linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/initrd.h>
  27#include <linux/io.h>
  28#include <linux/highmem.h>
  29#include <linux/smp.h>
  30#include <linux/timex.h>
  31#include <linux/hugetlb.h>
  32#include <linux/start_kernel.h>
  33#include <asm/setup.h>
  34#include <asm/sections.h>
  35#include <asm/cacheflush.h>
  36#include <asm/pgalloc.h>
  37#include <asm/mmu_context.h>
  38#include <hv/hypervisor.h>
  39#include <arch/interrupts.h>
  40
  41/* <linux/smp.h> doesn't provide this definition. */
  42#ifndef CONFIG_SMP
  43#define setup_max_cpus 1
  44#endif
  45
  46static inline int ABS(int x) { return x >= 0 ? x : -x; }
  47
  48/* Chip information */
  49char chip_model[64] __write_once;
  50
  51struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  52EXPORT_SYMBOL(node_data);
  53
  54/* Information on the NUMA nodes that we compute early */
  55unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  56unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  57unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  58unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  59unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  60
  61static unsigned long __initdata node_percpu[MAX_NUMNODES];
  62
  63/*
  64 * per-CPU stack and boot info.
  65 */
  66DEFINE_PER_CPU(unsigned long, boot_sp) =
  67        (unsigned long)init_stack + THREAD_SIZE;
  68
  69#ifdef CONFIG_SMP
  70DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
  71#else
  72/*
  73 * The variable must be __initdata since it references __init code.
  74 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
  75 */
  76unsigned long __initdata boot_pc = (unsigned long)start_kernel;
  77#endif
  78
  79#ifdef CONFIG_HIGHMEM
  80/* Page frame index of end of lowmem on each controller. */
  81unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  82
  83/* Number of pages that can be mapped into lowmem. */
  84static unsigned long __initdata mappable_physpages;
  85#endif
  86
  87/* Data on which physical memory controller corresponds to which NUMA node */
  88int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  89
  90#ifdef CONFIG_HIGHMEM
  91/* Map information from VAs to PAs */
  92unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  93  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  94EXPORT_SYMBOL(pbase_map);
  95
  96/* Map information from PAs to VAs */
  97void *vbase_map[NR_PA_HIGHBIT_VALUES]
  98  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  99EXPORT_SYMBOL(vbase_map);
 100#endif
 101
 102/* Node number as a function of the high PA bits */
 103int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 104EXPORT_SYMBOL(highbits_to_node);
 105
 106static unsigned int __initdata maxmem_pfn = -1U;
 107static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 108        [0 ... MAX_NUMNODES-1] = -1U
 109};
 110static nodemask_t __initdata isolnodes;
 111
 112#ifdef CONFIG_PCI
 113enum { DEFAULT_PCI_RESERVE_MB = 64 };
 114static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 115unsigned long __initdata pci_reserve_start_pfn = -1U;
 116unsigned long __initdata pci_reserve_end_pfn = -1U;
 117#endif
 118
 119static int __init setup_maxmem(char *str)
 120{
 121        unsigned long long maxmem;
 122        if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 123                return -EINVAL;
 124
 125        maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 126        pr_info("Forcing RAM used to no more than %dMB\n",
 127               maxmem_pfn >> (20 - PAGE_SHIFT));
 128        return 0;
 129}
 130early_param("maxmem", setup_maxmem);
 131
 132static int __init setup_maxnodemem(char *str)
 133{
 134        char *endp;
 135        unsigned long long maxnodemem;
 136        long node;
 137
 138        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 139        if (node >= MAX_NUMNODES || *endp != ':')
 140                return -EINVAL;
 141
 142        maxnodemem = memparse(endp+1, NULL);
 143        maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 144                (HPAGE_SHIFT - PAGE_SHIFT);
 145        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 146               node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 147        return 0;
 148}
 149early_param("maxnodemem", setup_maxnodemem);
 150
 151static int __init setup_isolnodes(char *str)
 152{
 153        char buf[MAX_NUMNODES * 5];
 154        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 155                return -EINVAL;
 156
 157        nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 158        pr_info("Set isolnodes value to '%s'\n", buf);
 159        return 0;
 160}
 161early_param("isolnodes", setup_isolnodes);
 162
 163#ifdef CONFIG_PCI
 164static int __init setup_pci_reserve(char* str)
 165{
 166        unsigned long mb;
 167
 168        if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 169            mb > 3 * 1024)
 170                return -EINVAL;
 171
 172        pci_reserve_mb = mb;
 173        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 174               pci_reserve_mb);
 175        return 0;
 176}
 177early_param("pci_reserve", setup_pci_reserve);
 178#endif
 179
 180#ifndef __tilegx__
 181/*
 182 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 183 * This can be used to increase (or decrease) the vmalloc area.
 184 */
 185static int __init parse_vmalloc(char *arg)
 186{
 187        if (!arg)
 188                return -EINVAL;
 189
 190        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 191
 192        /* See validate_va() for more on this test. */
 193        if ((long)_VMALLOC_START >= 0)
 194                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 195                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 196
 197        return 0;
 198}
 199early_param("vmalloc", parse_vmalloc);
 200#endif
 201
 202#ifdef CONFIG_HIGHMEM
 203/*
 204 * Determine for each controller where its lowmem is mapped and how much of
 205 * it is mapped there.  On controller zero, the first few megabytes are
 206 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 207 * start our data mappings higher up, but for now we don't bother, to avoid
 208 * additional confusion.
 209 *
 210 * One question is whether, on systems with more than 768 Mb and
 211 * controllers of different sizes, to map in a proportionate amount of
 212 * each one, or to try to map the same amount from each controller.
 213 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 214 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 215 * MB, and 128 MB respectively?)  For now we use a proportionate
 216 * solution like the latter.
 217 *
 218 * The VA/PA mapping demands that we align our decisions at 16 MB
 219 * boundaries so that we can rapidly convert VA to PA.
