linux/arch/um/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   3 * Copyright 2003 PathScale, Inc.
   4 * Licensed under the GPL
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/err.h>
   9#include <linux/hardirq.h>
  10#include <linux/mm.h>
  11#include <linux/module.h>
  12#include <linux/personality.h>
  13#include <linux/proc_fs.h>
  14#include <linux/ptrace.h>
  15#include <linux/random.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/seq_file.h>
  19#include <linux/tick.h>
  20#include <linux/threads.h>
  21#include <linux/tracehook.h>
  22#include <asm/current.h>
  23#include <asm/pgtable.h>
  24#include <asm/mmu_context.h>
  25#include <asm/uaccess.h>
  26#include "as-layout.h"
  27#include "kern_util.h"
  28#include "os.h"
  29#include "skas.h"
  30
  31/*
  32 * This is a per-cpu array.  A processor only modifies its entry and it only
  33 * cares about its entry, so it's OK if another processor is modifying its
  34 * entry.
  35 */
  36struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  37
  38static inline int external_pid(void)
  39{
  40        /* FIXME: Need to look up userspace_pid by cpu */
  41        return userspace_pid[0];
  42}
  43
  44int pid_to_processor_id(int pid)
  45{
  46        int i;
  47
  48        for (i = 0; i < ncpus; i++) {
  49                if (cpu_tasks[i].pid == pid)
  50                        return i;
  51        }
  52        return -1;
  53}
  54
  55void free_stack(unsigned long stack, int order)
  56{
  57        free_pages(stack, order);
  58}
  59
  60unsigned long alloc_stack(int order, int atomic)
  61{
  62        unsigned long page;
  63        gfp_t flags = GFP_KERNEL;
  64
  65        if (atomic)
  66                flags = GFP_ATOMIC;
  67        page = __get_free_pages(flags, order);
  68
  69        return page;
  70}
  71
  72int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  73{
  74        int pid;
  75
  76        current->thread.request.u.thread.proc = fn;
  77        current->thread.request.u.thread.arg = arg;
  78        pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  79                      &current->thread.regs, 0, NULL, NULL);
  80        return pid;
  81}
  82EXPORT_SYMBOL(kernel_thread);
  83
  84static inline void set_current(struct task_struct *task)
  85{
  86        cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  87                { external_pid(), task });
  88}
  89
  90extern void arch_switch_to(struct task_struct *to);
  91
  92void *__switch_to(struct task_struct *from, struct task_struct *to)
  93{
  94        to->thread.prev_sched = from;
  95        set_current(to);
  96
  97        do {
  98                current->thread.saved_task = NULL;
  99
 100                switch_threads(&from->thread.switch_buf,
 101                               &to->thread.switch_buf);
 102
 103                arch_switch_to(current);
 104
 105                if (current->thread.saved_task)
 106                        show_regs(&(current->thread.regs));
 107                to = current->thread.saved_task;
 108                from = current;
 109        } while (current->thread.saved_task);
 110
 111        return current->thread.prev_sched;
 112}
 113
 114void interrupt_end(void)
 115{
 116        if (need_resched())
 117                schedule();
 118        if (test_thread_flag(TIF_SIGPENDING))
 119                do_signal();
 120        if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
 121                tracehook_notify_resume(&current->thread.regs);
 122}
 123
 124void exit_thread(void)
 125{
 126}
 127
 128int get_current_pid(void)
 129{
 130        return task_pid_nr(current);
 131}
 132
 133/*
 134 * This is called magically, by its address being stuffed in a jmp_buf
 135 * and being longjmp-d to.
