linux/drivers/crypto/nx/nx-aes-xcbc.c
<<
>>
Prefs
   1/**
   2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
   3 *
   4 * Copyright (C) 2011-2012 International Business Machines Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; version 2 only.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18 *
  19 * Author: Kent Yoder <yoder1@us.ibm.com>
  20 */
  21
  22#include <crypto/internal/hash.h>
  23#include <crypto/aes.h>
  24#include <crypto/algapi.h>
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/crypto.h>
  28#include <asm/vio.h>
  29
  30#include "nx_csbcpb.h"
  31#include "nx.h"
  32
  33
  34struct xcbc_state {
  35        u8 state[AES_BLOCK_SIZE];
  36        unsigned int count;
  37        u8 buffer[AES_BLOCK_SIZE];
  38};
  39
  40static int nx_xcbc_set_key(struct crypto_shash *desc,
  41                           const u8            *in_key,
  42                           unsigned int         key_len)
  43{
  44        struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
  45
  46        switch (key_len) {
  47        case AES_KEYSIZE_128:
  48                nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
  49                break;
  50        default:
  51                return -EINVAL;
  52        }
  53
  54        memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
  55
  56        return 0;
  57}
  58
  59static int nx_xcbc_init(struct shash_desc *desc)
  60{
  61        struct xcbc_state *sctx = shash_desc_ctx(desc);
  62        struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
  63        struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
  64        struct nx_sg *out_sg;
  65
  66        nx_ctx_init(nx_ctx, HCOP_FC_AES);
  67
  68        memset(sctx, 0, sizeof *sctx);
  69
  70        NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
  71        csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
  72
  73        memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
  74        memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
  75
  76        out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
  77                                  AES_BLOCK_SIZE, nx_ctx->ap->sglen);
  78        nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
  79
  80        return 0;
  81}
  82
  83static int nx_xcbc_update(struct shash_desc *desc,
  84                          const u8          *data,
  85                          unsigned int       len)
  86{
  87        struct xcbc_state *sctx = shash_desc_ctx(desc);
  88        struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
  89        struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
  90        struct nx_sg *in_sg;
  91        u32 to_process, leftover;
  92        int rc = 0;
  93
  94        if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
  95                /* we've hit the nx chip previously and we're updating again,
  96                 * so copy over the partial digest */
  97                memcpy(csbcpb->cpb.aes_xcbc.cv,
  98                       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
  99        }
 100
 101        /* 2 cases for total data len:
 102         *  1: <= AES_BLOCK_SIZE: copy into state, return 0
 103         *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
 104         */
 105        if (len + sctx->count <= AES_BLOCK_SIZE) {
 106                memcpy(sctx->buffer + sctx->count, data, len);
 107                sctx->count += len;
 108                goto out;
 109        }
 110
 111        /* to_process: the AES_BLOCK_SIZE data chunk to process in this
 112         * update */
 113        to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
 114        leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
 115
 116        /* the hardware will not accept a 0 byte operation for this algorithm
 117         * and the operation MUST be finalized to be correct. So if we happen
 118         * to get an update that falls on a block sized boundary, we must
 119         * save off the last block to finalize with later. */
 120        if (!leftover) {
 121                to_process -= AES_BLOCK_SIZE;
 122                leftover = AES_BLOCK_SIZE;
 123        }
 124
 125        if (sctx->count) {
 126                in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
 127                                         sctx->count, nx_ctx->ap->sglen);
 128                in_sg = nx_build_sg_list(in_sg, (u8 *)data,
 129                                         to_process - sctx->count,
 130                                         nx_ctx->ap->sglen);
 131                nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
 132                                        sizeof(struct nx_sg);
 133        } else {
 134                in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
 135                                         nx_ctx->ap->sglen);
 136                nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
 137                                        sizeof(struct nx_sg);
 138        }
 139
 140        NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 141
 142        if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
 143                rc = -EINVAL;
 144                goto out;
 145        }
 146
 147        rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 148                           desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 149        if (rc)
 150                goto out;
 151
 152        atomic_inc(&(nx_ctx->stats->aes_ops));
 153
 154        /* copy the leftover back into the state struct */
 155        memcpy(sctx->buffer, data + len - leftover, leftover);
 156        sctx->count = leftover;
 157
 158        /* everything after the first update is continuation */
 159        NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 160out:
 161        return rc;
 162}
 163
 164static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
 165{
 166        struct xcbc_state *sctx = shash_desc_ctx(desc);
 167        struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 168        struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
 169        struct nx_sg *in_sg, *out_sg;
 170        int rc = 0;
 171
 172        if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 173                /* we've hit the nx chip previously, now we're finalizing,
 174                 * so copy over the partial digest */
 175                memcpy(csbcpb->cpb.aes_xcbc.cv,
 176                       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 177        } else if (sctx->count == 0) {
 178                /* we've never seen an update, so this is a 0 byte op. The
 179                 * hardware cannot handle a 0 byte op, so just copy out the
 180                 * known 0 byte result. This is cheaper than allocating a
 181                 * software context to do a 0 byte op */
 182                u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
 183                              0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
 184                memcpy(out, data, sizeof(data));
 185                goto out;
 186        }
 187
 188        /* final is represented by continuing the operation and indicating that
 189         * this is not an intermediate operation */
 190        NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
 191
 192        in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
 193                                 sctx->count, nx_ctx->ap->sglen);
 194        out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
 195                                  nx_ctx->ap->sglen);
 196
 197        nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
 198        nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 199
 200        if (!nx_ctx->op.outlen) {
 201                rc = -EINVAL;
 202                goto out;
 203        }
 204
 205        rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
 206                           desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 207        if (rc)
 208                goto out;
 209
 210        atomic_inc(&(nx_ctx->stats->aes_ops));
 211
 212        memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
 213out:
 214        return rc;
 215}
 216
 217struct shash_alg nx_shash_aes_xcbc_alg = {
 218        .digestsize = AES_BLOCK_SIZE,
 219        .init       = nx_xcbc_init,
 220        .update     = nx_xcbc_update,
 221        .final      = nx_xcbc_final,
 222        .setkey     = nx_xcbc_set_key,
 223        .descsize   = sizeof(struct xcbc_state),
 224        .statesize  = sizeof(struct xcbc_state),
 225        .base       = {
 226                .cra_name        = "xcbc(aes)",
 227                .cra_driver_name = "xcbc-aes-nx",
 228                .cra_priority    = 300,
 229                .cra_flags       = CRYPTO_ALG_TYPE_SHASH,
 230                .cra_blocksize   = AES_BLOCK_SIZE,
 231                .cra_module      = THIS_MODULE,
 232                .cra_ctxsize     = sizeof(struct nx_crypto_ctx),
 233                .cra_init        = nx_crypto_ctx_aes_xcbc_init,
 234                .cra_exit        = nx_crypto_ctx_exit,
 235        }
 236};
 237