linux/arch/s390/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  arch/s390/kernel/setup.c
   3 *
   4 *  S390 version
   5 *    Copyright (C) IBM Corp. 1999,2012
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "arch/i386/kernel/setup.c"
  10 *    Copyright (C) 1995, Linus Torvalds
  11 */
  12
  13/*
  14 * This file handles the architecture-dependent parts of initialization
  15 */
  16
  17#define KMSG_COMPONENT "setup"
  18#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19
  20#include <linux/errno.h>
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/kernel.h>
  24#include <linux/memblock.h>
  25#include <linux/mm.h>
  26#include <linux/stddef.h>
  27#include <linux/unistd.h>
  28#include <linux/ptrace.h>
  29#include <linux/user.h>
  30#include <linux/tty.h>
  31#include <linux/ioport.h>
  32#include <linux/delay.h>
  33#include <linux/init.h>
  34#include <linux/initrd.h>
  35#include <linux/bootmem.h>
  36#include <linux/root_dev.h>
  37#include <linux/console.h>
  38#include <linux/kernel_stat.h>
  39#include <linux/device.h>
  40#include <linux/notifier.h>
  41#include <linux/pfn.h>
  42#include <linux/ctype.h>
  43#include <linux/reboot.h>
  44#include <linux/topology.h>
  45#include <linux/ftrace.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48#include <linux/memory.h>
  49#include <linux/compat.h>
  50
  51#include <asm/ipl.h>
  52#include <asm/uaccess.h>
  53#include <asm/facility.h>
  54#include <asm/smp.h>
  55#include <asm/mmu_context.h>
  56#include <asm/cpcmd.h>
  57#include <asm/lowcore.h>
  58#include <asm/irq.h>
  59#include <asm/page.h>
  60#include <asm/ptrace.h>
  61#include <asm/sections.h>
  62#include <asm/ebcdic.h>
  63#include <asm/kvm_virtio.h>
  64#include <asm/diag.h>
  65#include <asm/os_info.h>
  66#include "entry.h"
  67
  68long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
  69                          PSW_MASK_EA | PSW_MASK_BA;
  70long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
  71                          PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
  72                          PSW_MASK_PSTATE | PSW_ASC_HOME;
  73
  74/*
  75 * User copy operations.
  76 */
  77struct uaccess_ops uaccess;
  78EXPORT_SYMBOL(uaccess);
  79
  80/*
  81 * Machine setup..
  82 */
  83unsigned int console_mode = 0;
  84EXPORT_SYMBOL(console_mode);
  85
  86unsigned int console_devno = -1;
  87EXPORT_SYMBOL(console_devno);
  88
  89unsigned int console_irq = -1;
  90EXPORT_SYMBOL(console_irq);
  91
  92unsigned long elf_hwcap = 0;
  93char elf_platform[ELF_PLATFORM_SIZE];
  94
  95struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
  96
  97int __initdata memory_end_set;
  98unsigned long __initdata memory_end;
  99
 100unsigned long VMALLOC_START;
 101EXPORT_SYMBOL(VMALLOC_START);
 102
 103unsigned long VMALLOC_END;
 104EXPORT_SYMBOL(VMALLOC_END);
 105
 106struct page *vmemmap;
 107EXPORT_SYMBOL(vmemmap);
 108
 109/* An array with a pointer to the lowcore of every CPU. */
 110struct _lowcore *lowcore_ptr[NR_CPUS];
 111EXPORT_SYMBOL(lowcore_ptr);
 112
 113/*
 114 * This is set up by the setup-routine at boot-time
 115 * for S390 need to find out, what we have to setup
 116 * using address 0x10400 ...
 117 */
 118
 119#include <asm/setup.h>
 120
 121/*
 122 * condev= and conmode= setup parameter.
