_attr *attr;
  86        size_t size;
  87        ssize_t ret;
  88
  89        attr = file->private_data;
  90        if (!attr->get)
  91                return -EACCES;
  92
  93        ret = mutex_lock_interruptible(&attr->mutex);
  94        if (ret)
  95                return ret;
  96
  97        if (*ppos) {            /* continued read */
  98                size = strlen(attr->get_buf);
  99        } else {                /* first read */
 100                u64 val;
 101                ret = attr->get(attr->data, &val);
 102                if (ret)
 103                        goto out;
 104
 105                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 106                                 attr->fmt, (unsigned long long)val);
 107        }
 108
 109        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 110out:
 111        mutex_unlock(&attr->mutex);
 112        return ret;
 113}
 114
 115static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
 116                size_t len, loff_t *ppos)
 117{
 118        struct spufs_attr *attr;
 119        u64 val;
 120        size_t size;
 121        ssize_t ret;
 122
 123        attr = file->private_data;
 124        if (!attr->set)
 125                return -EACCES;
 126
 127        ret = mutex_lock_interruptible(&attr->mutex);
 128        if (ret)
 129                return ret;
 130
 131        ret = -EFAULT;
 132        size = min(sizeof(attr->set_buf) - 1, len);
 133        if (copy_from_user(attr->set_buf, buf, size))
 134                goto out;
 135
 136        ret = len; /* claim we got the whole input */
 137        attr->set_buf[size] = '\0';
 138        val = simple_strtol(attr->set_buf, NULL, 0);
 139        attr->set(attr->data, val);
 140out:
 141        mutex_unlock(&attr->mutex);
 142        return ret;
 143}
 144
 145#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)      \
 146static int __fops ## _open(struct inode *inode, struct file *file)      \
 147{                                                                       \
 148        __simple_attr_check_format(__fmt, 0ull);                        \
 149        return spufs_attr_open(inode, file, __get, __set, __fmt);       \
 150}                                                                       \
 151static const struct file_operations __fops = {                          \
 152        .owner   = THIS_MODULE,                                         \
 153        .open    = __fops ## _open,                                     \
 154        .release = spufs_attr_release,                                  \
 155        .read    = spufs_attr_read,                                     \
 156        .write   = spufs_attr_write,                                    \
 157        .llseek  = generic_file_llseek,                                 \
 158};
 159
 160
 161static int
 162spufs_mem_open(struct inode *inode, struct file *file)
 163{
 164        struct spufs_inode_info *i = SPUFS_I(inode);
 165        struct spu_context *ctx = i->i_ctx;
 166
 167        mutex_lock(&ctx->mapping_lock);
 168        file->private_data = ctx;
 169        if (!i->i_openers++)
 170                ctx->local_store = inode->i_mapping;
 171        mutex_unlock(&ctx->mapping_lock);
 172        return 0;
 173}
 174
 175static int
 176spufs_mem_release(struct inode *inode, struct file *file)
 177{
 178        struct spufs_inode_info *i = SPUFS_I(inode);
 179        struct spu_context *ctx = i->i_ctx;
 180
 181        mutex_lock(&ctx->mapping_lock);
 182        if (!--i->i_openers)
 183                ctx->local_store = NULL;
 184        mutex_unlock(&ctx->mapping_lock);
 185        return 0;
 186}
 187
 188static ssize_t
 189__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
 190                        size_t size, loff_t *pos)
 191{
 192        char *local_store = ctx->ops->get_ls(ctx);
 193        return simple_read_from_buffer(buffer, size, pos, local_store,
 194                                        LS_SIZE);
 195}
 196
 197static ssize_t
 198spufs_mem_read(struct file *file, char __user *buffer,
 199                                size_t size, loff_t *pos)
 200{
 201        struct spu_context *ctx = file->private_data;
 202        ssize_t ret;
 203
 204        ret = spu_acquire(ctx);
 205        if (ret)
 206                return ret;
 207        ret = __spufs_mem_read(ctx, buffer, size, pos);
 208        spu_release(ctx);
 209
 210        return ret;
 211}
 212
 213static ssize_t
 214spufs_mem_write(struct file *file, const char __user *buffer,
 215                                        size_t size, loff_t *ppos)
 216{
 217        struct spu_context *ctx = file->private_data;
 218        char *local_store;
 219        loff_t pos = *ppos;
 220        int ret;
 221
 222        if (pos > LS_SIZE)
 223                return -EFBIG;
 224
 225        ret = spu_acquire(ctx);
 226        if (ret)
 227                return ret;
 228
 229        local_store = ctx->ops->get_ls(ctx);
 230        size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
 231        spu_release(ctx);
 232
 233        return size;
 234}
 235
 236static int
 237spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 238{
 239        struct spu_context *ctx = vma->vm_file->private_data;
 240        unsigned long address = (unsigned long)vmf->virtual_address;
 241        unsigned long pfn, offset;
 242
 243#ifdef CONFIG_SPU_FS_64K_LS
 244        struct spu_state *csa = &ctx->csa;
 245        int psize;
 246
 247        /* Check what page size we are using */
 248        psize = get_slice_psize(vma->vm_mm, address);
 249
 250        /* Some sanity checking */
 251        BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
 252
 253        /* Wow, 64K, cool, we need to align the address though */
 254        if (csa->use_big_pages) {
 255                BUG_ON(vma->vm_start & 0xffff);
 256                address &= ~0xfffful;
 257        }
 258#endif /* CONFIG_SPU_FS_64K_LS */
 259
 260        offset = vmf->pgoff << PAGE_SHIFT;
 261        if (offset >= LS_SIZE)
 262                return VM_FAULT_SIGBUS;
 263
 264        pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
 265                        address, offset);
 266
 267        if (spu_acquire(ctx))
 268                return VM_FAULT_NOPAGE;
 269
 270        if (ctx->state == SPU_STATE_SAVED) {
 271                vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
 272                pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
 273        } else {
 274                vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
 275                pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
 276        }
 277        vm_insert_pfn(vma, address, pfn);
 278
 279        spu_release(ctx);
 280
 281        return VM_FAULT_NOPAGE;
 282}
 283
 284static int spufs_mem_mmap_access(struct vm_area_struct *vma,
 285                                unsigned long address,
 286                                void *buf, int len, int write)
 287{
 288        struct spu_context *ctx = vma->vm_file->private_data;
 289        unsigned long offset = address - vma->vm_start;
 290        char *local_store;
 291
 292        if (write && !(vma->vm_flags & VM_WRITE))
 293                return -EACCES;
 294        if (spu_acquire(ctx))
 295                return -EINTR;
 296        if ((offset + len) > vma->vm_end)
 297                len = vma->vm_end - offset;
 298        local_store = ctx->ops->get_ls(ctx);
 299        if (write)
 300                memcpy_toio(local_store + offset, buf, len);
 301        else
 302                memcpy_fromio(buf, local_store + offset, len);
 303        spu_release(ctx);
 304        return len;
 305}
 306
 307static const struct vm_operations_struct spufs_mem_mmap_vmops = {
 308        .fault = spufs_mem_mmap_fault,
 309        .access = spufs_mem_mmap_access,
 310};
 311
 312static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
 313{
 314#ifdef CONFIG_SPU_FS_64K_LS
 315        struct spu_context      *ctx = file->private_data;
 316        struct spu_state        *csa = &ctx->csa;
 317
 318        /* Sanity check VMA alignment */
 319        if (csa->use_big_pages) {
 320                pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
 321                         " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
 322                         vma->vm_pgoff);
 323                if (vma->vm_start & 0xffff)
 324                        return -EINVAL;
 325                if (vma->vm_pgoff & 0xf)
 326                        return -EINVAL;
 327        }
 328#endif /* CONFIG_SPU_FS_64K_LS */
 329
 330        if (!(vma->vm_flags & VM_SHARED))
 331                return -EINVAL;
 332
 333        vma->vm_flags |= VM_IO | VM_PFNMAP;
 334        vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
 335
 336        vma->vm_ops = &spufs_mem_mmap_vmops;
 337        return 0;
 338}
 339
 340#ifdef CONFIG_SPU_FS_64K_LS
 341static unsigned long spufs_get_unmapped_area(struct file *file,
 342                unsigned long addr, unsigned long len, unsigned long pgoff,
 343                unsigned long flags)
 344{
 345        struct spu_context      *ctx = file->private_data;
 346        struct spu_state        *csa = &ctx->csa;
 347
 348        /* If not using big pages, fallback to normal MM g_u_a */
 349        if (!csa->use_big_pages)
 350                return current->mm->get_unmapped_area(file, addr, len,
 351                                                      pgoff, flags);
 352
 353        /* Else, try to obtain a 64K pages slice */
 354        return slice_get_unmapped_area(addr, len, flags,
 355                                       MMU_PAGE_64K, 1, 0);
 356}
 357#endif /* CONFIG_SPU_FS_64K_LS */
 358
 359static const struct file_operations spufs_mem_fops = {
 360        .open                   = spufs_mem_open,
 361        .release                = spufs_mem_release,
 362        .read                   = spufs_mem_read,
 363        .write                  = spufs_mem_write,
 364        .llseek                 = generic_file_llseek,
 365        .mmap                   = spufs_mem_mmap,
 366#ifdef CONFIG_SPU_FS_64K_LS
 367        .get_unmapped_area      = spufs_get_unmapped_area,
 368#endif
 369};
 370
 371static int spufs_ps_fault(struct vm_area_struct *vma,
 372                                    struct vm_fault *vmf,
 373                                    unsigned long ps_offs,
 374                                    unsigned long ps_size)
 375{
 376        struct spu_context *ctx = vma->vm_file->private_data;
 377        unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
 378        int ret = 0;
 379
 380        spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
 381
 382        if (offset >= ps_size)
 383                return VM_FAULT_SIGBUS;
 384
 385        if (fatal_signal_pending(current))
 386                return VM_FAULT_SIGBUS;
 387
 388        /*
 389         * Because we release the mmap_sem, the context may be destroyed while
 390         * we're in spu_wait. Grab an extra reference so it isn't destroyed
 391         * in the meantime.