 220 */
 221static void *__init setup_pa_va_mapping(void)
 222{
 223        unsigned long curr_pages = 0;
 224        unsigned long vaddr = PAGE_OFFSET;
 225        nodemask_t highonlynodes = isolnodes;
 226        int i, j;
 227
 228        memset(pbase_map, -1, sizeof(pbase_map));
 229        memset(vbase_map, -1, sizeof(vbase_map));
 230
 231        /* Node zero cannot be isolated for LOWMEM purposes. */
 232        node_clear(0, highonlynodes);
 233
 234        /* Count up the number of pages on non-highonlynodes controllers. */
 235        mappable_physpages = 0;
 236        for_each_online_node(i) {
 237                if (!node_isset(i, highonlynodes))
 238                        mappable_physpages +=
 239                                node_end_pfn[i] - node_start_pfn[i];
 240        }
 241
 242        for_each_online_node(i) {
 243                unsigned long start = node_start_pfn[i];
 244                unsigned long end = node_end_pfn[i];
 245                unsigned long size = end - start;
 246                unsigned long vaddr_end;
 247
 248                if (node_isset(i, highonlynodes)) {
 249                        /* Mark this controller as having no lowmem. */
 250                        node_lowmem_end_pfn[i] = start;
 251                        continue;
 252                }
 253
 254                curr_pages += size;
 255                if (mappable_physpages > MAXMEM_PFN) {
 256                        vaddr_end = PAGE_OFFSET +
 257                                (((u64)curr_pages * MAXMEM_PFN /
 258                                  mappable_physpages)
 259                                 << PAGE_SHIFT);
 260                } else {
 261                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 262                }
 263                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 264                        unsigned long this_pfn =
 265                                start + (j << HUGETLB_PAGE_ORDER);
 266                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 267                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 268                            (void *)-1)
 269                                vbase_map[__pfn_to_highbits(this_pfn)] =
 270                                        (void *)(vaddr & HPAGE_MASK);
 271                }
 272                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 273                BUG_ON(node_lowmem_end_pfn[i] > end);
 274        }
 275
 276        /* Return highest address of any mapped memory. */
 277        return (void *)vaddr;
 278}
 279#endif /* CONFIG_HIGHMEM */
 280
 281/*
 282 * Register our most important memory mappings with the debug stub.
 283 *
 284 * This is up to 4 mappings for lowmem, one mapping per memory
 285 * controller, plus one for our text segment.
 286 */
 287static void __cpuinit store_permanent_mappings(void)
 288{
 289        int i;
 290
 291        for_each_online_node(i) {
 292                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 293#ifdef CONFIG_HIGHMEM
 294                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 295#else
 296                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 297#endif
 298
 299                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 300                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 301                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 302        }
 303
 304        hv_store_mapping((HV_VirtAddr)_stext,
 305                         (uint32_t)(_einittext - _stext), 0);
 306}
 307
 308/*
 309 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 310 * and node_online_map, doing suitable sanity-checking.
 311 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 312 */
 313static void __init setup_memory(void)
 314{
 315        int i, j;
 316        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 317#ifdef CONFIG_HIGHMEM
 318        long highmem_pages;
 319#endif
 320#ifndef __tilegx__
 321        int cap;
 322#endif
 323#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 324        long lowmem_pages;
 325#endif
 326
 327        /* We are using a char to hold the cpu_2_node[] mapping */
 328        BUILD_BUG_ON(MAX_NUMNODES > 127);
 329
 330        /* Discover the ranges of memory available to us */
 331        for (i = 0; ; ++i) {
 332                unsigned long start, size, end, highbits;
 333                HV_PhysAddrRange range = hv_inquire_physical(i);
 334                if (range.size == 0)
 335                        break;
 336#ifdef CONFIG_FLATMEM
 337                if (i > 0) {
 338                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 339                               range.size, range.start + range.size);
 340                        continue;
 341                }
 342#endif
 343#ifndef __tilegx__
 344                if ((unsigned long)range.start) {
 345                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 346                               range.start, range.start + range.size);
 347                        continue;
 348                }
 349#endif
 350                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 351                    (range.size & (HPAGE_SIZE-1)) != 0) {
 352                        unsigned long long start_pa = range.start;
 353                        unsigned long long orig_size = range.size;
 354                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 355                        range.size -= (range.start - start_pa);
 356                        range.size &= HPAGE_MASK;
 357                        pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 358                               " now %#llx-%#llx\n",
 359                               start_pa, start_pa + orig_size,
 360                               range.start, range.start + range.size);
 361                }
 362                highbits = __pa_to_highbits(range.start);
 363                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 364                        pr_err("PA high bits too high: %#llx..%#llx\n",
 365                               range.start, range.start + range.size);
 366                        continue;
 367                }
 368                if (highbits_seen[highbits]) {
 369                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 370                               range.start, range.start + range.size);
 371                        continue;
 372                }
 373                highbits_seen[highbits] = 1;
 374                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 375                        int max_size = maxnodemem_pfn[i];
 376                        if (max_size > 0) {
 377                                pr_err("Maxnodemem reduced node %d to"
 378                                       " %d pages\n", i, max_size);
 379                                range.size = PFN_PHYS(max_size);
 380                        } else {
 381                                pr_err("Maxnodemem disabled node %d\n", i);
 382                                continue;
 383                        }
 384                }
 385                if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 386                        int max_size = maxmem_pfn - num_physpages;
 387                        if (max_size > 0) {
 388                                pr_err("Maxmem reduced node %d to %d pages\n",
 389                                       i, max_size);
 390                                range.size = PFN_PHYS(max_size);
 391                        } else {
 392                                pr_err("Maxmem disabled node %d\n", i);
 393                                continue;
 394                        }
 395                }
 396                if (i >= MAX_NUMNODES) {
 397                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 398                               i, range.size, range.size + range.start);
 399                        continue;
 400                }
 401
 402                start = range.start >> PAGE_SHIFT;
 403                size = range.size >> PAGE_SHIFT;
 404                end = start + size;
 405
 406#ifndef __tilegx__
 407                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 408                    (range.start + range.size)) {
 409                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 410                               range.start, range.start + range.size);
 411                        continue;
 412                }
 413#endif
 414#ifdef CONFIG_PCI
 415                /*
 416                 * Blocks that overlap the pci reserved region must
 417                 * have enough space to hold the maximum percpu data
 418                 * region at the top of the range.  If there isn't
 419                 * enough space above the reserved region, just
 420                 * truncate the node.
 421                 */
 422                if (start <= pci_reserve_start_pfn &&
 423                    end > pci_reserve_start_pfn) {
 424                        unsigned int per_cpu_size =
 425                                __per_cpu_end - __per_cpu_start;
 426                        unsigned int percpu_pages =
 427                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 428                        if (end < pci_reserve_end_pfn + percpu_pages) {
 429                                end = pci_reserve_start_pfn;
 430                                pr_err("PCI mapping region reduced node %d to"
 431                                       " %ld pages\n", i, end - start);
 432                        }
 433                }
 434#endif
 435
 436                for (j = __pfn_to_highbits(start);
 437                     j <= __pfn_to_highbits(end - 1); j++)
 438                        highbits_to_node[j] = i;
 439
 440                node_start_pfn[i] = start;
 441                node_end_pfn[i] = end;
 442                node_controller[i] = range.controller;
 443                num_physpages += size;
 444                max_pfn = end;
 445
 446                /* Mark node as online */
 447                node_set(i, node_online_map);
 448                node_set(i, node_possible_map);
 449        }
 450
 451#ifndef __tilegx__
 452        /*
 453         * For 4KB pages, mem_map "struct page" data is 1% of the size
 454         * of the physical memory, so can be quite big (640 MB for
 455         * four 16G zones).  These structures must be mapped in
 456         * lowmem, and since we currently cap out at about 768 MB,
 457         * it's impractical to try to use this much address space.
