linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/interrupt.h>
  54#include <linux/completion.h>
  55#include <linux/suspend.h>
  56#include <linux/workqueue.h>
  57#include <linux/scatterlist.h>
  58#include <linux/io.h>
  59#include <linux/async.h>
  60#include <linux/log2.h>
  61#include <linux/slab.h>
  62#include <scsi/scsi.h>
  63#include <scsi/scsi_cmnd.h>
  64#include <scsi/scsi_host.h>
  65#include <linux/libata.h>
  66#include <asm/byteorder.h>
  67#include <linux/cdrom.h>
  68#include <linux/ratelimit.h>
  69#include <linux/pm_runtime.h>
  70
  71#include "libata.h"
  72#include "libata-transport.h"
  73
  74/* debounce timing parameters in msecs { interval, duration, timeout } */
  75const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  76const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  77const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  78
  79const struct ata_port_operations ata_base_port_ops = {
  80        .prereset               = ata_std_prereset,
  81        .postreset              = ata_std_postreset,
  82        .error_handler          = ata_std_error_handler,
  83};
  84
  85const struct ata_port_operations sata_port_ops = {
  86        .inherits               = &ata_base_port_ops,
  87
  88        .qc_defer               = ata_std_qc_defer,
  89        .hardreset              = sata_std_hardreset,
  90};
  91
  92static unsigned int ata_dev_init_params(struct ata_device *dev,
  93                                        u16 heads, u16 sectors);
  94static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  95static void ata_dev_xfermask(struct ata_device *dev);
  96static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  97
  98atomic_t ata_print_id = ATOMIC_INIT(0);
  99
 100struct ata_force_param {
 101        const char      *name;
 102        unsigned int    cbl;
 103        int             spd_limit;
 104        unsigned long   xfer_mask;
 105        unsigned int    horkage_on;
 106        unsigned int    horkage_off;
 107        unsigned int    lflags;
 108};
 109
 110struct ata_force_ent {
 111        int                     port;
 112        int                     device;
 113        struct ata_force_param  param;
 114};
 115
 116static struct ata_force_ent *ata_force_tbl;
 117static int ata_force_tbl_size;
 118
 119static char ata_force_param_buf[PAGE_SIZE] __initdata;
 120/* param_buf is thrown away after initialization, disallow read */
 121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 123
 124static int atapi_enabled = 1;
 125module_param(atapi_enabled, int, 0444);
 126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 127
 128static int atapi_dmadir = 0;
 129module_param(atapi_dmadir, int, 0444);
 130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 131
 132int atapi_passthru16 = 1;
 133module_param(atapi_passthru16, int, 0444);
 134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 135
 136int libata_fua = 0;
 137module_param_named(fua, libata_fua, int, 0444);
 138MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 139
 140static int ata_ignore_hpa;
 141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 143
 144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 145module_param_named(dma, libata_dma_mask, int, 0444);
 146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 147
 148static int ata_probe_timeout;
 149module_param(ata_probe_timeout, int, 0444);
 150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 151
 152int libata_noacpi = 0;
 153module_param_named(noacpi, libata_noacpi, int, 0444);
 154MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 155
 156int libata_allow_tpm = 0;
 157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 159
 160static int atapi_an;
 161module_param(atapi_an, int, 0444);
 162MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 163
 164MODULE_AUTHOR("Jeff Garzik");
 165MODULE_DESCRIPTION("Library module for ATA devices");
 166MODULE_LICENSE("GPL");
 167MODULE_VERSION(DRV_VERSION);
 168
 169
 170static bool ata_sstatus_online(u32 sstatus)
 171{
 172        return (sstatus & 0xf) == 0x3;
 173}
 174
 175/**
 176 *      ata_link_next - link iteration helper
 177 *      @link: the previous link, NULL to start
 178 *      @ap: ATA port containing links to iterate
 179 *      @mode: iteration mode, one of ATA_LITER_*
 180 *
 181 *      LOCKING:
 182 *      Host lock or EH context.
 183 *
 184 *      RETURNS:
 185 *      Pointer to the next link.
 186 */
 187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 188                               enum ata_link_iter_mode mode)
 189{
 190        BUG_ON(mode != ATA_LITER_EDGE &&
 191               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 192
 193        /* NULL link indicates start of iteration */
 194        if (!link)
 195                switch (mode) {
 196                case ATA_LITER_EDGE:
 197                case ATA_LITER_PMP_FIRST:
 198                        if (sata_pmp_attached(ap))
 199                                return ap->pmp_link;
 200                        /* fall through */
 201                case ATA_LITER_HOST_FIRST:
 202                        return &ap->link;
 203                }
 204
 205        /* we just iterated over the host link, what's next? */
 206        if (link == &ap->link)
 207                switch (mode) {
 208                case ATA_LITER_HOST_FIRST:
 209                        if (sata_pmp_attached(ap))
 210                                return ap->pmp_link;
 211                        /* fall through */
 212                case ATA_LITER_PMP_FIRST:
 213                        if (unlikely(ap->slave_link))
 214                                return ap->slave_link;
 215                        /* fall through */
 216                case ATA_LITER_EDGE:
 217                        return NULL;
 218                }
 219
 220        /* slave_link excludes PMP */
 221        if (unlikely(link == ap->slave_link))
 222                return NULL;
 223
 224        /* we were over a PMP link */
 225        if (++link < ap->pmp_link + ap->nr_pmp_links)
 226                return link;
 227
 228        if (mode == ATA_LITER_PMP_FIRST)
 229                return &ap->link;
 230
 231        return NULL;
 232}
 233
 234/**
 235 *      ata_dev_next - device iteration helper
 236 *      @dev: the previous device, NULL to start
 237 *      @link: ATA link containing devices to iterate
 238 *      @mode: iteration mode, one of ATA_DITER_*
 239 *
 240 *      LOCKING:
 241 *      Host lock or EH context.
 242 *
 243 *      RETURNS:
 244 *      Pointer to the next device.
 245 */
 246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 247                                enum ata_dev_iter_mode mode)
 248{
 249        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 250               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 251
 252        /* NULL dev indicates start of iteration */
 253        if (!dev)
 254                switch (mode) {
 255                case ATA_DITER_ENABLED:
 256                case ATA_DITER_ALL:
 257                        dev = link->device;
 258                        goto check;
 259                case ATA_DITER_ENABLED_REVERSE:
 260                case ATA_DITER_ALL_REVERSE:
 261                        dev = link->device + ata_link_max_devices(link) - 1;
 262                        goto check;
 263                }
 264
 265 next:
 266        /* move to the next one */
 267        switch (mode) {
 268        case ATA_DITER_ENABLED:
 269        case ATA_DITER_ALL:
 270                if (++dev < link->device + ata_link_max_devices(link))
 271                        goto check;
 272                return NULL;
 273        case ATA_DITER_ENABLED_REVERSE:
 274        case ATA_DITER_ALL_REVERSE:
 275                if (--dev >= link->device)
 276                        goto check;
 277                return NULL;
 278        }
 279
 280 check:
 281        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 282            !ata_dev_enabled(dev))
 283                goto next;
 284        return dev;
 285}
 286
 287/**
 288 *      ata_dev_phys_link - find physical link for a device
 289 *      @dev: ATA device to look up physical link for
 290 *
 291 *      Look up physical link which @dev is attached to.  Note that
 292 *      this is different from @dev->link only when @dev is on slave
 293 *      link.  For all other cases, it's the same as @dev->link.
 294 *
 295 *      LOCKING:
 296 *      Don't care.
 297 *
 298 *      RETURNS:
 299 *      Pointer to the found physical link.
 300 */
 301struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 302{
 303        struct ata_port *ap = dev->link->ap;
 304
 305        if (!ap->slave_link)
 306                return dev->link;
 307        if (!dev->devno)
 308                return &ap->link;
 309        return ap->slave_link;
 310}
 311
 312/**
 313 *      ata_force_cbl - force cable type according to libata.force
 314 *      @ap: ATA port of interest
 315 *
 316 *      Force cable type according to libata.force and whine about it.
 317 *      The last entry which has matching port number is used, so it
 318 *      can be specified as part of device force parameters.  For
 319 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 320 *      same effect.
 321 *
 322 *      LOCKING:
 323 *      EH context.
 324 */
 325void ata_force_cbl(struct ata_port *ap)
 326{
 327        int i;
 328
 329        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 330                const struct ata_force_ent *fe = &ata_force_tbl[i];
 331
 332                if (fe->port != -1 && fe->port != ap->print_id)
 333                        continue;
 334
 335                if (fe->param.cbl == ATA_CBL_NONE)
 336                        continue;
 337
 338                ap->cbl = fe->param.cbl;
 339                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 340                return;
 341        }
 342}
 343
 344/**
 345 *      ata_force_link_limits - force link limits according to libata.force
 346 *      @link: ATA link of interest
 347 *
 348 *      Force link flags and SATA spd limit according to libata.force
 349 *      and whine about it.  When only the port part is specified
 350 *      (e.g. 1:), the limit applies to all links connected to both
 351 *      the host link and all fan-out ports connected via PMP.  If the
 352 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 353 *      first fan-out link not the host link.  Device number 15 always
 354 *      points to the host link whether PMP is attached or not.  If the
 355 *      controller has slave link, device number 16 points to it.
 356 *
 357 *      LOCKING:
 358 *      EH context.
 359 */
 360static void ata_force_link_limits(struct ata_link *link)
 361{
 362        bool did_spd = false;
 363        int linkno = link->pmp;
 364        int i;
 365
 366        if (ata_is_host_link(link))
 367                linkno += 15;
 368
 369        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 370                const struct ata_force_ent *fe = &ata_force_tbl[i];
 371
 372                if (fe->port != -1 && fe->port != link->ap->print_id)
 373                        continue;
 374
 375                if (fe->device != -1 && fe->device != linkno)
 376                        continue;
 377
 378                /* only honor the first spd limit */
 379                if (!did_spd && fe->param.spd_limit) {
 380                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 381                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 382                                        fe->param.name);
 383                        did_spd = true;
 384                }
 385
 386                /* let lflags stack */
 387                if (fe->param.lflags) {
 388                        link->flags |= fe->param.lflags;
 389                        ata_link_notice(link,
 390                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 391                                        fe->param.lflags, link->flags);
 392                }
 393        }
 394}
 395
 396/**
 397 *      ata_force_xfermask - force xfermask according to libata.force
 398 *      @dev: ATA device of interest
 399 *
 400 *      Force xfer_mask according to libata.force and whine about it.
 401 *      For consistency with link selection, device number 15 selects
 402 *      the first device connected to the host link.
 403 *
 404 *      LOCKING:
 405 *      EH context.
 406 */
 407static void ata_force_xfermask(struct ata_device *dev)
 408{
 409        int devno = dev->link->pmp + dev->devno;
 410        int alt_devno = devno;
 411        int i;
 412
 413        /* allow n.15/16 for devices attached to host port */
 414        if (ata_is_host_link(dev->link))
 415                alt_devno += 15;
 416
 417        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 418                const struct ata_force_ent *fe = &ata_force_tbl[i];
 419                unsigned long pio_mask, mwdma_mask, udma_mask;
 420
 421                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 422                        continue;
 423
 424                if (fe->device != -1 && fe->device != devno &&
 425                    fe->device != alt_devno)
 426                        continue;
 427
 428                if (!fe->param.xfer_mask)
 429                        continue;
 430
 431                ata_unpack_xfermask(fe->param.xfer_mask,
 432                                    &pio_mask, &mwdma_mask, &udma_mask);
 433                if (udma_mask)
 434                        dev->udma_mask = udma_mask;
 435                else if (mwdma_mask) {
 436                        dev->udma_mask = 0;
 437                        dev->mwdma_mask = mwdma_mask;
 438                } else {
 439                        dev->udma_mask = 0;
 440                        dev->mwdma_mask = 0;
 441                        dev->pio_mask = pio_mask;
 442                }
 443
 444                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 445                               fe->param.name);
 446                return;
 447        }
 448}
 449
 450/**
 451 *      ata_force_horkage - force horkage according to libata.force
 452 *      @dev: ATA device of interest
 453 *
 454 *      Force horkage according to libata.force and whine about it.
 455 *      For consistency with link selection, device number 15 selects
 456 *      the first device connected to the host link.
 457 *
 458 *      LOCKING:
 459 *      EH context.
 460 */
 461static void ata_force_horkage(struct ata_device *dev)
 462{
 463        int devno = dev->link->pmp + dev->devno;
 464        int alt_devno = devno;
 465        int i;
 466
 467        /* allow n.15/16 for devices attached to host port */
 468        if (ata_is_host_link(dev->link))
 469                alt_devno += 15;
 470
 471        for (i = 0; i < ata_force_tbl_size; i++) {
 472                const struct ata_force_ent *fe = &ata_force_tbl[i];
 473
 474                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 475                        continue;
 476
 477                if (fe->device != -1 && fe->device != devno &&
 478                    fe->device != alt_devno)
 479                        continue;
 480
 481                if (!(~dev->horkage & fe->param.horkage_on) &&
 482                    !(dev->horkage & fe->param.horkage_off))
 483                        continue;
 484
 485                dev->horkage |= fe->param.horkage_on;
 486                dev->horkage &= ~fe->param.horkage_off;
 487
 488                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 489                               fe->param.name);
 490        }
 491}
 492
 493/**
 494 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 495 *      @opcode: SCSI opcode
 496 *
 497 *      Determine ATAPI command type from @opcode.
 498 *
 499 *      LOCKING:
 500 *      None.
 501 *
 502 *      RETURNS:
 503 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 504 */
 505int atapi_cmd_type(u8 opcode)
 506{
 507        switch (opcode) {
 508        case GPCMD_READ_10:
 509        case GPCMD_READ_12:
 510                return ATAPI_READ;
 511
 512        case GPCMD_WRITE_10:
 513        case GPCMD_WRITE_12:
 514        case GPCMD_WRITE_AND_VERIFY_10:
 515                return ATAPI_WRITE;
 516
 517        case GPCMD_READ_CD:
 518        case GPCMD_READ_CD_MSF:
 519                return ATAPI_READ_CD;
 520
 521        case ATA_16:
 522        case ATA_12:
 523                if (atapi_passthru16)
 524                        return ATAPI_PASS_THRU;
 525                /* fall thru */
 526        default:
 527                return ATAPI_MISC;
 528        }
 529}
 530
 531/**
 532 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 533 *      @tf: Taskfile to convert
 534 *      @pmp: Port multiplier port
 535 *      @is_cmd: This FIS is for command
 536 *      @fis: Buffer into which data will output
 537 *
 538 *      Converts a standard ATA taskfile to a Serial ATA
 539 *      FIS structure (Register - Host to Device).
 540 *
 541 *      LOCKING:
 542 *      Inherited from caller.
 543 */
 544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 545{
 546        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 547        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 548        if (is_cmd)
 549                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 550
 551        fis[2] = tf->command;
 552        fis[3] = tf->feature;
 553
 554        fis[4] = tf->lbal;
 555        fis[5] = tf->lbam;
 556        fis[6] = tf->lbah;
 557        fis[7] = tf->device;
 558
 559        fis[8] = tf->hob_lbal;
 560        fis[9] = tf->hob_lbam;
 561        fis[10] = tf->hob_lbah;
 562        fis[11] = tf->hob_feature;
 563
 564        fis[12] = tf->nsect;
 565        fis[13] = tf->hob_nsect;
 566        fis[14] = 0;
 567        fis[15] = tf->ctl;
 568
 569        fis[16] = 0;
 570        fis[17] = 0;
 571        fis[18] = 0;
 572        fis[19] = 0;
 573}
 574
 575/**
 576 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 577 *      @fis: Buffer from which data will be input
 578 *      @tf: Taskfile to output
 579 *
 580 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 581 *
 582 *      LOCKING:
 583 *      Inherited from caller.
 584 */
 585
 586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 587{
 588        tf->command     = fis[2];       /* status */
 589        tf->feature     = fis[3];       /* error */
 590
 591        tf->lbal        = fis[4];
 592        tf->lbam        = fis[5];
 593        tf->lbah        = fis[6];
 594        tf->device      = fis[7];
 595
 596        tf->hob_lbal    = fis[8];
 597        tf->hob_lbam    = fis[9];
 598        tf->hob_lbah    = fis[10];
 599
 600        tf->nsect       = fis[12];
 601        tf->hob_nsect   = fis[13];
 602}
 603
 604static const u8 ata_rw_cmds[] = {
 605        /* pio multi */
 606        ATA_CMD_READ_MULTI,
 607        ATA_CMD_WRITE_MULTI,
 608        ATA_CMD_READ_MULTI_EXT,
 609        ATA_CMD_WRITE_MULTI_EXT,
 610        0,
 611        0,
 612        0,
 613        ATA_CMD_WRITE_MULTI_FUA_EXT,
 614        /* pio */
 615        ATA_CMD_PIO_READ,
 616        ATA_CMD_PIO_WRITE,
 617        ATA_CMD_PIO_READ_EXT,
 618        ATA_CMD_PIO_WRITE_EXT,
 619        0,
 620        0,
 621        0,
 622        0,
 623        /* dma */
 624        ATA_CMD_READ,
 625        ATA_CMD_WRITE,
 626        ATA_CMD_READ_EXT,
 627        ATA_CMD_WRITE_EXT,
 628        0,
 629        0,
 630        0,
 631        ATA_CMD_WRITE_FUA_EXT
 632};
 633
 634/**
 635 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 636 *      @tf: command to examine and configure
 637 *      @dev: device tf belongs to
 638 *
 639 *      Examine the device configuration and tf->flags to calculate
 640 *      the proper read/write commands and protocol to use.
 641 *
 642 *      LOCKING:
 643 *      caller.
 644 */
 645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 646{
 647        u8 cmd;
 648
 649        int index, fua, lba48, write;
 650
 651        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 652        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 653        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 654
 655        if (dev->flags & ATA_DFLAG_PIO) {
 656                tf->protocol = ATA_PROT_PIO;
 657                index = dev->multi_count ? 0 : 8;
 658        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 659                /* Unable to use DMA due to host limitation */
 660                tf->protocol = ATA_PROT_PIO;
 661                index = dev->multi_count ? 0 : 8;
 662        } else {
 663                tf->protocol = ATA_PROT_DMA;
 664                index = 16;
 665        }
 666
 667        cmd = ata_rw_cmds[index + fua + lba48 + write];
 668        if (cmd) {
 669                tf->command = cmd;
 670                return 0;
 671        }
 672        return -1;
 673}
 674
 675/**
 676 *      ata_tf_read_block - Read block address from ATA taskfile
 677 *      @tf: ATA taskfile of interest
 678 *      @dev: ATA device @tf belongs to
 679 *
 680 *      LOCKING:
 681 *      None.
 682 *
 683 *      Read block address from @tf.  This function can handle all
 684 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 685 *      flags select the address format to use.
 686 *
 687 *      RETURNS:
 688 *      Block address read from @tf.
 689 */
 690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 691{
 692        u64 block = 0;
 693
 694        if (tf->flags & ATA_TFLAG_LBA) {
 695                if (tf->flags & ATA_TFLAG_LBA48) {
 696                        block |= (u64)tf->hob_lbah << 40;
 697                        block |= (u64)tf->hob_lbam << 32;
 698                        block |= (u64)tf->hob_lbal << 24;
 699                } else
 700                        block |= (tf->device & 0xf) << 24;
 701
 702                block |= tf->lbah << 16;
 703                block |= tf->lbam << 8;
 704                block |= tf->lbal;
 705        } else {
 706                u32 cyl, head, sect;
 707
 708                cyl = tf->lbam | (tf->lbah << 8);
 709                head = tf->device & 0xf;
 710                sect = tf->lbal;
 711
 712                if (!sect) {
 713                        ata_dev_warn(dev,
 714                                     "device reported invalid CHS sector 0\n");
 715                        sect = 1; /* oh well */
 716                }
 717
 718                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 719        }
 720
 721        return block;
 722}
 723
 724/**
 725 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 726 *      @tf: Target ATA taskfile
 727 *      @dev: ATA device @tf belongs to
 728 *      @block: Block address
 729 *      @n_block: Number of blocks
 730 *      @tf_flags: RW/FUA etc...
 731 *      @tag: tag
 732 *
 733 *      LOCKING:
 734 *      None.
 735 *
 736 *      Build ATA taskfile @tf for read/write request described by
 737 *      @block, @n_block, @tf_flags and @tag on @dev.
 738 *
 739 *      RETURNS:
 740 *
 741 *      0 on success, -ERANGE if the request is too large for @dev,
 742 *      -EINVAL if the request is invalid.
 743 */
 744int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 745                    u64 block, u32 n_block, unsigned int tf_flags,
 746                    unsigned int tag)
 747{
 748        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 749        tf->flags |= tf_flags;
 750
 751        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 752                /* yay, NCQ */
 753                if (!lba_48_ok(block, n_block))
 754                        return -ERANGE;
 755
 756                tf->protocol = ATA_PROT_NCQ;
 757                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 758
 759                if (tf->flags & ATA_TFLAG_WRITE)
 760                        tf->command = ATA_CMD_FPDMA_WRITE;
 761                else
 762                        tf->command = ATA_CMD_FPDMA_READ;
 763
 764                tf->nsect = tag << 3;
 765                tf->hob_feature = (n_block >> 8) & 0xff;
 766                tf->feature = n_block & 0xff;
 767
 768                tf->hob_lbah = (block >> 40) & 0xff;
 769                tf->hob_lbam = (block >> 32) & 0xff;
 770                tf->hob_lbal = (block >> 24) & 0xff;
 771                tf->lbah = (block >> 16) & 0xff;
 772                tf->lbam = (block >> 8) & 0xff;
 773                tf->lbal = block & 0xff;
 774
 775                tf->device = 1 << 6;
 776                if (tf->flags & ATA_TFLAG_FUA)
 777                        tf->device |= 1 << 7;
 778        } else if (dev->flags & ATA_DFLAG_LBA) {
 779                tf->flags |= ATA_TFLAG_LBA;
 780
 781                if (lba_28_ok(block, n_block)) {
 782                        /* use LBA28 */
 783                        tf->device |= (block >> 24) & 0xf;
 784                } else if (lba_48_ok(block, n_block)) {
 785                        if (!(dev->flags & ATA_DFLAG_LBA48))
 786                                return -ERANGE;
 787
 788                        /* use LBA48 */
 789                        tf->flags |= ATA_TFLAG_LBA48;
 790
 791                        tf->hob_nsect = (n_block >> 8) & 0xff;
 792
 793                        tf->hob_lbah = (block >> 40) & 0xff;
 794                        tf->hob_lbam = (block >> 32) & 0xff;
 795                        tf->hob_lbal = (block >> 24) & 0xff;
 796                } else
 797                        /* request too large even for LBA48 */
 798                        return -ERANGE;
 799
 800                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 801                        return -EINVAL;
 802
 803                tf->nsect = n_block & 0xff;
 804
 805                tf->lbah = (block >> 16) & 0xff;
 806                tf->lbam = (block >> 8) & 0xff;
 807                tf->lbal = block & 0xff;
 808
 809                tf->device |= ATA_LBA;
 810        } else {
 811                /* CHS */
 812                u32 sect, head, cyl, track;
 813
 814                /* The request -may- be too large for CHS addressing. */
 815                if (!lba_28_ok(block, n_block))
 816                        return -ERANGE;
 817
 818                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 819                        return -EINVAL;
 820
 821                /* Convert LBA to CHS */
 822                track = (u32)block / dev->sectors;
 823                cyl   = track / dev->heads;
 824                head  = track % dev->heads;
 825                sect  = (u32)block % dev->sectors + 1;
 826
 827                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 828                        (u32)block, track, cyl, head, sect);
 829
 830                /* Check whether the converted CHS can fit.
 831                   Cylinder: 0-65535
 832                   Head: 0-15
 833                   Sector: 1-255*/
 834                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 835                        return -ERANGE;
 836
 837                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 838                tf->lbal = sect;
 839                tf->lbam = cyl;
 840                tf->lbah = cyl >> 8;
 841                tf->device |= head;
 842        }
 843
 844        return 0;
 845}
 846
 847/**
 848 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 849 *      @pio_mask: pio_mask
 850 *      @mwdma_mask: mwdma_mask
 851 *      @udma_mask: udma_mask
 852 *
 853 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 854 *      unsigned int xfer_mask.
 855 *
 856 *      LOCKING:
 857 *      None.
 858 *
 859 *      RETURNS:
 860 *      Packed xfer_mask.
 861 */
 862unsigned long ata_pack_xfermask(unsigned long pio_mask,
 863                                unsigned long mwdma_mask,
 864                                unsigned long udma_mask)
 865{
 866        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 867                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 868                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 869}
 870
 871/**
 872 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 873 *      @xfer_mask: xfer_mask to unpack
 874 *      @pio_mask: resulting pio_mask
 875 *      @mwdma_mask: resulting mwdma_mask
 876 *      @udma_mask: resulting udma_mask
 877 *
 878 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 879 *      Any NULL distination masks will be ignored.