 392         */
 393        get_spu_context(ctx);
 394
 395        /*
 396         * We have to wait for context to be loaded before we have
 397         * pages to hand out to the user, but we don't want to wait
 398         * with the mmap_sem held.
 399         * It is possible to drop the mmap_sem here, but then we need
 400         * to return VM_FAULT_NOPAGE because the mappings may have
 401         * hanged.
 402         */
 403        if (spu_acquire(ctx))
 404                goto refault;
 405
 406        if (ctx->state == SPU_STATE_SAVED) {
 407                up_read(&current->mm->mmap_sem);
 408                spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
 409                ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
 410                spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
 411                down_read(&current->mm->mmap_sem);
 412        } else {
 413                area = ctx->spu->problem_phys + ps_offs;
 414                vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
 415                                        (area + offset) >> PAGE_SHIFT);
 416                spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
 417        }
 418
 419        if (!ret)
 420                spu_release(ctx);
 421
 422refault:
 423        put_spu_context(ctx);
 424        return VM_FAULT_NOPAGE;
 425}
 426
 427#if SPUFS_MMAP_4K
 428static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
 429                                           struct vm_fault *vmf)
 430{
 431        return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
 432}
 433
 434static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
 435        .fault = spufs_cntl_mmap_fault,
 436};
 437
 438/*
 439 * mmap support for problem state control area [0x4000 - 0x4fff].
 440 */
 441static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
 442{
 443        if (!(vma->vm_flags & VM_SHARED))
 444                return -EINVAL;
 445
 446        vma->vm_flags |= VM_IO | VM_PFNMAP;
 447        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 448
 449        vma->vm_ops = &spufs_cntl_mmap_vmops;
 450        return 0;
 451}
 452#else /* SPUFS_MMAP_4K */
 453#define spufs_cntl_mmap NULL
 454#endif /* !SPUFS_MMAP_4K */
 455
 456static int spufs_cntl_get(void *data, u64 *val)
 457{
 458        struct spu_context *ctx = data;
 459        int ret;
 460
 461        ret = spu_acquire(ctx);
 462        if (ret)
 463                return ret;
 464        *val = ctx->ops->status_read(ctx);
 465        spu_release(ctx);
 466
 467        return 0;
 468}
 469
 470static int spufs_cntl_set(void *data, u64 val)
 471{
 472        struct spu_context *ctx = data;
 473        int ret;
 474
 475        ret = spu_acquire(ctx);
 476        if (ret)
 477                return ret;
 478        ctx->ops->runcntl_write(ctx, val);
 479        spu_release(ctx);
 480
 481        return 0;
 482}
 483
 484static int spufs_cntl_open(struct inode *inode, struct file *file)
 485{
 486        struct spufs_inode_info *i = SPUFS_I(inode);
 487        struct spu_context *ctx = i->i_ctx;
 488
 489        mutex_lock(&ctx->mapping_lock);
 490        file->private_data = ctx;
 491        if (!i->i_openers++)
 492                ctx->cntl = inode->i_mapping;
 493        mutex_unlock(&ctx->mapping_lock);
 494        return simple_attr_open(inode, file, spufs_cntl_get,
 495                                        spufs_cntl_set, "0x%08lx");
 496}
 497
 498static int
 499spufs_cntl_release(struct inode *inode, struct file *file)
 500{
 501        struct spufs_inode_info *i = SPUFS_I(inode);
 502        struct spu_context *ctx = i->i_ctx;
 503
 504        simple_attr_release(inode, file);
 505
 506        mutex_lock(&ctx->mapping_lock);
 507        if (!--i->i_openers)
 508                ctx->cntl = NULL;
 509        mutex_unlock(&ctx->mapping_lock);
 510        return 0;
 511}
 512
 513static const struct file_operations spufs_cntl_fops = {
 514        .open = spufs_cntl_open,
 515        .release = spufs_cntl_release,
 516        .read = simple_attr_read,
 517        .write = simple_attr_write,
 518        .llseek = generic_file_llseek,
 519        .mmap = spufs_cntl_mmap,
 520};
 521
 522static int
 523spufs_regs_open(struct inode *inode, struct file *file)
 524{
 525        struct spufs_inode_info *i = SPUFS_I(inode);
 526        file->private_data = i->i_ctx;
 527        return 0;
 528}
 529
 530static ssize_t
 531__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
 532                        size_t size, loff_t *pos)
 533{
 534        struct spu_lscsa *lscsa = ctx->csa.lscsa;
 535        return simple_read_from_buffer(buffer, size, pos,
 536                                      lscsa->gprs, sizeof lscsa->gprs);
 537}
 538
 539static ssize_t
 540spufs_regs_read(struct file *file, char __user *buffer,
 541                size_t size, loff_t *pos)
 542{
 543        int ret;
 544        struct spu_context *ctx = file->private_data;
 545
 546        /* pre-check for file position: if we'd return EOF, there's no point
 547         * causing a deschedule */
 548        if (*pos >= sizeof(ctx->csa.lscsa->gprs))
 549                return 0;
 550
 551        ret = spu_acquire_saved(ctx);
 552        if (ret)
 553                return ret;
 554        ret = __spufs_regs_read(ctx, buffer, size, pos);
 555        spu_release_saved(ctx);
 556        return ret;
 557}
 558
 559static ssize_t
 560spufs_regs_write(struct file *file, const char __user *buffer,
 561                 size_t size, loff_t *pos)
 562{
 563        struct spu_context *ctx = file->private_data;
 564        struct spu_lscsa *lscsa = ctx->csa.lscsa;
 565        int ret;
 566
 567        if (*pos >= sizeof(lscsa->gprs))
 568                return -EFBIG;
 569
 570        ret = spu_acquire_saved(ctx);
 571        if (ret)
 572                return ret;
 573
 574        size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
 575                                        buffer, size);
 576
 577        spu_release_saved(ctx);
 578        return size;
 579}
 580
 581static const struct file_operations spufs_regs_fops = {
 582        .open    = spufs_regs_open,
 583        .read    = spufs_regs_read,
 584        .write   = spufs_regs_write,
 585        .llseek  = generic_file_llseek,
 586};
 587
 588static ssize_t
 589__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
 590                        size_t size, loff_t * pos)
 591{
 592        struct spu_lscsa *lscsa = ctx->csa.lscsa;
 593        return simple_read_from_buffer(buffer, size, pos,
 594                                      &lscsa->fpcr, sizeof(lscsa->fpcr));
 595}
 596
 597static ssize_t
 598spufs_fpcr_read(struct file *file, char __user * buffer,
 599                size_t size, loff_t * pos)
 600{
 601        int ret;
 602        struct spu_context *ctx = file->private_data;
 603
 604        ret = spu_acquire_saved(ctx);
 605        if (ret)
 606                return ret;
 607        ret = __spufs_fpcr_read(ctx, buffer, size, pos);
 608        spu_release_saved(ctx);
 609        return ret;
 610}
 611
 612static ssize_t
 613spufs_fpcr_write(struct file *file, const char __user * buffer,
 614                 size_t size, loff_t * pos)
 615{
 616        struct spu_context *ctx = file->private_data;
 617        struct spu_lscsa *lscsa = ctx->csa.lscsa;
 618        int ret;
 619
 620        if (*pos >= sizeof(lscsa->fpcr))
 621                return -EFBIG;
 622
 623        ret = spu_acquire_saved(ctx);
 624        if (ret)
 625                return ret;
 626
 627        size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
 628                                        buffer, size);
 629
 630        spu_release_saved(ctx);
 631        return size;
 632}
 633
 634static const struct file_operations spufs_fpcr_fops = {
 635        .open = spufs_regs_open,
 636        .read = spufs_fpcr_read,
 637        .write = spufs_fpcr_write,
 638        .llseek = generic_file_llseek,
 639};
 640
 641/* generic open function for all pipe-like files */
 642static int spufs_pipe_open(struct inode *inode, struct file *file)
 643{
 644        struct spufs_inode_info *i = SPUFS_I(inode);
 645        file->private_data = i->i_ctx;
 646
 647        return nonseekable_open(inode, file);
 648}
 649
 650/*
 651 * Read as many bytes from the mailbox as possible, until
 652 * one of the conditions becomes true:
 653 *
 654 * - no more data available in the mailbox
 655 * - end of the user provided buffer
 656 * - end of the mapped area
 657 */
 658static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
 659                        size_t len, loff_t *pos)
 660{
 661        struct spu_context *ctx = file->private_data;
 662        u32 mbox_data, __user *udata;
 663        ssize_t count;
 664
 665        if (len < 4)
 666                return -EINVAL;
 667
 668        if (!access_ok(VERIFY_WRITE, buf, len))
 669                return -EFAULT;
 670
 671        udata = (void __user *)buf;
 672
 673        count = spu_acquire(ctx);
 674        if (count)
 675                return count;
 676
 677        for (count = 0; (count + 4) <= len; count += 4, udata++) {
 678                int ret;
 679                ret = ctx->ops->mbox_read(ctx, &mbox_data);
 680                if (ret == 0)
 681                        break;
 682
 683                /*
 684                 * at the end of the mapped area, we can fault
 685                 * but still need to return the data we have
 686                 * read successfully so far.