 458         * For now, arbitrarily cap the amount of physical memory
 459         * we're willing to use at 8 million pages (32GB of 4KB pages).
 460         */
 461        cap = 8 * 1024 * 1024;  /* 8 million pages */
 462        if (num_physpages > cap) {
 463                int num_nodes = num_online_nodes();
 464                int cap_each = cap / num_nodes;
 465                unsigned long dropped_pages = 0;
 466                for (i = 0; i < num_nodes; ++i) {
 467                        int size = node_end_pfn[i] - node_start_pfn[i];
 468                        if (size > cap_each) {
 469                                dropped_pages += (size - cap_each);
 470                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 471                        }
 472                }
 473                num_physpages -= dropped_pages;
 474                pr_warning("Only using %ldMB memory;"
 475                       " ignoring %ldMB.\n",
 476                       num_physpages >> (20 - PAGE_SHIFT),
 477                       dropped_pages >> (20 - PAGE_SHIFT));
 478                pr_warning("Consider using a larger page size.\n");
 479        }
 480#endif
 481
 482        /* Heap starts just above the last loaded address. */
 483        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 484
 485#ifdef CONFIG_HIGHMEM
 486        /* Find where we map lowmem from each controller. */
 487        high_memory = setup_pa_va_mapping();
 488
 489        /* Set max_low_pfn based on what node 0 can directly address. */
 490        max_low_pfn = node_lowmem_end_pfn[0];
 491
 492        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 493                MAXMEM_PFN : mappable_physpages;
 494        highmem_pages = (long) (num_physpages - lowmem_pages);
 495
 496        pr_notice("%ldMB HIGHMEM available.\n",
 497               pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 498        pr_notice("%ldMB LOWMEM available.\n",
 499                        pages_to_mb(lowmem_pages));
 500#else
 501        /* Set max_low_pfn based on what node 0 can directly address. */
 502        max_low_pfn = node_end_pfn[0];
 503
 504#ifndef __tilegx__
 505        if (node_end_pfn[0] > MAXMEM_PFN) {
 506                pr_warning("Only using %ldMB LOWMEM.\n",
 507                       MAXMEM>>20);
 508                pr_warning("Use a HIGHMEM enabled kernel.\n");
 509                max_low_pfn = MAXMEM_PFN;
 510                max_pfn = MAXMEM_PFN;
 511                num_physpages = MAXMEM_PFN;
 512                node_end_pfn[0] = MAXMEM_PFN;
 513        } else {
 514                pr_notice("%ldMB memory available.\n",
 515                       pages_to_mb(node_end_pfn[0]));
 516        }
 517        for (i = 1; i < MAX_NUMNODES; ++i) {
 518                node_start_pfn[i] = 0;
 519                node_end_pfn[i] = 0;
 520        }
 521        high_memory = __va(node_end_pfn[0]);
 522#else
 523        lowmem_pages = 0;
 524        for (i = 0; i < MAX_NUMNODES; ++i) {
 525                int pages = node_end_pfn[i] - node_start_pfn[i];
 526                lowmem_pages += pages;
 527                if (pages)
 528                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 529        }
 530        pr_notice("%ldMB memory available.\n",
 531               pages_to_mb(lowmem_pages));
 532#endif
 533#endif
 534}
 535
 536/*
 537 * On 32-bit machines, we only put bootmem on the low controller,
 538 * since PAs > 4GB can't be used in bootmem.  In principle one could
 539 * imagine, e.g., multiple 1 GB controllers all of which could support
 540 * bootmem, but in practice using controllers this small isn't a
 541 * particularly interesting scenario, so we just keep it simple and
 542 * use only the first controller for bootmem on 32-bit machines.
 543 */
 544static inline int node_has_bootmem(int nid)
 545{
 546#ifdef CONFIG_64BIT
 547        return 1;
 548#else
 549        return nid == 0;
 550#endif
 551}
 552
 553static inline unsigned long alloc_bootmem_pfn(int nid,
 554                                              unsigned long size,
 555                                              unsigned long goal)
 556{
 557        void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 558                                         PAGE_SIZE, goal);
 559        unsigned long pfn = kaddr_to_pfn(kva);
 560        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 561        return pfn;
 562}
 563
 564static void __init setup_bootmem_allocator_node(int i)
 565{
 566        unsigned long start, end, mapsize, mapstart;
 567
 568        if (node_has_bootmem(i)) {
 569                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 570        } else {
 571                /* Share controller zero's bdata for now. */
 572                NODE_DATA(i)->bdata = &bootmem_node_data[0];
 573                return;
 574        }
 575
 576        /* Skip up to after the bss in node 0. */
 577        start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 578
 579        /* Only lowmem, if we're a HIGHMEM build. */
 580#ifdef CONFIG_HIGHMEM
 581        end = node_lowmem_end_pfn[i];
 582#else
 583        end = node_end_pfn[i];
 584#endif
 585
 586        /* No memory here. */
 587        if (end == start)
 588                return;
 589
 590        /* Figure out where the bootmem bitmap is located. */
 591        mapsize = bootmem_bootmap_pages(end - start);
 592        if (i == 0) {
 593                /* Use some space right before the heap on node 0. */
 594                mapstart = start;
 595                start += mapsize;
 596        } else {
 597                /* Allocate bitmap on node 0 to avoid page table issues. */
 598                mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 599        }
 600
 601        /* Initialize a node. */
 602        init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 603
 604        /* Free all the space back into the allocator. */
 605        free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 606
 607#if defined(CONFIG_PCI)
 608        /*
 609         * Throw away any memory aliased by the PCI region.  FIXME: this
 610         * is a temporary hack to work around bug 10502, and needs to be
 611         * fixed properly.