 880 */
 881void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 882                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 883{
 884        if (pio_mask)
 885                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 886        if (mwdma_mask)
 887                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 888        if (udma_mask)
 889                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 890}
 891
 892static const struct ata_xfer_ent {
 893        int shift, bits;
 894        u8 base;
 895} ata_xfer_tbl[] = {
 896        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 897        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 898        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 899        { -1, },
 900};
 901
 902/**
 903 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 904 *      @xfer_mask: xfer_mask of interest
 905 *
 906 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 907 *      bit of @xfer_mask is considered.
 908 *
 909 *      LOCKING:
 910 *      None.
 911 *
 912 *      RETURNS:
 913 *      Matching XFER_* value, 0xff if no match found.
 914 */
 915u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 916{
 917        int highbit = fls(xfer_mask) - 1;
 918        const struct ata_xfer_ent *ent;
 919
 920        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 921                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 922                        return ent->base + highbit - ent->shift;
 923        return 0xff;
 924}
 925
 926/**
 927 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 928 *      @xfer_mode: XFER_* of interest
 929 *
 930 *      Return matching xfer_mask for @xfer_mode.
 931 *
 932 *      LOCKING:
 933 *      None.
 934 *
 935 *      RETURNS:
 936 *      Matching xfer_mask, 0 if no match found.
 937 */
 938unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 939{
 940        const struct ata_xfer_ent *ent;
 941
 942        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 943                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 944                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 945                                & ~((1 << ent->shift) - 1);
 946        return 0;
 947}
 948
 949/**
 950 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 951 *      @xfer_mode: XFER_* of interest
 952 *
 953 *      Return matching xfer_shift for @xfer_mode.
 954 *
 955 *      LOCKING:
 956 *      None.
 957 *
 958 *      RETURNS:
 959 *      Matching xfer_shift, -1 if no match found.
 960 */
 961int ata_xfer_mode2shift(unsigned long xfer_mode)
 962{
 963        const struct ata_xfer_ent *ent;
 964
 965        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 966                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 967                        return ent->shift;
 968        return -1;
 969}
 970
 971/**
 972 *      ata_mode_string - convert xfer_mask to string
 973 *      @xfer_mask: mask of bits supported; only highest bit counts.
 974 *
 975 *      Determine string which represents the highest speed
 976 *      (highest bit in @modemask).
 977 *
 978 *      LOCKING:
 979 *      None.
 980 *
 981 *      RETURNS:
 982 *      Constant C string representing highest speed listed in
 983 *      @mode_mask, or the constant C string "<n/a>".
 984 */
 985const char *ata_mode_string(unsigned long xfer_mask)
 986{
 987        static const char * const xfer_mode_str[] = {
 988                "PIO0",
 989                "PIO1",
 990                "PIO2",
 991                "PIO3",
 992                "PIO4",
 993                "PIO5",
 994                "PIO6",
 995                "MWDMA0",
 996                "MWDMA1",
 997                "MWDMA2",
 998                "MWDMA3",
 999                "MWDMA4",
1000                "UDMA/16",
1001                "UDMA/25",
1002                "UDMA/33",
1003                "UDMA/44",
1004                "UDMA/66",
1005                "UDMA/100",
1006                "UDMA/133",
1007                "UDMA7",
1008        };
1009        int highbit;
1010
1011        highbit = fls(xfer_mask) - 1;
1012        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013                return xfer_mode_str[highbit];
1014        return "<n/a>";
1015}
1016
1017const char *sata_spd_string(unsigned int spd)
1018{
1019        static const char * const spd_str[] = {
1020                "1.5 Gbps",
1021                "3.0 Gbps",
1022                "6.0 Gbps",
1023        };
1024
1025        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026                return "<unknown>";
1027        return spd_str[spd - 1];
1028}
1029
1030/**
1031 *      ata_dev_classify - determine device type based on ATA-spec signature
1032 *      @tf: ATA taskfile register set for device to be identified
1033 *
1034 *      Determine from taskfile register contents whether a device is
1035 *      ATA or ATAPI, as per "Signature and persistence" section
1036 *      of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 *      LOCKING:
1039 *      None.
1040 *
1041 *      RETURNS:
1042 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 *      %ATA_DEV_UNKNOWN the event of failure.
1044 */
1045unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046{
1047        /* Apple's open source Darwin code hints that some devices only
1048         * put a proper signature into the LBA mid/high registers,
1049         * So, we only check those.  It's sufficient for uniqueness.
1050         *
1051         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052         * signatures for ATA and ATAPI devices attached on SerialATA,
1053         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1054         * spec has never mentioned about using different signatures
1055         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1056         * Multiplier specification began to use 0x69/0x96 to identify
1057         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059         * 0x69/0x96 shortly and described them as reserved for
1060         * SerialATA.
1061         *
1062         * We follow the current spec and consider that 0x69/0x96
1063         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065         * SEMB signature.  This is worked around in
1066         * ata_dev_read_id().
1067         */
1068        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069                DPRINTK("found ATA device by sig\n");
1070                return ATA_DEV_ATA;
1071        }
1072
1073        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074                DPRINTK("found ATAPI device by sig\n");
1075                return ATA_DEV_ATAPI;
1076        }
1077
1078        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079                DPRINTK("found PMP device by sig\n");
1080                return ATA_DEV_PMP;
1081        }
1082
1083        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085                return ATA_DEV_SEMB;
1086        }
1087
1088        DPRINTK("unknown device\n");
1089        return ATA_DEV_UNKNOWN;
1090}
1091
1092/**
1093 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1094 *      @id: IDENTIFY DEVICE results we will examine
1095 *      @s: string into which data is output
1096 *      @ofs: offset into identify device page
1097 *      @len: length of string to return. must be an even number.
1098 *
1099 *      The strings in the IDENTIFY DEVICE page are broken up into
1100 *      16-bit chunks.  Run through the string, and output each
1101 *      8-bit chunk linearly, regardless of platform.
1102 *
1103 *      LOCKING:
1104 *      caller.
1105 */
1106
1107void ata_id_string(const u16 *id, unsigned char *s,
1108                   unsigned int ofs, unsigned int len)
1109{
1110        unsigned int c;
1111
1112        BUG_ON(len & 1);
1113
1114        while (len > 0) {
1115                c = id[ofs] >> 8;
1116                *s = c;
1117                s++;
1118
1119                c = id[ofs] & 0xff;
1120                *s = c;
1121                s++;
1122
1123                ofs++;
1124                len -= 2;
1125        }
1126}
1127
1128/**
1129 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 *      @id: IDENTIFY DEVICE results we will examine
1131 *      @s: string into which data is output
1132 *      @ofs: offset into identify device page
1133 *      @len: length of string to return. must be an odd number.
1134 *
1135 *      This function is identical to ata_id_string except that it
1136 *      trims trailing spaces and terminates the resulting string with
1137 *      null.  @len must be actual maximum length (even number) + 1.
1138 *
1139 *      LOCKING:
1140 *      caller.
1141 */
1142void ata_id_c_string(const u16 *id, unsigned char *s,
1143                     unsigned int ofs, unsigned int len)
1144{
1145        unsigned char *p;
1146
1147        ata_id_string(id, s, ofs, len - 1);
1148
1149        p = s + strnlen(s, len - 1);
1150        while (p > s && p[-1] == ' ')
1151                p--;
1152        *p = '\0';
1153}
1154
1155static u64 ata_id_n_sectors(const u16 *id)
1156{
1157        if (ata_id_has_lba(id)) {
1158                if (ata_id_has_lba48(id))
1159                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160                else
1161                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162        } else {
1163                if (ata_id_current_chs_valid(id))
1164                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165                               id[ATA_ID_CUR_SECTORS];
1166                else
1167                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168                               id[ATA_ID_SECTORS];
1169        }
1170}
1171
1172u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173{
1174        u64 sectors = 0;
1175
1176        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179        sectors |= (tf->lbah & 0xff) << 16;
1180        sectors |= (tf->lbam & 0xff) << 8;
1181        sectors |= (tf->lbal & 0xff);
1182
1183        return sectors;
1184}
1185
1186u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187{
1188        u64 sectors = 0;
1189
1190        sectors |= (tf->device & 0x0f) << 24;
1191        sectors |= (tf->lbah & 0xff) << 16;
1192        sectors |= (tf->lbam & 0xff) << 8;
1193        sectors |= (tf->lbal & 0xff);
1194
1195        return sectors;
1196}
1197
1198/**
1199 *      ata_read_native_max_address - Read native max address
1200 *      @dev: target device
1201 *      @max_sectors: out parameter for the result native max address
1202 *
1203 *      Perform an LBA48 or LBA28 native size query upon the device in
1204 *      question.
1205 *
1206 *      RETURNS:
1207 *      0 on success, -EACCES if command is aborted by the drive.
1208 *      -EIO on other errors.
1209 */
1210static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211{
1212        unsigned int err_mask;
1213        struct ata_taskfile tf;
1214        int lba48 = ata_id_has_lba48(dev->id);
1215
1216        ata_tf_init(dev, &tf);
1217
1218        /* always clear all address registers */
1219        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221        if (lba48) {
1222                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223                tf.flags |= ATA_TFLAG_LBA48;
1224        } else
1225                tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227        tf.protocol |= ATA_PROT_NODATA;
1228        tf.device |= ATA_LBA;
1229
1230        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231        if (err_mask) {
1232                ata_dev_warn(dev,
1233                             "failed to read native max address (err_mask=0x%x)\n",
1234                             err_mask);
1235                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236                        return -EACCES;
1237                return -EIO;
1238        }
1239
1240        if (lba48)
1241                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242        else
1243                *max_sectors = ata_tf_to_lba(&tf) + 1;
1244        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245                (*max_sectors)--;
1246        return 0;
1247}
1248
1249/**
1250 *      ata_set_max_sectors - Set max sectors
1251 *      @dev: target device
1252 *      @new_sectors: new max sectors value to set for the device
1253 *
1254 *      Set max sectors of @dev to @new_sectors.
1255 *
1256 *      RETURNS:
1257 *      0 on success, -EACCES if command is aborted or denied (due to
1258 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1259 *      errors.
1260 */
1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262{
1263        unsigned int err_mask;
1264        struct ata_taskfile tf;
1265        int lba48 = ata_id_has_lba48(dev->id);
1266
1267        new_sectors--;
1268
1269        ata_tf_init(dev, &tf);
1270
1271        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273        if (lba48) {
1274                tf.command = ATA_CMD_SET_MAX_EXT;
1275                tf.flags |= ATA_TFLAG_LBA48;
1276
1277                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280        } else {
1281                tf.command = ATA_CMD_SET_MAX;
1282
1283                tf.device |= (new_sectors >> 24) & 0xf;
1284        }
1285
1286        tf.protocol |= ATA_PROT_NODATA;
1287        tf.device |= ATA_LBA;
1288
1289        tf.lbal = (new_sectors >> 0) & 0xff;
1290        tf.lbam = (new_sectors >> 8) & 0xff;
1291        tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294        if (err_mask) {
1295                ata_dev_warn(dev,
1296                             "failed to set max address (err_mask=0x%x)\n",
1297                             err_mask);
1298                if (err_mask == AC_ERR_DEV &&
1299                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300                        return -EACCES;
1301                return -EIO;
1302        }
1303
1304        return 0;
1305}
1306
1307/**
1308 *      ata_hpa_resize          -       Resize a device with an HPA set
1309 *      @dev: Device to resize
1310 *
1311 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 *      it if required to the full size of the media. The caller must check
1313 *      the drive has the HPA feature set enabled.
1314 *
1315 *      RETURNS:
1316 *      0 on success, -errno on failure.
1317 */
1318static int ata_hpa_resize(struct ata_device *dev)
1319{
1320        struct ata_eh_context *ehc = &dev->link->eh_context;
1321        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323        u64 sectors = ata_id_n_sectors(dev->id);
1324        u64 native_sectors;
1325        int rc;
1326
1327        /* do we need to do it? */
1328        if (dev->class != ATA_DEV_ATA ||
1329            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331                return 0;
1332
1333        /* read native max address */
1334        rc = ata_read_native_max_address(dev, &native_sectors);
1335        if (rc) {
1336                /* If device aborted the command or HPA isn't going to
1337                 * be unlocked, skip HPA resizing.
1338                 */
1339                if (rc == -EACCES || !unlock_hpa) {
1340                        ata_dev_warn(dev,
1341                                     "HPA support seems broken, skipping HPA handling\n");
1342                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344                        /* we can continue if device aborted the command */
1345                        if (rc == -EACCES)
1346                                rc = 0;
1347                }
1348
1349                return rc;
1350        }
1351        dev->n_native_sectors = native_sectors;
1352
1353        /* nothing to do? */
1354        if (native_sectors <= sectors || !unlock_hpa) {
1355                if (!print_info || native_sectors == sectors)
1356                        return 0;
1357
1358                if (native_sectors > sectors)
1359                        ata_dev_info(dev,
1360                                "HPA detected: current %llu, native %llu\n",
1361                                (unsigned long long)sectors,
1362                                (unsigned long long)native_sectors);
1363                else if (native_sectors < sectors)
1364                        ata_dev_warn(dev,
1365                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1366                                (unsigned long long)native_sectors,
1367                                (unsigned long long)sectors);
1368                return 0;
1369        }
1370
1371        /* let's unlock HPA */
1372        rc = ata_set_max_sectors(dev, native_sectors);
1373        if (rc == -EACCES) {
1374                /* if device aborted the command, skip HPA resizing */
1375                ata_dev_warn(dev,
1376                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377                             (unsigned long long)sectors,
1378                             (unsigned long long)native_sectors);
1379                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380                return 0;
1381        } else if (rc)
1382                return rc;
1383
1384        /* re-read IDENTIFY data */
1385        rc = ata_dev_reread_id(dev, 0);
1386        if (rc) {
1387                ata_dev_err(dev,
1388                            "failed to re-read IDENTIFY data after HPA resizing\n");
1389                return rc;
1390        }
1391
1392        if (print_info) {
1393                u64 new_sectors = ata_id_n_sectors(dev->id);
1394                ata_dev_info(dev,
1395                        "HPA unlocked: %llu -> %llu, native %llu\n",
1396                        (unsigned long long)sectors,
1397                        (unsigned long long)new_sectors,
1398                        (unsigned long long)native_sectors);
1399        }
1400
1401        return 0;
1402}
1403
1404/**
1405 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1406 *      @id: IDENTIFY DEVICE page to dump
1407 *
1408 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 *      page.
1410 *
1411 *      LOCKING:
1412 *      caller.
1413 */
1414
1415static inline void ata_dump_id(const u16 *id)
1416{
1417        DPRINTK("49==0x%04x  "
1418                "53==0x%04x  "
1419                "63==0x%04x  "
1420                "64==0x%04x  "
1421                "75==0x%04x  \n",
1422                id[49],
1423                id[53],
1424                id[63],
1425                id[64],
1426                id[75]);
1427        DPRINTK("80==0x%04x  "
1428                "81==0x%04x  "
1429                "82==0x%04x  "
1430                "83==0x%04x  "
1431                "84==0x%04x  \n",
1432                id[80],
1433                id[81],
1434                id[82],
1435                id[83],
1436                id[84]);
1437        DPRINTK("88==0x%04x  "
1438                "93==0x%04x\n",
1439                id[88],
1440                id[93]);
1441}
1442
1443/**
1444 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 *      @id: IDENTIFY data to compute xfer mask from
1446 *
1447 *      Compute the xfermask for this device. This is not as trivial
1448 *      as it seems if we must consider early devices correctly.
1449 *
1450 *      FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 *      LOCKING:
1453 *      None.
1454 *
1455 *      RETURNS:
1456 *      Computed xfermask
1457 */
1458unsigned long ata_id_xfermask(const u16 *id)
1459{
1460        unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462        /* Usual case. Word 53 indicates word 64 is valid */
1463        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465                pio_mask <<= 3;
1466                pio_mask |= 0x7;
1467        } else {
1468                /* If word 64 isn't valid then Word 51 high byte holds
1469                 * the PIO timing number for the maximum. Turn it into
1470                 * a mask.
1471                 */
1472                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473                if (mode < 5)   /* Valid PIO range */
1474                        pio_mask = (2 << mode) - 1;
1475                else
1476                        pio_mask = 1;
1477
1478                /* But wait.. there's more. Design your standards by
1479                 * committee and you too can get a free iordy field to
1480                 * process. However its the speeds not the modes that
1481                 * are supported... Note drivers using the timing API
1482                 * will get this right anyway
1483                 */
1484        }
1485
1486        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488        if (ata_id_is_cfa(id)) {
1489                /*
1490                 *      Process compact flash extended modes
1491                 */
1492                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495                if (pio)
1496                        pio_mask |= (1 << 5);
1497                if (pio > 1)
1498                        pio_mask |= (1 << 6);
1499                if (dma)
1500                        mwdma_mask |= (1 << 3);
1501                if (dma > 1)
1502                        mwdma_mask |= (1 << 4);
1503        }
1504
1505        udma_mask = 0;
1506        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513{
1514        struct completion *waiting = qc->private_data;
1515
1516        complete(waiting);
1517}
1518
1519/**
1520 *      ata_exec_internal_sg - execute libata internal command
1521 *      @dev: Device to which the command is sent
1522 *      @tf: Taskfile registers for the command and the result
1523 *      @cdb: CDB for packet command
1524 *      @dma_dir: Data tranfer direction of the command
1525 *      @sgl: sg list for the data buffer of the command
1526 *      @n_elem: Number of sg entries
1527 *      @timeout: Timeout in msecs (0 for default)
1528 *
1529 *      Executes libata internal command with timeout.  @tf contains
1530 *      command on entry and result on return.  Timeout and error
1531 *      conditions are reported via return value.  No recovery action
1532 *      is taken after a command times out.  It's caller's duty to
1533 *      clean up after timeout.
1534 *
1535 *      LOCKING:
1536 *      None.  Should be called with kernel context, might sleep.
1537 *
1538 *      RETURNS:
1539 *      Zero on success, AC_ERR_* mask on failure
1540 */
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542                              struct ata_taskfile *tf, const u8 *cdb,
1543                              int dma_dir, struct scatterlist *sgl,
1544                              unsigned int n_elem, unsigned long timeout)
1545{
1546        struct ata_link *link = dev->link;
1547        struct ata_port *ap = link->ap;
1548        u8 command = tf->command;
1549        int auto_timeout = 0;
1550        struct ata_queued_cmd *qc;
1551        unsigned int tag, preempted_tag;
1552        u32 preempted_sactive, preempted_qc_active;
1553        int preempted_nr_active_links;
1554        DECLARE_COMPLETION_ONSTACK(wait);
1555        unsigned long flags;
1556        unsigned int err_mask;
1557        int rc;
1558
1559        spin_lock_irqsave(ap->lock, flags);
1560
1561        /* no internal command while frozen */
1562        if (ap->pflags & ATA_PFLAG_FROZEN) {
1563                spin_unlock_irqrestore(ap->lock, flags);
1564                return AC_ERR_SYSTEM;
1565        }
1566
1567        /* initialize internal qc */
1568
1569        /* XXX: Tag 0 is used for drivers with legacy EH as some
1570         * drivers choke if any other tag is given.  This breaks
1571         * ata_tag_internal() test for those drivers.  Don't use new
1572         * EH stuff without converting to it.
1573         */
1574        if (ap->ops->error_handler)
1575                tag = ATA_TAG_INTERNAL;
1576        else
1577                tag = 0;
1578
1579        if (test_and_set_bit(tag, &ap->qc_allocated))
1580                BUG();
1581        qc = __ata_qc_from_tag(ap, tag);
1582
1583        qc->tag = tag;
1584        qc->scsicmd = NULL;
1585        qc->ap = ap;
1586        qc->dev = dev;
1587        ata_qc_reinit(qc);
1588
1589        preempted_tag = link->active_tag;
1590        preempted_sactive = link->sactive;
1591        preempted_qc_active = ap->qc_active;
1592        preempted_nr_active_links = ap->nr_active_links;
1593        link->active_tag = ATA_TAG_POISON;
1594        link->sactive = 0;
1595        ap->qc_active = 0;
1596        ap->nr_active_links = 0;
1597
1598        /* prepare & issue qc */
1599        qc->tf = *tf;
1600        if (cdb)
1601                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602        qc->flags |= ATA_QCFLAG_RESULT_TF;
1603        qc->dma_dir = dma_dir;
1604        if (dma_dir != DMA_NONE) {
1605                unsigned int i, buflen = 0;
1606                struct scatterlist *sg;
1607
1608                for_each_sg(sgl, sg, n_elem, i)
1609                        buflen += sg->length;
1610
1611                ata_sg_init(qc, sgl, n_elem);
1612                qc->nbytes = buflen;
1613        }
1614
1615        qc->private_data = &wait;
1616        qc->complete_fn = ata_qc_complete_internal;
1617
1618        ata_qc_issue(qc);
1619
1620        spin_unlock_irqrestore(ap->lock, flags);
1621
1622        if (!timeout) {
1623                if (ata_probe_timeout)
1624                        timeout = ata_probe_timeout * 1000;
1625                else {
1626                        timeout = ata_internal_cmd_timeout(dev, command);
1627                        auto_timeout = 1;
1628                }
1629        }
1630
1631        if (ap->ops->error_handler)
1632                ata_eh_release(ap);
1633
1634        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635
1636        if (ap->ops->error_handler)
1637                ata_eh_acquire(ap);
1638
1639        ata_sff_flush_pio_task(ap);
1640
1641        if (!rc) {
1642                spin_lock_irqsave(ap->lock, flags);
1643
1644                /* We're racing with irq here.  If we lose, the
1645                 * following test prevents us from completing the qc
1646                 * twice.  If we win, the port is frozen and will be
1647                 * cleaned up by ->post_internal_cmd().
1648                 */
1649                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650                        qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652                        if (ap->ops->error_handler)
1653                                ata_port_freeze(ap);
1654                        else
1655                                ata_qc_complete(qc);
1656
1657                        if (ata_msg_warn(ap))
1658                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659                                             command);
1660                }
1661
1662                spin_unlock_irqrestore(ap->lock, flags);
1663        }
1664
1665        /* do post_internal_cmd */
1666        if (ap->ops->post_internal_cmd)
1667                ap->ops->post_internal_cmd(qc);
1668
1669        /* perform minimal error analysis */
1670        if (qc->flags & ATA_QCFLAG_FAILED) {
1671                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672                        qc->err_mask |= AC_ERR_DEV;
1673
1674                if (!qc->err_mask)
1675                        qc->err_mask |= AC_ERR_OTHER;
1676
1677                if (qc->err_mask & ~AC_ERR_OTHER)
1678                        qc->err_mask &= ~AC_ERR_OTHER;
1679        }
1680
1681        /* finish up */
1682        spin_lock_irqsave(ap->lock, flags);
1683
1684        *tf = qc->result_tf;
1685        err_mask = qc->err_mask;
1686
1687        ata_qc_free(qc);
1688        link->active_tag = preempted_tag;
1689        link->sactive = preempted_sactive;
1690        ap->qc_active = preempted_qc_active;
1691        ap->nr_active_links = preempted_nr_active_links;
1692
1693        spin_unlock_irqrestore(ap->lock, flags);
1694
1695        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696                ata_internal_cmd_timed_out(dev, command);
1697
1698        return err_mask;
1699}
1700
1701/**
1702 *      ata_exec_internal - execute libata internal command
1703 *      @dev: Device to which the command is sent
1704 *      @tf: Taskfile registers for the command and the result
1705 *      @cdb: CDB for packet command
1706 *      @dma_dir: Data tranfer direction of the command
1707 *      @buf: Data buffer of the command
1708 *      @buflen: Length of data buffer
1709 *      @timeout: Timeout in msecs (0 for default)
1710 *
1711 *      Wrapper around ata_exec_internal_sg() which takes simple
1712 *      buffer instead of sg list.
1713 *
1714 *      LOCKING:
1715 *      None.  Should be called with kernel context, might sleep.
1716 *
1717 *      RETURNS:
1718 *      Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721                           struct ata_taskfile *tf, const u8 *cdb,
1722                           int dma_dir, void *buf, unsigned int buflen,
1723                           unsigned long timeout)
1724{
1725        struct scatterlist *psg = NULL, sg;
1726        unsigned int n_elem = 0;
1727
1728        if (dma_dir != DMA_NONE) {
1729                WARN_ON(!buf);
1730                sg_init_one(&sg, buf, buflen);
1731                psg = &sg;
1732                n_elem++;
1733        }
1734
1735        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736                                    timeout);
1737}
1738
1739/**
1740 *      ata_do_simple_cmd - execute simple internal command
1741 *      @dev: Device to which the command is sent
1742 *      @cmd: Opcode to execute
1743 *
1744 *      Execute a 'simple' command, that only consists of the opcode
1745 *      'cmd' itself, without filling any other registers
1746 *
1747 *      LOCKING:
1748 *      Kernel thread context (may sleep).
1749 *
1750 *      RETURNS:
1751 *      Zero on success, AC_ERR_* mask on failure
1752 */
1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754{
1755        struct ata_taskfile tf;
1756
1757        ata_tf_init(dev, &tf);
1758
1759        tf.command = cmd;
1760        tf.flags |= ATA_TFLAG_DEVICE;
1761        tf.protocol = ATA_PROT_NODATA;
1762
1763        return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1764}
1765
1766/**
1767 *      ata_pio_need_iordy      -       check if iordy needed
1768 *      @adev: ATA device
1769 *
1770 *      Check if the current speed of the device requires IORDY. Used
1771 *      by various controllers for chip configuration.