 687                 */
 688                ret = __put_user(mbox_data, udata);
 689                if (ret) {
 690                        if (!count)
 691                                count = -EFAULT;
 692                        break;
 693                }
 694        }
 695        spu_release(ctx);
 696
 697        if (!count)
 698                count = -EAGAIN;
 699
 700        return count;
 701}
 702
 703static const struct file_operations spufs_mbox_fops = {
 704        .open   = spufs_pipe_open,
 705        .read   = spufs_mbox_read,
 706        .llseek = no_llseek,
 707};
 708
 709static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
 710                        size_t len, loff_t *pos)
 711{
 712        struct spu_context *ctx = file->private_data;
 713        ssize_t ret;
 714        u32 mbox_stat;
 715
 716        if (len < 4)
 717                return -EINVAL;
 718
 719        ret = spu_acquire(ctx);
 720        if (ret)
 721                return ret;
 722
 723        mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
 724
 725        spu_release(ctx);
 726
 727        if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
 728                return -EFAULT;
 729
 730        return 4;
 731}
 732
 733static const struct file_operations spufs_mbox_stat_fops = {
 734        .open   = spufs_pipe_open,
 735        .read   = spufs_mbox_stat_read,
 736        .llseek = no_llseek,
 737};
 738
 739/* low-level ibox access function */
 740size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
 741{
 742        return ctx->ops->ibox_read(ctx, data);
 743}
 744
 745static int spufs_ibox_fasync(int fd, struct file *file, int on)
 746{
 747        struct spu_context *ctx = file->private_data;
 748
 749        return fasync_helper(fd, file, on, &ctx->ibox_fasync);
 750}
 751
 752/* interrupt-level ibox callback function. */
 753void spufs_ibox_callback(struct spu *spu)
 754{
 755        struct spu_context *ctx = spu->ctx;
 756
 757        if (!ctx)
 758                return;
 759
 760        wake_up_all(&ctx->ibox_wq);
 761        kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
 762}
 763
 764/*
 765 * Read as many bytes from the interrupt mailbox as possible, until
 766 * one of the conditions becomes true:
 767 *
 768 * - no more data available in the mailbox
 769 * - end of the user provided buffer
 770 * - end of the mapped area
 771 *
 772 * If the file is opened without O_NONBLOCK, we wait here until
 773 * any data is available, but return when we have been able to
 774 * read something.
 775 */
 776static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
 777                        size_t len, loff_t *pos)
 778{
 779        struct spu_context *ctx = file->private_data;
 780        u32 ibox_data, __user *udata;
 781        ssize_t count;
 782
 783        if (len < 4)
 784                return -EINVAL;
 785
 786        if (!access_ok(VERIFY_WRITE, buf, len))
 787                return -EFAULT;
 788
 789        udata = (void __user *)buf;
 790
 791        count = spu_acquire(ctx);
 792        if (count)
 793                goto out;
 794
 795        /* wait only for the first element */
 796        count = 0;
 797        if (file->f_flags & O_NONBLOCK) {
 798                if (!spu_ibox_read(ctx, &ibox_data)) {
 799                        count = -EAGAIN;
 800                        goto out_unlock;
 801                }
 802        } else {
 803                count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
 804                if (count)
 805                        goto out;
 806        }
 807
 808        /* if we can't write at all, return -EFAULT */
 809        count = __put_user(ibox_data, udata);
 810        if (count)
 811                goto out_unlock;
 812
 813        for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
 814                int ret;
 815                ret = ctx->ops->ibox_read(ctx, &ibox_data);
 816                if (ret == 0)
 817                        break;
 818                /*
 819                 * at the end of the mapped area, we can fault
 820                 * but still need to return the data we have
 821                 * read successfully so far.
 822                 */
 823                ret = __put_user(ibox_data, udata);
 824                if (ret)
 825                        break;
 826        }
 827
 828out_unlock:
 829        spu_release(ctx);
 830out:
 831        return count;
 832}
 833
 834static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
 835{
 836        struct spu_context *ctx = file->private_data;
 837        unsigned int mask;
 838
 839        poll_wait(file, &ctx->ibox_wq, wait);
 840
 841        /*
 842         * For now keep this uninterruptible and also ignore the rule
 843         * that poll should not sleep.  Will be fixed later.
 844         */
 845        mutex_lock(&ctx->state_mutex);
 846        mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
 847        spu_release(ctx);
 848
 849        return mask;
 850}
 851
 852static const struct file_operations spufs_ibox_fops = {
 853        .open   = spufs_pipe_open,
 854        .read   = spufs_ibox_read,
 855        .poll   = spufs_ibox_poll,
 856        .fasync = spufs_ibox_fasync,
 857        .llseek = no_llseek,
 858};
 859
 860static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
 861                        size_t len, loff_t *pos)
 862{
 863        struct spu_context *ctx = file->private_data;
 864        ssize_t ret;
 865        u32 ibox_stat;
 866
 867        if (len < 4)
 868                return -EINVAL;
 869
 870        ret = spu_acquire(ctx);
 871        if (ret)
 872                return ret;
 873        ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
 874        spu_release(ctx);
 875
 876        if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
 877                return -EFAULT;
 878
 879        return 4;
 880}
 881
 882static const struct file_operations spufs_ibox_stat_fops = {
 883        .open   = spufs_pipe_open,
 884        .read   = spufs_ibox_stat_read,
 885        .llseek = no_llseek,
 886};
 887
 888/* low-level mailbox write */
 889size_t spu_wbox_write(struct spu_context *ctx, u32 data)
 890{
 891        return ctx->ops->wbox_write(ctx, data);
 892}
 893
 894static int spufs_wbox_fasync(int fd, struct file *file, int on)
 895{
 896        struct spu_context *ctx = file->private_data;
 897        int ret;
 898
 899        ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
 900
 901        return ret;
 902}
 903
 904/* interrupt-level wbox callback function. */
 905void spufs_wbox_callback(struct spu *spu)
 906{
 907        struct spu_context *ctx = spu->ctx;
 908
 909        if (!ctx)
 910                return;
 911
 912        wake_up_all(&ctx->wbox_wq);
 913        kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
 914}
 915
 916/*
 917 * Write as many bytes to the interrupt mailbox as possible, until
 918 * one of the conditions becomes true:
 919 *
 920 * - the mailbox is full
 921 * - end of the user provided buffer
 922 * - end of the mapped area
 923 *
 924 * If the file is opened without O_NONBLOCK, we wait here until
 925 * space is availabyl, but return when we have been able to
 926 * write something.
 927 */
 928static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
 929                        size_t len, loff_t *pos)
 930{
 931        struct spu_context *ctx = file->private_data;
 932        u32 wbox_data, __user *udata;
 933        ssize_t count;
 934
 935        if (len < 4)
 936                return -EINVAL;
 937
 938        udata = (void __user *)buf;
 939        if (!access_ok(VERIFY_READ, buf, len))
 940                return -EFAULT;
 941
 942        if (__get_user(wbox_data, udata))
 943                return -EFAULT;
 944
 945        count = spu_acquire(ctx);
 946        if (count)
 947                goto out;
 948
 949        /*
 950         * make sure we can at least write one element, by waiting
 951         * in case of !O_NONBLOCK
 952         */
 953        count = 0;
 954        if (file->f_flags & O_NONBLOCK) {
 955                if (!spu_wbox_write(ctx, wbox_data)) {
 956                        count = -EAGAIN;
 957                        goto out_unlock;
 958                }
 959        } else {
 960                count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
 961                if (count)
 962                        goto out;
 963        }
 964
 965
 966        /* write as much as possible */
 967        for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
 968                int ret;
 969                ret = __get_user(wbox_data, udata);
 970                if (ret)
 971                        break;
 972
 973                ret = spu_wbox_write(ctx, wbox_data);
 974                if (ret == 0)
 975                        break;
 976        }
 977
 978out_unlock:
 979        spu_release(ctx);
 980out:
 981        return count;
 982}
 983
 984static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
 985{
 986        struct spu_context *ctx = file->private_data;
 987        unsigned int mask;
 988
 989        poll_wait(file, &ctx->wbox_wq, wait);
 990
 991        /*
 992         * For now keep this uninterruptible and also ignore the rule
 993         * that poll should not sleep.  Will be fixed later.