 123 */
 124
 125static int __init condev_setup(char *str)
 126{
 127        int vdev;
 128
 129        vdev = simple_strtoul(str, &str, 0);
 130        if (vdev >= 0 && vdev < 65536) {
 131                console_devno = vdev;
 132                console_irq = -1;
 133        }
 134        return 1;
 135}
 136
 137__setup("condev=", condev_setup);
 138
 139static void __init set_preferred_console(void)
 140{
 141        if (MACHINE_IS_KVM)
 142                add_preferred_console("hvc", 0, NULL);
 143        else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
 144                add_preferred_console("ttyS", 0, NULL);
 145        else if (CONSOLE_IS_3270)
 146                add_preferred_console("tty3270", 0, NULL);
 147}
 148
 149static int __init conmode_setup(char *str)
 150{
 151#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
 152        if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
 153                SET_CONSOLE_SCLP;
 154#endif
 155#if defined(CONFIG_TN3215_CONSOLE)
 156        if (strncmp(str, "3215", 5) == 0)
 157                SET_CONSOLE_3215;
 158#endif
 159#if defined(CONFIG_TN3270_CONSOLE)
 160        if (strncmp(str, "3270", 5) == 0)
 161                SET_CONSOLE_3270;
 162#endif
 163        set_preferred_console();
 164        return 1;
 165}
 166
 167__setup("conmode=", conmode_setup);
 168
 169static void __init conmode_default(void)
 170{
 171        char query_buffer[1024];
 172        char *ptr;
 173
 174        if (MACHINE_IS_VM) {
 175                cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
 176                console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
 177                ptr = strstr(query_buffer, "SUBCHANNEL =");
 178                console_irq = simple_strtoul(ptr + 13, NULL, 16);
 179                cpcmd("QUERY TERM", query_buffer, 1024, NULL);
 180                ptr = strstr(query_buffer, "CONMODE");
 181                /*
 182                 * Set the conmode to 3215 so that the device recognition 
 183                 * will set the cu_type of the console to 3215. If the
 184                 * conmode is 3270 and we don't set it back then both
 185                 * 3215 and the 3270 driver will try to access the console
 186                 * device (3215 as console and 3270 as normal tty).
 187                 */
 188                cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
 189                if (ptr == NULL) {
 190#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
 191                        SET_CONSOLE_SCLP;
 192#endif
 193                        return;
 194                }
 195                if (strncmp(ptr + 8, "3270", 4) == 0) {
 196#if defined(CONFIG_TN3270_CONSOLE)
 197                        SET_CONSOLE_3270;
 198#elif defined(CONFIG_TN3215_CONSOLE)
 199                        SET_CONSOLE_3215;
 200#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
 201                        SET_CONSOLE_SCLP;
 202#endif
 203                } else if (strncmp(ptr + 8, "3215", 4) == 0) {
 204#if defined(CONFIG_TN3215_CONSOLE)
 205                        SET_CONSOLE_3215;
 206#elif defined(CONFIG_TN3270_CONSOLE)
 207                        SET_CONSOLE_3270;
 208#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
 209                        SET_CONSOLE_SCLP;
 210#endif
 211                }
 212        } else {
 213#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
 214                SET_CONSOLE_SCLP;
 215#endif
 216        }
 217}
 218
 219#ifdef CONFIG_ZFCPDUMP
 220static void __init setup_zfcpdump(unsigned int console_devno)
 221{
 222        static char str[41];
 223
 224        if (ipl_info.type != IPL_TYPE_FCP_DUMP)
 225                return;
 226        if (OLDMEM_BASE)
 227                return;
 228        if (console_devno != -1)
 229                sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
 230                        ipl_info.data.fcp.dev_id.devno, console_devno);
 231        else
 232                sprintf(str, " cio_ignore=all,!0.0.%04x",
 233                        ipl_info.data.fcp.dev_id.devno);
 234        strcat(boot_command_line, str);
 235        console_loglevel = 2;
 236}
 237#else
 238static inline void setup_zfcpdump(unsigned int console_devno) {}
 239#endif /* CONFIG_ZFCPDUMP */
 240
 241 /*
 242 * Reboot, halt and power_off stubs. They just call _machine_restart,
 243 * _machine_halt or _machine_power_off. 
 244 */
 245
 246void machine_restart(char *command)
 247{
 248        if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
 249                /*
 250                 * Only unblank the console if we are called in enabled
 251                 * context or a bust_spinlocks cleared the way for us.
 252                 */
 253                console_unblank();
 254        _machine_restart(command);
 255}
 256
 257void machine_halt(void)
 258{
 259        if (!in_interrupt() || oops_in_progress)
 260                /*
 261                 * Only unblank the console if we are called in enabled
 262                 * context or a bust_spinlocks cleared the way for us.
 263                 */
 264                console_unblank();
 265        _machine_halt();
 266}
 267
 268void machine_power_off(void)
 269{
 270        if (!in_interrupt() || oops_in_progress)
 271                /*
 272                 * Only unblank the console if we are called in enabled
 273                 * context or a bust_spinlocks cleared the way for us.
 274                 */
 275                console_unblank();
 276        _machine_power_off();
 277}
 278
 279/*
 280 * Dummy power off function.