1772 */
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
1775        /* Don't set IORDY if we're preparing for reset.  IORDY may
1776         * lead to controller lock up on certain controllers if the
1777         * port is not occupied.  See bko#11703 for details.
1778         */
1779        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780                return 0;
1781        /* Controller doesn't support IORDY.  Probably a pointless
1782         * check as the caller should know this.
1783         */
1784        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785                return 0;
1786        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1787        if (ata_id_is_cfa(adev->id)
1788            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789                return 0;
1790        /* PIO3 and higher it is mandatory */
1791        if (adev->pio_mode > XFER_PIO_2)
1792                return 1;
1793        /* We turn it on when possible */
1794        if (ata_id_has_iordy(adev->id))
1795                return 1;
1796        return 0;
1797}
1798
1799/**
1800 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1801 *      @adev: ATA device
1802 *
1803 *      Compute the highest mode possible if we are not using iordy. Return
1804 *      -1 if no iordy mode is available.
1805 */
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1808        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811                /* Is the speed faster than the drive allows non IORDY ? */
1812                if (pio) {
1813                        /* This is cycle times not frequency - watch the logic! */
1814                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1815                                return 3 << ATA_SHIFT_PIO;
1816                        return 7 << ATA_SHIFT_PIO;
1817                }
1818        }
1819        return 3 << ATA_SHIFT_PIO;
1820}
1821
1822/**
1823 *      ata_do_dev_read_id              -       default ID read method
1824 *      @dev: device
1825 *      @tf: proposed taskfile
1826 *      @id: data buffer
1827 *
1828 *      Issue the identify taskfile and hand back the buffer containing
1829 *      identify data. For some RAID controllers and for pre ATA devices
1830 *      this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833                                        struct ata_taskfile *tf, u16 *id)
1834{
1835        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1839/**
1840 *      ata_dev_read_id - Read ID data from the specified device
1841 *      @dev: target device
1842 *      @p_class: pointer to class of the target device (may be changed)
1843 *      @flags: ATA_READID_* flags
1844 *      @id: buffer to read IDENTIFY data into
1845 *
1846 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1847 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 *      for pre-ATA4 drives.
1850 *
1851 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 *      now we abort if we hit that case.
1853 *
1854 *      LOCKING:
1855 *      Kernel thread context (may sleep)
1856 *
1857 *      RETURNS:
1858 *      0 on success, -errno otherwise.
1859 */
1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861                    unsigned int flags, u16 *id)
1862{
1863        struct ata_port *ap = dev->link->ap;
1864        unsigned int class = *p_class;
1865        struct ata_taskfile tf;
1866        unsigned int err_mask = 0;
1867        const char *reason;
1868        bool is_semb = class == ATA_DEV_SEMB;
1869        int may_fallback = 1, tried_spinup = 0;
1870        int rc;
1871
1872        if (ata_msg_ctl(ap))
1873                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874
1875retry:
1876        ata_tf_init(dev, &tf);
1877
1878        switch (class) {
1879        case ATA_DEV_SEMB:
1880                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1881        case ATA_DEV_ATA:
1882                tf.command = ATA_CMD_ID_ATA;
1883                break;
1884        case ATA_DEV_ATAPI:
1885                tf.command = ATA_CMD_ID_ATAPI;
1886                break;
1887        default:
1888                rc = -ENODEV;
1889                reason = "unsupported class";
1890                goto err_out;
1891        }
1892
1893        tf.protocol = ATA_PROT_PIO;
1894
1895        /* Some devices choke if TF registers contain garbage.  Make
1896         * sure those are properly initialized.
1897         */
1898        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900        /* Device presence detection is unreliable on some
1901         * controllers.  Always poll IDENTIFY if available.
1902         */
1903        tf.flags |= ATA_TFLAG_POLLING;
1904
1905        if (ap->ops->read_id)
1906                err_mask = ap->ops->read_id(dev, &tf, id);
1907        else
1908                err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
1910        if (err_mask) {
1911                if (err_mask & AC_ERR_NODEV_HINT) {
1912                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1913                        return -ENOENT;
1914                }
1915
1916                if (is_semb) {
1917                        ata_dev_info(dev,
1918                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919                        /* SEMB is not supported yet */
1920                        *p_class = ATA_DEV_SEMB_UNSUP;
1921                        return 0;
1922                }
1923
1924                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925                        /* Device or controller might have reported
1926                         * the wrong device class.  Give a shot at the
1927                         * other IDENTIFY if the current one is
1928                         * aborted by the device.
1929                         */
1930                        if (may_fallback) {
1931                                may_fallback = 0;
1932
1933                                if (class == ATA_DEV_ATA)
1934                                        class = ATA_DEV_ATAPI;
1935                                else
1936                                        class = ATA_DEV_ATA;
1937                                goto retry;
1938                        }
1939
1940                        /* Control reaches here iff the device aborted
1941                         * both flavors of IDENTIFYs which happens
1942                         * sometimes with phantom devices.
1943                         */
1944                        ata_dev_dbg(dev,
1945                                    "both IDENTIFYs aborted, assuming NODEV\n");
1946                        return -ENOENT;
1947                }
1948
1949                rc = -EIO;
1950                reason = "I/O error";
1951                goto err_out;
1952        }
1953
1954        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956                            "class=%d may_fallback=%d tried_spinup=%d\n",
1957                            class, may_fallback, tried_spinup);
1958                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960        }
1961
1962        /* Falling back doesn't make sense if ID data was read
1963         * successfully at least once.
1964         */
1965        may_fallback = 0;
1966
1967        swap_buf_le16(id, ATA_ID_WORDS);
1968
1969        /* sanity check */
1970        rc = -EINVAL;
1971        reason = "device reports invalid type";
1972
1973        if (class == ATA_DEV_ATA) {
1974                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975                        goto err_out;
1976                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977                                                        ata_id_is_ata(id)) {
1978                        ata_dev_dbg(dev,
1979                                "host indicates ignore ATA devices, ignored\n");
1980                        return -ENOENT;
1981                }
1982        } else {
1983                if (ata_id_is_ata(id))
1984                        goto err_out;
1985        }
1986
1987        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988                tried_spinup = 1;
1989                /*
1990                 * Drive powered-up in standby mode, and requires a specific
1991                 * SET_FEATURES spin-up subcommand before it will accept
1992                 * anything other than the original IDENTIFY command.
1993                 */
1994                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995                if (err_mask && id[2] != 0x738c) {
1996                        rc = -EIO;
1997                        reason = "SPINUP failed";
1998                        goto err_out;
1999                }
2000                /*
2001                 * If the drive initially returned incomplete IDENTIFY info,
2002                 * we now must reissue the IDENTIFY command.
2003                 */
2004                if (id[2] == 0x37c8)
2005                        goto retry;
2006        }
2007
2008        if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2009                /*
2010                 * The exact sequence expected by certain pre-ATA4 drives is:
2011                 * SRST RESET
2012                 * IDENTIFY (optional in early ATA)
2013                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2014                 * anything else..
2015                 * Some drives were very specific about that exact sequence.
2016                 *
2017                 * Note that ATA4 says lba is mandatory so the second check
2018                 * should never trigger.
2019                 */
2020                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2021                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2022                        if (err_mask) {
2023                                rc = -EIO;
2024                                reason = "INIT_DEV_PARAMS failed";
2025                                goto err_out;
2026                        }
2027
2028                        /* current CHS translation info (id[53-58]) might be
2029                         * changed. reread the identify device info.
2030                         */
2031                        flags &= ~ATA_READID_POSTRESET;
2032                        goto retry;
2033                }
2034        }
2035
2036        *p_class = class;
2037
2038        return 0;
2039
2040 err_out:
2041        if (ata_msg_warn(ap))
2042                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2043                             reason, err_mask);
2044        return rc;
2045}
2046
2047static int ata_do_link_spd_horkage(struct ata_device *dev)
2048{
2049        struct ata_link *plink = ata_dev_phys_link(dev);
2050        u32 target, target_limit;
2051
2052        if (!sata_scr_valid(plink))
2053                return 0;
2054
2055        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2056                target = 1;
2057        else
2058                return 0;
2059
2060        target_limit = (1 << target) - 1;
2061
2062        /* if already on stricter limit, no need to push further */
2063        if (plink->sata_spd_limit <= target_limit)
2064                return 0;
2065
2066        plink->sata_spd_limit = target_limit;
2067
2068        /* Request another EH round by returning -EAGAIN if link is
2069         * going faster than the target speed.  Forward progress is
2070         * guaranteed by setting sata_spd_limit to target_limit above.
2071         */
2072        if (plink->sata_spd > target) {
2073                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2074                             sata_spd_string(target));
2075                return -EAGAIN;
2076        }
2077        return 0;
2078}
2079
2080static inline u8 ata_dev_knobble(struct ata_device *dev)
2081{
2082        struct ata_port *ap = dev->link->ap;
2083
2084        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2085                return 0;
2086
2087        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2088}
2089
2090static int ata_dev_config_ncq(struct ata_device *dev,
2091                               char *desc, size_t desc_sz)
2092{
2093        struct ata_port *ap = dev->link->ap;
2094        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2095        unsigned int err_mask;
2096        char *aa_desc = "";
2097
2098        if (!ata_id_has_ncq(dev->id)) {
2099                desc[0] = '\0';
2100                return 0;
2101        }
2102        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2103                snprintf(desc, desc_sz, "NCQ (not used)");
2104                return 0;
2105        }
2106        if (ap->flags & ATA_FLAG_NCQ) {
2107                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2108                dev->flags |= ATA_DFLAG_NCQ;
2109        }
2110
2111        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2112                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2113                ata_id_has_fpdma_aa(dev->id)) {
2114                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2115                        SATA_FPDMA_AA);
2116                if (err_mask) {
2117                        ata_dev_err(dev,
2118                                    "failed to enable AA (error_mask=0x%x)\n",
2119                                    err_mask);
2120                        if (err_mask != AC_ERR_DEV) {
2121                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2122                                return -EIO;
2123                        }
2124                } else
2125                        aa_desc = ", AA";
2126        }
2127
2128        if (hdepth >= ddepth)
2129                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2130        else
2131                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2132                        ddepth, aa_desc);
2133        return 0;
2134}
2135
2136/**
2137 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2138 *      @dev: Target device to configure
2139 *
2140 *      Configure @dev according to @dev->id.  Generic and low-level
2141 *      driver specific fixups are also applied.
2142 *
2143 *      LOCKING:
2144 *      Kernel thread context (may sleep)
2145 *
2146 *      RETURNS:
2147 *      0 on success, -errno otherwise
2148 */
2149int ata_dev_configure(struct ata_device *dev)
2150{
2151        struct ata_port *ap = dev->link->ap;
2152        struct ata_eh_context *ehc = &dev->link->eh_context;
2153        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2154        const u16 *id = dev->id;
2155        unsigned long xfer_mask;
2156        char revbuf[7];         /* XYZ-99\0 */
2157        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2158        char modelbuf[ATA_ID_PROD_LEN+1];
2159        int rc;
2160
2161        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2162                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2163                return 0;
2164        }
2165
2166        if (ata_msg_probe(ap))
2167                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2168
2169        /* set horkage */
2170        dev->horkage |= ata_dev_blacklisted(dev);
2171        ata_force_horkage(dev);
2172
2173        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2174                ata_dev_info(dev, "unsupported device, disabling\n");
2175                ata_dev_disable(dev);
2176                return 0;
2177        }
2178
2179        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2180            dev->class == ATA_DEV_ATAPI) {
2181                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2182                             atapi_enabled ? "not supported with this driver"
2183                             : "disabled");
2184                ata_dev_disable(dev);
2185                return 0;
2186        }
2187
2188        rc = ata_do_link_spd_horkage(dev);
2189        if (rc)
2190                return rc;
2191
2192        /* let ACPI work its magic */
2193        rc = ata_acpi_on_devcfg(dev);
2194        if (rc)
2195                return rc;
2196
2197        /* massage HPA, do it early as it might change IDENTIFY data */
2198        rc = ata_hpa_resize(dev);
2199        if (rc)
2200                return rc;
2201
2202        /* print device capabilities */
2203        if (ata_msg_probe(ap))
2204                ata_dev_dbg(dev,
2205                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2206                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2207                            __func__,
2208                            id[49], id[82], id[83], id[84],
2209                            id[85], id[86], id[87], id[88]);
2210
2211        /* initialize to-be-configured parameters */
2212        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2213        dev->max_sectors = 0;
2214        dev->cdb_len = 0;
2215        dev->n_sectors = 0;
2216        dev->cylinders = 0;
2217        dev->heads = 0;
2218        dev->sectors = 0;
2219        dev->multi_count = 0;
2220
2221        /*
2222         * common ATA, ATAPI feature tests
2223         */
2224
2225        /* find max transfer mode; for printk only */
2226        xfer_mask = ata_id_xfermask(id);
2227
2228        if (ata_msg_probe(ap))
2229                ata_dump_id(id);
2230
2231        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2232        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2233                        sizeof(fwrevbuf));
2234
2235        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2236                        sizeof(modelbuf));
2237
2238        /* ATA-specific feature tests */
2239        if (dev->class == ATA_DEV_ATA) {
2240                if (ata_id_is_cfa(id)) {
2241                        /* CPRM may make this media unusable */
2242                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2243                                ata_dev_warn(dev,
2244        "supports DRM functions and may not be fully accessible\n");
2245                        snprintf(revbuf, 7, "CFA");
2246                } else {
2247                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2248                        /* Warn the user if the device has TPM extensions */
2249                        if (ata_id_has_tpm(id))
2250                                ata_dev_warn(dev,
2251        "supports DRM functions and may not be fully accessible\n");
2252                }
2253
2254                dev->n_sectors = ata_id_n_sectors(id);
2255
2256                /* get current R/W Multiple count setting */
2257                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258                        unsigned int max = dev->id[47] & 0xff;
2259                        unsigned int cnt = dev->id[59] & 0xff;
2260                        /* only recognize/allow powers of two here */
2261                        if (is_power_of_2(max) && is_power_of_2(cnt))
2262                                if (cnt <= max)
2263                                        dev->multi_count = cnt;
2264                }
2265
2266                if (ata_id_has_lba(id)) {
2267                        const char *lba_desc;
2268                        char ncq_desc[24];
2269
2270                        lba_desc = "LBA";
2271                        dev->flags |= ATA_DFLAG_LBA;
2272                        if (ata_id_has_lba48(id)) {
2273                                dev->flags |= ATA_DFLAG_LBA48;
2274                                lba_desc = "LBA48";
2275
2276                                if (dev->n_sectors >= (1UL << 28) &&
2277                                    ata_id_has_flush_ext(id))
2278                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2279                        }
2280
2281                        /* config NCQ */
2282                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283                        if (rc)
2284                                return rc;
2285
2286                        /* print device info to dmesg */
2287                        if (ata_msg_drv(ap) && print_info) {
2288                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2289                                             revbuf, modelbuf, fwrevbuf,
2290                                             ata_mode_string(xfer_mask));
2291                                ata_dev_info(dev,
2292                                             "%llu sectors, multi %u: %s %s\n",
2293                                        (unsigned long long)dev->n_sectors,
2294                                        dev->multi_count, lba_desc, ncq_desc);
2295                        }
2296                } else {
2297                        /* CHS */
2298
2299                        /* Default translation */
2300                        dev->cylinders  = id[1];
2301                        dev->heads      = id[3];
2302                        dev->sectors    = id[6];
2303
2304                        if (ata_id_current_chs_valid(id)) {
2305                                /* Current CHS translation is valid. */
2306                                dev->cylinders = id[54];
2307                                dev->heads     = id[55];
2308                                dev->sectors   = id[56];
2309                        }
2310
2311                        /* print device info to dmesg */
2312                        if (ata_msg_drv(ap) && print_info) {
2313                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314                                             revbuf,    modelbuf, fwrevbuf,
2315                                             ata_mode_string(xfer_mask));
2316                                ata_dev_info(dev,
2317                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2318                                             (unsigned long long)dev->n_sectors,
2319                                             dev->multi_count, dev->cylinders,
2320                                             dev->heads, dev->sectors);
2321                        }
2322                }
2323
2324                dev->cdb_len = 16;
2325        }
2326
2327        /* ATAPI-specific feature tests */
2328        else if (dev->class == ATA_DEV_ATAPI) {
2329                const char *cdb_intr_string = "";
2330                const char *atapi_an_string = "";
2331                const char *dma_dir_string = "";
2332                u32 sntf;
2333
2334                rc = atapi_cdb_len(id);
2335                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2336                        if (ata_msg_warn(ap))
2337                                ata_dev_warn(dev, "unsupported CDB len\n");
2338                        rc = -EINVAL;
2339                        goto err_out_nosup;
2340                }
2341                dev->cdb_len = (unsigned int) rc;
2342
2343                /* Enable ATAPI AN if both the host and device have
2344                 * the support.  If PMP is attached, SNTF is required
2345                 * to enable ATAPI AN to discern between PHY status
2346                 * changed notifications and ATAPI ANs.
2347                 */
2348                if (atapi_an &&
2349                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350                    (!sata_pmp_attached(ap) ||
2351                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352                        unsigned int err_mask;
2353
2354                        /* issue SET feature command to turn this on */
2355                        err_mask = ata_dev_set_feature(dev,
2356                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2357                        if (err_mask)
2358                                ata_dev_err(dev,
2359                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2360                                            err_mask);
2361                        else {
2362                                dev->flags |= ATA_DFLAG_AN;
2363                                atapi_an_string = ", ATAPI AN";
2364                        }
2365                }
2366
2367                if (ata_id_cdb_intr(dev->id)) {
2368                        dev->flags |= ATA_DFLAG_CDB_INTR;
2369                        cdb_intr_string = ", CDB intr";
2370                }
2371
2372                if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373                        dev->flags |= ATA_DFLAG_DMADIR;
2374                        dma_dir_string = ", DMADIR";
2375                }
2376
2377                /* print device info to dmesg */
2378                if (ata_msg_drv(ap) && print_info)
2379                        ata_dev_info(dev,
2380                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2381                                     modelbuf, fwrevbuf,
2382                                     ata_mode_string(xfer_mask),
2383                                     cdb_intr_string, atapi_an_string,
2384                                     dma_dir_string);
2385        }
2386
2387        /* determine max_sectors */
2388        dev->max_sectors = ATA_MAX_SECTORS;
2389        if (dev->flags & ATA_DFLAG_LBA48)
2390                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2391
2392        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2393           200 sectors */
2394        if (ata_dev_knobble(dev)) {
2395                if (ata_msg_drv(ap) && print_info)
2396                        ata_dev_info(dev, "applying bridge limits\n");
2397                dev->udma_mask &= ATA_UDMA5;
2398                dev->max_sectors = ATA_MAX_SECTORS;
2399        }
2400
2401        if ((dev->class == ATA_DEV_ATAPI) &&
2402            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2403                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2404                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2405        }
2406
2407        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2408                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2409                                         dev->max_sectors);
2410
2411        if (ap->ops->dev_config)
2412                ap->ops->dev_config(dev);
2413
2414        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2415                /* Let the user know. We don't want to disallow opens for
2416                   rescue purposes, or in case the vendor is just a blithering
2417                   idiot. Do this after the dev_config call as some controllers
2418                   with buggy firmware may want to avoid reporting false device
2419                   bugs */
2420
2421                if (print_info) {
2422                        ata_dev_warn(dev,
2423"Drive reports diagnostics failure. This may indicate a drive\n");
2424                        ata_dev_warn(dev,
2425"fault or invalid emulation. Contact drive vendor for information.\n");
2426                }
2427        }
2428
2429        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2430                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2431                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2432        }
2433
2434        return 0;
2435
2436err_out_nosup:
2437        if (ata_msg_probe(ap))
2438                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2439        return rc;
2440}
2441
2442/**
2443 *      ata_cable_40wire        -       return 40 wire cable type
2444 *      @ap: port
2445 *
2446 *      Helper method for drivers which want to hardwire 40 wire cable
2447 *      detection.
2448 */
2449
2450int ata_cable_40wire(struct ata_port *ap)
2451{
2452        return ATA_CBL_PATA40;
2453}
2454
2455/**
2456 *      ata_cable_80wire        -       return 80 wire cable type
2457 *      @ap: port
2458 *
2459 *      Helper method for drivers which want to hardwire 80 wire cable
2460 *      detection.
2461 */
2462
2463int ata_cable_80wire(struct ata_port *ap)
2464{
2465        return ATA_CBL_PATA80;
2466}
2467
2468/**
2469 *      ata_cable_unknown       -       return unknown PATA cable.
2470 *      @ap: port
2471 *
2472 *      Helper method for drivers which have no PATA cable detection.
2473 */
2474
2475int ata_cable_unknown(struct ata_port *ap)
2476{
2477        return ATA_CBL_PATA_UNK;
2478}
2479
2480/**
2481 *      ata_cable_ignore        -       return ignored PATA cable.
2482 *      @ap: port
2483 *
2484 *      Helper method for drivers which don't use cable type to limit
2485 *      transfer mode.
2486 */
2487int ata_cable_ignore(struct ata_port *ap)
2488{
2489        return ATA_CBL_PATA_IGN;
2490}
2491
2492/**
2493 *      ata_cable_sata  -       return SATA cable type
2494 *      @ap: port
2495 *
2496 *      Helper method for drivers which have SATA cables
2497 */
2498
2499int ata_cable_sata(struct ata_port *ap)
2500{
2501        return ATA_CBL_SATA;
2502}
2503
2504/**
2505 *      ata_bus_probe - Reset and probe ATA bus
2506 *      @ap: Bus to probe
2507 *
2508 *      Master ATA bus probing function.  Initiates a hardware-dependent
2509 *      bus reset, then attempts to identify any devices found on
2510 *      the bus.
2511 *
2512 *      LOCKING:
2513 *      PCI/etc. bus probe sem.
2514 *
2515 *      RETURNS:
2516 *      Zero on success, negative errno otherwise.
2517 */
2518
2519int ata_bus_probe(struct ata_port *ap)
2520{
2521        unsigned int classes[ATA_MAX_DEVICES];
2522        int tries[ATA_MAX_DEVICES];
2523        int rc;
2524        struct ata_device *dev;
2525
2526        ata_for_each_dev(dev, &ap->link, ALL)
2527                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2528
2529 retry:
2530        ata_for_each_dev(dev, &ap->link, ALL) {
2531                /* If we issue an SRST then an ATA drive (not ATAPI)
2532                 * may change configuration and be in PIO0 timing. If
2533                 * we do a hard reset (or are coming from power on)
2534                 * this is true for ATA or ATAPI. Until we've set a
2535                 * suitable controller mode we should not touch the
2536                 * bus as we may be talking too fast.
2537                 */
2538                dev->pio_mode = XFER_PIO_0;
2539
2540                /* If the controller has a pio mode setup function
2541                 * then use it to set the chipset to rights. Don't
2542                 * touch the DMA setup as that will be dealt with when
2543                 * configuring devices.
2544                 */
2545                if (ap->ops->set_piomode)
2546                        ap->ops->set_piomode(ap, dev);
2547        }
2548
2549        /* reset and determine device classes */
2550        ap->ops->phy_reset(ap);
2551
2552        ata_for_each_dev(dev, &ap->link, ALL) {
2553                if (dev->class != ATA_DEV_UNKNOWN)
2554                        classes[dev->devno] = dev->class;
2555                else
2556                        classes[dev->devno] = ATA_DEV_NONE;
2557
2558                dev->class = ATA_DEV_UNKNOWN;
2559        }
2560
2561        /* read IDENTIFY page and configure devices. We have to do the identify
2562           specific sequence bass-ackwards so that PDIAG- is released by
2563           the slave device */
2564
2565        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2566                if (tries[dev->devno])
2567                        dev->class = classes[dev->devno];
2568
2569                if (!ata_dev_enabled(dev))
2570                        continue;
2571
2572                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2573                                     dev->id);
2574                if (rc)
2575                        goto fail;
2576        }
2577
2578        /* Now ask for the cable type as PDIAG- should have been released */
2579        if (ap->ops->cable_detect)
2580                ap->cbl = ap->ops->cable_detect(ap);
2581
2582        /* We may have SATA bridge glue hiding here irrespective of
2583         * the reported cable types and sensed types.  When SATA
2584         * drives indicate we have a bridge, we don't know which end
2585         * of the link the bridge is which is a problem.