 994         */
 995        mutex_lock(&ctx->state_mutex);
 996        mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
 997        spu_release(ctx);
 998
 999        return mask;
1000}
1001
1002static const struct file_operations spufs_wbox_fops = {
1003        .open   = spufs_pipe_open,
1004        .write  = spufs_wbox_write,
1005        .poll   = spufs_wbox_poll,
1006        .fasync = spufs_wbox_fasync,
1007        .llseek = no_llseek,
1008};
1009
1010static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1011                        size_t len, loff_t *pos)
1012{
1013        struct spu_context *ctx = file->private_data;
1014        ssize_t ret;
1015        u32 wbox_stat;
1016
1017        if (len < 4)
1018                return -EINVAL;
1019
1020        ret = spu_acquire(ctx);
1021        if (ret)
1022                return ret;
1023        wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1024        spu_release(ctx);
1025
1026        if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1027                return -EFAULT;
1028
1029        return 4;
1030}
1031
1032static const struct file_operations spufs_wbox_stat_fops = {
1033        .open   = spufs_pipe_open,
1034        .read   = spufs_wbox_stat_read,
1035        .llseek = no_llseek,
1036};
1037
1038static int spufs_signal1_open(struct inode *inode, struct file *file)
1039{
1040        struct spufs_inode_info *i = SPUFS_I(inode);
1041        struct spu_context *ctx = i->i_ctx;
1042
1043        mutex_lock(&ctx->mapping_lock);
1044        file->private_data = ctx;
1045        if (!i->i_openers++)
1046                ctx->signal1 = inode->i_mapping;
1047        mutex_unlock(&ctx->mapping_lock);
1048        return nonseekable_open(inode, file);
1049}
1050
1051static int
1052spufs_signal1_release(struct inode *inode, struct file *file)
1053{
1054        struct spufs_inode_info *i = SPUFS_I(inode);
1055        struct spu_context *ctx = i->i_ctx;
1056
1057        mutex_lock(&ctx->mapping_lock);
1058        if (!--i->i_openers)
1059                ctx->signal1 = NULL;
1060        mutex_unlock(&ctx->mapping_lock);
1061        return 0;
1062}
1063
1064static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1065                        size_t len, loff_t *pos)
1066{
1067        int ret = 0;
1068        u32 data;
1069
1070        if (len < 4)
1071                return -EINVAL;
1072
1073        if (ctx->csa.spu_chnlcnt_RW[3]) {
1074                data = ctx->csa.spu_chnldata_RW[3];
1075                ret = 4;
1076        }
1077
1078        if (!ret)
1079                goto out;
1080
1081        if (copy_to_user(buf, &data, 4))
1082                return -EFAULT;
1083
1084out:
1085        return ret;
1086}
1087
1088static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1089                        size_t len, loff_t *pos)
1090{
1091        int ret;
1092        struct spu_context *ctx = file->private_data;
1093
1094        ret = spu_acquire_saved(ctx);
1095        if (ret)
1096                return ret;
1097        ret = __spufs_signal1_read(ctx, buf, len, pos);
1098        spu_release_saved(ctx);
1099
1100        return ret;
1101}
1102
1103static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1104                        size_t len, loff_t *pos)
1105{
1106        struct spu_context *ctx;
1107        ssize_t ret;
1108        u32 data;
1109
1110        ctx = file->private_data;
1111
1112        if (len < 4)
1113                return -EINVAL;
1114
1115        if (copy_from_user(&data, buf, 4))
1116                return -EFAULT;
1117
1118        ret = spu_acquire(ctx);
1119        if (ret)
1120                return ret;
1121        ctx->ops->signal1_write(ctx, data);
1122        spu_release(ctx);
1123
1124        return 4;
1125}
1126
1127static int
1128spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1129{
1130#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1131        return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1132#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1133        /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1134         * signal 1 and 2 area
1135         */
1136        return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1137#else
1138#error unsupported page size
1139#endif
1140}
1141
1142static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1143        .fault = spufs_signal1_mmap_fault,
1144};
1145
1146static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1147{
1148        if (!(vma->vm_flags & VM_SHARED))
1149                return -EINVAL;
1150
1151        vma->vm_flags |= VM_IO | VM_PFNMAP;
1152        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1153
1154        vma->vm_ops = &spufs_signal1_mmap_vmops;
1155        return 0;
1156}
1157
1158static const struct file_operations spufs_signal1_fops = {
1159        .open = spufs_signal1_open,
1160        .release = spufs_signal1_release,
1161        .read = spufs_signal1_read,
1162        .write = spufs_signal1_write,
1163        .mmap = spufs_signal1_mmap,
1164        .llseek = no_llseek,
1165};
1166
1167static const struct file_operations spufs_signal1_nosched_fops = {
1168        .open = spufs_signal1_open,
1169        .release = spufs_signal1_release,
1170        .write = spufs_signal1_write,
1171        .mmap = spufs_signal1_mmap,
1172        .llseek = no_llseek,
1173};
1174
1175static int spufs_signal2_open(struct inode *inode, struct file *file)
1176{
1177        struct spufs_inode_info *i = SPUFS_I(inode);
1178        struct spu_context *ctx = i->i_ctx;
1179
1180        mutex_lock(&ctx->mapping_lock);
1181        file->private_data = ctx;
1182        if (!i->i_openers++)
1183                ctx->signal2 = inode->i_mapping;
1184        mutex_unlock(&ctx->mapping_lock);
1185        return nonseekable_open(inode, file);
1186}
1187
1188static int
1189spufs_signal2_release(struct inode *inode, struct file *file)
1190{
1191        struct spufs_inode_info *i = SPUFS_I(inode);
1192        struct spu_context *ctx = i->i_ctx;
1193
1194        mutex_lock(&ctx->mapping_lock);
1195        if (!--i->i_openers)
1196                ctx->signal2 = NULL;
1197        mutex_unlock(&ctx->mapping_lock);
1198        return 0;
1199}
1200
1201static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202                        size_t len, loff_t *pos)
1203{
1204        int ret = 0;
1205        u32 data;
1206
1207        if (len < 4)
1208                return -EINVAL;
1209
1210        if (ctx->csa.spu_chnlcnt_RW[4]) {
1211                data =  ctx->csa.spu_chnldata_RW[4];
1212                ret = 4;
1213        }
1214
1215        if (!ret)
1216                goto out;
1217
1218        if (copy_to_user(buf, &data, 4))
1219                return -EFAULT;
1220
1221out:
1222        return ret;
1223}
1224
1225static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1226                        size_t len, loff_t *pos)
1227{
1228        struct spu_context *ctx = file->private_data;
1229        int ret;
1230
1231        ret = spu_acquire_saved(ctx);
1232        if (ret)
1233                return ret;
1234        ret = __spufs_signal2_read(ctx, buf, len, pos);
1235        spu_release_saved(ctx);
1236
1237        return ret;
1238}
1239
1240static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1241                        size_t len, loff_t *pos)
1242{
1243        struct spu_context *ctx;
1244        ssize_t ret;
1245        u32 data;
1246
1247        ctx = file->private_data;
1248
1249        if (len < 4)
1250                return -EINVAL;
1251
1252        if (copy_from_user(&data, buf, 4))
1253                return -EFAULT;
1254
1255        ret = spu_acquire(ctx);
1256        if (ret)
1257                return ret;
1258        ctx->ops->signal2_write(ctx, data);
1259        spu_release(ctx);
1260
1261        return 4;
1262}
1263
1264#if SPUFS_MMAP_4K
1265static int
1266spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1267{
1268#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269        return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1270#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271        /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272         * signal 1 and 2 area
1273         */
1274        return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1275#else
1276#error unsupported page size
1277#endif
1278}
1279
1280static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1281        .fault = spufs_signal2_mmap_fault,
1282};
1283
1284static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1285{
1286        if (!(vma->vm_flags & VM_SHARED))
1287                return -EINVAL;
1288
1289        vma->vm_flags |= VM_IO | VM_PFNMAP;
1290        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1291
1292        vma->vm_ops = &spufs_signal2_mmap_vmops;
1293        return 0;
1294}
1295#else /* SPUFS_MMAP_4K */
1296#define spufs_signal2_mmap NULL
1297#endif /* !SPUFS_MMAP_4K */
1298
1299static const struct file_operations spufs_signal2_fops = {
1300        .open = spufs_signal2_open,
1301        .release = spufs_signal2_release,
1302        .read = spufs_signal2_read,
1303        .write = spufs_signal2_write,
1304        .mmap = spufs_signal2_mmap,
1305        .llseek = no_llseek,
1306};
1307
1308static const struct file_operations spufs_signal2_nosched_fops = {
1309        .open = spufs_signal2_open,
1310        .release = spufs_signal2_release,
1311        .write = spufs_signal2_write,
1312        .mmap = spufs_signal2_mmap,
1313        .llseek = no_llseek,
1314};
1315
1316/*
1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318 * work of acquiring (or not) the SPU context before calling through
1319 * to the actual get routine. The set routine is called directly.
1320 */
1321#define SPU_ATTR_NOACQUIRE      0
1322#define SPU_ATTR_ACQUIRE        1
1323#define SPU_ATTR_ACQUIRE_SAVED  2
1324
1325#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
1326static int __##__get(void *data, u64 *val)                              \
1327{                                                                       \
1328        struct spu_context *ctx = data;                                 \
1329        int ret = 0;                                                    \
1330                                                                        \
1331        if (__acquire == SPU_ATTR_ACQUIRE) {                            \
1332                ret = spu_acquire(ctx);                                 \
1333                if (ret)                                                \
1334                        return ret;                                     \
1335                *val = __get(ctx);                                      \
1336                spu_release(ctx);                                       \
1337        } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {               \
1338                ret = spu_acquire_saved(ctx);                           \
1339                if (ret)                                                \
1340                        return ret;                                     \
1341                *val = __get(ctx);                                      \
1342                spu_release_saved(ctx);                                 \
1343        } else                                                          \
1344                *val = __get(ctx);                                      \
1345                                                                        \
1346        return 0;                                                       \
1347}                                                                       \
1348DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349
1350static int spufs_signal1_type_set(void *data, u64 val)
1351{
1352        struct spu_context *ctx = data;
1353        int ret;
1354
1355        ret = spu_acquire(ctx);
1356        if (ret)
1357                return ret;
1358        ctx->ops->signal1_type_set(ctx, val);
1359        spu_release(ctx);
1360
1361        return 0;
1362}
1363
1364static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365{
1366        return ctx->ops->signal1_type_get(ctx);
1367}
1368DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369                       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370
1371
1372static int spufs_signal2_type_set(void *data, u64 val)
1373{
1374        struct spu_context *ctx = data;
1375        int ret;
1376
1377        ret = spu_acquire(ctx);
1378        if (ret)
1379                return ret;
1380        ctx->ops->signal2_type_set(ctx, val);
1381        spu_release(ctx);
1382
1383        return 0;
1384}
1385
1386static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387{
1388        return ctx->ops->signal2_type_get(ctx);
1389}
1390DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391                       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392
1393#if SPUFS_MMAP_4K
1394static int
1395spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396{
1397        return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398}
1399
1400static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401        .fault = spufs_mss_mmap_fault,
1402};
1403
1404/*
1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406 */
1407static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408{
1409        if (!(vma->vm_flags & VM_SHARED))
1410                return -EINVAL;
1411
1412        vma->vm_flags |= VM_IO | VM_PFNMAP;
1413        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414
1415        vma->vm_ops = &spufs_mss_mmap_vmops;
1416        return 0;
1417}
1418#else /* SPUFS_MMAP_4K */
1419#define spufs_mss_mmap NULL
1420#endif /* !SPUFS_MMAP_4K */
1421
1422static int spufs_mss_open(struct inode *inode, struct file *file)
1423{
1424        struct spufs_inode_info *i = SPUFS_I(inode);
1425        struct spu_context *ctx = i->i_ctx;
1426
1427        file->private_data = i->i_ctx;
1428
1429        mutex_lock(&ctx->mapping_lock);
1430        if (!i->i_openers++)
1431                ctx->mss = inode->i_mapping;
1432        mutex_unlock(&ctx->mapping_lock);
1433        return nonseekable_open(inode, file);
1434}
1435
1436static int
1437spufs_mss_release(struct inode *inode, struct file *file)
1438{
1439        struct spufs_inode_info *i = SPUFS_I(inode);
1440        struct spu_context *ctx = i->i_ctx;
1441
1442        mutex_lock(&ctx->mapping_lock);
1443        if (!--i->i_openers)
1444                ctx->mss = NULL;
1445        mutex_unlock(&ctx->mapping_lock);
1446        return 0;
1447}
1448
1449static const struct file_operations spufs_mss_fops = {
1450        .open    = spufs_mss_open,
1451        .release = spufs_mss_release,
1452        .mmap    = spufs_mss_mmap,
1453        .llseek  = no_llseek,
1454};
1455
1456static int
1457spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458{
1459        return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1460}
1461
1462static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1463        .fault = spufs_psmap_mmap_fault,
1464};
1465
1466/*
1467 * mmap support for full problem state area [0x00000 - 0x1ffff].