 612         */
 613        if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
 614                reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
 615                                PFN_PHYS(pci_reserve_end_pfn -
 616                                         pci_reserve_start_pfn),
 617                                BOOTMEM_EXCLUSIVE);
 618#endif
 619}
 620
 621static void __init setup_bootmem_allocator(void)
 622{
 623        int i;
 624        for (i = 0; i < MAX_NUMNODES; ++i)
 625                setup_bootmem_allocator_node(i);
 626
 627#ifdef CONFIG_KEXEC
 628        if (crashk_res.start != crashk_res.end)
 629                reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 630#endif
 631}
 632
 633void *__init alloc_remap(int nid, unsigned long size)
 634{
 635        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 636        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 637        BUG_ON(size != pages * sizeof(struct page));
 638        memset(map, 0, size);
 639        return map;
 640}
 641
 642static int __init percpu_size(void)
 643{
 644        int size = __per_cpu_end - __per_cpu_start;
 645        size += PERCPU_MODULE_RESERVE;
 646        size += PERCPU_DYNAMIC_EARLY_SIZE;
 647        if (size < PCPU_MIN_UNIT_SIZE)
 648                size = PCPU_MIN_UNIT_SIZE;
 649        size = roundup(size, PAGE_SIZE);
 650
 651        /* In several places we assume the per-cpu data fits on a huge page. */
 652        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 653        return size;
 654}
 655
 656static void __init zone_sizes_init(void)
 657{
 658        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 659        int size = percpu_size();
 660        int num_cpus = smp_height * smp_width;
 661        int i;
 662
 663        for (i = 0; i < num_cpus; ++i)
 664                node_percpu[cpu_to_node(i)] += size;
 665
 666        for_each_online_node(i) {
 667                unsigned long start = node_start_pfn[i];
 668                unsigned long end = node_end_pfn[i];
 669#ifdef CONFIG_HIGHMEM
 670                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 671#else
 672                unsigned long lowmem_end = end;
 673#endif
 674                int memmap_size = (end - start) * sizeof(struct page);
 675                node_free_pfn[i] = start;
 676
 677                /*
 678                 * Set aside pages for per-cpu data and the mem_map array.
 679                 *
 680                 * Since the per-cpu data requires special homecaching,
 681                 * if we are in kdata_huge mode, we put it at the end of
 682                 * the lowmem region.  If we're not in kdata_huge mode,
 683                 * we take the per-cpu pages from the bottom of the
 684                 * controller, since that avoids fragmenting a huge page
 685                 * that users might want.  We always take the memmap
 686                 * from the bottom of the controller, since with
 687                 * kdata_huge that lets it be under a huge TLB entry.
 688                 *
 689                 * If the user has requested isolnodes for a controller,
 690                 * though, there'll be no lowmem, so we just alloc_bootmem
 691                 * the memmap.  There will be no percpu memory either.
 692                 */
 693                if (i != 0 && cpu_isset(i, isolnodes)) {
 694                        node_memmap_pfn[i] =
 695                                alloc_bootmem_pfn(0, memmap_size, 0);
 696                        BUG_ON(node_percpu[i] != 0);
 697                } else if (node_has_bootmem(start)) {
 698                        unsigned long goal = 0;
 699                        node_memmap_pfn[i] =
 700                                alloc_bootmem_pfn(i, memmap_size, 0);
 701                        if (kdata_huge)
 702                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 703                        if (node_percpu[i])
 704                                node_percpu_pfn[i] =
 705                                        alloc_bootmem_pfn(i, node_percpu[i],
 706                                                          goal);
 707                } else {
 708                        /* In non-bootmem zones, just reserve some pages. */
 709                        node_memmap_pfn[i] = node_free_pfn[i];
 710                        node_free_pfn[i] += PFN_UP(memmap_size);
 711                        if (!kdata_huge) {
 712                                node_percpu_pfn[i] = node_free_pfn[i];
 713                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 714                        } else {
 715                                node_percpu_pfn[i] =
 716                                        lowmem_end - PFN_UP(node_percpu[i]);
 717                        }
 718                }
 719
 720#ifdef CONFIG_HIGHMEM
 721                if (start > lowmem_end) {
 722                        zones_size[ZONE_NORMAL] = 0;
 723                        zones_size[ZONE_HIGHMEM] = end - start;
 724                } else {
 725                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 726                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 727                }
 728#else
 729                zones_size[ZONE_NORMAL] = end - start;
 730#endif
 731
 732                /* Take zone metadata from controller 0 if we're isolnode. */
 733                if (node_isset(i, isolnodes))
 734                        NODE_DATA(i)->bdata = &bootmem_node_data[0];
 735
 736                free_area_init_node(i, zones_size, start, NULL);
 737                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 738                       PFN_UP(node_percpu[i]));
 739
 740                /* Track the type of memory on each node */
 741                if (zones_size[ZONE_NORMAL])
 742                        node_set_state(i, N_NORMAL_MEMORY);
 743#ifdef CONFIG_HIGHMEM
 744                if (end != start)
 745                        node_set_state(i, N_HIGH_MEMORY);
 746#endif
 747
 748                node_set_online(i);
 749        }
 750}
 751
 752#ifdef CONFIG_NUMA
 753
 754/* which logical CPUs are on which nodes */
 755struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 756EXPORT_SYMBOL(node_2_cpu_mask);
 757
 758/* which node each logical CPU is on */
 759char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 760EXPORT_SYMBOL(cpu_2_node);
 761
 762/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 763static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 764{
 765        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 766                return -1;
 767        else
 768                return cpu_to_node(cpu);
 769}
 770
 771/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 772static int __init node_neighbors(int node, int cpu,
 773                                 struct cpumask *unbound_cpus)
 774{
 775        int neighbors = 0;
 776        int w = smp_width;
 777        int h = smp_height;
 778        int x = cpu % w;
 779        int y = cpu / w;
 780        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 781                ++neighbors;
 782        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 783                ++neighbors;
 784        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 785                ++neighbors;
 786        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 787                ++neighbors;
 788        return neighbors;
 789}
 790
 791static void __init setup_numa_mapping(void)
 792{
 793        int distance[MAX_NUMNODES][NR_CPUS];
 794        HV_Coord coord;
 795        int cpu, node, cpus, i, x, y;
 796        int num_nodes = num_online_nodes();
 797        struct cpumask unbound_cpus;
 798        nodemask_t default_nodes;
 799
 800        cpumask_clear(&unbound_cpus);
 801
 802        /* Get set of nodes we will use for defaults */
 803        nodes_andnot(default_nodes, node_online_map, isolnodes);
 804        if (nodes_empty(default_nodes)) {
 805                BUG_ON(!node_isset(0, node_online_map));
 806                pr_err("Forcing NUMA node zero available as a default node\n");
 807                node_set(0, default_nodes);
 808        }
 809
 810        /* Populate the distance[] array */
 811        memset(distance, -1, sizeof(distance));
 812        cpu = 0;
 813        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 814                for (coord.x = 0; coord.x < smp_width;
 815                     ++coord.x, ++cpu) {
 816                        BUG_ON(cpu >= nr_cpu_ids);
 817                        if (!cpu_possible(cpu)) {
 818                                cpu_2_node[cpu] = -1;
 819                                continue;
 820                        }
 821                        for_each_node_mask(node, default_nodes) {
 822                                HV_MemoryControllerInfo info =
 823                                        hv_inquire_memory_controller(
 824                                                coord, node_controller[node]);
 825                                distance[node][cpu] =
 826                                        ABS(info.coord.x) + ABS(info.coord.y);
 827                        }
 828                        cpumask_set_cpu(cpu, &unbound_cpus);
 829                }
 830        }
 831        cpus = cpu;
 832
 833        /*
 834         * Round-robin through the NUMA nodes until all the cpus are
 835         * assigned.  We could be more clever here (e.g. create four
 836         * sorted linked lists on the same set of cpu nodes, and pull
 837         * off them in round-robin sequence, removing from all four
 838         * lists each time) but given the relatively small numbers
 839         * involved, O(n^2) seem OK for a one-time cost.
