linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/* FBC, or Frame Buffer Compression, is a technique employed to compress the
  35 * framebuffer contents in-memory, aiming at reducing the required bandwidth
  36 * during in-memory transfers and, therefore, reduce the power packet.
  37 *
  38 * The benefits of FBC are mostly visible with solid backgrounds and
  39 * variation-less patterns.
  40 *
  41 * FBC-related functionality can be enabled by the means of the
  42 * i915.i915_enable_fbc parameter
  43 */
  44
  45static void i8xx_disable_fbc(struct drm_device *dev)
  46{
  47        struct drm_i915_private *dev_priv = dev->dev_private;
  48        u32 fbc_ctl;
  49
  50        /* Disable compression */
  51        fbc_ctl = I915_READ(FBC_CONTROL);
  52        if ((fbc_ctl & FBC_CTL_EN) == 0)
  53                return;
  54
  55        fbc_ctl &= ~FBC_CTL_EN;
  56        I915_WRITE(FBC_CONTROL, fbc_ctl);
  57
  58        /* Wait for compressing bit to clear */
  59        if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  60                DRM_DEBUG_KMS("FBC idle timed out\n");
  61                return;
  62        }
  63
  64        DRM_DEBUG_KMS("disabled FBC\n");
  65}
  66
  67static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68{
  69        struct drm_device *dev = crtc->dev;
  70        struct drm_i915_private *dev_priv = dev->dev_private;
  71        struct drm_framebuffer *fb = crtc->fb;
  72        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73        struct drm_i915_gem_object *obj = intel_fb->obj;
  74        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75        int cfb_pitch;
  76        int plane, i;
  77        u32 fbc_ctl, fbc_ctl2;
  78
  79        cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  80        if (fb->pitches[0] < cfb_pitch)
  81                cfb_pitch = fb->pitches[0];
  82
  83        /* FBC_CTL wants 64B units */
  84        cfb_pitch = (cfb_pitch / 64) - 1;
  85        plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  86
  87        /* Clear old tags */
  88        for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  89                I915_WRITE(FBC_TAG + (i * 4), 0);
  90
  91        /* Set it up... */
  92        fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  93        fbc_ctl2 |= plane;
  94        I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  95        I915_WRITE(FBC_FENCE_OFF, crtc->y);
  96
  97        /* enable it... */
  98        fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  99        if (IS_I945GM(dev))
 100                fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 101        fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 102        fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
 103        fbc_ctl |= obj->fence_reg;
 104        I915_WRITE(FBC_CONTROL, fbc_ctl);
 105
 106        DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
 107                      cfb_pitch, crtc->y, intel_crtc->plane);
 108}
 109
 110static bool i8xx_fbc_enabled(struct drm_device *dev)
 111{
 112        struct drm_i915_private *dev_priv = dev->dev_private;
 113
 114        return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 115}
 116
 117static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 118{
 119        struct drm_device *dev = crtc->dev;
 120        struct drm_i915_private *dev_priv = dev->dev_private;
 121        struct drm_framebuffer *fb = crtc->fb;
 122        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 123        struct drm_i915_gem_object *obj = intel_fb->obj;
 124        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 125        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 126        unsigned long stall_watermark = 200;
 127        u32 dpfc_ctl;
 128
 129        dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
 130        dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 131        I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
 132
 133        I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 134                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 135                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 136        I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 137
 138        /* enable it... */
 139        I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
 140
 141        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 142}
 143
 144static void g4x_disable_fbc(struct drm_device *dev)
 145{
 146        struct drm_i915_private *dev_priv = dev->dev_private;
 147        u32 dpfc_ctl;
 148
 149        /* Disable compression */
 150        dpfc_ctl = I915_READ(DPFC_CONTROL);
 151        if (dpfc_ctl & DPFC_CTL_EN) {
 152                dpfc_ctl &= ~DPFC_CTL_EN;
 153                I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 154
 155                DRM_DEBUG_KMS("disabled FBC\n");
 156        }
 157}
 158
 159static bool g4x_fbc_enabled(struct drm_device *dev)
 160{
 161        struct drm_i915_private *dev_priv = dev->dev_private;
 162
 163        return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 164}
 165
 166static void sandybridge_blit_fbc_update(struct drm_device *dev)
 167{
 168        struct drm_i915_private *dev_priv = dev->dev_private;
 169        u32 blt_ecoskpd;
 170
 171        /* Make sure blitter notifies FBC of writes */
 172        gen6_gt_force_wake_get(dev_priv);