1468 */
1469static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1470{
1471        if (!(vma->vm_flags & VM_SHARED))
1472                return -EINVAL;
1473
1474        vma->vm_flags |= VM_IO | VM_PFNMAP;
1475        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1476
1477        vma->vm_ops = &spufs_psmap_mmap_vmops;
1478        return 0;
1479}
1480
1481static int spufs_psmap_open(struct inode *inode, struct file *file)
1482{
1483        struct spufs_inode_info *i = SPUFS_I(inode);
1484        struct spu_context *ctx = i->i_ctx;
1485
1486        mutex_lock(&ctx->mapping_lock);
1487        file->private_data = i->i_ctx;
1488        if (!i->i_openers++)
1489                ctx->psmap = inode->i_mapping;
1490        mutex_unlock(&ctx->mapping_lock);
1491        return nonseekable_open(inode, file);
1492}
1493
1494static int
1495spufs_psmap_release(struct inode *inode, struct file *file)
1496{
1497        struct spufs_inode_info *i = SPUFS_I(inode);
1498        struct spu_context *ctx = i->i_ctx;
1499
1500        mutex_lock(&ctx->mapping_lock);
1501        if (!--i->i_openers)
1502                ctx->psmap = NULL;
1503        mutex_unlock(&ctx->mapping_lock);
1504        return 0;
1505}
1506
1507static const struct file_operations spufs_psmap_fops = {
1508        .open    = spufs_psmap_open,
1509        .release = spufs_psmap_release,
1510        .mmap    = spufs_psmap_mmap,
1511        .llseek  = no_llseek,
1512};
1513
1514
1515#if SPUFS_MMAP_4K
1516static int
1517spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1518{
1519        return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1520}
1521
1522static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1523        .fault = spufs_mfc_mmap_fault,
1524};
1525
1526/*
1527 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1528 */
1529static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1530{
1531        if (!(vma->vm_flags & VM_SHARED))
1532                return -EINVAL;
1533
1534        vma->vm_flags |= VM_IO | VM_PFNMAP;
1535        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1536
1537        vma->vm_ops = &spufs_mfc_mmap_vmops;
1538        return 0;
1539}
1540#else /* SPUFS_MMAP_4K */
1541#define spufs_mfc_mmap NULL
1542#endif /* !SPUFS_MMAP_4K */
1543
1544static int spufs_mfc_open(struct inode *inode, struct file *file)
1545{
1546        struct spufs_inode_info *i = SPUFS_I(inode);
1547        struct spu_context *ctx = i->i_ctx;
1548
1549        /* we don't want to deal with DMA into other processes */
1550        if (ctx->owner != current->mm)
1551                return -EINVAL;
1552
1553        if (atomic_read(&inode->i_count) != 1)
1554                return -EBUSY;
1555
1556        mutex_lock(&ctx->mapping_lock);
1557        file->private_data = ctx;
1558        if (!i->i_openers++)
1559                ctx->mfc = inode->i_mapping;
1560        mutex_unlock(&ctx->mapping_lock);
1561        return nonseekable_open(inode, file);
1562}
1563
1564static int
1565spufs_mfc_release(struct inode *inode, struct file *file)
1566{
1567        struct spufs_inode_info *i = SPUFS_I(inode);
1568        struct spu_context *ctx = i->i_ctx;
1569
1570        mutex_lock(&ctx->mapping_lock);
1571        if (!--i->i_openers)
1572                ctx->mfc = NULL;
1573        mutex_unlock(&ctx->mapping_lock);
1574        return 0;
1575}
1576
1577/* interrupt-level mfc callback function. */
1578void spufs_mfc_callback(struct spu *spu)
1579{
1580        struct spu_context *ctx = spu->ctx;
1581
1582        if (!ctx)
1583                return;
1584
1585        wake_up_all(&ctx->mfc_wq);
1586
1587        pr_debug("%s %s\n", __func__, spu->name);
1588        if (ctx->mfc_fasync) {
1589                u32 free_elements, tagstatus;
1590                unsigned int mask;
1591
1592                /* no need for spu_acquire in interrupt context */
1593                free_elements = ctx->ops->get_mfc_free_elements(ctx);
1594                tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1595
1596                mask = 0;
1597                if (free_elements & 0xffff)
1598                        mask |= POLLOUT;
1599                if (tagstatus & ctx->tagwait)
1600                        mask |= POLLIN;
1601
1602                kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1603        }
1604}
1605
1606static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1607{
1608        /* See if there is one tag group is complete */
1609        /* FIXME we need locking around tagwait */
1610        *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1611        ctx->tagwait &= ~*status;
1612        if (*status)
1613                return 1;
1614
1615        /* enable interrupt waiting for any tag group,
1616           may silently fail if interrupts are already enabled */
1617        ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1618        return 0;
1619}
1620
1621static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1622                        size_t size, loff_t *pos)
1623{
1624        struct spu_context *ctx = file->private_data;
1625        int ret = -EINVAL;
1626        u32 status;
1627
1628        if (size != 4)
1629                goto out;
1630
1631        ret = spu_acquire(ctx);
1632        if (ret)
1633                return ret;
1634
1635        ret = -EINVAL;
1636        if (file->f_flags & O_NONBLOCK) {
1637                status = ctx->ops->read_mfc_tagstatus(ctx);
1638                if (!(status & ctx->tagwait))
1639                        ret = -EAGAIN;
1640                else
1641                        /* XXX(hch): shouldn't we clear ret here? */
1642                        ctx->tagwait &= ~status;
1643        } else {
1644                ret = spufs_wait(ctx->mfc_wq,
1645                           spufs_read_mfc_tagstatus(ctx, &status));
1646                if (ret)
1647                        goto out;
1648        }
1649        spu_release(ctx);
1650
1651        ret = 4;
1652        if (copy_to_user(buffer, &status, 4))
1653                ret = -EFAULT;
1654
1655out:
1656        return ret;
1657}
1658
1659static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1660{
1661        pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1662                 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1663
1664        switch (cmd->cmd) {
1665        case MFC_PUT_CMD:
1666        case MFC_PUTF_CMD:
1667        case MFC_PUTB_CMD:
1668        case MFC_GET_CMD:
1669        case MFC_GETF_CMD:
1670        case MFC_GETB_CMD:
1671                break;
1672        default:
1673                pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1674                return -EIO;
1675        }
1676
1677        if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1678                pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1679                                cmd->ea, cmd->lsa);
1680                return -EIO;
1681        }
1682
1683        switch (cmd->size & 0xf) {
1684        case 1:
1685                break;
1686        case 2:
1687                if (cmd->lsa & 1)
1688                        goto error;
1689                break;
1690        case 4:
1691                if (cmd->lsa & 3)
1692                        goto error;
1693                break;
1694        case 8:
1695                if (cmd->lsa & 7)
1696                        goto error;
1697                break;
1698        case 0:
1699                if (cmd->lsa & 15)
1700                        goto error;
1701                break;
1702        error:
1703        default:
1704                pr_debug("invalid DMA alignment %x for size %x\n",
1705                        cmd->lsa & 0xf, cmd->size);
1706                return -EIO;
1707        }
1708
1709        if (cmd->size > 16 * 1024) {
1710                pr_debug("invalid DMA size %x\n", cmd->size);
1711                return -EIO;
1712        }
1713
1714        if (cmd->tag & 0xfff0) {
1715                /* we reserve the higher tag numbers for kernel use */
1716                pr_debug("invalid DMA tag\n");
1717                return -EIO;
1718        }
1719
1720        if (cmd->class) {
1721                /* not supported in this version */
1722                pr_debug("invalid DMA class\n");
1723                return -EIO;
1724        }
1725
1726        return 0;
1727}
1728
1729static int spu_send_mfc_command(struct spu_context *ctx,
1730                                struct mfc_dma_command cmd,
1731                                int *error)
1732{
1733        *error = ctx->ops->send_mfc_command(ctx, &cmd);
1734        if (*error == -EAGAIN) {
1735                /* wait for any tag group to complete
1736                   so we have space for the new command */
1737                ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1738                /* try again, because the queue might be
1739                   empty again */
1740                *error = ctx->ops->send_mfc_command(ctx, &cmd);
1741                if (*error == -EAGAIN)
1742                        return 0;
1743        }
1744        return 1;
1745}
1746
1747static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1748                        size_t size, loff_t *pos)
1749{
1750        struct spu_context *ctx = file->private_data;
1751        struct mfc_dma_command cmd;
1752        int ret = -EINVAL;
1753
1754        if (size != sizeof cmd)
1755                goto out;
1756
1757        ret = -EFAULT;
1758        if (copy_from_user(&cmd, buffer, sizeof cmd))
1759                goto out;
1760
1761        ret = spufs_check_valid_dma(&cmd);
1762        if (ret)
1763                goto out;
1764
1765        ret = spu_acquire(ctx);
1766        if (ret)
1767                goto out;
1768
1769        ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1770        if (ret)
1771                goto out;
1772
1773        if (file->f_flags & O_NONBLOCK) {
1774                ret = ctx->ops->send_mfc_command(ctx, &cmd);
1775        } else {
1776                int status;
1777                ret = spufs_wait(ctx->mfc_wq,
1778                                 spu_send_mfc_command(ctx, cmd, &status));
1779                if (ret)
1780                        goto out;
1781                if (status)
1782                        ret = status;
1783        }
1784
1785        if (ret)
1786                goto out_unlock;
1787
1788        ctx->tagwait |= 1 << cmd.tag;
1789        ret = size;
1790
1791out_unlock:
1792        spu_release(ctx);
1793out:
1794        return ret;
1795}
1796
1797static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1798{
1799        struct spu_context *ctx = file->private_data;
1800        u32 free_elements, tagstatus;
1801        unsigned int mask;
1802
1803        poll_wait(file, &ctx->mfc_wq, wait);
1804
1805        /*
1806         * For now keep this uninterruptible and also ignore the rule
1807         * that poll should not sleep.  Will be fixed later.