 840         */
 841        node = first_node(default_nodes);
 842        while (!cpumask_empty(&unbound_cpus)) {
 843                int best_cpu = -1;
 844                int best_distance = INT_MAX;
 845                for (cpu = 0; cpu < cpus; ++cpu) {
 846                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 847                                /*
 848                                 * Compute metric, which is how much
 849                                 * closer the cpu is to this memory
 850                                 * controller than the others, shifted
 851                                 * up, and then the number of
 852                                 * neighbors already in the node as an
 853                                 * epsilon adjustment to try to keep
 854                                 * the nodes compact.
 855                                 */
 856                                int d = distance[node][cpu] * num_nodes;
 857                                for_each_node_mask(i, default_nodes) {
 858                                        if (i != node)
 859                                                d -= distance[i][cpu];
 860                                }
 861                                d *= 8;  /* allow space for epsilon */
 862                                d -= node_neighbors(node, cpu, &unbound_cpus);
 863                                if (d < best_distance) {
 864                                        best_cpu = cpu;
 865                                        best_distance = d;
 866                                }
 867                        }
 868                }
 869                BUG_ON(best_cpu < 0);
 870                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 871                cpu_2_node[best_cpu] = node;
 872                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 873                node = next_node(node, default_nodes);
 874                if (node == MAX_NUMNODES)
 875                        node = first_node(default_nodes);
 876        }
 877
 878        /* Print out node assignments and set defaults for disabled cpus */
 879        cpu = 0;
 880        for (y = 0; y < smp_height; ++y) {
 881                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 882                for (x = 0; x < smp_width; ++x, ++cpu) {
 883                        if (cpu_to_node(cpu) < 0) {
 884                                pr_cont(" -");
 885                                cpu_2_node[cpu] = first_node(default_nodes);
 886                        } else {
 887                                pr_cont(" %d", cpu_to_node(cpu));
 888                        }
 889                }
 890                pr_cont("\n");
 891        }
 892}
 893
 894static struct cpu cpu_devices[NR_CPUS];
 895
 896static int __init topology_init(void)
 897{
 898        int i;
 899
 900        for_each_online_node(i)
 901                register_one_node(i);
 902
 903        for (i = 0; i < smp_height * smp_width; ++i)
 904                register_cpu(&cpu_devices[i], i);
 905
 906        return 0;
 907}
 908
 909subsys_initcall(topology_init);
 910
 911#else /* !CONFIG_NUMA */
 912
 913#define setup_numa_mapping() do { } while (0)
 914
 915#endif /* CONFIG_NUMA */
 916
 917/*
 918 * Initialize hugepage support on this cpu.  We do this on all cores
 919 * early in boot: before argument parsing for the boot cpu, and after
 920 * argument parsing but before the init functions run on the secondaries.
 921 * So the values we set up here in the hypervisor may be overridden on
 922 * the boot cpu as arguments are parsed.
 923 */
 924static __cpuinit void init_super_pages(void)
 925{
 926#ifdef CONFIG_HUGETLB_SUPER_PAGES
 927        int i;
 928        for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
 929                hv_set_pte_super_shift(i, huge_shift[i]);
 930#endif
 931}
 932
 933/**
 934 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 935 * @boot: Is this the boot cpu?
 936 *
 937 * Called from setup_arch() on the boot cpu, or online_secondary().
 938 */
 939void __cpuinit setup_cpu(int boot)
 940{
 941        /* The boot cpu sets up its permanent mappings much earlier. */
 942        if (!boot)
 943                store_permanent_mappings();
 944
 945        /* Allow asynchronous TLB interrupts. */
 946#if CHIP_HAS_TILE_DMA()
 947        arch_local_irq_unmask(INT_DMATLB_MISS);
 948        arch_local_irq_unmask(INT_DMATLB_ACCESS);
 949#endif
 950#if CHIP_HAS_SN_PROC()
 951        arch_local_irq_unmask(INT_SNITLB_MISS);
 952#endif
 953#ifdef __tilegx__
 954        arch_local_irq_unmask(INT_SINGLE_STEP_K);
 955#endif
 956
 957        /*
 958         * Allow user access to many generic SPRs, like the cycle
 959         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 960         */
 961        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 962
 963#if CHIP_HAS_SN()
 964        /* Static network is not restricted. */
 965        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 966#endif
 967#if CHIP_HAS_SN_PROC()
 968        __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 969        __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 970#endif
 971
 972        /*
 973         * Set the MPL for interrupt control 0 & 1 to the corresponding
 974         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 975         * SPRs, as well as the interrupt mask.
 976         */
 977        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 978        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 979
 980        /* Initialize IRQ support for this cpu. */
 981        setup_irq_regs();
 982
 983#ifdef CONFIG_HARDWALL
 984        /* Reset the network state on this cpu. */
 985        reset_network_state();
 986#endif
 987
 988        init_super_pages();
 989}
 990
 991#ifdef CONFIG_BLK_DEV_INITRD
 992
 993/*
 994 * Note that the kernel can potentially support other compression
 995 * techniques than gz, though we don't do so by default.  If we ever
 996 * decide to do so we can either look for other filename extensions,
 997 * or just allow a file with this name to be compressed with an
 998 * arbitrary compressor (somewhat counterintuitively).