2586         */
2587        ata_for_each_dev(dev, &ap->link, ENABLED)
2588                if (ata_id_is_sata(dev->id))
2589                        ap->cbl = ATA_CBL_SATA;
2590
2591        /* After the identify sequence we can now set up the devices. We do
2592           this in the normal order so that the user doesn't get confused */
2593
2594        ata_for_each_dev(dev, &ap->link, ENABLED) {
2595                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2596                rc = ata_dev_configure(dev);
2597                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2598                if (rc)
2599                        goto fail;
2600        }
2601
2602        /* configure transfer mode */
2603        rc = ata_set_mode(&ap->link, &dev);
2604        if (rc)
2605                goto fail;
2606
2607        ata_for_each_dev(dev, &ap->link, ENABLED)
2608                return 0;
2609
2610        return -ENODEV;
2611
2612 fail:
2613        tries[dev->devno]--;
2614
2615        switch (rc) {
2616        case -EINVAL:
2617                /* eeek, something went very wrong, give up */
2618                tries[dev->devno] = 0;
2619                break;
2620
2621        case -ENODEV:
2622                /* give it just one more chance */
2623                tries[dev->devno] = min(tries[dev->devno], 1);
2624        case -EIO:
2625                if (tries[dev->devno] == 1) {
2626                        /* This is the last chance, better to slow
2627                         * down than lose it.
2628                         */
2629                        sata_down_spd_limit(&ap->link, 0);
2630                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2631                }
2632        }
2633
2634        if (!tries[dev->devno])
2635                ata_dev_disable(dev);
2636
2637        goto retry;
2638}
2639
2640/**
2641 *      sata_print_link_status - Print SATA link status
2642 *      @link: SATA link to printk link status about
2643 *
2644 *      This function prints link speed and status of a SATA link.
2645 *
2646 *      LOCKING:
2647 *      None.
2648 */
2649static void sata_print_link_status(struct ata_link *link)
2650{
2651        u32 sstatus, scontrol, tmp;
2652
2653        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2654                return;
2655        sata_scr_read(link, SCR_CONTROL, &scontrol);
2656
2657        if (ata_phys_link_online(link)) {
2658                tmp = (sstatus >> 4) & 0xf;
2659                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2660                              sata_spd_string(tmp), sstatus, scontrol);
2661        } else {
2662                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2663                              sstatus, scontrol);
2664        }
2665}
2666
2667/**
2668 *      ata_dev_pair            -       return other device on cable
2669 *      @adev: device
2670 *
2671 *      Obtain the other device on the same cable, or if none is
2672 *      present NULL is returned
2673 */
2674
2675struct ata_device *ata_dev_pair(struct ata_device *adev)
2676{
2677        struct ata_link *link = adev->link;
2678        struct ata_device *pair = &link->device[1 - adev->devno];
2679        if (!ata_dev_enabled(pair))
2680                return NULL;
2681        return pair;
2682}
2683
2684/**
2685 *      sata_down_spd_limit - adjust SATA spd limit downward
2686 *      @link: Link to adjust SATA spd limit for
2687 *      @spd_limit: Additional limit
2688 *
2689 *      Adjust SATA spd limit of @link downward.  Note that this
2690 *      function only adjusts the limit.  The change must be applied
2691 *      using sata_set_spd().
2692 *
2693 *      If @spd_limit is non-zero, the speed is limited to equal to or
2694 *      lower than @spd_limit if such speed is supported.  If
2695 *      @spd_limit is slower than any supported speed, only the lowest
2696 *      supported speed is allowed.
2697 *
2698 *      LOCKING:
2699 *      Inherited from caller.
2700 *
2701 *      RETURNS:
2702 *      0 on success, negative errno on failure
2703 */
2704int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2705{
2706        u32 sstatus, spd, mask;
2707        int rc, bit;
2708
2709        if (!sata_scr_valid(link))
2710                return -EOPNOTSUPP;
2711
2712        /* If SCR can be read, use it to determine the current SPD.
2713         * If not, use cached value in link->sata_spd.
2714         */
2715        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716        if (rc == 0 && ata_sstatus_online(sstatus))
2717                spd = (sstatus >> 4) & 0xf;
2718        else
2719                spd = link->sata_spd;
2720
2721        mask = link->sata_spd_limit;
2722        if (mask <= 1)
2723                return -EINVAL;
2724
2725        /* unconditionally mask off the highest bit */
2726        bit = fls(mask) - 1;
2727        mask &= ~(1 << bit);
2728
2729        /* Mask off all speeds higher than or equal to the current
2730         * one.  Force 1.5Gbps if current SPD is not available.
2731         */
2732        if (spd > 1)
2733                mask &= (1 << (spd - 1)) - 1;
2734        else
2735                mask &= 1;
2736
2737        /* were we already at the bottom? */
2738        if (!mask)
2739                return -EINVAL;
2740
2741        if (spd_limit) {
2742                if (mask & ((1 << spd_limit) - 1))
2743                        mask &= (1 << spd_limit) - 1;
2744                else {
2745                        bit = ffs(mask) - 1;
2746                        mask = 1 << bit;
2747                }
2748        }
2749
2750        link->sata_spd_limit = mask;
2751
2752        ata_link_warn(link, "limiting SATA link speed to %s\n",
2753                      sata_spd_string(fls(mask)));
2754
2755        return 0;
2756}
2757
2758static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2759{
2760        struct ata_link *host_link = &link->ap->link;
2761        u32 limit, target, spd;
2762
2763        limit = link->sata_spd_limit;
2764
2765        /* Don't configure downstream link faster than upstream link.
2766         * It doesn't speed up anything and some PMPs choke on such
2767         * configuration.
2768         */
2769        if (!ata_is_host_link(link) && host_link->sata_spd)
2770                limit &= (1 << host_link->sata_spd) - 1;
2771
2772        if (limit == UINT_MAX)
2773                target = 0;
2774        else
2775                target = fls(limit);
2776
2777        spd = (*scontrol >> 4) & 0xf;
2778        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2779
2780        return spd != target;
2781}
2782
2783/**
2784 *      sata_set_spd_needed - is SATA spd configuration needed
2785 *      @link: Link in question
2786 *
2787 *      Test whether the spd limit in SControl matches
2788 *      @link->sata_spd_limit.  This function is used to determine
2789 *      whether hardreset is necessary to apply SATA spd
2790 *      configuration.
2791 *
2792 *      LOCKING:
2793 *      Inherited from caller.
2794 *
2795 *      RETURNS:
2796 *      1 if SATA spd configuration is needed, 0 otherwise.
2797 */
2798static int sata_set_spd_needed(struct ata_link *link)
2799{
2800        u32 scontrol;
2801
2802        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2803                return 1;
2804
2805        return __sata_set_spd_needed(link, &scontrol);
2806}
2807
2808/**
2809 *      sata_set_spd - set SATA spd according to spd limit
2810 *      @link: Link to set SATA spd for
2811 *
2812 *      Set SATA spd of @link according to sata_spd_limit.
2813 *
2814 *      LOCKING:
2815 *      Inherited from caller.
2816 *
2817 *      RETURNS:
2818 *      0 if spd doesn't need to be changed, 1 if spd has been
2819 *      changed.  Negative errno if SCR registers are inaccessible.
2820 */
2821int sata_set_spd(struct ata_link *link)
2822{
2823        u32 scontrol;
2824        int rc;
2825
2826        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2827                return rc;
2828
2829        if (!__sata_set_spd_needed(link, &scontrol))
2830                return 0;
2831
2832        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2833                return rc;
2834
2835        return 1;
2836}
2837
2838/*
2839 * This mode timing computation functionality is ported over from
2840 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2841 */
2842/*
2843 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2844 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2845 * for UDMA6, which is currently supported only by Maxtor drives.
2846 *
2847 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2848 */
2849
2850static const struct ata_timing ata_timing[] = {
2851/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2852        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2853        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2854        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2855        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2856        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2857        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2858        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2859
2860        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2861        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2862        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2863
2864        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2865        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2866        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2867        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2868        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2869
2870/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2871        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2872        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2873        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2874        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2875        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2876        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2877        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2878
2879        { 0xFF }
2880};
2881
2882#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
2883#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
2884
2885static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2886{
2887        q->setup        = EZ(t->setup      * 1000,  T);
2888        q->act8b        = EZ(t->act8b      * 1000,  T);
2889        q->rec8b        = EZ(t->rec8b      * 1000,  T);
2890        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
2891        q->active       = EZ(t->active     * 1000,  T);
2892        q->recover      = EZ(t->recover    * 1000,  T);
2893        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
2894        q->cycle        = EZ(t->cycle      * 1000,  T);
2895        q->udma         = EZ(t->udma       * 1000, UT);
2896}
2897
2898void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899                      struct ata_timing *m, unsigned int what)
2900{
2901        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2902        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2903        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2904        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2905        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2906        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2908        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2909        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2910}
2911
2912const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2913{
2914        const struct ata_timing *t = ata_timing;
2915
2916        while (xfer_mode > t->mode)
2917                t++;
2918
2919        if (xfer_mode == t->mode)
2920                return t;
2921        return NULL;
2922}
2923
2924int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2925                       struct ata_timing *t, int T, int UT)
2926{
2927        const u16 *id = adev->id;
2928        const struct ata_timing *s;
2929        struct ata_timing p;
2930
2931        /*
2932         * Find the mode.
2933         */
2934
2935        if (!(s = ata_timing_find_mode(speed)))
2936                return -EINVAL;
2937
2938        memcpy(t, s, sizeof(*s));
2939
2940        /*
2941         * If the drive is an EIDE drive, it can tell us it needs extended
2942         * PIO/MW_DMA cycle timing.
2943         */
2944
2945        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
2946                memset(&p, 0, sizeof(p));
2947
2948                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2949                        if (speed <= XFER_PIO_2)
2950                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2951                        else if ((speed <= XFER_PIO_4) ||
2952                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2953                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2954                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2955                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2956
2957                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2958        }
2959
2960        /*
2961         * Convert the timing to bus clock counts.
2962         */
2963
2964        ata_timing_quantize(t, t, T, UT);
2965
2966        /*
2967         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2968         * S.M.A.R.T * and some other commands. We have to ensure that the
2969         * DMA cycle timing is slower/equal than the fastest PIO timing.
2970         */
2971
2972        if (speed > XFER_PIO_6) {
2973                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2974                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2975        }
2976
2977        /*
2978         * Lengthen active & recovery time so that cycle time is correct.
2979         */
2980
2981        if (t->act8b + t->rec8b < t->cyc8b) {
2982                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2983                t->rec8b = t->cyc8b - t->act8b;
2984        }
2985
2986        if (t->active + t->recover < t->cycle) {
2987                t->active += (t->cycle - (t->active + t->recover)) / 2;
2988                t->recover = t->cycle - t->active;
2989        }
2990
2991        /* In a few cases quantisation may produce enough errors to
2992           leave t->cycle too low for the sum of active and recovery
2993           if so we must correct this */
2994        if (t->active + t->recover > t->cycle)
2995                t->cycle = t->active + t->recover;
2996
2997        return 0;
2998}
2999
3000/**
3001 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3002 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3003 *      @cycle: cycle duration in ns
3004 *
3005 *      Return matching xfer mode for @cycle.  The returned mode is of
3006 *      the transfer type specified by @xfer_shift.  If @cycle is too
3007 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3008 *      than the fastest known mode, the fasted mode is returned.
3009 *
3010 *      LOCKING:
3011 *      None.
3012 *
3013 *      RETURNS:
3014 *      Matching xfer_mode, 0xff if no match found.
3015 */
3016u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3017{
3018        u8 base_mode = 0xff, last_mode = 0xff;
3019        const struct ata_xfer_ent *ent;
3020        const struct ata_timing *t;
3021
3022        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3023                if (ent->shift == xfer_shift)
3024                        base_mode = ent->base;
3025
3026        for (t = ata_timing_find_mode(base_mode);
3027             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3028                unsigned short this_cycle;
3029
3030                switch (xfer_shift) {
3031                case ATA_SHIFT_PIO:
3032                case ATA_SHIFT_MWDMA:
3033                        this_cycle = t->cycle;
3034                        break;
3035                case ATA_SHIFT_UDMA:
3036                        this_cycle = t->udma;
3037                        break;
3038                default:
3039                        return 0xff;
3040                }
3041
3042                if (cycle > this_cycle)
3043                        break;
3044
3045                last_mode = t->mode;
3046        }
3047
3048        return last_mode;
3049}
3050
3051/**
3052 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3053 *      @dev: Device to adjust xfer masks
3054 *      @sel: ATA_DNXFER_* selector
3055 *
3056 *      Adjust xfer masks of @dev downward.  Note that this function
3057 *      does not apply the change.  Invoking ata_set_mode() afterwards
3058 *      will apply the limit.
3059 *
3060 *      LOCKING:
3061 *      Inherited from caller.
3062 *
3063 *      RETURNS:
3064 *      0 on success, negative errno on failure
3065 */
3066int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3067{
3068        char buf[32];
3069        unsigned long orig_mask, xfer_mask;
3070        unsigned long pio_mask, mwdma_mask, udma_mask;
3071        int quiet, highbit;
3072
3073        quiet = !!(sel & ATA_DNXFER_QUIET);
3074        sel &= ~ATA_DNXFER_QUIET;
3075
3076        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3077                                                  dev->mwdma_mask,
3078                                                  dev->udma_mask);
3079        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3080
3081        switch (sel) {
3082        case ATA_DNXFER_PIO:
3083                highbit = fls(pio_mask) - 1;
3084                pio_mask &= ~(1 << highbit);
3085                break;
3086
3087        case ATA_DNXFER_DMA:
3088                if (udma_mask) {
3089                        highbit = fls(udma_mask) - 1;
3090                        udma_mask &= ~(1 << highbit);
3091                        if (!udma_mask)
3092                                return -ENOENT;
3093                } else if (mwdma_mask) {
3094                        highbit = fls(mwdma_mask) - 1;
3095                        mwdma_mask &= ~(1 << highbit);
3096                        if (!mwdma_mask)
3097                                return -ENOENT;
3098                }
3099                break;
3100
3101        case ATA_DNXFER_40C:
3102                udma_mask &= ATA_UDMA_MASK_40C;
3103                break;
3104
3105        case ATA_DNXFER_FORCE_PIO0:
3106                pio_mask &= 1;
3107        case ATA_DNXFER_FORCE_PIO:
3108                mwdma_mask = 0;
3109                udma_mask = 0;
3110                break;
3111
3112        default:
3113                BUG();
3114        }
3115
3116        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3117
3118        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3119                return -ENOENT;
3120
3121        if (!quiet) {
3122                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3123                        snprintf(buf, sizeof(buf), "%s:%s",
3124                                 ata_mode_string(xfer_mask),
3125                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3126                else
3127                        snprintf(buf, sizeof(buf), "%s",
3128                                 ata_mode_string(xfer_mask));
3129
3130                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3131        }
3132
3133        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3134                            &dev->udma_mask);
3135
3136        return 0;
3137}
3138
3139static int ata_dev_set_mode(struct ata_device *dev)
3140{
3141        struct ata_port *ap = dev->link->ap;
3142        struct ata_eh_context *ehc = &dev->link->eh_context;
3143        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3144        const char *dev_err_whine = "";
3145        int ign_dev_err = 0;
3146        unsigned int err_mask = 0;
3147        int rc;
3148
3149        dev->flags &= ~ATA_DFLAG_PIO;
3150        if (dev->xfer_shift == ATA_SHIFT_PIO)
3151                dev->flags |= ATA_DFLAG_PIO;
3152
3153        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3154                dev_err_whine = " (SET_XFERMODE skipped)";
3155        else {
3156                if (nosetxfer)
3157                        ata_dev_warn(dev,
3158                                     "NOSETXFER but PATA detected - can't "
3159                                     "skip SETXFER, might malfunction\n");
3160                err_mask = ata_dev_set_xfermode(dev);
3161        }
3162
3163        if (err_mask & ~AC_ERR_DEV)
3164                goto fail;
3165
3166        /* revalidate */
3167        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3168        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3169        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3170        if (rc)
3171                return rc;
3172
3173        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3174                /* Old CFA may refuse this command, which is just fine */
3175                if (ata_id_is_cfa(dev->id))
3176                        ign_dev_err = 1;
3177                /* Catch several broken garbage emulations plus some pre
3178                   ATA devices */
3179                if (ata_id_major_version(dev->id) == 0 &&
3180                                        dev->pio_mode <= XFER_PIO_2)
3181                        ign_dev_err = 1;
3182                /* Some very old devices and some bad newer ones fail
3183                   any kind of SET_XFERMODE request but support PIO0-2
3184                   timings and no IORDY */
3185                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3186                        ign_dev_err = 1;
3187        }
3188        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3189           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3190        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3191            dev->dma_mode == XFER_MW_DMA_0 &&
3192            (dev->id[63] >> 8) & 1)
3193                ign_dev_err = 1;
3194
3195        /* if the device is actually configured correctly, ignore dev err */
3196        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3197                ign_dev_err = 1;
3198
3199        if (err_mask & AC_ERR_DEV) {
3200                if (!ign_dev_err)
3201                        goto fail;
3202                else
3203                        dev_err_whine = " (device error ignored)";
3204        }
3205
3206        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3207                dev->xfer_shift, (int)dev->xfer_mode);
3208
3209        ata_dev_info(dev, "configured for %s%s\n",
3210                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3211                     dev_err_whine);
3212
3213        return 0;
3214
3215 fail:
3216        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3217        return -EIO;
3218}
3219
3220/**
3221 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3222 *      @link: link on which timings will be programmed
3223 *      @r_failed_dev: out parameter for failed device
3224 *
3225 *      Standard implementation of the function used to tune and set
3226 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3227 *      ata_dev_set_mode() fails, pointer to the failing device is
3228 *      returned in @r_failed_dev.
3229 *
3230 *      LOCKING:
3231 *      PCI/etc. bus probe sem.
3232 *
3233 *      RETURNS:
3234 *      0 on success, negative errno otherwise
3235 */
3236
3237int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3238{
3239        struct ata_port *ap = link->ap;
3240        struct ata_device *dev;
3241        int rc = 0, used_dma = 0, found = 0;
3242
3243        /* step 1: calculate xfer_mask */
3244        ata_for_each_dev(dev, link, ENABLED) {
3245                unsigned long pio_mask, dma_mask;
3246                unsigned int mode_mask;
3247
3248                mode_mask = ATA_DMA_MASK_ATA;
3249                if (dev->class == ATA_DEV_ATAPI)
3250                        mode_mask = ATA_DMA_MASK_ATAPI;
3251                else if (ata_id_is_cfa(dev->id))
3252                        mode_mask = ATA_DMA_MASK_CFA;
3253
3254                ata_dev_xfermask(dev);
3255                ata_force_xfermask(dev);
3256
3257                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3258
3259                if (libata_dma_mask & mode_mask)
3260                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3261                                                     dev->udma_mask);
3262                else
3263                        dma_mask = 0;
3264
3265                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3266                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3267
3268                found = 1;
3269                if (ata_dma_enabled(dev))
3270                        used_dma = 1;
3271        }
3272        if (!found)
3273                goto out;
3274
3275        /* step 2: always set host PIO timings */
3276        ata_for_each_dev(dev, link, ENABLED) {
3277                if (dev->pio_mode == 0xff) {
3278                        ata_dev_warn(dev, "no PIO support\n");
3279                        rc = -EINVAL;
3280                        goto out;
3281                }
3282
3283                dev->xfer_mode = dev->pio_mode;
3284                dev->xfer_shift = ATA_SHIFT_PIO;
3285                if (ap->ops->set_piomode)
3286                        ap->ops->set_piomode(ap, dev);
3287        }
3288
3289        /* step 3: set host DMA timings */
3290        ata_for_each_dev(dev, link, ENABLED) {
3291                if (!ata_dma_enabled(dev))
3292                        continue;
3293
3294                dev->xfer_mode = dev->dma_mode;
3295                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3296                if (ap->ops->set_dmamode)
3297                        ap->ops->set_dmamode(ap, dev);
3298        }
3299
3300        /* step 4: update devices' xfer mode */
3301        ata_for_each_dev(dev, link, ENABLED) {
3302                rc = ata_dev_set_mode(dev);
3303                if (rc)
3304                        goto out;
3305        }
3306
3307        /* Record simplex status. If we selected DMA then the other
3308         * host channels are not permitted to do so.
3309         */
3310        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3311                ap->host->simplex_claimed = ap;
3312
3313 out:
3314        if (rc)
3315                *r_failed_dev = dev;
3316        return rc;
3317}
3318
3319/**
3320 *      ata_wait_ready - wait for link to become ready
3321 *      @link: link to be waited on
3322 *      @deadline: deadline jiffies for the operation
3323 *      @check_ready: callback to check link readiness
3324 *
3325 *      Wait for @link to become ready.  @check_ready should return
3326 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3327 *      link doesn't seem to be occupied, other errno for other error
3328 *      conditions.
3329 *
3330 *      Transient -ENODEV conditions are allowed for
3331 *      ATA_TMOUT_FF_WAIT.
3332 *
3333 *      LOCKING:
3334 *      EH context.
3335 *
3336 *      RETURNS:
3337 *      0 if @linke is ready before @deadline; otherwise, -errno.
3338 */
3339int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3340                   int (*check_ready)(struct ata_link *link))
3341{
3342        unsigned long start = jiffies;
3343        unsigned long nodev_deadline;
3344        int warned = 0;
3345
3346        /* choose which 0xff timeout to use, read comment in libata.h */
3347        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3348                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3349        else
3350                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3351
3352        /* Slave readiness can't be tested separately from master.  On
3353         * M/S emulation configuration, this function should be called
3354         * only on the master and it will handle both master and slave.
3355         */
3356        WARN_ON(link == link->ap->slave_link);
3357
3358        if (time_after(nodev_deadline, deadline))
3359                nodev_deadline = deadline;
3360
3361        while (1) {
3362                unsigned long now = jiffies;
3363                int ready, tmp;
3364
3365                ready = tmp = check_ready(link);
3366                if (ready > 0)
3367                        return 0;
3368
3369                /*
3370                 * -ENODEV could be transient.  Ignore -ENODEV if link
3371                 * is online.  Also, some SATA devices take a long
3372                 * time to clear 0xff after reset.  Wait for
3373                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3374                 * offline.
3375                 *
3376                 * Note that some PATA controllers (pata_ali) explode
3377                 * if status register is read more than once when
3378                 * there's no device attached.
3379                 */
3380                if (ready == -ENODEV) {
3381                        if (ata_link_online(link))
3382                                ready = 0;
3383                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3384                                 !ata_link_offline(link) &&
3385                                 time_before(now, nodev_deadline))
3386                                ready = 0;
3387                }
3388
3389                if (ready)
3390                        return ready;
3391                if (time_after(now, deadline))
3392                        return -EBUSY;
3393
3394                if (!warned && time_after(now, start + 5 * HZ) &&
3395                    (deadline - now > 3 * HZ)) {
3396                        ata_link_warn(link,
3397                                "link is slow to respond, please be patient "
3398                                "(ready=%d)\n", tmp);
3399                        warned = 1;
3400                }
3401
3402                ata_msleep(link->ap, 50);
3403        }
3404}
3405
3406/**
3407 *      ata_wait_after_reset - wait for link to become ready after reset
3408 *      @link: link to be waited on
3409 *      @deadline: deadline jiffies for the operation
3410 *      @check_ready: callback to check link readiness
3411 *
3412 *      Wait for @link to become ready after reset.
3413 *
3414 *      LOCKING:
3415 *      EH context.
3416 *
3417 *      RETURNS:
3418 *      0 if @linke is ready before @deadline; otherwise, -errno.
3419 */
3420int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3421                                int (*check_ready)(struct ata_link *link))
3422{
3423        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3424
3425        return ata_wait_ready(link, deadline, check_ready);
3426}
3427
3428/**
3429 *      sata_link_debounce - debounce SATA phy status
3430 *      @link: ATA link to debounce SATA phy status for
3431 *      @params: timing parameters { interval, duratinon, timeout } in msec
3432 *      @deadline: deadline jiffies for the operation
3433 *
3434 *      Make sure SStatus of @link reaches stable state, determined by
3435 *      holding the same value where DET is not 1 for @duration polled
3436 *      every @interval, before @timeout.  Timeout constraints the
3437 *      beginning of the stable state.  Because DET gets stuck at 1 on
3438 *      some controllers after hot unplugging, this functions waits
3439 *      until timeout then returns 0 if DET is stable at 1.
3440 *
3441 *      @timeout is further limited by @deadline.  The sooner of the
3442 *      two is used.
3443 *
3444 *      LOCKING:
3445 *      Kernel thread context (may sleep)
3446 *
3447 *      RETURNS:
3448 *      0 on success, -errno on failure.
3449 */
3450int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3451                       unsigned long deadline)
3452{
3453        unsigned long interval = params[0];
3454        unsigned long duration = params[1];
3455        unsigned long last_jiffies, t;
3456        u32 last, cur;
3457        int rc;
3458
3459        t = ata_deadline(jiffies, params[2]);
3460        if (time_before(t, deadline))
3461                deadline = t;
3462
3463        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3464                return rc;
3465        cur &= 0xf;
3466
3467        last = cur;
3468        last_jiffies = jiffies;
3469
3470        while (1) {
3471                ata_msleep(link->ap, interval);
3472                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3473                        return rc;
3474                cur &= 0xf;
3475
3476                /* DET stable? */
3477                if (cur == last) {
3478                        if (cur == 1 && time_before(jiffies, deadline))
3479                                continue;
3480                        if (time_after(jiffies,
3481                                       ata_deadline(last_jiffies, duration)))
3482                                return 0;
3483                        continue;
3484                }
3485
3486                /* unstable, start over */
3487                last = cur;
3488                last_jiffies = jiffies;
3489
3490                /* Check deadline.  If debouncing failed, return
3491                 * -EPIPE to tell upper layer to lower link speed.