 173        blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 174        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 175                GEN6_BLITTER_LOCK_SHIFT;
 176        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 177        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 178        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 179        blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 180                         GEN6_BLITTER_LOCK_SHIFT);
 181        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 182        POSTING_READ(GEN6_BLITTER_ECOSKPD);
 183        gen6_gt_force_wake_put(dev_priv);
 184}
 185
 186static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 187{
 188        struct drm_device *dev = crtc->dev;
 189        struct drm_i915_private *dev_priv = dev->dev_private;
 190        struct drm_framebuffer *fb = crtc->fb;
 191        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 192        struct drm_i915_gem_object *obj = intel_fb->obj;
 193        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 194        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 195        unsigned long stall_watermark = 200;
 196        u32 dpfc_ctl;
 197
 198        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 199        dpfc_ctl &= DPFC_RESERVED;
 200        dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
 201        /* Set persistent mode for front-buffer rendering, ala X. */
 202        dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
 203        dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
 204        I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
 205
 206        I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 207                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 208                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 209        I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 210        I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
 211        /* enable it... */
 212        I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 213
 214        if (IS_GEN6(dev)) {
 215                I915_WRITE(SNB_DPFC_CTL_SA,
 216                           SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 217                I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 218                sandybridge_blit_fbc_update(dev);
 219        }
 220
 221        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 222}
 223
 224static void ironlake_disable_fbc(struct drm_device *dev)
 225{
 226        struct drm_i915_private *dev_priv = dev->dev_private;
 227        u32 dpfc_ctl;
 228
 229        /* Disable compression */
 230        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 231        if (dpfc_ctl & DPFC_CTL_EN) {
 232                dpfc_ctl &= ~DPFC_CTL_EN;
 233                I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 234
 235                DRM_DEBUG_KMS("disabled FBC\n");
 236        }
 237}
 238
 239static bool ironlake_fbc_enabled(struct drm_device *dev)
 240{
 241        struct drm_i915_private *dev_priv = dev->dev_private;
 242
 243        return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 244}
 245
 246bool intel_fbc_enabled(struct drm_device *dev)
 247{
 248        struct drm_i915_private *dev_priv = dev->dev_private;
 249
 250        if (!dev_priv->display.fbc_enabled)
 251                return false;
 252
 253        return dev_priv->display.fbc_enabled(dev);
 254}
 255
 256static void intel_fbc_work_fn(struct work_struct *__work)
 257{
 258        struct intel_fbc_work *work =
 259                container_of(to_delayed_work(__work),
 260                             struct intel_fbc_work, work);
 261        struct drm_device *dev = work->crtc->dev;
 262        struct drm_i915_private *dev_priv = dev->dev_private;
 263
 264        mutex_lock(&dev->struct_mutex);
 265        if (work == dev_priv->fbc_work) {
 266                /* Double check that we haven't switched fb without cancelling
 267                 * the prior work.
 268                 */
 269                if (work->crtc->fb == work->fb) {
 270                        dev_priv->display.enable_fbc(work->crtc,
 271                                                     work->interval);
 272
 273                        dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
 274                        dev_priv->cfb_fb = work->crtc->fb->base.id;
 275                        dev_priv->cfb_y = work->crtc->y;
 276                }
 277
 278                dev_priv->fbc_work = NULL;
 279        }
 280        mutex_unlock(&dev->struct_mutex);
 281
 282        kfree(work);
 283}
 284
 285static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
 286{
 287        if (dev_priv->fbc_work == NULL)
 288                return;
 289
 290        DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 291
 292        /* Synchronisation is provided by struct_mutex and checking of
 293         * dev_priv->fbc_work, so we can perform the cancellation
 294         * entirely asynchronously.
 295         */
 296        if (cancel_delayed_work(&dev_priv->fbc_work->work))
 297                /* tasklet was killed before being run, clean up */
 298                kfree(dev_priv->fbc_work);
 299
 300        /* Mark the work as no longer wanted so that if it does
 301         * wake-up (because the work was already running and waiting
 302         * for our mutex), it will discover that is no longer
 303         * necessary to run.