 281 */
 282void (*pm_power_off)(void) = machine_power_off;
 283
 284static int __init early_parse_mem(char *p)
 285{
 286        memory_end = memparse(p, &p);
 287        memory_end_set = 1;
 288        return 0;
 289}
 290early_param("mem", early_parse_mem);
 291
 292static int __init parse_vmalloc(char *arg)
 293{
 294        if (!arg)
 295                return -EINVAL;
 296        VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
 297        return 0;
 298}
 299early_param("vmalloc", parse_vmalloc);
 300
 301unsigned int user_mode = HOME_SPACE_MODE;
 302EXPORT_SYMBOL_GPL(user_mode);
 303
 304static int set_amode_primary(void)
 305{
 306        psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
 307        psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
 308#ifdef CONFIG_COMPAT
 309        psw32_user_bits =
 310                (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
 311#endif
 312
 313        if (MACHINE_HAS_MVCOS) {
 314                memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
 315                return 1;
 316        } else {
 317                memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
 318                return 0;
 319        }
 320}
 321
 322/*
 323 * Switch kernel/user addressing modes?
 324 */
 325static int __init early_parse_switch_amode(char *p)
 326{
 327        user_mode = PRIMARY_SPACE_MODE;
 328        return 0;
 329}
 330early_param("switch_amode", early_parse_switch_amode);
 331
 332static int __init early_parse_user_mode(char *p)
 333{
 334        if (p && strcmp(p, "primary") == 0)
 335                user_mode = PRIMARY_SPACE_MODE;
 336        else if (!p || strcmp(p, "home") == 0)
 337                user_mode = HOME_SPACE_MODE;
 338        else
 339                return 1;
 340        return 0;
 341}
 342early_param("user_mode", early_parse_user_mode);
 343
 344static void setup_addressing_mode(void)
 345{
 346        if (user_mode == PRIMARY_SPACE_MODE) {
 347                if (set_amode_primary())
 348                        pr_info("Address spaces switched, "
 349                                "mvcos available\n");
 350                else
 351                        pr_info("Address spaces switched, "
 352                                "mvcos not available\n");
 353        }
 354}
 355
 356void *restart_stack __attribute__((__section__(".data")));
 357
 358static void __init setup_lowcore(void)
 359{
 360        struct _lowcore *lc;
 361
 362        /*
 363         * Setup lowcore for boot cpu
 364         */
 365        BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
 366        lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
 367        lc->restart_psw.mask = psw_kernel_bits;
 368        lc->restart_psw.addr =
 369                PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
 370        lc->external_new_psw.mask = psw_kernel_bits |
 371                PSW_MASK_DAT | PSW_MASK_MCHECK;
 372        lc->external_new_psw.addr =
 373                PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
 374        lc->svc_new_psw.mask = psw_kernel_bits |
 375                PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
 376        lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
 377        lc->program_new_psw.mask = psw_kernel_bits |
 378                PSW_MASK_DAT | PSW_MASK_MCHECK;
 379        lc->program_new_psw.addr =
 380                PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
 381        lc->mcck_new_psw.mask = psw_kernel_bits;
 382        lc->mcck_new_psw.addr =
 383                PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
 384        lc->io_new_psw.mask = psw_kernel_bits |
 385                PSW_MASK_DAT | PSW_MASK_MCHECK;
 386        lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
 387        lc->clock_comparator = -1ULL;
 388        lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
 389        lc->async_stack = (unsigned long)
 390                __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
 391        lc->panic_stack = (unsigned long)
 392                __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
 393        lc->current_task = (unsigned long) init_thread_union.thread_info.task;
 394        lc->thread_info = (unsigned long) &init_thread_union;
 395        lc->machine_flags = S390_lowcore.machine_flags;
 396        lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
 397        memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 398               MAX_FACILITY_BIT/8);
 399#ifndef CONFIG_64BIT
 400        if (MACHINE_HAS_IEEE) {
 401                lc->extended_save_area_addr = (__u32)
 402                        __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
 403                /* enable extended save area */
 404                __ctl_set_bit(14, 29);
 405        }
 406#else
 407        lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
 408#endif
 409        lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
 410        lc->async_enter_timer = S390_lowcore.async_enter_timer;
 411        lc->exit_timer = S390_lowcore.exit_timer;
 412        lc->user_timer = S390_lowcore.user_timer;
 413        lc->system_timer = S390_lowcore.system_timer;
 414        lc->steal_timer = S390_lowcore.steal_timer;
 415        lc->last_update_timer = S390_lowcore.last_update_timer;
 416        lc->last_update_clock = S390_lowcore.last_update_clock;
 417        lc->ftrace_func = S390_lowcore.ftrace_func;
 418
 419        restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
 420        restart_stack += ASYNC_SIZE;
 421
 422        /*
 423         * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
 424         * restart data to the absolute zero lowcore. This is necesary if
 425         * PSW restart is done on an offline CPU that has lowcore zero.