 999 */
1000static int __initdata set_initramfs_file;
1001static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
1002
1003static int __init setup_initramfs_file(char *str)
1004{
1005        if (str == NULL)
1006                return -EINVAL;
1007        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1008        set_initramfs_file = 1;
1009
1010        return 0;
1011}
1012early_param("initramfs_file", setup_initramfs_file);
1013
1014/*
1015 * We look for an "initramfs.cpio.gz" file in the hvfs.
1016 * If there is one, we allocate some memory for it and it will be
1017 * unpacked to the initramfs.
1018 */
1019static void __init load_hv_initrd(void)
1020{
1021        HV_FS_StatInfo stat;
1022        int fd, rc;
1023        void *initrd;
1024
1025        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1026        if (fd == HV_ENOENT) {
1027                if (set_initramfs_file)
1028                        pr_warning("No such hvfs initramfs file '%s'\n",
1029                                   initramfs_file);
1030                return;
1031        }
1032        BUG_ON(fd < 0);
1033        stat = hv_fs_fstat(fd);
1034        BUG_ON(stat.size < 0);
1035        if (stat.flags & HV_FS_ISDIR) {
1036                pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1037                           initramfs_file);
1038                return;
1039        }
1040        initrd = alloc_bootmem_pages(stat.size);
1041        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1042        if (rc != stat.size) {
1043                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1044                       stat.size, initramfs_file, rc);
1045                free_initrd_mem((unsigned long) initrd, stat.size);
1046                return;
1047        }
1048        initrd_start = (unsigned long) initrd;
1049        initrd_end = initrd_start + stat.size;
1050}
1051
1052void __init free_initrd_mem(unsigned long begin, unsigned long end)
1053{
1054        free_bootmem(__pa(begin), end - begin);
1055}
1056
1057#else
1058static inline void load_hv_initrd(void) {}
1059#endif /* CONFIG_BLK_DEV_INITRD */
1060
1061static void __init validate_hv(void)
1062{
1063        /*
1064         * It may already be too late, but let's check our built-in
1065         * configuration against what the hypervisor is providing.
1066         */
1067        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1068        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1069        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1070        HV_ASIDRange asid_range;
1071
1072#ifndef CONFIG_SMP
1073        HV_Topology topology = hv_inquire_topology();
1074        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1075        if (topology.width != 1 || topology.height != 1) {
1076                pr_warning("Warning: booting UP kernel on %dx%d grid;"
1077                           " will ignore all but first tile.\n",
1078                           topology.width, topology.height);
1079        }
1080#endif
1081
1082        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1083                early_panic("Hypervisor glue size %ld is too big!\n",
1084                            glue_size);
1085        if (hv_page_size != PAGE_SIZE)
1086                early_panic("Hypervisor page size %#x != our %#lx\n",
1087                            hv_page_size, PAGE_SIZE);
1088        if (hv_hpage_size != HPAGE_SIZE)
1089                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1090                            hv_hpage_size, HPAGE_SIZE);
1091
1092#ifdef CONFIG_SMP
1093        /*
1094         * Some hypervisor APIs take a pointer to a bitmap array
1095         * whose size is at least the number of cpus on the chip.
1096         * We use a struct cpumask for this, so it must be big enough.
1097         */
1098        if ((smp_height * smp_width) > nr_cpu_ids)
1099                early_panic("Hypervisor %d x %d grid too big for Linux"
1100                            " NR_CPUS %d\n", smp_height, smp_width,
1101                            nr_cpu_ids);
1102#endif
1103
1104        /*
1105         * Check that we're using allowed ASIDs, and initialize the
1106         * various asid variables to their appropriate initial states.
1107         */
1108        asid_range = hv_inquire_asid(0);
1109        __get_cpu_var(current_asid) = min_asid = asid_range.start;
1110        max_asid = asid_range.start + asid_range.size - 1;
1111
1112        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1113                       sizeof(chip_model)) < 0) {
1114                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1115                strlcpy(chip_model, "unknown", sizeof(chip_model));
1116        }
1117}
1118
1119static void __init validate_va(void)
1120{
1121#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1122        /*
1123         * Similarly, make sure we're only using allowed VAs.
1124         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1125         * and 0 .. KERNEL_HIGH_VADDR.
1126         * In addition, make sure we CAN'T use the end of memory, since
1127         * we use the last chunk of each pgd for the pgd_list.
1128         */
1129        int i, user_kernel_ok = 0;
1130        unsigned long max_va = 0;
1131        unsigned long list_va =
1132                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1133
1134        for (i = 0; ; ++i) {
1135                HV_VirtAddrRange range = hv_inquire_virtual(i);
1136                if (range.size == 0)
1137                        break;
1138                if (range.start <= MEM_USER_INTRPT &&
1139                    range.start + range.size >= MEM_HV_INTRPT)
1140                        user_kernel_ok = 1;
1141                if (range.start == 0)
1142                        max_va = range.size;
1143                BUG_ON(range.start + range.size > list_va);
1144        }
1145        if (!user_kernel_ok)
1146                early_panic("Hypervisor not configured for user/kernel VAs\n");
1147        if (max_va == 0)
1148                early_panic("Hypervisor not configured for low VAs\n");
1149        if (max_va < KERNEL_HIGH_VADDR)
1150                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1151                            max_va, KERNEL_HIGH_VADDR);
1152
1153        /* Kernel PCs must have their high bit set; see intvec.S. */
1154        if ((long)VMALLOC_START >= 0)
1155                early_panic(
1156                        "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1157                        "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1158                        "or smaller VMALLOC_RESERVE.\n",
1159                        VMALLOC_START);
1160#endif
1161}
1162
1163/*
1164 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1165 * to cache data on at a page level, i.e. what cpus can be placed in
1166 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1167 * cpus plus any other cpus that are willing to share their cache.
1168 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1169 */
1170struct cpumask __write_once cpu_lotar_map;
1171EXPORT_SYMBOL(cpu_lotar_map);
1172
1173#if CHIP_HAS_CBOX_HOME_MAP()
1174/*
1175 * hash_for_home_map lists all the tiles that hash-for-home data
1176 * will be cached on.  Note that this may includes tiles that are not
1177 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1178 * device is being shared between multiple supervisors).
1179 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1180 */
1181struct cpumask hash_for_home_map;
1182EXPORT_SYMBOL(hash_for_home_map);
1183#endif
1184
1185/*
1186 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1187 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1188 * hash_for_home_map, and it is what should be passed to
1189 * hv_flush_remote() to flush all caches.  Note that if there are
1190 * dedicated hypervisor driver tiles that have authorized use of their
1191 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1192 * cpu_cacheable_map, as they are a special case.