 304         */
 305        dev_priv->fbc_work = NULL;
 306}
 307
 308void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 309{
 310        struct intel_fbc_work *work;
 311        struct drm_device *dev = crtc->dev;
 312        struct drm_i915_private *dev_priv = dev->dev_private;
 313
 314        if (!dev_priv->display.enable_fbc)
 315                return;
 316
 317        intel_cancel_fbc_work(dev_priv);
 318
 319        work = kzalloc(sizeof *work, GFP_KERNEL);
 320        if (work == NULL) {
 321                dev_priv->display.enable_fbc(crtc, interval);
 322                return;
 323        }
 324
 325        work->crtc = crtc;
 326        work->fb = crtc->fb;
 327        work->interval = interval;
 328        INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 329
 330        dev_priv->fbc_work = work;
 331
 332        DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
 333
 334        /* Delay the actual enabling to let pageflipping cease and the
 335         * display to settle before starting the compression. Note that
 336         * this delay also serves a second purpose: it allows for a
 337         * vblank to pass after disabling the FBC before we attempt
 338         * to modify the control registers.
 339         *
 340         * A more complicated solution would involve tracking vblanks
 341         * following the termination of the page-flipping sequence
 342         * and indeed performing the enable as a co-routine and not
 343         * waiting synchronously upon the vblank.
 344         */
 345        schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 346}
 347
 348void intel_disable_fbc(struct drm_device *dev)
 349{
 350        struct drm_i915_private *dev_priv = dev->dev_private;
 351
 352        intel_cancel_fbc_work(dev_priv);
 353
 354        if (!dev_priv->display.disable_fbc)
 355                return;
 356
 357        dev_priv->display.disable_fbc(dev);
 358        dev_priv->cfb_plane = -1;
 359}
 360
 361/**
 362 * intel_update_fbc - enable/disable FBC as needed
 363 * @dev: the drm_device
 364 *
 365 * Set up the framebuffer compression hardware at mode set time.  We
 366 * enable it if possible:
 367 *   - plane A only (on pre-965)
 368 *   - no pixel mulitply/line duplication
 369 *   - no alpha buffer discard
 370 *   - no dual wide
 371 *   - framebuffer <= 2048 in width, 1536 in height
 372 *
 373 * We can't assume that any compression will take place (worst case),
 374 * so the compressed buffer has to be the same size as the uncompressed
 375 * one.  It also must reside (along with the line length buffer) in
 376 * stolen memory.
 377 *
 378 * We need to enable/disable FBC on a global basis.
 379 */
 380void intel_update_fbc(struct drm_device *dev)
 381{
 382        struct drm_i915_private *dev_priv = dev->dev_private;
 383        struct drm_crtc *crtc = NULL, *tmp_crtc;
 384        struct intel_crtc *intel_crtc;
 385        struct drm_framebuffer *fb;
 386        struct intel_framebuffer *intel_fb;
 387        struct drm_i915_gem_object *obj;
 388        int enable_fbc;
 389
 390        DRM_DEBUG_KMS("\n");
 391
 392        if (!i915_powersave)
 393                return;
 394
 395        if (!I915_HAS_FBC(dev))
 396                return;
 397
 398        /*
 399         * If FBC is already on, we just have to verify that we can
 400         * keep it that way...
 401         * Need to disable if:
 402         *   - more than one pipe is active
 403         *   - changing FBC params (stride, fence, mode)
 404         *   - new fb is too large to fit in compressed buffer
 405         *   - going to an unsupported config (interlace, pixel multiply, etc.)
 406         */
 407        list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
 408                if (tmp_crtc->enabled && tmp_crtc->fb) {
 409                        if (crtc) {
 410                                DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 411                                dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
 412                                goto out_disable;
 413                        }
 414                        crtc = tmp_crtc;
 415                }
 416        }
 417
 418        if (!crtc || crtc->fb == NULL) {
 419                DRM_DEBUG_KMS("no output, disabling\n");
 420                dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
 421                goto out_disable;
 422        }
 423
 424        intel_crtc = to_intel_crtc(crtc);
 425        fb = crtc->fb;
 426        intel_fb = to_intel_framebuffer(fb);
 427        obj = intel_fb->obj;
 428
 429        enable_fbc = i915_enable_fbc;
 430        if (enable_fbc < 0) {
 431                DRM_DEBUG_KMS("fbc set to per-chip default\n");
 432                enable_fbc = 1;
 433                if (INTEL_INFO(dev)->gen <= 6)
 434                        enable_fbc = 0;
 435        }
 436        if (!enable_fbc) {
 437                DRM_DEBUG_KMS("fbc disabled per module param\n");
 438                dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
 439                goto out_disable;
 440        }
 441        if (intel_fb->obj->base.size > dev_priv->cfb_size) {
 442                DRM_DEBUG_KMS("framebuffer too large, disabling "
 443                              "compression\n");
 444                dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
 445                goto out_disable;
 446        }
 447        if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
 448            (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
 449                DRM_DEBUG_KMS("mode incompatible with compression, "
 450                              "disabling\n");
 451                dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
 452                goto out_disable;
 453        }
 454        if ((crtc->mode.hdisplay > 2048) ||
 455            (crtc->mode.vdisplay > 1536)) {
 456                DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 457                dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
 458                goto out_disable;
 459        }
 460        if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
 461                DRM_DEBUG_KMS("plane not 0, disabling compression\n");
 462                dev_priv->no_fbc_reason = FBC_BAD_PLANE;
 463                goto out_disable;
 464        }
 465
 466        /* The use of a CPU fence is mandatory in order to detect writes
 467         * by the CPU to the scanout and trigger updates to the FBC.