 426         */
 427        lc->restart_stack = (unsigned long) restart_stack;
 428        lc->restart_fn = (unsigned long) do_restart;
 429        lc->restart_data = 0;
 430        lc->restart_source = -1UL;
 431
 432        /* Setup absolute zero lowcore */
 433        memcpy_absolute(&S390_lowcore.restart_stack, &lc->restart_stack,
 434                        4 * sizeof(unsigned long));
 435        memcpy_absolute(&S390_lowcore.restart_psw, &lc->restart_psw,
 436                        sizeof(lc->restart_psw));
 437
 438        set_prefix((u32)(unsigned long) lc);
 439        lowcore_ptr[0] = lc;
 440}
 441
 442static struct resource code_resource = {
 443        .name  = "Kernel code",
 444        .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
 445};
 446
 447static struct resource data_resource = {
 448        .name = "Kernel data",
 449        .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
 450};
 451
 452static struct resource bss_resource = {
 453        .name = "Kernel bss",
 454        .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
 455};
 456
 457static struct resource __initdata *standard_resources[] = {
 458        &code_resource,
 459        &data_resource,
 460        &bss_resource,
 461};
 462
 463static void __init setup_resources(void)
 464{
 465        struct resource *res, *std_res, *sub_res;
 466        int i, j;
 467
 468        code_resource.start = (unsigned long) &_text;
 469        code_resource.end = (unsigned long) &_etext - 1;
 470        data_resource.start = (unsigned long) &_etext;
 471        data_resource.end = (unsigned long) &_edata - 1;
 472        bss_resource.start = (unsigned long) &__bss_start;
 473        bss_resource.end = (unsigned long) &__bss_stop - 1;
 474
 475        for (i = 0; i < MEMORY_CHUNKS; i++) {
 476                if (!memory_chunk[i].size)
 477                        continue;
 478                if (memory_chunk[i].type == CHUNK_OLDMEM ||
 479                    memory_chunk[i].type == CHUNK_CRASHK)
 480                        continue;
 481                res = alloc_bootmem_low(sizeof(*res));
 482                res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
 483                switch (memory_chunk[i].type) {
 484                case CHUNK_READ_WRITE:
 485                case CHUNK_CRASHK:
 486                        res->name = "System RAM";
 487                        break;
 488                case CHUNK_READ_ONLY:
 489                        res->name = "System ROM";
 490                        res->flags |= IORESOURCE_READONLY;
 491                        break;
 492                default:
 493                        res->name = "reserved";
 494                }
 495                res->start = memory_chunk[i].addr;
 496                res->end = res->start + memory_chunk[i].size - 1;
 497                request_resource(&iomem_resource, res);
 498
 499                for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
 500                        std_res = standard_resources[j];
 501                        if (std_res->start < res->start ||
 502                            std_res->start > res->end)
 503                                continue;
 504                        if (std_res->end > res->end) {
 505                                sub_res = alloc_bootmem_low(sizeof(*sub_res));
 506                                *sub_res = *std_res;
 507                                sub_res->end = res->end;
 508                                std_res->start = res->end + 1;
 509                                request_resource(res, sub_res);
 510                        } else {
 511                                request_resource(res, std_res);
 512                        }
 513                }
 514        }
 515}
 516
 517unsigned long real_memory_size;
 518EXPORT_SYMBOL_GPL(real_memory_size);
 519
 520static void __init setup_memory_end(void)
 521{
 522        unsigned long vmax, vmalloc_size, tmp;
 523        int i;
 524
 525
 526#ifdef CONFIG_ZFCPDUMP
 527        if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
 528                memory_end = ZFCPDUMP_HSA_SIZE;
 529                memory_end_set = 1;
 530        }
 531#endif
 532        real_memory_size = 0;
 533        memory_end &= PAGE_MASK;
 534
 535        /*
 536         * Make sure all chunks are MAX_ORDER aligned so we don't need the
 537         * extra checks that HOLES_IN_ZONE would require.