 136 */
 137void new_thread_handler(void)
 138{
 139        int (*fn)(void *), n;
 140        void *arg;
 141
 142        if (current->thread.prev_sched != NULL)
 143                schedule_tail(current->thread.prev_sched);
 144        current->thread.prev_sched = NULL;
 145
 146        fn = current->thread.request.u.thread.proc;
 147        arg = current->thread.request.u.thread.arg;
 148
 149        /*
 150         * The return value is 1 if the kernel thread execs a process,
 151         * 0 if it just exits
 152         */
 153        n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
 154        if (n == 1) {
 155                /* Handle any immediate reschedules or signals */
 156                interrupt_end();
 157                userspace(&current->thread.regs.regs);
 158        }
 159        else do_exit(0);
 160}
 161
 162/* Called magically, see new_thread_handler above */
 163void fork_handler(void)
 164{
 165        force_flush_all();
 166
 167        schedule_tail(current->thread.prev_sched);
 168
 169        /*
 170         * XXX: if interrupt_end() calls schedule, this call to
 171         * arch_switch_to isn't needed. We could want to apply this to
 172         * improve performance. -bb
 173         */
 174        arch_switch_to(current);
 175
 176        current->thread.prev_sched = NULL;
 177
 178        /* Handle any immediate reschedules or signals */
 179        interrupt_end();
 180
 181        userspace(&current->thread.regs.regs);
 182}
 183
 184int copy_thread(unsigned long clone_flags, unsigned long sp,
 185                unsigned long stack_top, struct task_struct * p,
 186                struct pt_regs *regs)
 187{
 188        void (*handler)(void);
 189        int ret = 0;
 190
 191        p->thread = (struct thread_struct) INIT_THREAD;
 192
 193        if (current->thread.forking) {
 194                memcpy(&p->thread.regs.regs, &regs->regs,
 195                       sizeof(p->thread.regs.regs));
 196                UPT_SET_SYSCALL_RETURN(&p->thread.regs.regs, 0);
 197                if (sp != 0)
 198                        REGS_SP(p->thread.regs.regs.gp) = sp;
 199
 200                handler = fork_handler;
 201
 202                arch_copy_thread(&current->thread.arch, &p->thread.arch);
 203        }
 204        else {
 205                get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
 206                p->thread.request.u.thread = current->thread.request.u.thread;
 207                handler = new_thread_handler;
 208        }
 209
 210        new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
 211
 212        if (current->thread.forking) {
 213                clear_flushed_tls(p);
 214
 215                /*
 216                 * Set a new TLS for the child thread?
 217                 */
 218                if (clone_flags & CLONE_SETTLS)
 219                        ret = arch_copy_tls(p);
 220        }
 221
 222        return ret;
 223}
 224
 225void initial_thread_cb(void (*proc)(void *), void *arg)
 226{
 227        int save_kmalloc_ok = kmalloc_ok;
 228
 229        kmalloc_ok = 0;
 230        initial_thread_cb_skas(proc, arg);
 231        kmalloc_ok = save_kmalloc_ok;
 232}
 233
 234void default_idle(void)
 235{
 236        unsigned long long nsecs;
 237
 238        while (1) {
 239                /* endless idle loop with no priority at all */
 240
 241                /*
 242                 * although we are an idle CPU, we do not want to
 243                 * get into the scheduler unnecessarily.
 244                 */
 245                if (need_resched())
 246                        schedule();
 247
 248                tick_nohz_idle_enter();
 249                rcu_idle_enter();
 250                nsecs = disable_timer();
 251                idle_sleep(nsecs);
 252                rcu_idle_exit();
 253                tick_nohz_idle_exit();
 254        }
 255}
 256
 257void cpu_idle(void)
 258{
 259        cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
 260        default_idle();
 261}
 262
 263int __cant_sleep(void) {
 264        return in_atomic() || irqs_disabled() || in_interrupt();
 265        /* Is in_interrupt() really needed? */
 266}
 267
 268int user_context(unsigned long sp)
 269{
 270        unsigned long stack;
 271
 272        stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
 273        return stack != (unsigned long) current_thread_info();
 274}
 275
 276extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
 277
 278void do_uml_exitcalls(void)
 279{
 280        exitcall_t *call;
 281
 282        call = &__uml_exitcall_end;
 283        while (--call >= &__uml_exitcall_begin)
 284                (*call)();
 285}
 286
 287char *uml_strdup(const char *string)
 288{
 289        return kstrdup(string, GFP_KERNEL);
 290}
 291EXPORT_SYMBOL(uml_strdup);
 292
 293int copy_to_user_proc(void __user *to, void *from, int size)