1808         */
1809        mutex_lock(&ctx->state_mutex);
1810        ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1811        free_elements = ctx->ops->get_mfc_free_elements(ctx);
1812        tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1813        spu_release(ctx);
1814
1815        mask = 0;
1816        if (free_elements & 0xffff)
1817                mask |= POLLOUT | POLLWRNORM;
1818        if (tagstatus & ctx->tagwait)
1819                mask |= POLLIN | POLLRDNORM;
1820
1821        pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1822                free_elements, tagstatus, ctx->tagwait);
1823
1824        return mask;
1825}
1826
1827static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1828{
1829        struct spu_context *ctx = file->private_data;
1830        int ret;
1831
1832        ret = spu_acquire(ctx);
1833        if (ret)
1834                goto out;
1835#if 0
1836/* this currently hangs */
1837        ret = spufs_wait(ctx->mfc_wq,
1838                         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1839        if (ret)
1840                goto out;
1841        ret = spufs_wait(ctx->mfc_wq,
1842                         ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1843        if (ret)
1844                goto out;
1845#else
1846        ret = 0;
1847#endif
1848        spu_release(ctx);
1849out:
1850        return ret;
1851}
1852
1853static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1854{
1855        struct inode *inode = file->f_path.dentry->d_inode;
1856        int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1857        if (!err) {
1858                mutex_lock(&inode->i_mutex);
1859                err = spufs_mfc_flush(file, NULL);
1860                mutex_unlock(&inode->i_mutex);
1861        }
1862        return err;
1863}
1864
1865static int spufs_mfc_fasync(int fd, struct file *file, int on)
1866{
1867        struct spu_context *ctx = file->private_data;
1868
1869        return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1870}
1871
1872static const struct file_operations spufs_mfc_fops = {
1873        .open    = spufs_mfc_open,
1874        .release = spufs_mfc_release,
1875        .read    = spufs_mfc_read,
1876        .write   = spufs_mfc_write,
1877        .poll    = spufs_mfc_poll,
1878        .flush   = spufs_mfc_flush,
1879        .fsync   = spufs_mfc_fsync,
1880        .fasync  = spufs_mfc_fasync,
1881        .mmap    = spufs_mfc_mmap,
1882        .llseek  = no_llseek,
1883};
1884
1885static int spufs_npc_set(void *data, u64 val)
1886{
1887        struct spu_context *ctx = data;
1888        int ret;
1889
1890        ret = spu_acquire(ctx);
1891        if (ret)
1892                return ret;
1893        ctx->ops->npc_write(ctx, val);
1894        spu_release(ctx);
1895
1896        return 0;
1897}
1898
1899static u64 spufs_npc_get(struct spu_context *ctx)
1900{
1901        return ctx->ops->npc_read(ctx);
1902}
1903DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1904                       "0x%llx\n", SPU_ATTR_ACQUIRE);
1905
1906static int spufs_decr_set(void *data, u64 val)
1907{
1908        struct spu_context *ctx = data;
1909        struct spu_lscsa *lscsa = ctx->csa.lscsa;
1910        int ret;
1911
1912        ret = spu_acquire_saved(ctx);
1913        if (ret)
1914                return ret;
1915        lscsa->decr.slot[0] = (u32) val;
1916        spu_release_saved(ctx);
1917
1918        return 0;
1919}
1920
1921static u64 spufs_decr_get(struct spu_context *ctx)
1922{
1923        struct spu_lscsa *lscsa = ctx->csa.lscsa;
1924        return lscsa->decr.slot[0];
1925}
1926DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1927                       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1928
1929static int spufs_decr_status_set(void *data, u64 val)
1930{
1931        struct spu_context *ctx = data;
1932        int ret;
1933
1934        ret = spu_acquire_saved(ctx);
1935        if (ret)
1936                return ret;
1937        if (val)
1938                ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1939        else
1940                ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1941        spu_release_saved(ctx);
1942
1943        return 0;
1944}
1945
1946static u64 spufs_decr_status_get(struct spu_context *ctx)
1947{
1948        if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1949                return SPU_DECR_STATUS_RUNNING;
1950        else
1951                return 0;
1952}
1953DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1954                       spufs_decr_status_set, "0x%llx\n",
1955                       SPU_ATTR_ACQUIRE_SAVED);
1956
1957static int spufs_event_mask_set(void *data, u64 val)
1958{
1959        struct spu_context *ctx = data;
1960        struct spu_lscsa *lscsa = ctx->csa.lscsa;
1961        int ret;
1962
1963        ret = spu_acquire_saved(ctx);
1964        if (ret)
1965                return ret;
1966        lscsa->event_mask.slot[0] = (u32) val;
1967        spu_release_saved(ctx);
1968
1969        return 0;
1970}
1971
1972static u64 spufs_event_mask_get(struct spu_context *ctx)
1973{
1974        struct spu_lscsa *lscsa = ctx->csa.lscsa;
1975        return lscsa->event_mask.slot[0];
1976}
1977
1978DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1979                       spufs_event_mask_set, "0x%llx\n",
1980                       SPU_ATTR_ACQUIRE_SAVED);
1981
1982static u64 spufs_event_status_get(struct spu_context *ctx)
1983{
1984        struct spu_state *state = &ctx->csa;
1985        u64 stat;
1986        stat = state->spu_chnlcnt_RW[0];
1987        if (stat)
1988                return state->spu_chnldata_RW[0];
1989        return 0;
1990}
1991DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1992                       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1993
1994static int spufs_srr0_set(void *data, u64 val)
1995{
1996        struct spu_context *ctx = data;
1997        struct spu_lscsa *lscsa = ctx->csa.lscsa;
1998        int ret;
1999
2000        ret = spu_acquire_saved(ctx);
2001        if (ret)
2002                return ret;
2003        lscsa->srr0.slot[0] = (u32) val;
2004        spu_release_saved(ctx);
2005
2006        return 0;
2007}
2008
2009static u64 spufs_srr0_get(struct spu_context *ctx)
2010{
2011        struct spu_lscsa *lscsa = ctx->csa.lscsa;
2012        return lscsa->srr0.slot[0];
2013}
2014DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2015                       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2016
2017static u64 spufs_id_get(struct spu_context *ctx)
2018{
2019        u64 num;
2020
2021        if (ctx->state == SPU_STATE_RUNNABLE)
2022                num = ctx->spu->number;
2023        else
2024                num = (unsigned int)-1;
2025
2026        return num;
2027}
2028DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2029                       SPU_ATTR_ACQUIRE)
2030
2031static u64 spufs_object_id_get(struct spu_context *ctx)
2032{
2033        /* FIXME: Should there really be no locking here? */
2034        return ctx->object_id;
2035}
2036
2037static int spufs_object_id_set(void *data, u64 id)
2038{
2039        struct spu_context *ctx = data;
2040        ctx->object_id = id;
2041
2042        return 0;
2043}
2044
2045DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2046                       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2047
2048static u64 spufs_lslr_get(struct spu_context *ctx)
2049{
2050        return ctx->csa.priv2.spu_lslr_RW;
2051}
2052DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2053                       SPU_ATTR_ACQUIRE_SAVED);
2054
2055static int spufs_info_open(struct inode *inode, struct file *file)
2056{
2057        struct spufs_inode_info *i = SPUFS_I(inode);
2058        struct spu_context *ctx = i->i_ctx;
2059        file->private_data = ctx;
2060        return 0;
2061}
2062
2063static int spufs_caps_show(struct seq_file *s, void *private)
2064{
2065        struct spu_context *ctx = s->private;
2066
2067        if (!(ctx->flags & SPU_CREATE_NOSCHED))
2068                seq_puts(s, "sched\n");
2069        if (!(ctx->flags & SPU_CREATE_ISOLATE))
2070                seq_puts(s, "step\n");
2071        return 0;
2072}
2073
2074static int spufs_caps_open(struct inode *inode, struct file *file)
2075{
2076        return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2077}
2078
2079static const struct file_operations spufs_caps_fops = {
2080        .open           = spufs_caps_open,
2081        .read           = seq_read,
2082        .llseek         = seq_lseek,
2083        .release        = single_release,
2084};
2085
2086static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2087                        char __user *buf, size_t len, loff_t *pos)
2088{
2089        u32 data;
2090
2091        /* EOF if there's no entry in the mbox */
2092        if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2093                return 0;
2094
2095        data = ctx->csa.prob.pu_mb_R;
2096
2097        return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2098}
2099
2100static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2101                                   size_t len, loff_t *pos)
2102{
2103        int ret;
2104        struct spu_context *ctx = file->private_data;
2105
2106        if (!access_ok(VERIFY_WRITE, buf, len))
2107                return -EFAULT;
2108
2109        ret = spu_acquire_saved(ctx);
2110        if (ret)
2111                return ret;
2112        spin_lock(&ctx->csa.register_lock);
2113        ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2114        spin_unlock(&ctx->csa.register_lock);
2115        spu_release_saved(ctx);
2116
2117        return ret;
2118}
2119
2120static const struct file_operations spufs_mbox_info_fops = {
2121        .open = spufs_info_open,
2122        .read = spufs_mbox_info_read,
2123        .llseek  = generic_file_llseek,
2124};
2125
2126static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2127                                char __user *buf, size_t len, loff_t *pos)
2128{
2129        u32 data;
2130
2131        /* EOF if there's no entry in the ibox */
2132        if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2133                return 0;
2134
2135        data = ctx->csa.priv2.puint_mb_R;
2136
2137        return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2138}
2139
2140static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2141                                   size_t len, loff_t *pos)
2142{
2143        struct spu_context *ctx = file->private_data;
2144        int ret;
2145
2146        if (!access_ok(VERIFY_WRITE, buf, len))
2147                return -EFAULT;
2148
2149        ret = spu_acquire_saved(ctx);
2150        if (ret)
2151                return ret;
2152        spin_lock(&ctx->csa.register_lock);
2153        ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2154        spin_unlock(&ctx->csa.register_lock);
2155        spu_release_saved(ctx);
2156
2157        return ret;
2158}
2159
2160static const struct file_operations spufs_ibox_info_fops = {
2161        .open = spufs_info_open,
2162        .read = spufs_ibox_info_read,
2163        .llseek  = generic_file_llseek,
2164};
2165
2166static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2167                        char __user *buf, size_t len, loff_t *pos)
2168{
2169        int i, cnt;
2170        u32 data[4];
2171        u32 wbox_stat;
2172
2173        wbox_stat = ctx->csa.prob.mb_stat_R;
2174        cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2175        for (i = 0; i < cnt; i++) {
2176                data[i] = ctx->csa.spu_mailbox_data[i];
2177        }
2178
2179        return simple_read_from_buffer(buf, len, pos, &data,
2180                                cnt * sizeof(u32));
2181}
2182
2183static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2184                                   size_t len, loff_t *pos)
2185{
2186        struct spu_context *ctx = file->private_data;
2187        int ret;
2188
2189        if (!access_ok(VERIFY_WRITE, buf, len))
2190                return -EFAULT;