 538         */
 539        for (i = 0; i < MEMORY_CHUNKS; i++) {
 540                unsigned long start, end;
 541                struct mem_chunk *chunk;
 542                unsigned long align;
 543
 544                chunk = &memory_chunk[i];
 545                align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
 546                start = (chunk->addr + align - 1) & ~(align - 1);
 547                end = (chunk->addr + chunk->size) & ~(align - 1);
 548                if (start >= end)
 549                        memset(chunk, 0, sizeof(*chunk));
 550                else {
 551                        chunk->addr = start;
 552                        chunk->size = end - start;
 553                }
 554                real_memory_size = max(real_memory_size,
 555                                       chunk->addr + chunk->size);
 556        }
 557
 558        /* Choose kernel address space layout: 2, 3, or 4 levels. */
 559#ifdef CONFIG_64BIT
 560        vmalloc_size = VMALLOC_END ?: 128UL << 30;
 561        tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
 562        tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
 563        if (tmp <= (1UL << 42))
 564                vmax = 1UL << 42;       /* 3-level kernel page table */
 565        else
 566                vmax = 1UL << 53;       /* 4-level kernel page table */
 567#else
 568        vmalloc_size = VMALLOC_END ?: 96UL << 20;
 569        vmax = 1UL << 31;               /* 2-level kernel page table */
 570#endif
 571        /* vmalloc area is at the end of the kernel address space. */
 572        VMALLOC_END = vmax;
 573        VMALLOC_START = vmax - vmalloc_size;
 574
 575        /* Split remaining virtual space between 1:1 mapping & vmemmap array */
 576        tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
 577        tmp = VMALLOC_START - tmp * sizeof(struct page);
 578        tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
 579        tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
 580        vmemmap = (struct page *) tmp;
 581
 582        /* Take care that memory_end is set and <= vmemmap */
 583        memory_end = min(memory_end ?: real_memory_size, tmp);
 584
 585        /* Fixup memory chunk array to fit into 0..memory_end */
 586        for (i = 0; i < MEMORY_CHUNKS; i++) {
 587                struct mem_chunk *chunk = &memory_chunk[i];
 588
 589                if (chunk->addr >= memory_end) {
 590                        memset(chunk, 0, sizeof(*chunk));
 591                        continue;
 592                }
 593                if (chunk->addr + chunk->size > memory_end)
 594                        chunk->size = memory_end - chunk->addr;
 595        }
 596}
 597
 598static void __init setup_vmcoreinfo(void)
 599{
 600#ifdef CONFIG_KEXEC
 601        unsigned long ptr = paddr_vmcoreinfo_note();
 602
 603        memcpy_absolute(&S390_lowcore.vmcore_info, &ptr, sizeof(ptr));
 604#endif
 605}
 606
 607#ifdef CONFIG_CRASH_DUMP
 608
 609/*
 610 * Find suitable location for crashkernel memory
 611 */
 612static unsigned long __init find_crash_base(unsigned long crash_size,
 613                                            char **msg)
 614{
 615        unsigned long crash_base;
 616        struct mem_chunk *chunk;
 617        int i;
 618
 619        if (memory_chunk[0].size < crash_size) {
 620                *msg = "first memory chunk must be at least crashkernel size";
 621                return 0;
 622        }
 623        if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
 624                return OLDMEM_BASE;
 625
 626        for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
 627                chunk = &memory_chunk[i];
 628                if (chunk->size == 0)
 629                        continue;
 630                if (chunk->type != CHUNK_READ_WRITE)
 631                        continue;
 632                if (chunk->size < crash_size)
 633                        continue;
 634                crash_base = (chunk->addr + chunk->size) - crash_size;
 635                if (crash_base < crash_size)
 636                        continue;
 637                if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
 638                        continue;
 639                if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
 640                        continue;
 641                return crash_base;
 642        }
 643        *msg = "no suitable area found";
 644        return 0;
 645}
 646
 647/*
 648 * Check if crash_base and crash_size is valid
 649 */
 650static int __init verify_crash_base(unsigned long crash_base,
 651                                    unsigned long crash_size,
 652                                    char **msg)
 653{
 654        struct mem_chunk *chunk;
 655        int i;
 656
 657        /*
 658         * Because we do the swap to zero, we must have at least 'crash_size'
 659         * bytes free space before crash_base
 660         */
 661        if (crash_size > crash_base) {
 662                *msg = "crashkernel offset must be greater than size";
 663                return -EINVAL;
 664        }
 665
 666        /* First memory chunk must be at least crash_size */
 667        if (memory_chunk[0].size < crash_size) {
 668                *msg = "first memory chunk must be at least crashkernel size";
 669                return -EINVAL;
 670        }
 671        /* Check if we fit into the respective memory chunk */
 672        for (i = 0; i < MEMORY_CHUNKS; i++) {
 673                chunk = &memory_chunk[i];
 674                if (chunk->size == 0)
 675                        continue;
 676                if (crash_base < chunk->addr)
 677                        continue;
 678                if (crash_base >= chunk->addr + chunk->size)
 679                        continue;
 680                /* we have found the memory chunk */
 681                if (crash_base + crash_size > chunk->addr + chunk->size) {
 682                        *msg = "selected memory chunk is too small for "
 683                                "crashkernel memory";
 684                        return -EINVAL;
 685                }
 686                return 0;
 687        }
 688        *msg = "invalid memory range specified";
 689        return -EINVAL;
 690}
 691
 692/*
 693 * Reserve kdump memory by creating a memory hole in the mem_chunk array
 694 */
 695static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
 696                                         int type)
 697{
 698        create_mem_hole(memory_chunk, addr, size, type);
 699}
 700
 701/*
 702 * When kdump is enabled, we have to ensure that no memory from
 703 * the area [0 - crashkernel memory size] and
 704 * [crashk_res.start - crashk_res.end] is set offline.