1193 */
1194struct cpumask __write_once cpu_cacheable_map;
1195EXPORT_SYMBOL(cpu_cacheable_map);
1196
1197static __initdata struct cpumask disabled_map;
1198
1199static int __init disabled_cpus(char *str)
1200{
1201        int boot_cpu = smp_processor_id();
1202
1203        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1204                return -EINVAL;
1205        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1206                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1207                cpumask_clear_cpu(boot_cpu, &disabled_map);
1208        }
1209        return 0;
1210}
1211
1212early_param("disabled_cpus", disabled_cpus);
1213
1214void __init print_disabled_cpus(void)
1215{
1216        if (!cpumask_empty(&disabled_map)) {
1217                char buf[100];
1218                cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1219                pr_info("CPUs not available for Linux: %s\n", buf);
1220        }
1221}
1222
1223static void __init setup_cpu_maps(void)
1224{
1225        struct cpumask hv_disabled_map, cpu_possible_init;
1226        int boot_cpu = smp_processor_id();
1227        int cpus, i, rc;
1228
1229        /* Learn which cpus are allowed by the hypervisor. */
1230        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1231                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1232                              sizeof(cpu_cacheable_map));
1233        if (rc < 0)
1234                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1235        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1236                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1237
1238        /* Compute the cpus disabled by the hvconfig file. */
1239        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1240
1241        /* Include them with the cpus disabled by "disabled_cpus". */
1242        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1243
1244        /*
1245         * Disable every cpu after "setup_max_cpus".  But don't mark
1246         * as disabled the cpus that are outside of our initial rectangle,
1247         * since that turns out to be confusing.
1248         */
1249        cpus = 1;                          /* this cpu */
1250        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1251        for (i = 0; cpus < setup_max_cpus; ++i)
1252                if (!cpumask_test_cpu(i, &disabled_map))
1253                        ++cpus;
1254        for (; i < smp_height * smp_width; ++i)
1255                cpumask_set_cpu(i, &disabled_map);
1256        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1257        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1258                cpumask_clear_cpu(i, &disabled_map);
1259
1260        /*
1261         * Setup cpu_possible map as every cpu allocated to us, minus
1262         * the results of any "disabled_cpus" settings.
1263         */
1264        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1265        init_cpu_possible(&cpu_possible_init);
1266
1267        /* Learn which cpus are valid for LOTAR caching. */
1268        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1269                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1270                              sizeof(cpu_lotar_map));
1271        if (rc < 0) {
1272                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1273                cpu_lotar_map = *cpu_possible_mask;
1274        }
1275
1276#if CHIP_HAS_CBOX_HOME_MAP()
1277        /* Retrieve set of CPUs used for hash-for-home caching */
1278        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1279                              (HV_VirtAddr) hash_for_home_map.bits,
1280                              sizeof(hash_for_home_map));
1281        if (rc < 0)
1282                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1283        cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1284#else
1285        cpu_cacheable_map = *cpu_possible_mask;
1286#endif
1287}
1288
1289
1290static int __init dataplane(char *str)
1291{
1292        pr_warning("WARNING: dataplane support disabled in this kernel\n");
1293        return 0;
1294}
1295
1296early_param("dataplane", dataplane);
1297
1298#ifdef CONFIG_CMDLINE_BOOL
1299static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1300#endif
1301
1302void __init setup_arch(char **cmdline_p)
1303{
1304        int len;
1305
1306#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1307        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1308                                  COMMAND_LINE_SIZE);
1309        if (boot_command_line[0])
1310                pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1311                           boot_command_line);
1312        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1313#else
1314        char *hv_cmdline;
1315#if defined(CONFIG_CMDLINE_BOOL)
1316        if (builtin_cmdline[0]) {
1317                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1318                                          COMMAND_LINE_SIZE);
1319                if (builtin_len < COMMAND_LINE_SIZE-1)
1320                        boot_command_line[builtin_len++] = ' ';
1321                hv_cmdline = &boot_command_line[builtin_len];
1322                len = COMMAND_LINE_SIZE - builtin_len;
1323        } else
1324#endif
1325        {
1326                hv_cmdline = boot_command_line;
1327                len = COMMAND_LINE_SIZE;
1328        }
1329        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1330        if (len < 0 || len > COMMAND_LINE_SIZE)
1331                early_panic("hv_get_command_line failed: %d\n", len);
1332#endif
1333
1334        *cmdline_p = boot_command_line;
1335
1336        /* Set disabled_map and setup_max_cpus very early */
1337        parse_early_param();
1338
1339        /* Make sure the kernel is compatible with the hypervisor. */
1340        validate_hv();
1341        validate_va();
1342
1343        setup_cpu_maps();
1344
1345
1346#ifdef CONFIG_PCI
1347        /*
1348         * Initialize the PCI structures.  This is done before memory
1349         * setup so that we know whether or not a pci_reserve region
1350         * is necessary.
1351         */
1352        if (tile_pci_init() == 0)
1353                pci_reserve_mb = 0;
1354
1355        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1356        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1357        pci_reserve_start_pfn = pci_reserve_end_pfn -
1358                (pci_reserve_mb << (20 - PAGE_SHIFT));
1359#endif
1360
1361        init_mm.start_code = (unsigned long) _text;
1362        init_mm.end_code = (unsigned long) _etext;
1363        init_mm.end_data = (unsigned long) _edata;
1364        init_mm.brk = (unsigned long) _end;
1365
1366        setup_memory();
1367        store_permanent_mappings();
1368        setup_bootmem_allocator();
1369
1370        /*
1371         * NOTE: before this point _nobody_ is allowed to allocate
1372         * any memory using the bootmem allocator.
1373         */
1374
1375        paging_init();
1376        setup_numa_mapping();
1377        zone_sizes_init();
1378        set_page_homes();
1379        setup_cpu(1);
1380        setup_clock();
1381        load_hv_initrd();
1382}
1383
1384
1385/*
1386 * Set up per-cpu memory.
1387 */
1388
1389unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1390EXPORT_SYMBOL(__per_cpu_offset);
1391
1392static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1393static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1394
1395/*
1396 * As the percpu code allocates pages, we return the pages from the
1397 * end of the node for the specified cpu.
1398 */
1399static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1400{
1401        int nid = cpu_to_node(cpu);
1402        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1403
1404        BUG_ON(size % PAGE_SIZE != 0);
1405        pfn_offset[nid] += size / PAGE_SIZE;
1406        BUG_ON(node_percpu[nid] < size);
1407        node_percpu[nid] -= size;
1408        if (percpu_pfn[cpu] == 0)
1409                percpu_pfn[cpu] = pfn;
1410        return pfn_to_kaddr(pfn);
1411}
1412
1413/*
1414 * Pages reserved for percpu memory are not freeable, and in any case we are
1415 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1416 */
1417static void __init pcpu_fc_free(void *ptr, size_t size)
1418{
1419}
1420
1421/*
1422 * Set up vmalloc page tables using bootmem for the percpu code.