3492                 */
3493                if (time_after(jiffies, deadline))
3494                        return -EPIPE;
3495        }
3496}
3497
3498/**
3499 *      sata_link_resume - resume SATA link
3500 *      @link: ATA link to resume SATA
3501 *      @params: timing parameters { interval, duratinon, timeout } in msec
3502 *      @deadline: deadline jiffies for the operation
3503 *
3504 *      Resume SATA phy @link and debounce it.
3505 *
3506 *      LOCKING:
3507 *      Kernel thread context (may sleep)
3508 *
3509 *      RETURNS:
3510 *      0 on success, -errno on failure.
3511 */
3512int sata_link_resume(struct ata_link *link, const unsigned long *params,
3513                     unsigned long deadline)
3514{
3515        int tries = ATA_LINK_RESUME_TRIES;
3516        u32 scontrol, serror;
3517        int rc;
3518
3519        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3520                return rc;
3521
3522        /*
3523         * Writes to SControl sometimes get ignored under certain
3524         * controllers (ata_piix SIDPR).  Make sure DET actually is
3525         * cleared.
3526         */
3527        do {
3528                scontrol = (scontrol & 0x0f0) | 0x300;
3529                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3530                        return rc;
3531                /*
3532                 * Some PHYs react badly if SStatus is pounded
3533                 * immediately after resuming.  Delay 200ms before
3534                 * debouncing.
3535                 */
3536                ata_msleep(link->ap, 200);
3537
3538                /* is SControl restored correctly? */
3539                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3540                        return rc;
3541        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3542
3543        if ((scontrol & 0xf0f) != 0x300) {
3544                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3545                             scontrol);
3546                return 0;
3547        }
3548
3549        if (tries < ATA_LINK_RESUME_TRIES)
3550                ata_link_warn(link, "link resume succeeded after %d retries\n",
3551                              ATA_LINK_RESUME_TRIES - tries);
3552
3553        if ((rc = sata_link_debounce(link, params, deadline)))
3554                return rc;
3555
3556        /* clear SError, some PHYs require this even for SRST to work */
3557        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3558                rc = sata_scr_write(link, SCR_ERROR, serror);
3559
3560        return rc != -EINVAL ? rc : 0;
3561}
3562
3563/**
3564 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3565 *      @link: ATA link to manipulate SControl for
3566 *      @policy: LPM policy to configure
3567 *      @spm_wakeup: initiate LPM transition to active state
3568 *
3569 *      Manipulate the IPM field of the SControl register of @link
3570 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3571 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3572 *      the link.  This function also clears PHYRDY_CHG before
3573 *      returning.
3574 *
3575 *      LOCKING:
3576 *      EH context.
3577 *
3578 *      RETURNS:
3579 *      0 on succes, -errno otherwise.
3580 */
3581int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3582                      bool spm_wakeup)
3583{
3584        struct ata_eh_context *ehc = &link->eh_context;
3585        bool woken_up = false;
3586        u32 scontrol;
3587        int rc;
3588
3589        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3590        if (rc)
3591                return rc;
3592
3593        switch (policy) {
3594        case ATA_LPM_MAX_POWER:
3595                /* disable all LPM transitions */
3596                scontrol |= (0x3 << 8);
3597                /* initiate transition to active state */
3598                if (spm_wakeup) {
3599                        scontrol |= (0x4 << 12);
3600                        woken_up = true;
3601                }
3602                break;
3603        case ATA_LPM_MED_POWER:
3604                /* allow LPM to PARTIAL */
3605                scontrol &= ~(0x1 << 8);
3606                scontrol |= (0x2 << 8);
3607                break;
3608        case ATA_LPM_MIN_POWER:
3609                if (ata_link_nr_enabled(link) > 0)
3610                        /* no restrictions on LPM transitions */
3611                        scontrol &= ~(0x3 << 8);
3612                else {
3613                        /* empty port, power off */
3614                        scontrol &= ~0xf;
3615                        scontrol |= (0x1 << 2);
3616                }
3617                break;
3618        default:
3619                WARN_ON(1);
3620        }
3621
3622        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3623        if (rc)
3624                return rc;
3625
3626        /* give the link time to transit out of LPM state */
3627        if (woken_up)
3628                msleep(10);
3629
3630        /* clear PHYRDY_CHG from SError */
3631        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3632        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3633}
3634
3635/**
3636 *      ata_std_prereset - prepare for reset
3637 *      @link: ATA link to be reset
3638 *      @deadline: deadline jiffies for the operation
3639 *
3640 *      @link is about to be reset.  Initialize it.  Failure from
3641 *      prereset makes libata abort whole reset sequence and give up
3642 *      that port, so prereset should be best-effort.  It does its
3643 *      best to prepare for reset sequence but if things go wrong, it
3644 *      should just whine, not fail.
3645 *
3646 *      LOCKING:
3647 *      Kernel thread context (may sleep)
3648 *
3649 *      RETURNS:
3650 *      0 on success, -errno otherwise.
3651 */
3652int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3653{
3654        struct ata_port *ap = link->ap;
3655        struct ata_eh_context *ehc = &link->eh_context;
3656        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3657        int rc;
3658
3659        /* if we're about to do hardreset, nothing more to do */
3660        if (ehc->i.action & ATA_EH_HARDRESET)
3661                return 0;
3662
3663        /* if SATA, resume link */
3664        if (ap->flags & ATA_FLAG_SATA) {
3665                rc = sata_link_resume(link, timing, deadline);
3666                /* whine about phy resume failure but proceed */
3667                if (rc && rc != -EOPNOTSUPP)
3668                        ata_link_warn(link,
3669                                      "failed to resume link for reset (errno=%d)\n",
3670                                      rc);
3671        }
3672
3673        /* no point in trying softreset on offline link */
3674        if (ata_phys_link_offline(link))
3675                ehc->i.action &= ~ATA_EH_SOFTRESET;
3676
3677        return 0;
3678}
3679
3680/**
3681 *      sata_link_hardreset - reset link via SATA phy reset
3682 *      @link: link to reset
3683 *      @timing: timing parameters { interval, duratinon, timeout } in msec
3684 *      @deadline: deadline jiffies for the operation
3685 *      @online: optional out parameter indicating link onlineness
3686 *      @check_ready: optional callback to check link readiness
3687 *
3688 *      SATA phy-reset @link using DET bits of SControl register.
3689 *      After hardreset, link readiness is waited upon using
3690 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3691 *      allowed to not specify @check_ready and wait itself after this
3692 *      function returns.  Device classification is LLD's
3693 *      responsibility.
3694 *
3695 *      *@online is set to one iff reset succeeded and @link is online
3696 *      after reset.
3697 *
3698 *      LOCKING:
3699 *      Kernel thread context (may sleep)
3700 *
3701 *      RETURNS:
3702 *      0 on success, -errno otherwise.
3703 */
3704int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3705                        unsigned long deadline,
3706                        bool *online, int (*check_ready)(struct ata_link *))
3707{
3708        u32 scontrol;
3709        int rc;
3710
3711        DPRINTK("ENTER\n");
3712
3713        if (online)
3714                *online = false;
3715
3716        if (sata_set_spd_needed(link)) {
3717                /* SATA spec says nothing about how to reconfigure
3718                 * spd.  To be on the safe side, turn off phy during
3719                 * reconfiguration.  This works for at least ICH7 AHCI
3720                 * and Sil3124.
3721                 */
3722                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3723                        goto out;
3724
3725                scontrol = (scontrol & 0x0f0) | 0x304;
3726
3727                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3728                        goto out;
3729
3730                sata_set_spd(link);
3731        }
3732
3733        /* issue phy wake/reset */
3734        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3735                goto out;
3736
3737        scontrol = (scontrol & 0x0f0) | 0x301;
3738
3739        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3740                goto out;
3741
3742        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3743         * 10.4.2 says at least 1 ms.
3744         */
3745        ata_msleep(link->ap, 1);
3746
3747        /* bring link back */
3748        rc = sata_link_resume(link, timing, deadline);
3749        if (rc)
3750                goto out;
3751        /* if link is offline nothing more to do */
3752        if (ata_phys_link_offline(link))
3753                goto out;
3754
3755        /* Link is online.  From this point, -ENODEV too is an error. */
3756        if (online)
3757                *online = true;
3758
3759        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3760                /* If PMP is supported, we have to do follow-up SRST.
3761                 * Some PMPs don't send D2H Reg FIS after hardreset if
3762                 * the first port is empty.  Wait only for
3763                 * ATA_TMOUT_PMP_SRST_WAIT.
3764                 */
3765                if (check_ready) {
3766                        unsigned long pmp_deadline;
3767
3768                        pmp_deadline = ata_deadline(jiffies,
3769                                                    ATA_TMOUT_PMP_SRST_WAIT);
3770                        if (time_after(pmp_deadline, deadline))
3771                                pmp_deadline = deadline;
3772                        ata_wait_ready(link, pmp_deadline, check_ready);
3773                }
3774                rc = -EAGAIN;
3775                goto out;
3776        }
3777
3778        rc = 0;
3779        if (check_ready)
3780                rc = ata_wait_ready(link, deadline, check_ready);
3781 out:
3782        if (rc && rc != -EAGAIN) {
3783                /* online is set iff link is online && reset succeeded */
3784                if (online)
3785                        *online = false;
3786                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3787        }
3788        DPRINTK("EXIT, rc=%d\n", rc);
3789        return rc;
3790}
3791
3792/**
3793 *      sata_std_hardreset - COMRESET w/o waiting or classification
3794 *      @link: link to reset
3795 *      @class: resulting class of attached device
3796 *      @deadline: deadline jiffies for the operation
3797 *
3798 *      Standard SATA COMRESET w/o waiting or classification.
3799 *
3800 *      LOCKING:
3801 *      Kernel thread context (may sleep)
3802 *
3803 *      RETURNS:
3804 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3805 */
3806int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3807                       unsigned long deadline)
3808{
3809        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3810        bool online;
3811        int rc;
3812
3813        /* do hardreset */
3814        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3815        return online ? -EAGAIN : rc;
3816}
3817
3818/**
3819 *      ata_std_postreset - standard postreset callback
3820 *      @link: the target ata_link
3821 *      @classes: classes of attached devices
3822 *
3823 *      This function is invoked after a successful reset.  Note that
3824 *      the device might have been reset more than once using
3825 *      different reset methods before postreset is invoked.
3826 *
3827 *      LOCKING:
3828 *      Kernel thread context (may sleep)
3829 */
3830void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3831{
3832        u32 serror;
3833
3834        DPRINTK("ENTER\n");
3835
3836        /* reset complete, clear SError */
3837        if (!sata_scr_read(link, SCR_ERROR, &serror))
3838                sata_scr_write(link, SCR_ERROR, serror);
3839
3840        /* print link status */
3841        sata_print_link_status(link);
3842
3843        DPRINTK("EXIT\n");
3844}
3845
3846/**
3847 *      ata_dev_same_device - Determine whether new ID matches configured device
3848 *      @dev: device to compare against
3849 *      @new_class: class of the new device
3850 *      @new_id: IDENTIFY page of the new device
3851 *
3852 *      Compare @new_class and @new_id against @dev and determine
3853 *      whether @dev is the device indicated by @new_class and
3854 *      @new_id.
3855 *
3856 *      LOCKING:
3857 *      None.
3858 *
3859 *      RETURNS:
3860 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3861 */
3862static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3863                               const u16 *new_id)
3864{
3865        const u16 *old_id = dev->id;
3866        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3867        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3868
3869        if (dev->class != new_class) {
3870                ata_dev_info(dev, "class mismatch %d != %d\n",
3871                             dev->class, new_class);
3872                return 0;
3873        }
3874
3875        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3876        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3877        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3878        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3879
3880        if (strcmp(model[0], model[1])) {
3881                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3882                             model[0], model[1]);
3883                return 0;
3884        }
3885
3886        if (strcmp(serial[0], serial[1])) {
3887                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3888                             serial[0], serial[1]);
3889                return 0;
3890        }
3891
3892        return 1;
3893}
3894
3895/**
3896 *      ata_dev_reread_id - Re-read IDENTIFY data
3897 *      @dev: target ATA device
3898 *      @readid_flags: read ID flags
3899 *
3900 *      Re-read IDENTIFY page and make sure @dev is still attached to
3901 *      the port.
3902 *
3903 *      LOCKING:
3904 *      Kernel thread context (may sleep)
3905 *
3906 *      RETURNS:
3907 *      0 on success, negative errno otherwise
3908 */
3909int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3910{
3911        unsigned int class = dev->class;
3912        u16 *id = (void *)dev->link->ap->sector_buf;
3913        int rc;
3914
3915        /* read ID data */
3916        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3917        if (rc)
3918                return rc;
3919
3920        /* is the device still there? */
3921        if (!ata_dev_same_device(dev, class, id))
3922                return -ENODEV;
3923
3924        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3925        return 0;
3926}
3927
3928/**
3929 *      ata_dev_revalidate - Revalidate ATA device
3930 *      @dev: device to revalidate
3931 *      @new_class: new class code
3932 *      @readid_flags: read ID flags
3933 *
3934 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3935 *      port and reconfigure it according to the new IDENTIFY page.
3936 *
3937 *      LOCKING:
3938 *      Kernel thread context (may sleep)
3939 *
3940 *      RETURNS:
3941 *      0 on success, negative errno otherwise
3942 */
3943int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3944                       unsigned int readid_flags)
3945{
3946        u64 n_sectors = dev->n_sectors;
3947        u64 n_native_sectors = dev->n_native_sectors;
3948        int rc;
3949
3950        if (!ata_dev_enabled(dev))
3951                return -ENODEV;
3952
3953        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3954        if (ata_class_enabled(new_class) &&
3955            new_class != ATA_DEV_ATA &&
3956            new_class != ATA_DEV_ATAPI &&
3957            new_class != ATA_DEV_SEMB) {
3958                ata_dev_info(dev, "class mismatch %u != %u\n",
3959                             dev->class, new_class);
3960                rc = -ENODEV;
3961                goto fail;
3962        }
3963
3964        /* re-read ID */
3965        rc = ata_dev_reread_id(dev, readid_flags);
3966        if (rc)
3967                goto fail;
3968
3969        /* configure device according to the new ID */
3970        rc = ata_dev_configure(dev);
3971        if (rc)
3972                goto fail;
3973
3974        /* verify n_sectors hasn't changed */
3975        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3976            dev->n_sectors == n_sectors)
3977                return 0;
3978
3979        /* n_sectors has changed */
3980        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3981                     (unsigned long long)n_sectors,
3982                     (unsigned long long)dev->n_sectors);
3983
3984        /*
3985         * Something could have caused HPA to be unlocked
3986         * involuntarily.  If n_native_sectors hasn't changed and the
3987         * new size matches it, keep the device.
3988         */
3989        if (dev->n_native_sectors == n_native_sectors &&
3990            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3991                ata_dev_warn(dev,
3992                             "new n_sectors matches native, probably "
3993                             "late HPA unlock, n_sectors updated\n");
3994                /* use the larger n_sectors */
3995                return 0;
3996        }
3997
3998        /*
3999         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4000         * unlocking HPA in those cases.
4001         *
4002         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4003         */
4004        if (dev->n_native_sectors == n_native_sectors &&
4005            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4006            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4007                ata_dev_warn(dev,
4008                             "old n_sectors matches native, probably "
4009                             "late HPA lock, will try to unlock HPA\n");
4010                /* try unlocking HPA */
4011                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4012                rc = -EIO;
4013        } else
4014                rc = -ENODEV;
4015
4016        /* restore original n_[native_]sectors and fail */
4017        dev->n_native_sectors = n_native_sectors;
4018        dev->n_sectors = n_sectors;
4019 fail:
4020        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4021        return rc;
4022}
4023
4024struct ata_blacklist_entry {
4025        const char *model_num;
4026        const char *model_rev;
4027        unsigned long horkage;
4028};
4029
4030static const struct ata_blacklist_entry ata_device_blacklist [] = {
4031        /* Devices with DMA related problems under Linux */
4032        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4033        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4034        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4035        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4036        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4037        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4038        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4039        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4040        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4041        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4042        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4043        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4044        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4045        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4046        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4047        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4048        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4049        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4050        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4051        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4052        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4053        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4054        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4055        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4056        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4057        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4058        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4059        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4060        { "2GB ATA Flash Disk", "ADMA428M",     ATA_HORKAGE_NODMA },
4061        /* Odd clown on sil3726/4726 PMPs */
4062        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4063
4064        /* Weird ATAPI devices */
4065        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4066        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4067
4068        /* Devices we expect to fail diagnostics */
4069
4070        /* Devices where NCQ should be avoided */
4071        /* NCQ is slow */
4072        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4073        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4074        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4075        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4076        /* NCQ is broken */
4077        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4078        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4079        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4080        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4081        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4082
4083        /* Seagate NCQ + FLUSH CACHE firmware bug */
4084        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4085                                                ATA_HORKAGE_FIRMWARE_WARN },
4086
4087        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4088                                                ATA_HORKAGE_FIRMWARE_WARN },
4089
4090        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4091                                                ATA_HORKAGE_FIRMWARE_WARN },
4092
4093        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4094                                                ATA_HORKAGE_FIRMWARE_WARN },
4095
4096        /* Blacklist entries taken from Silicon Image 3124/3132
4097           Windows driver .inf file - also several Linux problem reports */
4098        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4099        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4100        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4101
4102        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4103        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4104
4105        /* devices which puke on READ_NATIVE_MAX */
4106        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4107        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4108        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4109        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4110
4111        /* this one allows HPA unlocking but fails IOs on the area */
4112        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4113
4114        /* Devices which report 1 sector over size HPA */
4115        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4116        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4117        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4118
4119        /* Devices which get the IVB wrong */
4120        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4121        /* Maybe we should just blacklist TSSTcorp... */
4122        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4123
4124        /* Devices that do not need bridging limits applied */
4125        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4126
4127        /* Devices which aren't very happy with higher link speeds */
4128        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4129
4130        /*
4131         * Devices which choke on SETXFER.  Applies only if both the
4132         * device and controller are SATA.
4133         */
4134        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4135        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4136        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4137        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4138        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4139
4140        /* End Marker */
4141        { }
4142};
4143
4144/**
4145 *      glob_match - match a text string against a glob-style pattern
4146 *      @text: the string to be examined
4147 *      @pattern: the glob-style pattern to be matched against
4148 *
4149 *      Either/both of text and pattern can be empty strings.
4150 *
4151 *      Match text against a glob-style pattern, with wildcards and simple sets:
4152 *
4153 *              ?       matches any single character.
4154 *              *       matches any run of characters.
4155 *              [xyz]   matches a single character from the set: x, y, or z.
4156 *              [a-d]   matches a single character from the range: a, b, c, or d.
4157 *              [a-d0-9] matches a single character from either range.
4158 *
4159 *      The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4160 *      Behaviour with malformed patterns is undefined, though generally reasonable.
4161 *
4162 *      Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4163 *
4164 *      This function uses one level of recursion per '*' in pattern.
4165 *      Since it calls _nothing_ else, and has _no_ explicit local variables,
4166 *      this will not cause stack problems for any reasonable use here.
4167 *
4168 *      RETURNS:
4169 *      0 on match, 1 otherwise.
4170 */
4171static int glob_match (const char *text, const char *pattern)
4172{
4173        do {
4174                /* Match single character or a '?' wildcard */
4175                if (*text == *pattern || *pattern == '?') {
4176                        if (!*pattern++)
4177                                return 0;  /* End of both strings: match */
4178                } else {
4179                        /* Match single char against a '[' bracketed ']' pattern set */
4180                        if (!*text || *pattern != '[')
4181                                break;  /* Not a pattern set */
4182                        while (*++pattern && *pattern != ']' && *text != *pattern) {
4183                                if (*pattern == '-' && *(pattern - 1) != '[')
4184                                        if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4185                                                ++pattern;
4186                                                break;
4187                                        }
4188                        }
4189                        if (!*pattern || *pattern == ']')
4190                                return 1;  /* No match */
4191                        while (*pattern && *pattern++ != ']');
4192                }
4193        } while (*++text && *pattern);
4194
4195        /* Match any run of chars against a '*' wildcard */
4196        if (*pattern == '*') {
4197                if (!*++pattern)
4198                        return 0;  /* Match: avoid recursion at end of pattern */
4199                /* Loop to handle additional pattern chars after the wildcard */
4200                while (*text) {
4201                        if (glob_match(text, pattern) == 0)
4202                                return 0;  /* Remainder matched */
4203                        ++text;  /* Absorb (match) this char and try again */
4204                }
4205        }
4206        if (!*text && !*pattern)
4207                return 0;  /* End of both strings: match */
4208        return 1;  /* No match */
4209}
4210
4211static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4212{
4213        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4214        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4215        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4216
4217        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4218        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4219
4220        while (ad->model_num) {
4221                if (!glob_match(model_num, ad->model_num)) {
4222                        if (ad->model_rev == NULL)
4223                                return ad->horkage;
4224                        if (!glob_match(model_rev, ad->model_rev))
4225                                return ad->horkage;
4226                }
4227                ad++;
4228        }
4229        return 0;
4230}
4231
4232static int ata_dma_blacklisted(const struct ata_device *dev)
4233{
4234        /* We don't support polling DMA.
4235         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4236         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4237         */
4238        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4239            (dev->flags & ATA_DFLAG_CDB_INTR))
4240                return 1;
4241        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4242}
4243
4244/**
4245 *      ata_is_40wire           -       check drive side detection
4246 *      @dev: device
4247 *
4248 *      Perform drive side detection decoding, allowing for device vendors
4249 *      who can't follow the documentation.
4250 */
4251
4252static int ata_is_40wire(struct ata_device *dev)
4253{
4254        if (dev->horkage & ATA_HORKAGE_IVB)
4255                return ata_drive_40wire_relaxed(dev->id);
4256        return ata_drive_40wire(dev->id);
4257}
4258
4259/**
4260 *      cable_is_40wire         -       40/80/SATA decider
4261 *      @ap: port to consider
4262 *
4263 *      This function encapsulates the policy for speed management
4264 *      in one place. At the moment we don't cache the result but
4265 *      there is a good case for setting ap->cbl to the result when
4266 *      we are called with unknown cables (and figuring out if it
4267 *      impacts hotplug at all).
4268 *
4269 *      Return 1 if the cable appears to be 40 wire.
4270 */
4271
4272static int cable_is_40wire(struct ata_port *ap)
4273{
4274        struct ata_link *link;
4275        struct ata_device *dev;
4276
4277        /* If the controller thinks we are 40 wire, we are. */
4278        if (ap->cbl == ATA_CBL_PATA40)
4279                return 1;
4280
4281        /* If the controller thinks we are 80 wire, we are. */
4282        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4283                return 0;
4284
4285        /* If the system is known to be 40 wire short cable (eg
4286         * laptop), then we allow 80 wire modes even if the drive
4287         * isn't sure.
4288         */
4289        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4290                return 0;
4291
4292        /* If the controller doesn't know, we scan.
4293         *
4294         * Note: We look for all 40 wire detects at this point.  Any
4295         *       80 wire detect is taken to be 80 wire cable because
4296         * - in many setups only the one drive (slave if present) will
4297         *   give a valid detect
4298         * - if you have a non detect capable drive you don't want it
4299         *   to colour the choice
4300         */
4301        ata_for_each_link(link, ap, EDGE) {
4302                ata_for_each_dev(dev, link, ENABLED) {
4303                        if (!ata_is_40wire(dev))
4304                                return 0;
4305                }
4306        }
4307        return 1;
4308}
4309
4310/**
4311 *      ata_dev_xfermask - Compute supported xfermask of the given device
4312 *      @dev: Device to compute xfermask for
4313 *
4314 *      Compute supported xfermask of @dev and store it in
4315 *      dev->*_mask.  This function is responsible for applying all
4316 *      known limits including host controller limits, device
4317 *      blacklist, etc...
4318 *
4319 *      LOCKING:
4320 *      None.
4321 */
4322static void ata_dev_xfermask(struct ata_device *dev)
4323{
4324        struct ata_link *link = dev->link;
4325        struct ata_port *ap = link->ap;
4326        struct ata_host *host = ap->host;
4327        unsigned long xfer_mask;
4328
4329        /* controller modes available */
4330        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4331                                      ap->mwdma_mask, ap->udma_mask);
4332
4333        /* drive modes available */
4334        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4335                                       dev->mwdma_mask, dev->udma_mask);
4336        xfer_mask &= ata_id_xfermask(dev->id);
4337
4338        /*
4339         *      CFA Advanced TrueIDE timings are not allowed on a shared
4340         *      cable
4341         */
4342        if (ata_dev_pair(dev)) {
4343                /* No PIO5 or PIO6 */
4344                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4345                /* No MWDMA3 or MWDMA 4 */
4346                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4347        }
4348
4349        if (ata_dma_blacklisted(dev)) {
4350                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4351                ata_dev_warn(dev,
4352                             "device is on DMA blacklist, disabling DMA\n");
4353        }
4354
4355        if ((host->flags & ATA_HOST_SIMPLEX) &&
4356            host->simplex_claimed && host->simplex_claimed != ap) {
4357                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4358                ata_dev_warn(dev,
4359                             "simplex DMA is claimed by other device, disabling DMA\n");
4360        }
4361
4362        if (ap->flags & ATA_FLAG_NO_IORDY)
4363                xfer_mask &= ata_pio_mask_no_iordy(dev);
4364
4365        if (ap->ops->mode_filter)
4366                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4367
4368        /* Apply cable rule here.  Don't apply it early because when
4369         * we handle hot plug the cable type can itself change.