 705 */
 706static int kdump_mem_notifier(struct notifier_block *nb,
 707                              unsigned long action, void *data)
 708{
 709        struct memory_notify *arg = data;
 710
 711        if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
 712                return NOTIFY_BAD;
 713        if (arg->start_pfn > PFN_DOWN(crashk_res.end))
 714                return NOTIFY_OK;
 715        if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
 716                return NOTIFY_OK;
 717        return NOTIFY_BAD;
 718}
 719
 720static struct notifier_block kdump_mem_nb = {
 721        .notifier_call = kdump_mem_notifier,
 722};
 723
 724#endif
 725
 726/*
 727 * Make sure that oldmem, where the dump is stored, is protected
 728 */
 729static void reserve_oldmem(void)
 730{
 731#ifdef CONFIG_CRASH_DUMP
 732        if (!OLDMEM_BASE)
 733                return;
 734
 735        reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
 736        reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
 737                              CHUNK_OLDMEM);
 738        if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
 739                saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
 740        else
 741                saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
 742#endif
 743}
 744
 745/*
 746 * Reserve memory for kdump kernel to be loaded with kexec
 747 */
 748static void __init reserve_crashkernel(void)
 749{
 750#ifdef CONFIG_CRASH_DUMP
 751        unsigned long long crash_base, crash_size;
 752        char *msg = NULL;
 753        int rc;
 754
 755        rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
 756                               &crash_base);
 757        if (rc || crash_size == 0)
 758                return;
 759        crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
 760        crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
 761        if (register_memory_notifier(&kdump_mem_nb))
 762                return;
 763        if (!crash_base)
 764                crash_base = find_crash_base(crash_size, &msg);
 765        if (!crash_base) {
 766                pr_info("crashkernel reservation failed: %s\n", msg);
 767                unregister_memory_notifier(&kdump_mem_nb);
 768                return;
 769        }
 770        if (verify_crash_base(crash_base, crash_size, &msg)) {
 771                pr_info("crashkernel reservation failed: %s\n", msg);
 772                unregister_memory_notifier(&kdump_mem_nb);
 773                return;
 774        }
 775        if (!OLDMEM_BASE && MACHINE_IS_VM)
 776                diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
 777        crashk_res.start = crash_base;
 778        crashk_res.end = crash_base + crash_size - 1;
 779        insert_resource(&iomem_resource, &crashk_res);
 780        reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
 781        pr_info("Reserving %lluMB of memory at %lluMB "
 782                "for crashkernel (System RAM: %luMB)\n",
 783                crash_size >> 20, crash_base >> 20, memory_end >> 20);
 784        os_info_crashkernel_add(crash_base, crash_size);
 785#endif
 786}
 787
 788static void __init setup_memory(void)
 789{
 790        unsigned long bootmap_size;
 791        unsigned long start_pfn, end_pfn;
 792        int i;
 793
 794        /*
 795         * partially used pages are not usable - thus
 796         * we are rounding upwards:
 797         */
 798        start_pfn = PFN_UP(__pa(&_end));
 799        end_pfn = max_pfn = PFN_DOWN(memory_end);
 800
 801#ifdef CONFIG_BLK_DEV_INITRD
 802        /*
 803         * Move the initrd in case the bitmap of the bootmem allocater
 804         * would overwrite it.
 805         */
 806
 807        if (INITRD_START && INITRD_SIZE) {
 808                unsigned long bmap_size;
 809                unsigned long start;
 810
 811                bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
 812                bmap_size = PFN_PHYS(bmap_size);
 813
 814                if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
 815                        start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
 816
 817#ifdef CONFIG_CRASH_DUMP
 818                        if (OLDMEM_BASE) {
 819                                /* Move initrd behind kdump oldmem */
 820                                if (start + INITRD_SIZE > OLDMEM_BASE &&
 821                                    start < OLDMEM_BASE + OLDMEM_SIZE)
 822                                        start = OLDMEM_BASE + OLDMEM_SIZE;
 823                        }
 824#endif
 825                        if (start + INITRD_SIZE > memory_end) {
 826                                pr_err("initrd extends beyond end of "
 827                                       "memory (0x%08lx > 0x%08lx) "
 828                                       "disabling initrd\n",
 829                                       start + INITRD_SIZE, memory_end);
 830                                INITRD_START = INITRD_SIZE = 0;
 831                        } else {
 832                                pr_info("Moving initrd (0x%08lx -> "
 833                                        "0x%08lx, size: %ld)\n",
 834                                        INITRD_START, start, INITRD_SIZE);
 835                                memmove((void *) start, (void *) INITRD_START,
 836                                        INITRD_SIZE);
 837                                INITRD_START = start;
 838                        }
 839                }
 840        }
 841#endif
 842
 843        /*
 844         * Initialize the boot-time allocator
 845         */
 846        bootmap_size = init_bootmem(start_pfn, end_pfn);
 847
 848        /*
 849         * Register RAM areas with the bootmem allocator.