2191
2192        ret = spu_acquire_saved(ctx);
2193        if (ret)
2194                return ret;
2195        spin_lock(&ctx->csa.register_lock);
2196        ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2197        spin_unlock(&ctx->csa.register_lock);
2198        spu_release_saved(ctx);
2199
2200        return ret;
2201}
2202
2203static const struct file_operations spufs_wbox_info_fops = {
2204        .open = spufs_info_open,
2205        .read = spufs_wbox_info_read,
2206        .llseek  = generic_file_llseek,
2207};
2208
2209static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2210                        char __user *buf, size_t len, loff_t *pos)
2211{
2212        struct spu_dma_info info;
2213        struct mfc_cq_sr *qp, *spuqp;
2214        int i;
2215
2216        info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2217        info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2218        info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2219        info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2220        info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2221        for (i = 0; i < 16; i++) {
2222                qp = &info.dma_info_command_data[i];
2223                spuqp = &ctx->csa.priv2.spuq[i];
2224
2225                qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2226                qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2227                qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2228                qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2229        }
2230
2231        return simple_read_from_buffer(buf, len, pos, &info,
2232                                sizeof info);
2233}
2234
2235static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2236                              size_t len, loff_t *pos)
2237{
2238        struct spu_context *ctx = file->private_data;
2239        int ret;
2240
2241        if (!access_ok(VERIFY_WRITE, buf, len))
2242                return -EFAULT;
2243
2244        ret = spu_acquire_saved(ctx);
2245        if (ret)
2246                return ret;
2247        spin_lock(&ctx->csa.register_lock);
2248        ret = __spufs_dma_info_read(ctx, buf, len, pos);
2249        spin_unlock(&ctx->csa.register_lock);
2250        spu_release_saved(ctx);
2251
2252        return ret;
2253}
2254
2255static const struct file_operations spufs_dma_info_fops = {
2256        .open = spufs_info_open,
2257        .read = spufs_dma_info_read,
2258        .llseek = no_llseek,
2259};
2260
2261static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2262                        char __user *buf, size_t len, loff_t *pos)
2263{
2264        struct spu_proxydma_info info;
2265        struct mfc_cq_sr *qp, *puqp;
2266        int ret = sizeof info;
2267        int i;
2268
2269        if (len < ret)
2270                return -EINVAL;
2271
2272        if (!access_ok(VERIFY_WRITE, buf, len))
2273                return -EFAULT;
2274
2275        info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2276        info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2277        info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2278        for (i = 0; i < 8; i++) {
2279                qp = &info.proxydma_info_command_data[i];
2280                puqp = &ctx->csa.priv2.puq[i];
2281
2282                qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2283                qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2284                qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2285                qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2286        }
2287
2288        return simple_read_from_buffer(buf, len, pos, &info,
2289                                sizeof info);
2290}
2291
2292static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2293                                   size_t len, loff_t *pos)
2294{
2295        struct spu_context *ctx = file->private_data;
2296        int ret;
2297
2298        ret = spu_acquire_saved(ctx);
2299        if (ret)
2300                return ret;
2301        spin_lock(&ctx->csa.register_lock);
2302        ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2303        spin_unlock(&ctx->csa.register_lock);
2304        spu_release_saved(ctx);
2305
2306        return ret;
2307}
2308
2309static const struct file_operations spufs_proxydma_info_fops = {
2310        .open = spufs_info_open,
2311        .read = spufs_proxydma_info_read,
2312        .llseek = no_llseek,
2313};
2314
2315static int spufs_show_tid(struct seq_file *s, void *private)
2316{
2317        struct spu_context *ctx = s->private;
2318
2319        seq_printf(s, "%d\n", ctx->tid);
2320        return 0;
2321}
2322
2323static int spufs_tid_open(struct inode *inode, struct file *file)
2324{
2325        return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2326}
2327
2328static const struct file_operations spufs_tid_fops = {
2329        .open           = spufs_tid_open,
2330        .read           = seq_read,
2331        .llseek         = seq_lseek,
2332        .release        = single_release,
2333};
2334
2335static const char *ctx_state_names[] = {
2336        "user", "system", "iowait", "loaded"
2337};
2338
2339static unsigned long long spufs_acct_time(struct spu_context *ctx,
2340                enum spu_utilization_state state)
2341{
2342        struct timespec ts;
2343        unsigned long long time = ctx->stats.times[state];
2344
2345        /*
2346         * In general, utilization statistics are updated by the controlling
2347         * thread as the spu context moves through various well defined
2348         * state transitions, but if the context is lazily loaded its
2349         * utilization statistics are not updated as the controlling thread
2350         * is not tightly coupled with the execution of the spu context.  We
2351         * calculate and apply the time delta from the last recorded state
2352         * of the spu context.
2353         */
2354        if (ctx->spu && ctx->stats.util_state == state) {
2355                ktime_get_ts(&ts);
2356                time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2357        }
2358
2359        return time / NSEC_PER_MSEC;
2360}
2361
2362static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2363{
2364        unsigned long long slb_flts = ctx->stats.slb_flt;
2365
2366        if (ctx->state == SPU_STATE_RUNNABLE) {
2367                slb_flts += (ctx->spu->stats.slb_flt -
2368                             ctx->stats.slb_flt_base);
2369        }
2370
2371        return slb_flts;
2372}
2373
2374static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2375{
2376        unsigned long long class2_intrs = ctx->stats.class2_intr;
2377
2378        if (ctx->state == SPU_STATE_RUNNABLE) {
2379                class2_intrs += (ctx->spu->stats.class2_intr -
2380                                 ctx->stats.class2_intr_base);
2381        }
2382
2383        return class2_intrs;
2384}
2385
2386
2387static int spufs_show_stat(struct seq_file *s, void *private)
2388{
2389        struct spu_context *ctx = s->private;
2390        int ret;
2391
2392        ret = spu_acquire(ctx);
2393        if (ret)
2394                return ret;
2395
2396        seq_printf(s, "%s %llu %llu %llu %llu "
2397                      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2398                ctx_state_names[ctx->stats.util_state],
2399                spufs_acct_time(ctx, SPU_UTIL_USER),
2400                spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2401                spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2402                spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2403                ctx->stats.vol_ctx_switch,
2404                ctx->stats.invol_ctx_switch,
2405                spufs_slb_flts(ctx),
2406                ctx->stats.hash_flt,
2407                ctx->stats.min_flt,
2408                ctx->stats.maj_flt,
2409                spufs_class2_intrs(ctx),
2410                ctx->stats.libassist);
2411        spu_release(ctx);
2412        return 0;
2413}
2414
2415static int spufs_stat_open(struct inode *inode, struct file *file)
2416{
2417        return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2418}
2419
2420static const struct file_operations spufs_stat_fops = {
2421        .open           = spufs_stat_open,
2422        .read           = seq_read,
2423        .llseek         = seq_lseek,
2424        .release        = single_release,
2425};
2426
2427static inline int spufs_switch_log_used(struct spu_context *ctx)
2428{
2429        return (ctx->switch_log->head - ctx->switch_log->tail) %
2430                SWITCH_LOG_BUFSIZE;
2431}
2432
2433static inline int spufs_switch_log_avail(struct spu_context *ctx)
2434{
2435        return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2436}
2437
2438static int spufs_switch_log_open(struct inode *inode, struct file *file)
2439{
2440        struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2441        int rc;
2442
2443        rc = spu_acquire(ctx);
2444        if (rc)
2445                return rc;
2446
2447        if (ctx->switch_log) {
2448                rc = -EBUSY;
2449                goto out;
2450        }
2451
2452        ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2453                SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2454                GFP_KERNEL);
2455
2456        if (!ctx->switch_log) {
2457                rc = -ENOMEM;
2458                goto out;
2459        }
2460
2461        ctx->switch_log->head = ctx->switch_log->tail = 0;
2462        init_waitqueue_head(&ctx->switch_log->wait);
2463        rc = 0;
2464
2465out:
2466        spu_release(ctx);
2467        return rc;
2468}
2469
2470static int spufs_switch_log_release(struct inode *inode, struct file *file)
2471{
2472        struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2473        int rc;
2474
2475        rc = spu_acquire(ctx);
2476        if (rc)
2477                return rc;
2478
2479        kfree(ctx->switch_log);
2480        ctx->switch_log = NULL;
2481        spu_release(ctx);
2482
2483        return 0;
2484}
2485
2486static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2487{
2488        struct switch_log_entry *p;
2489
2490        p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2491
2492        return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2493                        (unsigned int) p->tstamp.tv_sec,
2494                        (unsigned int) p->tstamp.tv_nsec,
2495                        p->spu_id,
2496                        (unsigned int) p->type,
2497                        (unsigned int) p->val,
2498                        (unsigned long long) p->timebase);
2499}
2500
2501static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2502                             size_t len, loff_t *ppos)
2503{
2504        struct inode *inode = file->f_path.dentry->d_inode;
2505        struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2506        int error = 0, cnt = 0;
2507
2508        if (!buf)
2509                return -EINVAL;
2510
2511        error = spu_acquire(ctx);
2512        if (error)
2513                return error;
2514
2515        while (cnt < len) {
2516                char tbuf[128];
2517                int width;
2518
2519                if (spufs_switch_log_used(ctx) == 0) {
2520                        if (cnt > 0) {
2521                                /* If there's data ready to go, we can
2522                                 * just return straight away */
2523                                break;
2524
2525                        } else if (file->f_flags & O_NONBLOCK) {
2526                                error = -EAGAIN;
2527                                break;
2528
2529                        } else {
2530                                /* spufs_wait will drop the mutex and
2531                                 * re-acquire, but since we're in read(), the
2532                                 * file cannot be _released (and so
2533                                 * ctx->switch_log is stable).