4370         * Check this last so that we know if the transfer rate was
4371         * solely limited by the cable.
4372         * Unknown or 80 wire cables reported host side are checked
4373         * drive side as well. Cases where we know a 40wire cable
4374         * is used safely for 80 are not checked here.
4375         */
4376        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4377                /* UDMA/44 or higher would be available */
4378                if (cable_is_40wire(ap)) {
4379                        ata_dev_warn(dev,
4380                                     "limited to UDMA/33 due to 40-wire cable\n");
4381                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4382                }
4383
4384        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4385                            &dev->mwdma_mask, &dev->udma_mask);
4386}
4387
4388/**
4389 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4390 *      @dev: Device to which command will be sent
4391 *
4392 *      Issue SET FEATURES - XFER MODE command to device @dev
4393 *      on port @ap.
4394 *
4395 *      LOCKING:
4396 *      PCI/etc. bus probe sem.
4397 *
4398 *      RETURNS:
4399 *      0 on success, AC_ERR_* mask otherwise.
4400 */
4401
4402static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4403{
4404        struct ata_taskfile tf;
4405        unsigned int err_mask;
4406
4407        /* set up set-features taskfile */
4408        DPRINTK("set features - xfer mode\n");
4409
4410        /* Some controllers and ATAPI devices show flaky interrupt
4411         * behavior after setting xfer mode.  Use polling instead.
4412         */
4413        ata_tf_init(dev, &tf);
4414        tf.command = ATA_CMD_SET_FEATURES;
4415        tf.feature = SETFEATURES_XFER;
4416        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4417        tf.protocol = ATA_PROT_NODATA;
4418        /* If we are using IORDY we must send the mode setting command */
4419        if (ata_pio_need_iordy(dev))
4420                tf.nsect = dev->xfer_mode;
4421        /* If the device has IORDY and the controller does not - turn it off */
4422        else if (ata_id_has_iordy(dev->id))
4423                tf.nsect = 0x01;
4424        else /* In the ancient relic department - skip all of this */
4425                return 0;
4426
4427        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4428
4429        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4430        return err_mask;
4431}
4432
4433/**
4434 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4435 *      @dev: Device to which command will be sent
4436 *      @enable: Whether to enable or disable the feature
4437 *      @feature: The sector count represents the feature to set
4438 *
4439 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4440 *      on port @ap with sector count
4441 *
4442 *      LOCKING:
4443 *      PCI/etc. bus probe sem.
4444 *
4445 *      RETURNS:
4446 *      0 on success, AC_ERR_* mask otherwise.
4447 */
4448unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4449{
4450        struct ata_taskfile tf;
4451        unsigned int err_mask;
4452
4453        /* set up set-features taskfile */
4454        DPRINTK("set features - SATA features\n");
4455
4456        ata_tf_init(dev, &tf);
4457        tf.command = ATA_CMD_SET_FEATURES;
4458        tf.feature = enable;
4459        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4460        tf.protocol = ATA_PROT_NODATA;
4461        tf.nsect = feature;
4462
4463        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4464
4465        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4466        return err_mask;
4467}
4468
4469/**
4470 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4471 *      @dev: Device to which command will be sent
4472 *      @heads: Number of heads (taskfile parameter)
4473 *      @sectors: Number of sectors (taskfile parameter)
4474 *
4475 *      LOCKING:
4476 *      Kernel thread context (may sleep)
4477 *
4478 *      RETURNS:
4479 *      0 on success, AC_ERR_* mask otherwise.
4480 */
4481static unsigned int ata_dev_init_params(struct ata_device *dev,
4482                                        u16 heads, u16 sectors)
4483{
4484        struct ata_taskfile tf;
4485        unsigned int err_mask;
4486
4487        /* Number of sectors per track 1-255. Number of heads 1-16 */
4488        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4489                return AC_ERR_INVALID;
4490
4491        /* set up init dev params taskfile */
4492        DPRINTK("init dev params \n");
4493
4494        ata_tf_init(dev, &tf);
4495        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4496        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4497        tf.protocol = ATA_PROT_NODATA;
4498        tf.nsect = sectors;
4499        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4500
4501        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4502        /* A clean abort indicates an original or just out of spec drive
4503           and we should continue as we issue the setup based on the
4504           drive reported working geometry */
4505        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4506                err_mask = 0;
4507
4508        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509        return err_mask;
4510}
4511
4512/**
4513 *      ata_sg_clean - Unmap DMA memory associated with command
4514 *      @qc: Command containing DMA memory to be released
4515 *
4516 *      Unmap all mapped DMA memory associated with this command.
4517 *
4518 *      LOCKING:
4519 *      spin_lock_irqsave(host lock)
4520 */
4521void ata_sg_clean(struct ata_queued_cmd *qc)
4522{
4523        struct ata_port *ap = qc->ap;
4524        struct scatterlist *sg = qc->sg;
4525        int dir = qc->dma_dir;
4526
4527        WARN_ON_ONCE(sg == NULL);
4528
4529        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4530
4531        if (qc->n_elem)
4532                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4533
4534        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535        qc->sg = NULL;
4536}
4537
4538/**
4539 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4540 *      @qc: Metadata associated with taskfile to check
4541 *
4542 *      Allow low-level driver to filter ATA PACKET commands, returning
4543 *      a status indicating whether or not it is OK to use DMA for the
4544 *      supplied PACKET command.
4545 *
4546 *      LOCKING:
4547 *      spin_lock_irqsave(host lock)
4548 *
4549 *      RETURNS: 0 when ATAPI DMA can be used
4550 *               nonzero otherwise
4551 */
4552int atapi_check_dma(struct ata_queued_cmd *qc)
4553{
4554        struct ata_port *ap = qc->ap;
4555
4556        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4557         * few ATAPI devices choke on such DMA requests.
4558         */
4559        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4560            unlikely(qc->nbytes & 15))
4561                return 1;
4562
4563        if (ap->ops->check_atapi_dma)
4564                return ap->ops->check_atapi_dma(qc);
4565
4566        return 0;
4567}
4568
4569/**
4570 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4571 *      @qc: ATA command in question
4572 *
4573 *      Non-NCQ commands cannot run with any other command, NCQ or
4574 *      not.  As upper layer only knows the queue depth, we are
4575 *      responsible for maintaining exclusion.  This function checks
4576 *      whether a new command @qc can be issued.
4577 *
4578 *      LOCKING:
4579 *      spin_lock_irqsave(host lock)
4580 *
4581 *      RETURNS:
4582 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4583 */
4584int ata_std_qc_defer(struct ata_queued_cmd *qc)
4585{
4586        struct ata_link *link = qc->dev->link;
4587
4588        if (qc->tf.protocol == ATA_PROT_NCQ) {
4589                if (!ata_tag_valid(link->active_tag))
4590                        return 0;
4591        } else {
4592                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4593                        return 0;
4594        }
4595
4596        return ATA_DEFER_LINK;
4597}
4598
4599void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4600
4601/**
4602 *      ata_sg_init - Associate command with scatter-gather table.
4603 *      @qc: Command to be associated
4604 *      @sg: Scatter-gather table.
4605 *      @n_elem: Number of elements in s/g table.
4606 *
4607 *      Initialize the data-related elements of queued_cmd @qc
4608 *      to point to a scatter-gather table @sg, containing @n_elem
4609 *      elements.
4610 *
4611 *      LOCKING:
4612 *      spin_lock_irqsave(host lock)
4613 */
4614void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4615                 unsigned int n_elem)
4616{
4617        qc->sg = sg;
4618        qc->n_elem = n_elem;
4619        qc->cursg = qc->sg;
4620}
4621
4622/**
4623 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4624 *      @qc: Command with scatter-gather table to be mapped.
4625 *
4626 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4627 *
4628 *      LOCKING:
4629 *      spin_lock_irqsave(host lock)
4630 *
4631 *      RETURNS:
4632 *      Zero on success, negative on error.
4633 *
4634 */
4635static int ata_sg_setup(struct ata_queued_cmd *qc)
4636{
4637        struct ata_port *ap = qc->ap;
4638        unsigned int n_elem;
4639
4640        VPRINTK("ENTER, ata%u\n", ap->print_id);
4641
4642        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4643        if (n_elem < 1)
4644                return -1;
4645
4646        DPRINTK("%d sg elements mapped\n", n_elem);
4647        qc->orig_n_elem = qc->n_elem;
4648        qc->n_elem = n_elem;
4649        qc->flags |= ATA_QCFLAG_DMAMAP;
4650
4651        return 0;
4652}
4653
4654/**
4655 *      swap_buf_le16 - swap halves of 16-bit words in place
4656 *      @buf:  Buffer to swap
4657 *      @buf_words:  Number of 16-bit words in buffer.
4658 *
4659 *      Swap halves of 16-bit words if needed to convert from
4660 *      little-endian byte order to native cpu byte order, or
4661 *      vice-versa.
4662 *
4663 *      LOCKING:
4664 *      Inherited from caller.
4665 */
4666void swap_buf_le16(u16 *buf, unsigned int buf_words)
4667{
4668#ifdef __BIG_ENDIAN
4669        unsigned int i;
4670
4671        for (i = 0; i < buf_words; i++)
4672                buf[i] = le16_to_cpu(buf[i]);
4673#endif /* __BIG_ENDIAN */
4674}
4675
4676/**
4677 *      ata_qc_new - Request an available ATA command, for queueing
4678 *      @ap: target port
4679 *
4680 *      LOCKING:
4681 *      None.
4682 */
4683
4684static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4685{
4686        struct ata_queued_cmd *qc = NULL;
4687        unsigned int i;
4688
4689        /* no command while frozen */
4690        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4691                return NULL;
4692
4693        /* the last tag is reserved for internal command. */
4694        for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4695                if (!test_and_set_bit(i, &ap->qc_allocated)) {
4696                        qc = __ata_qc_from_tag(ap, i);
4697                        break;
4698                }
4699
4700        if (qc)
4701                qc->tag = i;
4702
4703        return qc;
4704}
4705
4706/**
4707 *      ata_qc_new_init - Request an available ATA command, and initialize it
4708 *      @dev: Device from whom we request an available command structure
4709 *
4710 *      LOCKING:
4711 *      None.
4712 */
4713
4714struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4715{
4716        struct ata_port *ap = dev->link->ap;
4717        struct ata_queued_cmd *qc;
4718
4719        qc = ata_qc_new(ap);
4720        if (qc) {
4721                qc->scsicmd = NULL;
4722                qc->ap = ap;
4723                qc->dev = dev;
4724
4725                ata_qc_reinit(qc);
4726        }
4727
4728        return qc;
4729}
4730
4731/**
4732 *      ata_qc_free - free unused ata_queued_cmd
4733 *      @qc: Command to complete
4734 *
4735 *      Designed to free unused ata_queued_cmd object
4736 *      in case something prevents using it.
4737 *
4738 *      LOCKING:
4739 *      spin_lock_irqsave(host lock)
4740 */
4741void ata_qc_free(struct ata_queued_cmd *qc)
4742{
4743        struct ata_port *ap;
4744        unsigned int tag;
4745
4746        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4747        ap = qc->ap;
4748
4749        qc->flags = 0;
4750        tag = qc->tag;
4751        if (likely(ata_tag_valid(tag))) {
4752                qc->tag = ATA_TAG_POISON;
4753                clear_bit(tag, &ap->qc_allocated);
4754        }
4755}
4756
4757void __ata_qc_complete(struct ata_queued_cmd *qc)
4758{
4759        struct ata_port *ap;
4760        struct ata_link *link;
4761
4762        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4763        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4764        ap = qc->ap;
4765        link = qc->dev->link;
4766
4767        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4768                ata_sg_clean(qc);
4769
4770        /* command should be marked inactive atomically with qc completion */
4771        if (qc->tf.protocol == ATA_PROT_NCQ) {
4772                link->sactive &= ~(1 << qc->tag);
4773                if (!link->sactive)
4774                        ap->nr_active_links--;
4775        } else {
4776                link->active_tag = ATA_TAG_POISON;
4777                ap->nr_active_links--;
4778        }
4779
4780        /* clear exclusive status */
4781        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4782                     ap->excl_link == link))
4783                ap->excl_link = NULL;
4784
4785        /* atapi: mark qc as inactive to prevent the interrupt handler
4786         * from completing the command twice later, before the error handler
4787         * is called. (when rc != 0 and atapi request sense is needed)
4788         */
4789        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4790        ap->qc_active &= ~(1 << qc->tag);
4791
4792        /* call completion callback */
4793        qc->complete_fn(qc);
4794}
4795
4796static void fill_result_tf(struct ata_queued_cmd *qc)
4797{
4798        struct ata_port *ap = qc->ap;
4799
4800        qc->result_tf.flags = qc->tf.flags;
4801        ap->ops->qc_fill_rtf(qc);
4802}
4803
4804static void ata_verify_xfer(struct ata_queued_cmd *qc)
4805{
4806        struct ata_device *dev = qc->dev;
4807
4808        if (ata_is_nodata(qc->tf.protocol))
4809                return;
4810
4811        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4812                return;
4813
4814        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4815}
4816
4817/**
4818 *      ata_qc_complete - Complete an active ATA command
4819 *      @qc: Command to complete
4820 *
4821 *      Indicate to the mid and upper layers that an ATA command has
4822 *      completed, with either an ok or not-ok status.
4823 *
4824 *      Refrain from calling this function multiple times when
4825 *      successfully completing multiple NCQ commands.
4826 *      ata_qc_complete_multiple() should be used instead, which will
4827 *      properly update IRQ expect state.
4828 *
4829 *      LOCKING:
4830 *      spin_lock_irqsave(host lock)
4831 */
4832void ata_qc_complete(struct ata_queued_cmd *qc)
4833{
4834        struct ata_port *ap = qc->ap;
4835
4836        /* XXX: New EH and old EH use different mechanisms to
4837         * synchronize EH with regular execution path.
4838         *
4839         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4840         * Normal execution path is responsible for not accessing a
4841         * failed qc.  libata core enforces the rule by returning NULL
4842         * from ata_qc_from_tag() for failed qcs.
4843         *
4844         * Old EH depends on ata_qc_complete() nullifying completion
4845         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4846         * not synchronize with interrupt handler.  Only PIO task is
4847         * taken care of.
4848         */
4849        if (ap->ops->error_handler) {
4850                struct ata_device *dev = qc->dev;
4851                struct ata_eh_info *ehi = &dev->link->eh_info;
4852
4853                if (unlikely(qc->err_mask))
4854                        qc->flags |= ATA_QCFLAG_FAILED;
4855
4856                /*
4857                 * Finish internal commands without any further processing
4858                 * and always with the result TF filled.
4859                 */
4860                if (unlikely(ata_tag_internal(qc->tag))) {
4861                        fill_result_tf(qc);
4862                        __ata_qc_complete(qc);
4863                        return;
4864                }
4865
4866                /*
4867                 * Non-internal qc has failed.  Fill the result TF and
4868                 * summon EH.
4869                 */
4870                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4871                        fill_result_tf(qc);
4872                        ata_qc_schedule_eh(qc);
4873                        return;
4874                }
4875
4876                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4877
4878                /* read result TF if requested */
4879                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4880                        fill_result_tf(qc);
4881
4882                /* Some commands need post-processing after successful
4883                 * completion.
4884                 */
4885                switch (qc->tf.command) {
4886                case ATA_CMD_SET_FEATURES:
4887                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4888                            qc->tf.feature != SETFEATURES_WC_OFF)
4889                                break;
4890                        /* fall through */
4891                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4892                case ATA_CMD_SET_MULTI: /* multi_count changed */
4893                        /* revalidate device */
4894                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4895                        ata_port_schedule_eh(ap);
4896                        break;
4897
4898                case ATA_CMD_SLEEP:
4899                        dev->flags |= ATA_DFLAG_SLEEPING;
4900                        break;
4901                }
4902
4903                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4904                        ata_verify_xfer(qc);
4905
4906                __ata_qc_complete(qc);
4907        } else {
4908                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4909                        return;
4910
4911                /* read result TF if failed or requested */
4912                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4913                        fill_result_tf(qc);
4914
4915                __ata_qc_complete(qc);
4916        }
4917}
4918
4919/**
4920 *      ata_qc_complete_multiple - Complete multiple qcs successfully
4921 *      @ap: port in question
4922 *      @qc_active: new qc_active mask
4923 *
4924 *      Complete in-flight commands.  This functions is meant to be
4925 *      called from low-level driver's interrupt routine to complete
4926 *      requests normally.  ap->qc_active and @qc_active is compared
4927 *      and commands are completed accordingly.
4928 *
4929 *      Always use this function when completing multiple NCQ commands
4930 *      from IRQ handlers instead of calling ata_qc_complete()
4931 *      multiple times to keep IRQ expect status properly in sync.
4932 *
4933 *      LOCKING:
4934 *      spin_lock_irqsave(host lock)
4935 *
4936 *      RETURNS:
4937 *      Number of completed commands on success, -errno otherwise.
4938 */
4939int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4940{
4941        int nr_done = 0;
4942        u32 done_mask;
4943
4944        done_mask = ap->qc_active ^ qc_active;
4945
4946        if (unlikely(done_mask & qc_active)) {
4947                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4948                             ap->qc_active, qc_active);
4949                return -EINVAL;
4950        }
4951
4952        while (done_mask) {
4953                struct ata_queued_cmd *qc;
4954                unsigned int tag = __ffs(done_mask);
4955
4956                qc = ata_qc_from_tag(ap, tag);
4957                if (qc) {
4958                        ata_qc_complete(qc);
4959                        nr_done++;
4960                }
4961                done_mask &= ~(1 << tag);
4962        }
4963
4964        return nr_done;
4965}
4966
4967/**
4968 *      ata_qc_issue - issue taskfile to device
4969 *      @qc: command to issue to device
4970 *
4971 *      Prepare an ATA command to submission to device.
4972 *      This includes mapping the data into a DMA-able
4973 *      area, filling in the S/G table, and finally
4974 *      writing the taskfile to hardware, starting the command.
4975 *
4976 *      LOCKING:
4977 *      spin_lock_irqsave(host lock)
4978 */
4979void ata_qc_issue(struct ata_queued_cmd *qc)
4980{
4981        struct ata_port *ap = qc->ap;
4982        struct ata_link *link = qc->dev->link;
4983        u8 prot = qc->tf.protocol;
4984
4985        /* Make sure only one non-NCQ command is outstanding.  The
4986         * check is skipped for old EH because it reuses active qc to
4987         * request ATAPI sense.
4988         */
4989        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4990
4991        if (ata_is_ncq(prot)) {
4992                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4993
4994                if (!link->sactive)
4995                        ap->nr_active_links++;
4996                link->sactive |= 1 << qc->tag;
4997        } else {
4998                WARN_ON_ONCE(link->sactive);
4999
5000                ap->nr_active_links++;
5001                link->active_tag = qc->tag;
5002        }
5003
5004        qc->flags |= ATA_QCFLAG_ACTIVE;
5005        ap->qc_active |= 1 << qc->tag;
5006
5007        /*
5008         * We guarantee to LLDs that they will have at least one
5009         * non-zero sg if the command is a data command.
5010         */
5011        if (WARN_ON_ONCE(ata_is_data(prot) &&
5012                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5013                goto sys_err;
5014
5015        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5016                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5017                if (ata_sg_setup(qc))
5018                        goto sys_err;
5019
5020        /* if device is sleeping, schedule reset and abort the link */
5021        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5022                link->eh_info.action |= ATA_EH_RESET;
5023                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5024                ata_link_abort(link);
5025                return;
5026        }
5027
5028        ap->ops->qc_prep(qc);
5029
5030        qc->err_mask |= ap->ops->qc_issue(qc);
5031        if (unlikely(qc->err_mask))
5032                goto err;
5033        return;
5034
5035sys_err:
5036        qc->err_mask |= AC_ERR_SYSTEM;
5037err:
5038        ata_qc_complete(qc);
5039}
5040
5041/**
5042 *      sata_scr_valid - test whether SCRs are accessible
5043 *      @link: ATA link to test SCR accessibility for
5044 *
5045 *      Test whether SCRs are accessible for @link.
5046 *
5047 *      LOCKING:
5048 *      None.
5049 *
5050 *      RETURNS:
5051 *      1 if SCRs are accessible, 0 otherwise.
5052 */
5053int sata_scr_valid(struct ata_link *link)
5054{
5055        struct ata_port *ap = link->ap;
5056
5057        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5058}
5059
5060/**
5061 *      sata_scr_read - read SCR register of the specified port
5062 *      @link: ATA link to read SCR for
5063 *      @reg: SCR to read
5064 *      @val: Place to store read value
5065 *
5066 *      Read SCR register @reg of @link into *@val.  This function is
5067 *      guaranteed to succeed if @link is ap->link, the cable type of
5068 *      the port is SATA and the port implements ->scr_read.
5069 *
5070 *      LOCKING:
5071 *      None if @link is ap->link.  Kernel thread context otherwise.
5072 *
5073 *      RETURNS:
5074 *      0 on success, negative errno on failure.
5075 */
5076int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5077{
5078        if (ata_is_host_link(link)) {
5079                if (sata_scr_valid(link))
5080                        return link->ap->ops->scr_read(link, reg, val);
5081                return -EOPNOTSUPP;
5082        }
5083
5084        return sata_pmp_scr_read(link, reg, val);
5085}
5086
5087/**
5088 *      sata_scr_write - write SCR register of the specified port
5089 *      @link: ATA link to write SCR for
5090 *      @reg: SCR to write
5091 *      @val: value to write
5092 *
5093 *      Write @val to SCR register @reg of @link.  This function is
5094 *      guaranteed to succeed if @link is ap->link, the cable type of
5095 *      the port is SATA and the port implements ->scr_read.
5096 *
5097 *      LOCKING:
5098 *      None if @link is ap->link.  Kernel thread context otherwise.
5099 *
5100 *      RETURNS:
5101 *      0 on success, negative errno on failure.
5102 */
5103int sata_scr_write(struct ata_link *link, int reg, u32 val)
5104{
5105        if (ata_is_host_link(link)) {
5106                if (sata_scr_valid(link))
5107                        return link->ap->ops->scr_write(link, reg, val);
5108                return -EOPNOTSUPP;
5109        }
5110
5111        return sata_pmp_scr_write(link, reg, val);
5112}
5113
5114/**
5115 *      sata_scr_write_flush - write SCR register of the specified port and flush
5116 *      @link: ATA link to write SCR for
5117 *      @reg: SCR to write
5118 *      @val: value to write
5119 *
5120 *      This function is identical to sata_scr_write() except that this
5121 *      function performs flush after writing to the register.
5122 *
5123 *      LOCKING:
5124 *      None if @link is ap->link.  Kernel thread context otherwise.
5125 *
5126 *      RETURNS:
5127 *      0 on success, negative errno on failure.
5128 */
5129int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5130{
5131        if (ata_is_host_link(link)) {
5132                int rc;
5133
5134                if (sata_scr_valid(link)) {
5135                        rc = link->ap->ops->scr_write(link, reg, val);
5136                        if (rc == 0)
5137                                rc = link->ap->ops->scr_read(link, reg, &val);
5138                        return rc;
5139                }
5140                return -EOPNOTSUPP;
5141        }
5142
5143        return sata_pmp_scr_write(link, reg, val);
5144}
5145
5146/**
5147 *      ata_phys_link_online - test whether the given link is online
5148 *      @link: ATA link to test
5149 *
5150 *      Test whether @link is online.  Note that this function returns
5151 *      0 if online status of @link cannot be obtained, so
5152 *      ata_link_online(link) != !ata_link_offline(link).
5153 *
5154 *      LOCKING:
5155 *      None.
5156 *
5157 *      RETURNS:
5158 *      True if the port online status is available and online.
5159 */
5160bool ata_phys_link_online(struct ata_link *link)
5161{
5162        u32 sstatus;
5163
5164        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5165            ata_sstatus_online(sstatus))
5166                return true;
5167        return false;
5168}
5169
5170/**
5171 *      ata_phys_link_offline - test whether the given link is offline
5172 *      @link: ATA link to test
5173 *
5174 *      Test whether @link is offline.  Note that this function
5175 *      returns 0 if offline status of @link cannot be obtained, so
5176 *      ata_link_online(link) != !ata_link_offline(link).
5177 *
5178 *      LOCKING:
5179 *      None.
5180 *
5181 *      RETURNS:
5182 *      True if the port offline status is available and offline.