 850         */
 851
 852        for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
 853                unsigned long start_chunk, end_chunk, pfn;
 854
 855                if (memory_chunk[i].type != CHUNK_READ_WRITE &&
 856                    memory_chunk[i].type != CHUNK_CRASHK)
 857                        continue;
 858                start_chunk = PFN_DOWN(memory_chunk[i].addr);
 859                end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
 860                end_chunk = min(end_chunk, end_pfn);
 861                if (start_chunk >= end_chunk)
 862                        continue;
 863                memblock_add_node(PFN_PHYS(start_chunk),
 864                                  PFN_PHYS(end_chunk - start_chunk), 0);
 865                pfn = max(start_chunk, start_pfn);
 866                for (; pfn < end_chunk; pfn++)
 867                        page_set_storage_key(PFN_PHYS(pfn),
 868                                             PAGE_DEFAULT_KEY, 0);
 869        }
 870
 871        psw_set_key(PAGE_DEFAULT_KEY);
 872
 873        free_bootmem_with_active_regions(0, max_pfn);
 874
 875        /*
 876         * Reserve memory used for lowcore/command line/kernel image.
 877         */
 878        reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
 879        reserve_bootmem((unsigned long)_stext,
 880                        PFN_PHYS(start_pfn) - (unsigned long)_stext,
 881                        BOOTMEM_DEFAULT);
 882        /*
 883         * Reserve the bootmem bitmap itself as well. We do this in two
 884         * steps (first step was init_bootmem()) because this catches
 885         * the (very unlikely) case of us accidentally initializing the
 886         * bootmem allocator with an invalid RAM area.
 887         */
 888        reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
 889                        BOOTMEM_DEFAULT);
 890
 891#ifdef CONFIG_CRASH_DUMP
 892        if (crashk_res.start)
 893                reserve_bootmem(crashk_res.start,
 894                                crashk_res.end - crashk_res.start + 1,
 895                                BOOTMEM_DEFAULT);
 896        if (is_kdump_kernel())
 897                reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
 898                                PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
 899#endif
 900#ifdef CONFIG_BLK_DEV_INITRD
 901        if (INITRD_START && INITRD_SIZE) {
 902                if (INITRD_START + INITRD_SIZE <= memory_end) {
 903                        reserve_bootmem(INITRD_START, INITRD_SIZE,
 904                                        BOOTMEM_DEFAULT);
 905                        initrd_start = INITRD_START;
 906                        initrd_end = initrd_start + INITRD_SIZE;
 907                } else {
 908                        pr_err("initrd extends beyond end of "
 909                               "memory (0x%08lx > 0x%08lx) "
 910                               "disabling initrd\n",
 911                               initrd_start + INITRD_SIZE, memory_end);
 912                        initrd_start = initrd_end = 0;
 913                }
 914        }
 915#endif
 916}
 917
 918/*
 919 * Setup hardware capabilities.
 920 */
 921static void __init setup_hwcaps(void)
 922{
 923        static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
 924        struct cpuid cpu_id;
 925        int i;
 926
 927        /*
 928         * The store facility list bits numbers as found in the principles
 929         * of operation are numbered with bit 1UL<<31 as number 0 to
 930         * bit 1UL<<0 as number 31.
 931         *   Bit 0: instructions named N3, "backported" to esa-mode
 932         *   Bit 2: z/Architecture mode is active
 933         *   Bit 7: the store-facility-list-extended facility is installed
 934         *   Bit 17: the message-security assist is installed
 935         *   Bit 19: the long-displacement facility is installed
 936         *   Bit 21: the extended-immediate facility is installed
 937         *   Bit 22: extended-translation facility 3 is installed
 938         *   Bit 30: extended-translation facility 3 enhancement facility
 939         * These get translated to:
 940         *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
 941         *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
 942         *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
 943         *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
 944         */
 945        for (i = 0; i < 6; i++)
 946                if (test_facility(stfl_bits[i]))
 947                        elf_hwcap |= 1UL << i;
 948
 949        if (test_facility(22) && test_facility(30))
 950                elf_hwcap |= HWCAP_S390_ETF3EH;
 951
 952        /*
 953         * Check for additional facilities with store-facility-list-extended.
 954         * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
 955         * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
 956         * as stored by stfl, bits 32-xxx contain additional facilities.