2534                                 */
2535                                error = spufs_wait(ctx->switch_log->wait,
2536                                                spufs_switch_log_used(ctx) > 0);
2537
2538                                /* On error, spufs_wait returns without the
2539                                 * state mutex held */
2540                                if (error)
2541                                        return error;
2542
2543                                /* We may have had entries read from underneath
2544                                 * us while we dropped the mutex in spufs_wait,
2545                                 * so re-check */
2546                                if (spufs_switch_log_used(ctx) == 0)
2547                                        continue;
2548                        }
2549                }
2550
2551                width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2552                if (width < len)
2553                        ctx->switch_log->tail =
2554                                (ctx->switch_log->tail + 1) %
2555                                 SWITCH_LOG_BUFSIZE;
2556                else
2557                        /* If the record is greater than space available return
2558                         * partial buffer (so far) */
2559                        break;
2560
2561                error = copy_to_user(buf + cnt, tbuf, width);
2562                if (error)
2563                        break;
2564                cnt += width;
2565        }
2566
2567        spu_release(ctx);
2568
2569        return cnt == 0 ? error : cnt;
2570}
2571
2572static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2573{
2574        struct inode *inode = file->f_path.dentry->d_inode;
2575        struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2576        unsigned int mask = 0;
2577        int rc;
2578
2579        poll_wait(file, &ctx->switch_log->wait, wait);
2580
2581        rc = spu_acquire(ctx);
2582        if (rc)
2583                return rc;
2584
2585        if (spufs_switch_log_used(ctx) > 0)
2586                mask |= POLLIN;
2587
2588        spu_release(ctx);
2589
2590        return mask;
2591}
2592
2593static const struct file_operations spufs_switch_log_fops = {
2594        .owner          = THIS_MODULE,
2595        .open           = spufs_switch_log_open,
2596        .read           = spufs_switch_log_read,
2597        .poll           = spufs_switch_log_poll,
2598        .release        = spufs_switch_log_release,
2599        .llseek         = no_llseek,
2600};
2601
2602/**
2603 * Log a context switch event to a switch log reader.
2604 *
2605 * Must be called with ctx->state_mutex held.
2606 */
2607void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2608                u32 type, u32 val)
2609{
2610        if (!ctx->switch_log)
2611                return;
2612
2613        if (spufs_switch_log_avail(ctx) > 1) {
2614                struct switch_log_entry *p;
2615
2616                p = ctx->switch_log->log + ctx->switch_log->head;
2617                ktime_get_ts(&p->tstamp);
2618                p->timebase = get_tb();
2619                p->spu_id = spu ? spu->number : -1;
2620                p->type = type;
2621                p->val = val;
2622
2623                ctx->switch_log->head =
2624                        (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2625        }
2626
2627        wake_up(&ctx->switch_log->wait);
2628}
2629
2630static int spufs_show_ctx(struct seq_file *s, void *private)
2631{
2632        struct spu_context *ctx = s->private;
2633        u64 mfc_control_RW;
2634
2635        mutex_lock(&ctx->state_mutex);
2636        if (ctx->spu) {
2637                struct spu *spu = ctx->spu;
2638                struct spu_priv2 __iomem *priv2 = spu->priv2;
2639
2640                spin_lock_irq(&spu->register_lock);
2641                mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2642                spin_unlock_irq(&spu->register_lock);
2643        } else {
2644                struct spu_state *csa = &ctx->csa;
2645
2646                mfc_control_RW = csa->priv2.mfc_control_RW;
2647        }
2648
2649        seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2650                " %c %llx %llx %llx %llx %x %x\n",
2651                ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2652                ctx->flags,
2653                ctx->sched_flags,
2654                ctx->prio,
2655                ctx->time_slice,
2656                ctx->spu ? ctx->spu->number : -1,
2657                !list_empty(&ctx->rq) ? 'q' : ' ',
2658                ctx->csa.class_0_pending,
2659                ctx->csa.class_0_dar,
2660                ctx->csa.class_1_dsisr,
2661                mfc_control_RW,
2662                ctx->ops->runcntl_read(ctx),
2663                ctx->ops->status_read(ctx));
2664
2665        mutex_unlock(&ctx->state_mutex);
2666
2667        return 0;
2668}
2669
2670static int spufs_ctx_open(struct inode *inode, struct file *file)
2671{
2672        return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2673}
2674
2675static const struct file_operations spufs_ctx_fops = {
2676        .open           = spufs_ctx_open,
2677        .read           = seq_read,
2678        .llseek         = seq_lseek,
2679        .release        = single_release,
2680};
2681
2682const struct spufs_tree_descr spufs_dir_contents[] = {
2683        { "capabilities", &spufs_caps_fops, 0444, },
2684        { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2685        { "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2686        { "mbox", &spufs_mbox_fops, 0444, },
2687        { "ibox", &spufs_ibox_fops, 0444, },
2688        { "wbox", &spufs_wbox_fops, 0222, },
2689        { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2690        { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2691        { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2692        { "signal1", &spufs_signal1_fops, 0666, },
2693        { "signal2", &spufs_signal2_fops, 0666, },
2694        { "signal1_type", &spufs_signal1_type, 0666, },
2695        { "signal2_type", &spufs_signal2_type, 0666, },
2696        { "cntl", &spufs_cntl_fops,  0666, },
2697        { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2698        { "lslr", &spufs_lslr_ops, 0444, },
2699        { "mfc", &spufs_mfc_fops, 0666, },
2700        { "mss", &spufs_mss_fops, 0666, },
2701        { "npc", &spufs_npc_ops, 0666, },
2702        { "srr0", &spufs_srr0_ops, 0666, },
2703        { "decr", &spufs_decr_ops, 0666, },
2704        { "decr_status", &spufs_decr_status_ops, 0666, },
2705        { "event_mask", &spufs_event_mask_ops, 0666, },
2706        { "event_status", &spufs_event_status_ops, 0444, },
2707        { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2708        { "phys-id", &spufs_id_ops, 0666, },
2709        { "object-id", &spufs_object_id_ops, 0666, },
2710        { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2711        { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2712        { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2713        { "dma_info", &spufs_dma_info_fops, 0444,
2714                sizeof(struct spu_dma_info), },
2715        { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2716                sizeof(struct spu_proxydma_info)},
2717        { "tid", &spufs_tid_fops, 0444, },
2718        { "stat", &spufs_stat_fops, 0444, },
2719        { "switch_log", &spufs_switch_log_fops, 0444 },
2720        {},
2721};
2722
2723const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2724        { "capabilities", &spufs_caps_fops, 0444, },
2725        { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2726        { "mbox", &spufs_mbox_fops, 0444, },
2727        { "ibox", &spufs_ibox_fops, 0444, },
2728        { "wbox", &spufs_wbox_fops, 0222, },
2729        { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2730        { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2731        { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2732        { "signal1", &spufs_signal1_nosched_fops, 0222, },
2733        { "signal2", &spufs_signal2_nosched_fops, 0222, },
2734        { "signal1_type", &spufs_signal1_type, 0666, },
2735        { "signal2_type", &spufs_signal2_type, 0666, },
2736        { "mss", &spufs_mss_fops, 0666, },
2737        { "mfc", &spufs_mfc_fops, 0666, },
2738        { "cntl", &spufs_cntl_fops,  0666, },
2739        { "npc", &spufs_npc_ops, 0666, },
2740        { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2741        { "phys-id", &spufs_id_ops, 0666, },
2742        { "object-id", &spufs_object_id_ops, 0666, },
2743        { "tid", &spufs_tid_fops, 0444, },
2744        { "stat", &spufs_stat_fops, 0444, },
2745        {},
2746};
2747
2748const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2749        { ".ctx", &spufs_ctx_fops, 0444, },
2750        {},
2751};
2752
2753const struct spufs_coredump_reader spufs_coredump_read[] = {
2754        { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2755        { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2756        { "lslr", NULL, spufs_lslr_get, 19 },
2757        { "decr", NULL, spufs_decr_get, 19 },
2758        { "decr_status", NULL, spufs_decr_status_get, 19 },
2759        { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2760        { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2761        { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2762        { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2763        { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2764        { "event_mask", NULL, spufs_event_mask_get, 19 },
2765        { "event_status", NULL, spufs_event_status_get, 19 },
2766        { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2767        { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2768        { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2769        { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2770        { "proxydma_info", __spufs_proxydma_info_read,
2771                           NULL, sizeof(struct spu_proxydma_info)},
2772        { "object-id", NULL, spufs_object_id_get, 19 },
2773        { "npc", NULL, spufs_npc_get, 19 },
2774        { NULL },
2775};
2776