5183 */
5184bool ata_phys_link_offline(struct ata_link *link)
5185{
5186        u32 sstatus;
5187
5188        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5189            !ata_sstatus_online(sstatus))
5190                return true;
5191        return false;
5192}
5193
5194/**
5195 *      ata_link_online - test whether the given link is online
5196 *      @link: ATA link to test
5197 *
5198 *      Test whether @link is online.  This is identical to
5199 *      ata_phys_link_online() when there's no slave link.  When
5200 *      there's a slave link, this function should only be called on
5201 *      the master link and will return true if any of M/S links is
5202 *      online.
5203 *
5204 *      LOCKING:
5205 *      None.
5206 *
5207 *      RETURNS:
5208 *      True if the port online status is available and online.
5209 */
5210bool ata_link_online(struct ata_link *link)
5211{
5212        struct ata_link *slave = link->ap->slave_link;
5213
5214        WARN_ON(link == slave); /* shouldn't be called on slave link */
5215
5216        return ata_phys_link_online(link) ||
5217                (slave && ata_phys_link_online(slave));
5218}
5219
5220/**
5221 *      ata_link_offline - test whether the given link is offline
5222 *      @link: ATA link to test
5223 *
5224 *      Test whether @link is offline.  This is identical to
5225 *      ata_phys_link_offline() when there's no slave link.  When
5226 *      there's a slave link, this function should only be called on
5227 *      the master link and will return true if both M/S links are
5228 *      offline.
5229 *
5230 *      LOCKING:
5231 *      None.
5232 *
5233 *      RETURNS:
5234 *      True if the port offline status is available and offline.
5235 */
5236bool ata_link_offline(struct ata_link *link)
5237{
5238        struct ata_link *slave = link->ap->slave_link;
5239
5240        WARN_ON(link == slave); /* shouldn't be called on slave link */
5241
5242        return ata_phys_link_offline(link) &&
5243                (!slave || ata_phys_link_offline(slave));
5244}
5245
5246#ifdef CONFIG_PM
5247static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5248                               unsigned int action, unsigned int ehi_flags,
5249                               int wait)
5250{
5251        struct ata_link *link;
5252        unsigned long flags;
5253        int rc;
5254
5255        /* Previous resume operation might still be in
5256         * progress.  Wait for PM_PENDING to clear.
5257         */
5258        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5259                ata_port_wait_eh(ap);
5260                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5261        }
5262
5263        /* request PM ops to EH */
5264        spin_lock_irqsave(ap->lock, flags);
5265
5266        ap->pm_mesg = mesg;
5267        if (wait) {
5268                rc = 0;
5269                ap->pm_result = &rc;
5270        }
5271
5272        ap->pflags |= ATA_PFLAG_PM_PENDING;
5273        ata_for_each_link(link, ap, HOST_FIRST) {
5274                link->eh_info.action |= action;
5275                link->eh_info.flags |= ehi_flags;
5276        }
5277
5278        ata_port_schedule_eh(ap);
5279
5280        spin_unlock_irqrestore(ap->lock, flags);
5281
5282        /* wait and check result */
5283        if (wait) {
5284                ata_port_wait_eh(ap);
5285                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5286        }
5287
5288        return rc;
5289}
5290
5291#define to_ata_port(d) container_of(d, struct ata_port, tdev)
5292
5293static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5294{
5295        struct ata_port *ap = to_ata_port(dev);
5296        unsigned int ehi_flags = ATA_EHI_QUIET;
5297        int rc;
5298
5299        /*
5300         * On some hardware, device fails to respond after spun down
5301         * for suspend.  As the device won't be used before being
5302         * resumed, we don't need to touch the device.  Ask EH to skip
5303         * the usual stuff and proceed directly to suspend.
5304         *
5305         * http://thread.gmane.org/gmane.linux.ide/46764
5306         */
5307        if (mesg.event == PM_EVENT_SUSPEND)
5308                ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5309
5310        rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5311        return rc;
5312}
5313
5314static int ata_port_suspend(struct device *dev)
5315{
5316        if (pm_runtime_suspended(dev))
5317                return 0;
5318
5319        return ata_port_suspend_common(dev, PMSG_SUSPEND);
5320}
5321
5322static int ata_port_do_freeze(struct device *dev)
5323{
5324        if (pm_runtime_suspended(dev))
5325                pm_runtime_resume(dev);
5326
5327        return ata_port_suspend_common(dev, PMSG_FREEZE);
5328}
5329
5330static int ata_port_poweroff(struct device *dev)
5331{
5332        if (pm_runtime_suspended(dev))
5333                return 0;
5334
5335        return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5336}
5337
5338static int ata_port_resume_common(struct device *dev)
5339{
5340        struct ata_port *ap = to_ata_port(dev);
5341        int rc;
5342
5343        rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5344                ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5345        return rc;
5346}
5347
5348static int ata_port_resume(struct device *dev)
5349{
5350        int rc;
5351
5352        rc = ata_port_resume_common(dev);
5353        if (!rc) {
5354                pm_runtime_disable(dev);
5355                pm_runtime_set_active(dev);
5356                pm_runtime_enable(dev);
5357        }
5358
5359        return rc;
5360}
5361
5362static int ata_port_runtime_idle(struct device *dev)
5363{
5364        return pm_runtime_suspend(dev);
5365}
5366
5367static const struct dev_pm_ops ata_port_pm_ops = {
5368        .suspend = ata_port_suspend,
5369        .resume = ata_port_resume,
5370        .freeze = ata_port_do_freeze,
5371        .thaw = ata_port_resume,
5372        .poweroff = ata_port_poweroff,
5373        .restore = ata_port_resume,
5374
5375        .runtime_suspend = ata_port_suspend,
5376        .runtime_resume = ata_port_resume_common,
5377        .runtime_idle = ata_port_runtime_idle,
5378};
5379
5380/**
5381 *      ata_host_suspend - suspend host
5382 *      @host: host to suspend
5383 *      @mesg: PM message
5384 *
5385 *      Suspend @host.  Actual operation is performed by port suspend.
5386 */
5387int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5388{
5389        host->dev->power.power_state = mesg;
5390        return 0;
5391}
5392
5393/**
5394 *      ata_host_resume - resume host
5395 *      @host: host to resume
5396 *
5397 *      Resume @host.  Actual operation is performed by port resume.
5398 */
5399void ata_host_resume(struct ata_host *host)
5400{
5401        host->dev->power.power_state = PMSG_ON;
5402}
5403#endif
5404
5405struct device_type ata_port_type = {
5406        .name = "ata_port",
5407#ifdef CONFIG_PM
5408        .pm = &ata_port_pm_ops,
5409#endif
5410};
5411
5412/**
5413 *      ata_dev_init - Initialize an ata_device structure
5414 *      @dev: Device structure to initialize
5415 *
5416 *      Initialize @dev in preparation for probing.
5417 *
5418 *      LOCKING:
5419 *      Inherited from caller.
5420 */
5421void ata_dev_init(struct ata_device *dev)
5422{
5423        struct ata_link *link = ata_dev_phys_link(dev);
5424        struct ata_port *ap = link->ap;
5425        unsigned long flags;
5426
5427        /* SATA spd limit is bound to the attached device, reset together */
5428        link->sata_spd_limit = link->hw_sata_spd_limit;
5429        link->sata_spd = 0;
5430
5431        /* High bits of dev->flags are used to record warm plug
5432         * requests which occur asynchronously.  Synchronize using
5433         * host lock.
5434         */
5435        spin_lock_irqsave(ap->lock, flags);
5436        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5437        dev->horkage = 0;
5438        spin_unlock_irqrestore(ap->lock, flags);
5439
5440        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5441               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5442        dev->pio_mask = UINT_MAX;
5443        dev->mwdma_mask = UINT_MAX;
5444        dev->udma_mask = UINT_MAX;
5445}
5446
5447/**
5448 *      ata_link_init - Initialize an ata_link structure
5449 *      @ap: ATA port link is attached to
5450 *      @link: Link structure to initialize
5451 *      @pmp: Port multiplier port number
5452 *
5453 *      Initialize @link.
5454 *
5455 *      LOCKING:
5456 *      Kernel thread context (may sleep)
5457 */
5458void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5459{
5460        int i;
5461
5462        /* clear everything except for devices */
5463        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5464               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5465
5466        link->ap = ap;
5467        link->pmp = pmp;
5468        link->active_tag = ATA_TAG_POISON;
5469        link->hw_sata_spd_limit = UINT_MAX;
5470
5471        /* can't use iterator, ap isn't initialized yet */
5472        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5473                struct ata_device *dev = &link->device[i];
5474
5475                dev->link = link;
5476                dev->devno = dev - link->device;
5477#ifdef CONFIG_ATA_ACPI
5478                dev->gtf_filter = ata_acpi_gtf_filter;
5479#endif
5480                ata_dev_init(dev);
5481        }
5482}
5483
5484/**
5485 *      sata_link_init_spd - Initialize link->sata_spd_limit
5486 *      @link: Link to configure sata_spd_limit for
5487 *
5488 *      Initialize @link->[hw_]sata_spd_limit to the currently
5489 *      configured value.
5490 *
5491 *      LOCKING:
5492 *      Kernel thread context (may sleep).
5493 *
5494 *      RETURNS:
5495 *      0 on success, -errno on failure.
5496 */
5497int sata_link_init_spd(struct ata_link *link)
5498{
5499        u8 spd;
5500        int rc;
5501
5502        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5503        if (rc)
5504                return rc;
5505
5506        spd = (link->saved_scontrol >> 4) & 0xf;
5507        if (spd)
5508                link->hw_sata_spd_limit &= (1 << spd) - 1;
5509
5510        ata_force_link_limits(link);
5511
5512        link->sata_spd_limit = link->hw_sata_spd_limit;
5513
5514        return 0;
5515}
5516
5517/**
5518 *      ata_port_alloc - allocate and initialize basic ATA port resources
5519 *      @host: ATA host this allocated port belongs to
5520 *
5521 *      Allocate and initialize basic ATA port resources.
5522 *
5523 *      RETURNS:
5524 *      Allocate ATA port on success, NULL on failure.
5525 *
5526 *      LOCKING:
5527 *      Inherited from calling layer (may sleep).
5528 */
5529struct ata_port *ata_port_alloc(struct ata_host *host)
5530{
5531        struct ata_port *ap;
5532
5533        DPRINTK("ENTER\n");
5534
5535        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5536        if (!ap)
5537                return NULL;
5538
5539        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5540        ap->lock = &host->lock;
5541        ap->print_id = -1;
5542        ap->host = host;
5543        ap->dev = host->dev;
5544
5545#if defined(ATA_VERBOSE_DEBUG)
5546        /* turn on all debugging levels */
5547        ap->msg_enable = 0x00FF;
5548#elif defined(ATA_DEBUG)
5549        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5550#else
5551        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5552#endif
5553
5554        mutex_init(&ap->scsi_scan_mutex);
5555        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5556        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5557        INIT_LIST_HEAD(&ap->eh_done_q);
5558        init_waitqueue_head(&ap->eh_wait_q);
5559        init_completion(&ap->park_req_pending);
5560        init_timer_deferrable(&ap->fastdrain_timer);
5561        ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5562        ap->fastdrain_timer.data = (unsigned long)ap;
5563
5564        ap->cbl = ATA_CBL_NONE;
5565
5566        ata_link_init(ap, &ap->link, 0);
5567
5568#ifdef ATA_IRQ_TRAP
5569        ap->stats.unhandled_irq = 1;
5570        ap->stats.idle_irq = 1;
5571#endif
5572        ata_sff_port_init(ap);
5573
5574        return ap;
5575}
5576
5577static void ata_host_release(struct device *gendev, void *res)
5578{
5579        struct ata_host *host = dev_get_drvdata(gendev);
5580        int i;
5581
5582        for (i = 0; i < host->n_ports; i++) {
5583                struct ata_port *ap = host->ports[i];
5584
5585                if (!ap)
5586                        continue;
5587
5588                if (ap->scsi_host)
5589                        scsi_host_put(ap->scsi_host);
5590
5591                kfree(ap->pmp_link);
5592                kfree(ap->slave_link);
5593                kfree(ap);
5594                host->ports[i] = NULL;
5595        }
5596
5597        dev_set_drvdata(gendev, NULL);
5598}
5599
5600/**
5601 *      ata_host_alloc - allocate and init basic ATA host resources
5602 *      @dev: generic device this host is associated with
5603 *      @max_ports: maximum number of ATA ports associated with this host
5604 *
5605 *      Allocate and initialize basic ATA host resources.  LLD calls
5606 *      this function to allocate a host, initializes it fully and
5607 *      attaches it using ata_host_register().
5608 *
5609 *      @max_ports ports are allocated and host->n_ports is
5610 *      initialized to @max_ports.  The caller is allowed to decrease
5611 *      host->n_ports before calling ata_host_register().  The unused
5612 *      ports will be automatically freed on registration.
5613 *
5614 *      RETURNS:
5615 *      Allocate ATA host on success, NULL on failure.
5616 *
5617 *      LOCKING:
5618 *      Inherited from calling layer (may sleep).
5619 */
5620struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5621{
5622        struct ata_host *host;
5623        size_t sz;
5624        int i;
5625
5626        DPRINTK("ENTER\n");
5627
5628        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5629                return NULL;
5630
5631        /* alloc a container for our list of ATA ports (buses) */
5632        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5633        /* alloc a container for our list of ATA ports (buses) */
5634        host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5635        if (!host)
5636                goto err_out;
5637
5638        devres_add(dev, host);
5639        dev_set_drvdata(dev, host);
5640
5641        spin_lock_init(&host->lock);
5642        mutex_init(&host->eh_mutex);
5643        host->dev = dev;
5644        host->n_ports = max_ports;
5645
5646        /* allocate ports bound to this host */
5647        for (i = 0; i < max_ports; i++) {
5648                struct ata_port *ap;
5649
5650                ap = ata_port_alloc(host);
5651                if (!ap)
5652                        goto err_out;
5653
5654                ap->port_no = i;
5655                host->ports[i] = ap;
5656        }
5657
5658        devres_remove_group(dev, NULL);
5659        return host;
5660
5661 err_out:
5662        devres_release_group(dev, NULL);
5663        return NULL;
5664}
5665
5666/**
5667 *      ata_host_alloc_pinfo - alloc host and init with port_info array
5668 *      @dev: generic device this host is associated with
5669 *      @ppi: array of ATA port_info to initialize host with
5670 *      @n_ports: number of ATA ports attached to this host
5671 *
5672 *      Allocate ATA host and initialize with info from @ppi.  If NULL
5673 *      terminated, @ppi may contain fewer entries than @n_ports.  The
5674 *      last entry will be used for the remaining ports.
5675 *
5676 *      RETURNS:
5677 *      Allocate ATA host on success, NULL on failure.
5678 *
5679 *      LOCKING:
5680 *      Inherited from calling layer (may sleep).
5681 */
5682struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5683                                      const struct ata_port_info * const * ppi,
5684                                      int n_ports)
5685{
5686        const struct ata_port_info *pi;
5687        struct ata_host *host;
5688        int i, j;
5689
5690        host = ata_host_alloc(dev, n_ports);
5691        if (!host)
5692                return NULL;
5693
5694        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5695                struct ata_port *ap = host->ports[i];
5696
5697                if (ppi[j])
5698                        pi = ppi[j++];
5699
5700                ap->pio_mask = pi->pio_mask;
5701                ap->mwdma_mask = pi->mwdma_mask;
5702                ap->udma_mask = pi->udma_mask;
5703                ap->flags |= pi->flags;
5704                ap->link.flags |= pi->link_flags;
5705                ap->ops = pi->port_ops;
5706
5707                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5708                        host->ops = pi->port_ops;
5709        }
5710
5711        return host;
5712}
5713
5714/**
5715 *      ata_slave_link_init - initialize slave link
5716 *      @ap: port to initialize slave link for
5717 *
5718 *      Create and initialize slave link for @ap.  This enables slave
5719 *      link handling on the port.
5720 *
5721 *      In libata, a port contains links and a link contains devices.
5722 *      There is single host link but if a PMP is attached to it,
5723 *      there can be multiple fan-out links.  On SATA, there's usually
5724 *      a single device connected to a link but PATA and SATA
5725 *      controllers emulating TF based interface can have two - master
5726 *      and slave.
5727 *
5728 *      However, there are a few controllers which don't fit into this
5729 *      abstraction too well - SATA controllers which emulate TF
5730 *      interface with both master and slave devices but also have
5731 *      separate SCR register sets for each device.  These controllers
5732 *      need separate links for physical link handling
5733 *      (e.g. onlineness, link speed) but should be treated like a
5734 *      traditional M/S controller for everything else (e.g. command
5735 *      issue, softreset).
5736 *
5737 *      slave_link is libata's way of handling this class of
5738 *      controllers without impacting core layer too much.  For
5739 *      anything other than physical link handling, the default host
5740 *      link is used for both master and slave.  For physical link
5741 *      handling, separate @ap->slave_link is used.  All dirty details
5742 *      are implemented inside libata core layer.  From LLD's POV, the
5743 *      only difference is that prereset, hardreset and postreset are
5744 *      called once more for the slave link, so the reset sequence
5745 *      looks like the following.
5746 *
5747 *      prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5748 *      softreset(M) -> postreset(M) -> postreset(S)
5749 *
5750 *      Note that softreset is called only for the master.  Softreset
5751 *      resets both M/S by definition, so SRST on master should handle
5752 *      both (the standard method will work just fine).
5753 *
5754 *      LOCKING:
5755 *      Should be called before host is registered.
5756 *
5757 *      RETURNS:
5758 *      0 on success, -errno on failure.
5759 */
5760int ata_slave_link_init(struct ata_port *ap)
5761{
5762        struct ata_link *link;
5763
5764        WARN_ON(ap->slave_link);
5765        WARN_ON(ap->flags & ATA_FLAG_PMP);
5766
5767        link = kzalloc(sizeof(*link), GFP_KERNEL);
5768        if (!link)
5769                return -ENOMEM;
5770
5771        ata_link_init(ap, link, 1);
5772        ap->slave_link = link;
5773        return 0;
5774}
5775
5776static void ata_host_stop(struct device *gendev, void *res)
5777{
5778        struct ata_host *host = dev_get_drvdata(gendev);
5779        int i;
5780
5781        WARN_ON(!(host->flags & ATA_HOST_STARTED));
5782
5783        for (i = 0; i < host->n_ports; i++) {
5784                struct ata_port *ap = host->ports[i];
5785
5786                if (ap->ops->port_stop)
5787                        ap->ops->port_stop(ap);
5788        }
5789
5790        if (host->ops->host_stop)
5791                host->ops->host_stop(host);
5792}
5793
5794/**
5795 *      ata_finalize_port_ops - finalize ata_port_operations
5796 *      @ops: ata_port_operations to finalize
5797 *
5798 *      An ata_port_operations can inherit from another ops and that
5799 *      ops can again inherit from another.  This can go on as many
5800 *      times as necessary as long as there is no loop in the
5801 *      inheritance chain.
5802 *
5803 *      Ops tables are finalized when the host is started.  NULL or
5804 *      unspecified entries are inherited from the closet ancestor
5805 *      which has the method and the entry is populated with it.
5806 *      After finalization, the ops table directly points to all the
5807 *      methods and ->inherits is no longer necessary and cleared.
5808 *
5809 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5810 *
5811 *      LOCKING:
5812 *      None.
5813 */
5814static void ata_finalize_port_ops(struct ata_port_operations *ops)
5815{
5816        static DEFINE_SPINLOCK(lock);
5817        const struct ata_port_operations *cur;
5818        void **begin = (void **)ops;
5819        void **end = (void **)&ops->inherits;
5820        void **pp;
5821
5822        if (!ops || !ops->inherits)
5823                return;
5824
5825        spin_lock(&lock);
5826
5827        for (cur = ops->inherits; cur; cur = cur->inherits) {
5828                void **inherit = (void **)cur;
5829
5830                for (pp = begin; pp < end; pp++, inherit++)
5831                        if (!*pp)
5832                                *pp = *inherit;
5833        }
5834
5835        for (pp = begin; pp < end; pp++)
5836                if (IS_ERR(*pp))
5837                        *pp = NULL;
5838
5839        ops->inherits = NULL;
5840
5841        spin_unlock(&lock);
5842}
5843
5844/**
5845 *      ata_host_start - start and freeze ports of an ATA host
5846 *      @host: ATA host to start ports for
5847 *
5848 *      Start and then freeze ports of @host.  Started status is
5849 *      recorded in host->flags, so this function can be called
5850 *      multiple times.  Ports are guaranteed to get started only
5851 *      once.  If host->ops isn't initialized yet, its set to the
5852 *      first non-dummy port ops.
5853 *
5854 *      LOCKING:
5855 *      Inherited from calling layer (may sleep).
5856 *
5857 *      RETURNS:
5858 *      0 if all ports are started successfully, -errno otherwise.
5859 */
5860int ata_host_start(struct ata_host *host)
5861{
5862        int have_stop = 0;
5863        void *start_dr = NULL;
5864        int i, rc;
5865
5866        if (host->flags & ATA_HOST_STARTED)
5867                return 0;
5868
5869        ata_finalize_port_ops(host->ops);
5870
5871        for (i = 0; i < host->n_ports; i++) {
5872                struct ata_port *ap = host->ports[i];
5873
5874                ata_finalize_port_ops(ap->ops);
5875
5876                if (!host->ops && !ata_port_is_dummy(ap))
5877                        host->ops = ap->ops;
5878
5879                if (ap->ops->port_stop)
5880                        have_stop = 1;
5881        }
5882
5883        if (host->ops->host_stop)
5884                have_stop = 1;
5885
5886        if (have_stop) {
5887                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5888                if (!start_dr)
5889                        return -ENOMEM;
5890        }
5891
5892        for (i = 0; i < host->n_ports; i++) {
5893                struct ata_port *ap = host->ports[i];
5894
5895                if (ap->ops->port_start) {
5896                        rc = ap->ops->port_start(ap);
5897                        if (rc) {
5898                                if (rc != -ENODEV)
5899                                        dev_err(host->dev,
5900                                                "failed to start port %d (errno=%d)\n",
5901                                                i, rc);
5902                                goto err_out;
5903                        }
5904                }
5905                ata_eh_freeze_port(ap);
5906        }
5907
5908        if (start_dr)
5909                devres_add(host->dev, start_dr);
5910        host->flags |= ATA_HOST_STARTED;
5911        return 0;
5912
5913 err_out:
5914        while (--i >= 0) {
5915                struct ata_port *ap = host->ports[i];
5916
5917                if (ap->ops->port_stop)
5918                        ap->ops->port_stop(ap);
5919        }
5920        devres_free(start_dr);
5921        return rc;
5922}
5923
5924/**
5925 *      ata_sas_host_init - Initialize a host struct
5926 *      @host:  host to initialize
5927 *      @dev:   device host is attached to
5928 *      @flags: host flags
5929 *      @ops:   port_ops
5930 *
5931 *      LOCKING:
5932 *      PCI/etc. bus probe sem.
5933 *
5934 */
5935/* KILLME - the only user left is ipr */
5936void ata_host_init(struct ata_host *host, struct device *dev,
5937                   unsigned long flags, struct ata_port_operations *ops)
5938{
5939        spin_lock_init(&host->lock);
5940        mutex_init(&host->eh_mutex);
5941        host->dev = dev;
5942        host->flags = flags;
5943        host->ops = ops;
5944}
5945
5946void __ata_port_probe(struct ata_port *ap)
5947{
5948        struct ata_eh_info *ehi = &ap->link.eh_info;
5949        unsigned long flags;
5950
5951        /* kick EH for boot probing */
5952        spin_lock_irqsave(ap->lock, flags);
5953
5954        ehi->probe_mask |= ATA_ALL_DEVICES;
5955        ehi->action |= ATA_EH_RESET;
5956        ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5957
5958        ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5959        ap->pflags |= ATA_PFLAG_LOADING;
5960        ata_port_schedule_eh(ap);
5961
5962        spin_unlock_irqrestore(ap->lock, flags);
5963}
5964
5965int ata_port_probe(struct ata_port *ap)
5966{
5967        int rc = 0;
5968
5969        if (ap->ops->error_handler) {
5970                __ata_port_probe(ap);
5971                ata_port_wait_eh(ap);
5972        } else {
5973                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5974                rc = ata_bus_probe(ap);
5975                DPRINTK("ata%u: bus probe end\n", ap->print_id);
5976        }
5977        return rc;
5978}
5979
5980
5981static void async_port_probe(void *data, async_cookie_t cookie)
5982{
5983        struct ata_port *ap = data;
5984
5985        /*
5986         * If we're not allowed to scan this host in parallel,
5987         * we need to wait until all previous scans have completed
5988         * before going further.
5989         * Jeff Garzik says this is only within a controller, so we
5990         * don't need to wait for port 0, only for later ports.
5991         */
5992        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5993                async_synchronize_cookie(cookie);
5994
5995        (void)ata_port_probe(ap);
5996
5997        /* in order to keep device order, we need to synchronize at this point */
5998        async_synchronize_cookie(cookie);
5999
6000        ata_scsi_scan_host(ap, 1);
6001}
6002
6003/**
6004 *      ata_host_register - register initialized ATA host
6005 *      @host: ATA host to register
6006 *      @sht: template for SCSI host
6007 *
6008 *      Register initialized ATA host.  @host is allocated using
6009 *      ata_host_alloc() and fully initialized by LLD.  This function
6010 *      starts ports, registers @host with ATA and SCSI layers and
6011 *      probe registered devices.