1423 */
1424static void __init pcpu_fc_populate_pte(unsigned long addr)
1425{
1426        pgd_t *pgd;
1427        pud_t *pud;
1428        pmd_t *pmd;
1429        pte_t *pte;
1430
1431        BUG_ON(pgd_addr_invalid(addr));
1432        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1433                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1434                      " try increasing CONFIG_VMALLOC_RESERVE\n",
1435                      addr, VMALLOC_START, VMALLOC_END);
1436
1437        pgd = swapper_pg_dir + pgd_index(addr);
1438        pud = pud_offset(pgd, addr);
1439        BUG_ON(!pud_present(*pud));
1440        pmd = pmd_offset(pud, addr);
1441        if (pmd_present(*pmd)) {
1442                BUG_ON(pmd_huge_page(*pmd));
1443        } else {
1444                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1445                                      HV_PAGE_TABLE_ALIGN, 0);
1446                pmd_populate_kernel(&init_mm, pmd, pte);
1447        }
1448}
1449
1450void __init setup_per_cpu_areas(void)
1451{
1452        struct page *pg;
1453        unsigned long delta, pfn, lowmem_va;
1454        unsigned long size = percpu_size();
1455        char *ptr;
1456        int rc, cpu, i;
1457
1458        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1459                                   pcpu_fc_free, pcpu_fc_populate_pte);
1460        if (rc < 0)
1461                panic("Cannot initialize percpu area (err=%d)", rc);
1462
1463        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1464        for_each_possible_cpu(cpu) {
1465                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1466
1467                /* finv the copy out of cache so we can change homecache */
1468                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1469                __finv_buffer(ptr, size);
1470                pfn = percpu_pfn[cpu];
1471
1472                /* Rewrite the page tables to cache on that cpu */
1473                pg = pfn_to_page(pfn);
1474                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1475
1476                        /* Update the vmalloc mapping and page home. */
1477                        unsigned long addr = (unsigned long)ptr + i;
1478                        pte_t *ptep = virt_to_pte(NULL, addr);
1479                        pte_t pte = *ptep;
1480                        BUG_ON(pfn != pte_pfn(pte));
1481                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1482                        pte = set_remote_cache_cpu(pte, cpu);
1483                        set_pte_at(&init_mm, addr, ptep, pte);
1484
1485                        /* Update the lowmem mapping for consistency. */
1486                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1487                        ptep = virt_to_pte(NULL, lowmem_va);
1488                        if (pte_huge(*ptep)) {
1489                                printk(KERN_DEBUG "early shatter of huge page"
1490                                       " at %#lx\n", lowmem_va);
1491                                shatter_pmd((pmd_t *)ptep);
1492                                ptep = virt_to_pte(NULL, lowmem_va);
1493                                BUG_ON(pte_huge(*ptep));
1494                        }
1495                        BUG_ON(pfn != pte_pfn(*ptep));
1496                        set_pte_at(&init_mm, lowmem_va, ptep, pte);
1497                }
1498        }
1499
1500        /* Set our thread pointer appropriately. */
1501        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1502
1503        /* Make sure the finv's have completed. */
1504        mb_incoherent();
1505
1506        /* Flush the TLB so we reference it properly from here on out. */
1507        local_flush_tlb_all();
1508}
1509
1510static struct resource data_resource = {
1511        .name   = "Kernel data",
1512        .start  = 0,
1513        .end    = 0,
1514        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1515};
1516
1517static struct resource code_resource = {
1518        .name   = "Kernel code",
1519        .start  = 0,
1520        .end    = 0,
1521        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1522};
1523
1524/*
1525 * We reserve all resources above 4GB so that PCI won't try to put
1526 * mappings above 4GB; the standard allows that for some devices but
1527 * the probing code trunates values to 32 bits.
1528 */
1529#ifdef CONFIG_PCI
1530static struct resource* __init
1531insert_non_bus_resource(void)
1532{
1533        struct resource *res =
1534                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1535        res->name = "Non-Bus Physical Address Space";
1536        res->start = (1ULL << 32);
1537        res->end = -1LL;
1538        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1539        if (insert_resource(&iomem_resource, res)) {
1540                kfree(res);
1541                return NULL;
1542        }
1543        return res;
1544}
1545#endif
1546
1547static struct resource* __init
1548insert_ram_resource(u64 start_pfn, u64 end_pfn)
1549{
1550        struct resource *res =
1551                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1552        res->name = "System RAM";
1553        res->start = start_pfn << PAGE_SHIFT;
1554        res->end = (end_pfn << PAGE_SHIFT) - 1;
1555        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1556        if (insert_resource(&iomem_resource, res)) {
1557                kfree(res);
1558                return NULL;
1559        }
1560        return res;
1561}
1562
1563/*
1564 * Request address space for all standard resources
1565 *
1566 * If the system includes PCI root complex drivers, we need to create
1567 * a window just below 4GB where PCI BARs can be mapped.
1568 */
1569static int __init request_standard_resources(void)
1570{
1571        int i;
1572        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1573
1574        iomem_resource.end = -1LL;
1575#ifdef CONFIG_PCI
1576        insert_non_bus_resource();
1577#endif
1578
1579        for_each_online_node(i) {
1580                u64 start_pfn = node_start_pfn[i];
1581                u64 end_pfn = node_end_pfn[i];
1582
1583#ifdef CONFIG_PCI
1584                if (start_pfn <= pci_reserve_start_pfn &&
1585                    end_pfn > pci_reserve_start_pfn) {
1586                        if (end_pfn > pci_reserve_end_pfn)
1587                                insert_ram_resource(pci_reserve_end_pfn,
1588                                                     end_pfn);
1589                        end_pfn = pci_reserve_start_pfn;
1590                }
1591#endif
1592                insert_ram_resource(start_pfn, end_pfn);
1593        }
1594
1595        code_resource.start = __pa(_text - CODE_DELTA);
1596        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1597        data_resource.start = __pa(_sdata);
1598        data_resource.end = __pa(_end)-1;
1599
1600        insert_resource(&iomem_resource, &code_resource);
1601        insert_resource(&iomem_resource, &data_resource);
1602
1603#ifdef CONFIG_KEXEC
1604        insert_resource(&iomem_resource, &crashk_res);
1605#endif
1606
1607        return 0;
1608}
1609
1610subsys_initcall(request_standard_resources);
1611