 468         */
 469        if (obj->tiling_mode != I915_TILING_X ||
 470            obj->fence_reg == I915_FENCE_REG_NONE) {
 471                DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 472                dev_priv->no_fbc_reason = FBC_NOT_TILED;
 473                goto out_disable;
 474        }
 475
 476        /* If the kernel debugger is active, always disable compression */
 477        if (in_dbg_master())
 478                goto out_disable;
 479
 480        /* If the scanout has not changed, don't modify the FBC settings.
 481         * Note that we make the fundamental assumption that the fb->obj
 482         * cannot be unpinned (and have its GTT offset and fence revoked)
 483         * without first being decoupled from the scanout and FBC disabled.
 484         */
 485        if (dev_priv->cfb_plane == intel_crtc->plane &&
 486            dev_priv->cfb_fb == fb->base.id &&
 487            dev_priv->cfb_y == crtc->y)
 488                return;
 489
 490        if (intel_fbc_enabled(dev)) {
 491                /* We update FBC along two paths, after changing fb/crtc
 492                 * configuration (modeswitching) and after page-flipping
 493                 * finishes. For the latter, we know that not only did
 494                 * we disable the FBC at the start of the page-flip
 495                 * sequence, but also more than one vblank has passed.
 496                 *
 497                 * For the former case of modeswitching, it is possible
 498                 * to switch between two FBC valid configurations
 499                 * instantaneously so we do need to disable the FBC
 500                 * before we can modify its control registers. We also
 501                 * have to wait for the next vblank for that to take
 502                 * effect. However, since we delay enabling FBC we can
 503                 * assume that a vblank has passed since disabling and
 504                 * that we can safely alter the registers in the deferred
 505                 * callback.
 506                 *
 507                 * In the scenario that we go from a valid to invalid
 508                 * and then back to valid FBC configuration we have
 509                 * no strict enforcement that a vblank occurred since
 510                 * disabling the FBC. However, along all current pipe
 511                 * disabling paths we do need to wait for a vblank at
 512                 * some point. And we wait before enabling FBC anyway.
 513                 */
 514                DRM_DEBUG_KMS("disabling active FBC for update\n");
 515                intel_disable_fbc(dev);
 516        }
 517
 518        intel_enable_fbc(crtc, 500);
 519        return;
 520
 521out_disable:
 522        /* Multiple disables should be harmless */
 523        if (intel_fbc_enabled(dev)) {
 524                DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 525                intel_disable_fbc(dev);
 526        }
 527}
 528
 529static void i915_pineview_get_mem_freq(struct drm_device *dev)
 530{
 531        drm_i915_private_t *dev_priv = dev->dev_private;
 532        u32 tmp;
 533
 534        tmp = I915_READ(CLKCFG);
 535
 536        switch (tmp & CLKCFG_FSB_MASK) {
 537        case CLKCFG_FSB_533:
 538                dev_priv->fsb_freq = 533; /* 133*4 */
 539                break;
 540        case CLKCFG_FSB_800:
 541                dev_priv->fsb_freq = 800; /* 200*4 */
 542                break;
 543        case CLKCFG_FSB_667:
 544                dev_priv->fsb_freq =  667; /* 167*4 */
 545                break;
 546        case CLKCFG_FSB_400:
 547                dev_priv->fsb_freq = 400; /* 100*4 */
 548                break;
 549        }
 550
 551        switch (tmp & CLKCFG_MEM_MASK) {
 552        case CLKCFG_MEM_533:
 553                dev_priv->mem_freq = 533;
 554                break;
 555        case CLKCFG_MEM_667:
 556                dev_priv->mem_freq = 667;
 557                break;
 558        case CLKCFG_MEM_800:
 559                dev_priv->mem_freq = 800;
 560                break;
 561        }
 562
 563        /* detect pineview DDR3 setting */
 564        tmp = I915_READ(CSHRDDR3CTL);
 565        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 566}
 567
 568static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 569{
 570        drm_i915_private_t *dev_priv = dev->dev_private;
 571        u16 ddrpll, csipll;
 572
 573        ddrpll = I915_READ16(DDRMPLL1);
 574        csipll = I915_READ16(CSIPLL0);
 575
 576        switch (ddrpll & 0xff) {
 577        case 0xc:
 578                dev_priv->mem_freq = 800;
 579                break;
 580        case 0x10:
 581                dev_priv->mem_freq = 1066;
 582                break;
 583        case 0x14:
 584                dev_priv->mem_freq = 1333;
 585                break;
 586        case 0x18:
 587                dev_priv->mem_freq = 1600;
 588                break;
 589        default:
 590                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 591                                 ddrpll & 0xff);
 592                dev_priv->mem_freq = 0;
 593                break;
 594        }
 595
 596        dev_priv->r_t = dev_priv->mem_freq;
 597
 598        switch (csipll & 0x3ff) {
 599        case 0x00c:
 600                dev_priv->fsb_freq = 3200;
 601                break;
 602        case 0x00e:
 603                dev_priv->fsb_freq = 3733;
 604                break;
 605        case 0x010:
 606                dev_priv->fsb_freq = 4266;
 607                break;
 608        case 0x012:
 609                dev_priv->fsb_freq = 4800;