6012 *
6013 *      LOCKING:
6014 *      Inherited from calling layer (may sleep).
6015 *
6016 *      RETURNS:
6017 *      0 on success, -errno otherwise.
6018 */
6019int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6020{
6021        int i, rc;
6022
6023        /* host must have been started */
6024        if (!(host->flags & ATA_HOST_STARTED)) {
6025                dev_err(host->dev, "BUG: trying to register unstarted host\n");
6026                WARN_ON(1);
6027                return -EINVAL;
6028        }
6029
6030        /* Blow away unused ports.  This happens when LLD can't
6031         * determine the exact number of ports to allocate at
6032         * allocation time.
6033         */
6034        for (i = host->n_ports; host->ports[i]; i++)
6035                kfree(host->ports[i]);
6036
6037        /* give ports names and add SCSI hosts */
6038        for (i = 0; i < host->n_ports; i++)
6039                host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6040
6041
6042        /* Create associated sysfs transport objects  */
6043        for (i = 0; i < host->n_ports; i++) {
6044                rc = ata_tport_add(host->dev,host->ports[i]);
6045                if (rc) {
6046                        goto err_tadd;
6047                }
6048        }
6049
6050        rc = ata_scsi_add_hosts(host, sht);
6051        if (rc)
6052                goto err_tadd;
6053
6054        /* associate with ACPI nodes */
6055        ata_acpi_associate(host);
6056
6057        /* set cable, sata_spd_limit and report */
6058        for (i = 0; i < host->n_ports; i++) {
6059                struct ata_port *ap = host->ports[i];
6060                unsigned long xfer_mask;
6061
6062                /* set SATA cable type if still unset */
6063                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6064                        ap->cbl = ATA_CBL_SATA;
6065
6066                /* init sata_spd_limit to the current value */
6067                sata_link_init_spd(&ap->link);
6068                if (ap->slave_link)
6069                        sata_link_init_spd(ap->slave_link);
6070
6071                /* print per-port info to dmesg */
6072                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6073                                              ap->udma_mask);
6074
6075                if (!ata_port_is_dummy(ap)) {
6076                        ata_port_info(ap, "%cATA max %s %s\n",
6077                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6078                                      ata_mode_string(xfer_mask),
6079                                      ap->link.eh_info.desc);
6080                        ata_ehi_clear_desc(&ap->link.eh_info);
6081                } else
6082                        ata_port_info(ap, "DUMMY\n");
6083        }
6084
6085        /* perform each probe asynchronously */
6086        for (i = 0; i < host->n_ports; i++) {
6087                struct ata_port *ap = host->ports[i];
6088                async_schedule(async_port_probe, ap);
6089        }
6090
6091        return 0;
6092
6093 err_tadd:
6094        while (--i >= 0) {
6095                ata_tport_delete(host->ports[i]);
6096        }
6097        return rc;
6098
6099}
6100
6101/**
6102 *      ata_host_activate - start host, request IRQ and register it
6103 *      @host: target ATA host
6104 *      @irq: IRQ to request
6105 *      @irq_handler: irq_handler used when requesting IRQ
6106 *      @irq_flags: irq_flags used when requesting IRQ
6107 *      @sht: scsi_host_template to use when registering the host
6108 *
6109 *      After allocating an ATA host and initializing it, most libata
6110 *      LLDs perform three steps to activate the host - start host,
6111 *      request IRQ and register it.  This helper takes necessasry
6112 *      arguments and performs the three steps in one go.
6113 *
6114 *      An invalid IRQ skips the IRQ registration and expects the host to
6115 *      have set polling mode on the port. In this case, @irq_handler
6116 *      should be NULL.
6117 *
6118 *      LOCKING:
6119 *      Inherited from calling layer (may sleep).
6120 *
6121 *      RETURNS:
6122 *      0 on success, -errno otherwise.
6123 */
6124int ata_host_activate(struct ata_host *host, int irq,
6125                      irq_handler_t irq_handler, unsigned long irq_flags,
6126                      struct scsi_host_template *sht)
6127{
6128        int i, rc;
6129
6130        rc = ata_host_start(host);
6131        if (rc)
6132                return rc;
6133
6134        /* Special case for polling mode */
6135        if (!irq) {
6136                WARN_ON(irq_handler);
6137                return ata_host_register(host, sht);
6138        }
6139
6140        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6141                              dev_driver_string(host->dev), host);
6142        if (rc)
6143                return rc;
6144
6145        for (i = 0; i < host->n_ports; i++)
6146                ata_port_desc(host->ports[i], "irq %d", irq);
6147
6148        rc = ata_host_register(host, sht);
6149        /* if failed, just free the IRQ and leave ports alone */
6150        if (rc)
6151                devm_free_irq(host->dev, irq, host);
6152
6153        return rc;
6154}
6155
6156/**
6157 *      ata_port_detach - Detach ATA port in prepration of device removal
6158 *      @ap: ATA port to be detached
6159 *
6160 *      Detach all ATA devices and the associated SCSI devices of @ap;
6161 *      then, remove the associated SCSI host.  @ap is guaranteed to
6162 *      be quiescent on return from this function.
6163 *
6164 *      LOCKING:
6165 *      Kernel thread context (may sleep).
6166 */
6167static void ata_port_detach(struct ata_port *ap)
6168{
6169        unsigned long flags;
6170
6171        if (!ap->ops->error_handler)
6172                goto skip_eh;
6173
6174        /* tell EH we're leaving & flush EH */
6175        spin_lock_irqsave(ap->lock, flags);
6176        ap->pflags |= ATA_PFLAG_UNLOADING;
6177        ata_port_schedule_eh(ap);
6178        spin_unlock_irqrestore(ap->lock, flags);
6179
6180        /* wait till EH commits suicide */
6181        ata_port_wait_eh(ap);
6182
6183        /* it better be dead now */
6184        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6185
6186        cancel_delayed_work_sync(&ap->hotplug_task);
6187
6188 skip_eh:
6189        if (ap->pmp_link) {
6190                int i;
6191                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6192                        ata_tlink_delete(&ap->pmp_link[i]);
6193        }
6194        ata_tport_delete(ap);
6195
6196        /* remove the associated SCSI host */
6197        scsi_remove_host(ap->scsi_host);
6198}
6199
6200/**
6201 *      ata_host_detach - Detach all ports of an ATA host
6202 *      @host: Host to detach
6203 *
6204 *      Detach all ports of @host.
6205 *
6206 *      LOCKING:
6207 *      Kernel thread context (may sleep).
6208 */
6209void ata_host_detach(struct ata_host *host)
6210{
6211        int i;
6212
6213        for (i = 0; i < host->n_ports; i++)
6214                ata_port_detach(host->ports[i]);
6215
6216        /* the host is dead now, dissociate ACPI */
6217        ata_acpi_dissociate(host);
6218}
6219
6220#ifdef CONFIG_PCI
6221
6222/**
6223 *      ata_pci_remove_one - PCI layer callback for device removal
6224 *      @pdev: PCI device that was removed
6225 *
6226 *      PCI layer indicates to libata via this hook that hot-unplug or
6227 *      module unload event has occurred.  Detach all ports.  Resource
6228 *      release is handled via devres.
6229 *
6230 *      LOCKING:
6231 *      Inherited from PCI layer (may sleep).
6232 */
6233void ata_pci_remove_one(struct pci_dev *pdev)
6234{
6235        struct device *dev = &pdev->dev;
6236        struct ata_host *host = dev_get_drvdata(dev);
6237
6238        ata_host_detach(host);
6239}
6240
6241/* move to PCI subsystem */
6242int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243{
6244        unsigned long tmp = 0;
6245
6246        switch (bits->width) {
6247        case 1: {
6248                u8 tmp8 = 0;
6249                pci_read_config_byte(pdev, bits->reg, &tmp8);
6250                tmp = tmp8;
6251                break;
6252        }
6253        case 2: {
6254                u16 tmp16 = 0;
6255                pci_read_config_word(pdev, bits->reg, &tmp16);
6256                tmp = tmp16;
6257                break;
6258        }
6259        case 4: {
6260                u32 tmp32 = 0;
6261                pci_read_config_dword(pdev, bits->reg, &tmp32);
6262                tmp = tmp32;
6263                break;
6264        }
6265
6266        default:
6267                return -EINVAL;
6268        }
6269
6270        tmp &= bits->mask;
6271
6272        return (tmp == bits->val) ? 1 : 0;
6273}
6274
6275#ifdef CONFIG_PM
6276void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6277{
6278        pci_save_state(pdev);
6279        pci_disable_device(pdev);
6280
6281        if (mesg.event & PM_EVENT_SLEEP)
6282                pci_set_power_state(pdev, PCI_D3hot);
6283}
6284
6285int ata_pci_device_do_resume(struct pci_dev *pdev)
6286{
6287        int rc;
6288
6289        pci_set_power_state(pdev, PCI_D0);
6290        pci_restore_state(pdev);
6291
6292        rc = pcim_enable_device(pdev);
6293        if (rc) {
6294                dev_err(&pdev->dev,
6295                        "failed to enable device after resume (%d)\n", rc);
6296                return rc;
6297        }
6298
6299        pci_set_master(pdev);
6300        return 0;
6301}
6302
6303int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6304{
6305        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6306        int rc = 0;
6307
6308        rc = ata_host_suspend(host, mesg);
6309        if (rc)
6310                return rc;
6311
6312        ata_pci_device_do_suspend(pdev, mesg);
6313
6314        return 0;
6315}
6316
6317int ata_pci_device_resume(struct pci_dev *pdev)
6318{
6319        struct ata_host *host = dev_get_drvdata(&pdev->dev);
6320        int rc;
6321
6322        rc = ata_pci_device_do_resume(pdev);
6323        if (rc == 0)
6324                ata_host_resume(host);
6325        return rc;
6326}
6327#endif /* CONFIG_PM */
6328
6329#endif /* CONFIG_PCI */
6330
6331static int __init ata_parse_force_one(char **cur,
6332                                      struct ata_force_ent *force_ent,
6333                                      const char **reason)
6334{
6335        /* FIXME: Currently, there's no way to tag init const data and
6336         * using __initdata causes build failure on some versions of
6337         * gcc.  Once __initdataconst is implemented, add const to the
6338         * following structure.
6339         */
6340        static struct ata_force_param force_tbl[] __initdata = {
6341                { "40c",        .cbl            = ATA_CBL_PATA40 },
6342                { "80c",        .cbl            = ATA_CBL_PATA80 },
6343                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6344                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6345                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6346                { "sata",       .cbl            = ATA_CBL_SATA },
6347                { "1.5Gbps",    .spd_limit      = 1 },
6348                { "3.0Gbps",    .spd_limit      = 2 },
6349                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6350                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6351                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6352                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6353                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6354                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6355                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6356                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6357                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6358                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6359                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6360                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6361                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6362                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6363                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6364                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6365                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6366                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6367                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6368                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6369                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6370                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6371                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6372                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6373                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6374                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6375                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6376                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6377                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6378                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6379                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6380                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6381                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6382                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6383                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6384                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6385                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6386                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6387                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6388                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6389        };
6390        char *start = *cur, *p = *cur;
6391        char *id, *val, *endp;
6392        const struct ata_force_param *match_fp = NULL;
6393        int nr_matches = 0, i;
6394
6395        /* find where this param ends and update *cur */
6396        while (*p != '\0' && *p != ',')
6397                p++;
6398
6399        if (*p == '\0')
6400                *cur = p;
6401        else
6402                *cur = p + 1;
6403
6404        *p = '\0';
6405
6406        /* parse */
6407        p = strchr(start, ':');
6408        if (!p) {
6409                val = strstrip(start);
6410                goto parse_val;
6411        }
6412        *p = '\0';
6413
6414        id = strstrip(start);
6415        val = strstrip(p + 1);
6416
6417        /* parse id */
6418        p = strchr(id, '.');
6419        if (p) {
6420                *p++ = '\0';
6421                force_ent->device = simple_strtoul(p, &endp, 10);
6422                if (p == endp || *endp != '\0') {
6423                        *reason = "invalid device";
6424                        return -EINVAL;
6425                }
6426        }
6427
6428        force_ent->port = simple_strtoul(id, &endp, 10);
6429        if (p == endp || *endp != '\0') {
6430                *reason = "invalid port/link";
6431                return -EINVAL;
6432        }
6433
6434 parse_val:
6435        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6436        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6437                const struct ata_force_param *fp = &force_tbl[i];
6438
6439                if (strncasecmp(val, fp->name, strlen(val)))
6440                        continue;
6441
6442                nr_matches++;
6443                match_fp = fp;
6444
6445                if (strcasecmp(val, fp->name) == 0) {
6446                        nr_matches = 1;
6447                        break;
6448                }
6449        }
6450
6451        if (!nr_matches) {
6452                *reason = "unknown value";
6453                return -EINVAL;
6454        }
6455        if (nr_matches > 1) {
6456                *reason = "ambigious value";
6457                return -EINVAL;
6458        }
6459
6460        force_ent->param = *match_fp;
6461
6462        return 0;
6463}
6464
6465static void __init ata_parse_force_param(void)
6466{
6467        int idx = 0, size = 1;
6468        int last_port = -1, last_device = -1;
6469        char *p, *cur, *next;
6470
6471        /* calculate maximum number of params and allocate force_tbl */
6472        for (p = ata_force_param_buf; *p; p++)
6473                if (*p == ',')
6474                        size++;
6475
6476        ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6477        if (!ata_force_tbl) {
6478                printk(KERN_WARNING "ata: failed to extend force table, "
6479                       "libata.force ignored\n");
6480                return;
6481        }
6482
6483        /* parse and populate the table */
6484        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6485                const char *reason = "";
6486                struct ata_force_ent te = { .port = -1, .device = -1 };
6487
6488                next = cur;
6489                if (ata_parse_force_one(&next, &te, &reason)) {
6490                        printk(KERN_WARNING "ata: failed to parse force "
6491                               "parameter \"%s\" (%s)\n",
6492                               cur, reason);
6493                        continue;
6494                }
6495
6496                if (te.port == -1) {
6497                        te.port = last_port;
6498                        te.device = last_device;
6499                }
6500
6501                ata_force_tbl[idx++] = te;
6502
6503                last_port = te.port;
6504                last_device = te.device;
6505        }
6506
6507        ata_force_tbl_size = idx;
6508}
6509
6510static int __init ata_init(void)
6511{
6512        int rc;
6513
6514        ata_parse_force_param();
6515
6516        rc = ata_sff_init();
6517        if (rc) {
6518                kfree(ata_force_tbl);
6519                return rc;
6520        }
6521
6522        libata_transport_init();
6523        ata_scsi_transport_template = ata_attach_transport();
6524        if (!ata_scsi_transport_template) {
6525                ata_sff_exit();
6526                rc = -ENOMEM;
6527                goto err_out;
6528        }
6529
6530        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6531        return 0;
6532
6533err_out:
6534        return rc;
6535}
6536
6537static void __exit ata_exit(void)
6538{
6539        ata_release_transport(ata_scsi_transport_template);
6540        libata_transport_exit();
6541        ata_sff_exit();
6542        kfree(ata_force_tbl);
6543}
6544
6545subsys_initcall(ata_init);
6546module_exit(ata_exit);
6547
6548static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6549
6550int ata_ratelimit(void)
6551{
6552        return __ratelimit(&ratelimit);
6553}
6554
6555/**
6556 *      ata_msleep - ATA EH owner aware msleep
6557 *      @ap: ATA port to attribute the sleep to
6558 *      @msecs: duration to sleep in milliseconds
6559 *
6560 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6561 *      ownership is released before going to sleep and reacquired
6562 *      after the sleep is complete.  IOW, other ports sharing the
6563 *      @ap->host will be allowed to own the EH while this task is
6564 *      sleeping.
6565 *
6566 *      LOCKING:
6567 *      Might sleep.
6568 */
6569void ata_msleep(struct ata_port *ap, unsigned int msecs)
6570{
6571        bool owns_eh = ap && ap->host->eh_owner == current;
6572
6573        if (owns_eh)
6574                ata_eh_release(ap);
6575
6576        msleep(msecs);
6577
6578        if (owns_eh)
6579                ata_eh_acquire(ap);
6580}
6581
6582/**
6583 *      ata_wait_register - wait until register value changes
6584 *      @ap: ATA port to wait register for, can be NULL
6585 *      @reg: IO-mapped register
6586 *      @mask: Mask to apply to read register value
6587 *      @val: Wait condition
6588 *      @interval: polling interval in milliseconds
6589 *      @timeout: timeout in milliseconds
6590 *
6591 *      Waiting for some bits of register to change is a common
6592 *      operation for ATA controllers.  This function reads 32bit LE
6593 *      IO-mapped register @reg and tests for the following condition.
6594 *
6595 *      (*@reg & mask) != val
6596 *
6597 *      If the condition is met, it returns; otherwise, the process is
6598 *      repeated after @interval_msec until timeout.
6599 *
6600 *      LOCKING:
6601 *      Kernel thread context (may sleep)
6602 *
6603 *      RETURNS:
6604 *      The final register value.
6605 */
6606u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6607                      unsigned long interval, unsigned long timeout)
6608{
6609        unsigned long deadline;
6610        u32 tmp;
6611
6612        tmp = ioread32(reg);
6613
6614        /* Calculate timeout _after_ the first read to make sure
6615         * preceding writes reach the controller before starting to
6616         * eat away the timeout.
6617         */
6618        deadline = ata_deadline(jiffies, timeout);
6619
6620        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6621                ata_msleep(ap, interval);
6622                tmp = ioread32(reg);
6623        }
6624
6625        return tmp;
6626}
6627
6628/*
6629 * Dummy port_ops
6630 */
6631static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6632{
6633        return AC_ERR_SYSTEM;
6634}
6635
6636static void ata_dummy_error_handler(struct ata_port *ap)
6637{
6638        /* truly dummy */
6639}
6640
6641struct ata_port_operations ata_dummy_port_ops = {
6642        .qc_prep                = ata_noop_qc_prep,
6643        .qc_issue               = ata_dummy_qc_issue,
6644        .error_handler          = ata_dummy_error_handler,
6645};
6646
6647const struct ata_port_info ata_dummy_port_info = {
6648        .port_ops               = &ata_dummy_port_ops,
6649};
6650
6651/*
6652 * Utility print functions
6653 */
6654int ata_port_printk(const struct ata_port *ap, const char *level,
6655                    const char *fmt, ...)
6656{
6657        struct va_format vaf;
6658        va_list args;
6659        int r;
6660
6661        va_start(args, fmt);
6662
6663        vaf.fmt = fmt;
6664        vaf.va = &args;
6665
6666        r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6667
6668        va_end(args);
6669
6670        return r;
6671}
6672EXPORT_SYMBOL(ata_port_printk);
6673
6674int ata_link_printk(const struct ata_link *link, const char *level,
6675                    const char *fmt, ...)
6676{
6677        struct va_format vaf;
6678        va_list args;
6679        int r;
6680
6681        va_start(args, fmt);
6682
6683        vaf.fmt = fmt;
6684        vaf.va = &args;
6685
6686        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6687                r = printk("%sata%u.%02u: %pV",
6688                           level, link->ap->print_id, link->pmp, &vaf);
6689        else
6690                r = printk("%sata%u: %pV",
6691                           level, link->ap->print_id, &vaf);
6692
6693        va_end(args);
6694
6695        return r;
6696}
6697EXPORT_SYMBOL(ata_link_printk);
6698
6699int ata_dev_printk(const struct ata_device *dev, const char *level,
6700                    const char *fmt, ...)
6701{
6702        struct va_format vaf;
6703        va_list args;
6704        int r;
6705
6706        va_start(args, fmt);
6707
6708        vaf.fmt = fmt;
6709        vaf.va = &args;
6710
6711        r = printk("%sata%u.%02u: %pV",
6712                   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6713                   &vaf);
6714
6715        va_end(args);
6716
6717        return r;
6718}
6719EXPORT_SYMBOL(ata_dev_printk);
6720
6721void ata_print_version(const struct device *dev, const char *version)
6722{
6723        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6724}
6725EXPORT_SYMBOL(ata_print_version);
6726
6727/*
6728 * libata is essentially a library of internal helper functions for
6729 * low-level ATA host controller drivers.  As such, the API/ABI is
6730 * likely to change as new drivers are added and updated.
6731 * Do not depend on ABI/API stability.
6732 */
6733EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6734EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6735EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6736EXPORT_SYMBOL_GPL(ata_base_port_ops);
6737EXPORT_SYMBOL_GPL(sata_port_ops);
6738EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6739EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6740EXPORT_SYMBOL_GPL(ata_link_next);
6741EXPORT_SYMBOL_GPL(ata_dev_next);
6742EXPORT_SYMBOL_GPL(ata_std_bios_param);
6743EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6744EXPORT_SYMBOL_GPL(ata_host_init);
6745EXPORT_SYMBOL_GPL(ata_host_alloc);
6746EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6747EXPORT_SYMBOL_GPL(ata_slave_link_init);
6748EXPORT_SYMBOL_GPL(ata_host_start);
6749EXPORT_SYMBOL_GPL(ata_host_register);
6750EXPORT_SYMBOL_GPL(ata_host_activate);
6751EXPORT_SYMBOL_GPL(ata_host_detach);
6752EXPORT_SYMBOL_GPL(ata_sg_init);
6753EXPORT_SYMBOL_GPL(ata_qc_complete);
6754EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6755EXPORT_SYMBOL_GPL(atapi_cmd_type);
6756EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6757EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6758EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6759EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6760EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6761EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6762EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6763EXPORT_SYMBOL_GPL(ata_mode_string);
6764EXPORT_SYMBOL_GPL(ata_id_xfermask);
6765EXPORT_SYMBOL_GPL(ata_do_set_mode);
6766EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6767EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6768EXPORT_SYMBOL_GPL(ata_dev_disable);
6769EXPORT_SYMBOL_GPL(sata_set_spd);
6770EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6771EXPORT_SYMBOL_GPL(sata_link_debounce);
6772EXPORT_SYMBOL_GPL(sata_link_resume);
6773EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6774EXPORT_SYMBOL_GPL(ata_std_prereset);
6775EXPORT_SYMBOL_GPL(sata_link_hardreset);
6776EXPORT_SYMBOL_GPL(sata_std_hardreset);
6777EXPORT_SYMBOL_GPL(ata_std_postreset);
6778EXPORT_SYMBOL_GPL(ata_dev_classify);
6779EXPORT_SYMBOL_GPL(ata_dev_pair);
6780EXPORT_SYMBOL_GPL(ata_ratelimit);
6781EXPORT_SYMBOL_GPL(ata_msleep);
6782EXPORT_SYMBOL_GPL(ata_wait_register);
6783EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6784EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6785EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6786EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6787EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6788EXPORT_SYMBOL_GPL(sata_scr_valid);
6789EXPORT_SYMBOL_GPL(sata_scr_read);
6790EXPORT_SYMBOL_GPL(sata_scr_write);
6791EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6792EXPORT_SYMBOL_GPL(ata_link_online);
6793EXPORT_SYMBOL_GPL(ata_link_offline);
6794#ifdef CONFIG_PM
6795EXPORT_SYMBOL_GPL(ata_host_suspend);
6796EXPORT_SYMBOL_GPL(ata_host_resume);
6797#endif /* CONFIG_PM */
6798EXPORT_SYMBOL_GPL(ata_id_string);
6799EXPORT_SYMBOL_GPL(ata_id_c_string);
6800EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6801EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6802
6803EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6804EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6805EXPORT_SYMBOL_GPL(ata_timing_compute);
6806EXPORT_SYMBOL_GPL(ata_timing_merge);
6807EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6808
6809#ifdef CONFIG_PCI
6810EXPORT_SYMBOL_GPL(pci_test_config_bits);
6811EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6812#ifdef CONFIG_PM
6813EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6814EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6815EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6816EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6817#endif /* CONFIG_PM */
6818#endif /* CONFIG_PCI */
6819
6820EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6821EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6822EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6823EXPORT_SYMBOL_GPL(ata_port_desc);
6824#ifdef CONFIG_PCI
6825EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6826#endif /* CONFIG_PCI */
6827EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6828EXPORT_SYMBOL_GPL(ata_link_abort);
6829EXPORT_SYMBOL_GPL(ata_port_abort);
6830EXPORT_SYMBOL_GPL(ata_port_freeze);
6831EXPORT_SYMBOL_GPL(sata_async_notification);
6832EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6833EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6834EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6835EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6836EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6837EXPORT_SYMBOL_GPL(ata_do_eh);
6838EXPORT_SYMBOL_GPL(ata_std_error_handler);
6839
6840EXPORT_SYMBOL_GPL(ata_cable_40wire);
6841EXPORT_SYMBOL_GPL(ata_cable_80wire);
6842EXPORT_SYMBOL_GPL(ata_cable_unknown);
6843EXPORT_SYMBOL_GPL(ata_cable_ignore);
6844EXPORT_SYMBOL_GPL(ata_cable_sata);
6845