 294{
 295        return copy_to_user(to, from, size);
 296}
 297
 298int copy_from_user_proc(void *to, void __user *from, int size)
 299{
 300        return copy_from_user(to, from, size);
 301}
 302
 303int clear_user_proc(void __user *buf, int size)
 304{
 305        return clear_user(buf, size);
 306}
 307
 308int strlen_user_proc(char __user *str)
 309{
 310        return strlen_user(str);
 311}
 312
 313int smp_sigio_handler(void)
 314{
 315#ifdef CONFIG_SMP
 316        int cpu = current_thread_info()->cpu;
 317        IPI_handler(cpu);
 318        if (cpu != 0)
 319                return 1;
 320#endif
 321        return 0;
 322}
 323
 324int cpu(void)
 325{
 326        return current_thread_info()->cpu;
 327}
 328
 329static atomic_t using_sysemu = ATOMIC_INIT(0);
 330int sysemu_supported;
 331
 332void set_using_sysemu(int value)
 333{
 334        if (value > sysemu_supported)
 335                return;
 336        atomic_set(&using_sysemu, value);
 337}
 338
 339int get_using_sysemu(void)
 340{
 341        return atomic_read(&using_sysemu);
 342}
 343
 344static int sysemu_proc_show(struct seq_file *m, void *v)
 345{
 346        seq_printf(m, "%d\n", get_using_sysemu());
 347        return 0;
 348}
 349
 350static int sysemu_proc_open(struct inode *inode, struct file *file)
 351{
 352        return single_open(file, sysemu_proc_show, NULL);
 353}
 354
 355static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
 356                                 size_t count, loff_t *pos)
 357{
 358        char tmp[2];
 359
 360        if (copy_from_user(tmp, buf, 1))
 361                return -EFAULT;
 362
 363        if (tmp[0] >= '0' && tmp[0] <= '2')
 364                set_using_sysemu(tmp[0] - '0');
 365        /* We use the first char, but pretend to write everything */
 366        return count;
 367}
 368
 369static const struct file_operations sysemu_proc_fops = {
 370        .owner          = THIS_MODULE,
 371        .open           = sysemu_proc_open,
 372        .read           = seq_read,
 373        .llseek         = seq_lseek,
 374        .release        = single_release,
 375        .write          = sysemu_proc_write,
 376};
 377
 378int __init make_proc_sysemu(void)
 379{
 380        struct proc_dir_entry *ent;
 381        if (!sysemu_supported)
 382                return 0;
 383
 384        ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
 385
 386        if (ent == NULL)
 387        {
 388                printk(KERN_WARNING "Failed to register /proc/sysemu\n");
 389                return 0;
 390        }
 391
 392        return 0;
 393}
 394
 395late_initcall(make_proc_sysemu);
 396
 397int singlestepping(void * t)
 398{
 399        struct task_struct *task = t ? t : current;
 400
 401        if (!(task->ptrace & PT_DTRACE))
 402                return 0;
 403
 404        if (task->thread.singlestep_syscall)
 405                return 1;
 406
 407        return 2;
 408}
 409
 410/*
 411 * Only x86 and x86_64 have an arch_align_stack().
 412 * All other arches have "#define arch_align_stack(x) (x)"
 413 * in their asm/system.h
 414 * As this is included in UML from asm-um/system-generic.h,
 415 * we can use it to behave as the subarch does.
 416 */
 417#ifndef arch_align_stack
 418unsigned long arch_align_stack(unsigned long sp)
 419{
 420        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 421                sp -= get_random_int() % 8192;
 422        return sp & ~0xf;
 423}
 424#endif
 425
 426unsigned long get_wchan(struct task_struct *p)
 427{
 428        unsigned long stack_page, sp, ip;
 429        bool seen_sched = 0;
 430
 431        if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
 432                return 0;
 433
 434        stack_page = (unsigned long) task_stack_page(p);
 435        /* Bail if the process has no kernel stack for some reason */
 436        if (stack_page == 0)
 437                return 0;
 438
 439        sp = p->thread.switch_buf->JB_SP;
 440        /*
 441         * Bail if the stack pointer is below the bottom of the kernel
 442         * stack for some reason
 443         */
 444        if (sp < stack_page)
 445                return 0;
 446
 447        while (sp < stack_page + THREAD_SIZE) {
 448                ip = *((unsigned long *) sp);
 449                if (in_sched_functions(ip))
 450                        /* Ignore everything until we're above the scheduler */
 451                        seen_sched = 1;
 452                else if (kernel_text_address(ip) && seen_sched)
 453                        return ip;
 454
 455                sp += sizeof(unsigned long);
 456        }
 457
 458        return 0;
 459}
 460
 461int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 462{
 463        int cpu = current_thread_info()->cpu;
 464
 465        return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
 466}
 467
 468