 957         * How many facility words are stored depends on the number of
 958         * doublewords passed to the instruction. The additional facilities
 959         * are:
 960         *   Bit 42: decimal floating point facility is installed
 961         *   Bit 44: perform floating point operation facility is installed
 962         * translated to:
 963         *   HWCAP_S390_DFP bit 6 (42 && 44).
 964         */
 965        if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
 966                elf_hwcap |= HWCAP_S390_DFP;
 967
 968        /*
 969         * Huge page support HWCAP_S390_HPAGE is bit 7.
 970         */
 971        if (MACHINE_HAS_HPAGE)
 972                elf_hwcap |= HWCAP_S390_HPAGE;
 973
 974        /*
 975         * 64-bit register support for 31-bit processes
 976         * HWCAP_S390_HIGH_GPRS is bit 9.
 977         */
 978        elf_hwcap |= HWCAP_S390_HIGH_GPRS;
 979
 980        get_cpu_id(&cpu_id);
 981        switch (cpu_id.machine) {
 982        case 0x9672:
 983#if !defined(CONFIG_64BIT)
 984        default:        /* Use "g5" as default for 31 bit kernels. */
 985#endif
 986                strcpy(elf_platform, "g5");
 987                break;
 988        case 0x2064:
 989        case 0x2066:
 990#if defined(CONFIG_64BIT)
 991        default:        /* Use "z900" as default for 64 bit kernels. */
 992#endif
 993                strcpy(elf_platform, "z900");
 994                break;
 995        case 0x2084:
 996        case 0x2086:
 997                strcpy(elf_platform, "z990");
 998                break;
 999        case 0x2094:
1000        case 0x2096:
1001                strcpy(elf_platform, "z9-109");
1002                break;
1003        case 0x2097:
1004        case 0x2098:
1005                strcpy(elf_platform, "z10");
1006                break;
1007        case 0x2817:
1008        case 0x2818:
1009                strcpy(elf_platform, "z196");
1010                break;
1011        }
1012}
1013
1014/*
1015 * Setup function called from init/main.c just after the banner
1016 * was printed.
1017 */
1018
1019void __init setup_arch(char **cmdline_p)
1020{
1021        /*
1022         * print what head.S has found out about the machine
1023         */
1024#ifndef CONFIG_64BIT
1025        if (MACHINE_IS_VM)
1026                pr_info("Linux is running as a z/VM "
1027                        "guest operating system in 31-bit mode\n");
1028        else if (MACHINE_IS_LPAR)
1029                pr_info("Linux is running natively in 31-bit mode\n");
1030        if (MACHINE_HAS_IEEE)
1031                pr_info("The hardware system has IEEE compatible "
1032                        "floating point units\n");
1033        else
1034                pr_info("The hardware system has no IEEE compatible "
1035                        "floating point units\n");
1036#else /* CONFIG_64BIT */
1037        if (MACHINE_IS_VM)
1038                pr_info("Linux is running as a z/VM "
1039                        "guest operating system in 64-bit mode\n");
1040        else if (MACHINE_IS_KVM)
1041                pr_info("Linux is running under KVM in 64-bit mode\n");
1042        else if (MACHINE_IS_LPAR)
1043                pr_info("Linux is running natively in 64-bit mode\n");
1044#endif /* CONFIG_64BIT */
1045
1046        /* Have one command line that is parsed and saved in /proc/cmdline */
1047        /* boot_command_line has been already set up in early.c */
1048        *cmdline_p = boot_command_line;
1049
1050        ROOT_DEV = Root_RAM0;
1051
1052        init_mm.start_code = PAGE_OFFSET;
1053        init_mm.end_code = (unsigned long) &_etext;
1054        init_mm.end_data = (unsigned long) &_edata;
1055        init_mm.brk = (unsigned long) &_end;
1056
1057        if (MACHINE_HAS_MVCOS)
1058                memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1059        else
1060                memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1061
1062        parse_early_param();
1063
1064        os_info_init();
1065        setup_ipl();
1066        setup_memory_end();
1067        setup_addressing_mode();
1068        reserve_oldmem();
1069        reserve_crashkernel();
1070        setup_memory();
1071        setup_resources();
1072        setup_vmcoreinfo();
1073        setup_lowcore();
1074
1075        cpu_init();
1076        s390_init_cpu_topology();
1077
1078        /*
1079         * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1080         */
1081        setup_hwcaps();
1082
1083        /*
1084         * Create kernel page tables and switch to virtual addressing.
1085         */
1086        paging_init();
1087
1088        /* Setup default console */
1089        conmode_default();
1090        set_preferred_console();
1091
1092        /* Setup zfcpdump support */
1093        setup_zfcpdump(console_devno);
1094}
1095