 610                break;
 611        case 0x014:
 612                dev_priv->fsb_freq = 5333;
 613                break;
 614        case 0x016:
 615                dev_priv->fsb_freq = 5866;
 616                break;
 617        case 0x018:
 618                dev_priv->fsb_freq = 6400;
 619                break;
 620        default:
 621                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 622                                 csipll & 0x3ff);
 623                dev_priv->fsb_freq = 0;
 624                break;
 625        }
 626
 627        if (dev_priv->fsb_freq == 3200) {
 628                dev_priv->c_m = 0;
 629        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 630                dev_priv->c_m = 1;
 631        } else {
 632                dev_priv->c_m = 2;
 633        }
 634}
 635
 636static const struct cxsr_latency cxsr_latency_table[] = {
 637        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 638        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 639        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 640        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 641        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 642
 643        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 644        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 645        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 646        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 647        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 648
 649        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 650        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 651        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 652        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 653        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 654
 655        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 656        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 657        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 658        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 659        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 660
 661        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 662        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 663        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 664        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 665        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 666
 667        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 668        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 669        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 670        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 671        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 672};
 673
 674static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 675                                                         int is_ddr3,
 676                                                         int fsb,
 677                                                         int mem)
 678{
 679        const struct cxsr_latency *latency;
 680        int i;
 681
 682        if (fsb == 0 || mem == 0)
 683                return NULL;
 684
 685        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 686                latency = &cxsr_latency_table[i];
 687                if (is_desktop == latency->is_desktop &&
 688                    is_ddr3 == latency->is_ddr3 &&
 689                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 690                        return latency;
 691        }
 692
 693        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 694
 695        return NULL;
 696}
 697
 698static void pineview_disable_cxsr(struct drm_device *dev)
 699{
 700        struct drm_i915_private *dev_priv = dev->dev_private;
 701
 702        /* deactivate cxsr */
 703        I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
 704}
 705
 706/*
 707 * Latency for FIFO fetches is dependent on several factors:
 708 *   - memory configuration (speed, channels)
 709 *   - chipset
 710 *   - current MCH state
 711 * It can be fairly high in some situations, so here we assume a fairly
 712 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 713 * set this value too high, the FIFO will fetch frequently to stay full)
 714 * and power consumption (set it too low to save power and we might see
 715 * FIFO underruns and display "flicker").
 716 *
 717 * A value of 5us seems to be a good balance; safe for very low end
 718 * platforms but not overly aggressive on lower latency configs.
 719 */
 720static const int latency_ns = 5000;
 721
 722static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 723{
 724        struct drm_i915_private *dev_priv = dev->dev_private;
 725        uint32_t dsparb = I915_READ(DSPARB);
 726        int size;
 727
 728        size = dsparb & 0x7f;
 729        if (plane)
 730                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 731
 732        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 733                      plane ? "B" : "A", size);
 734
 735        return size;
 736}
 737
 738static int i85x_get_fifo_size(struct drm_device *dev, int plane)
 739{
 740        struct drm_i915_private *dev_priv = dev->dev_private;
 741        uint32_t dsparb = I915_READ(DSPARB);
 742        int size;
 743
 744        size = dsparb & 0x1ff;
 745        if (plane)
 746                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 747        size >>= 1; /* Convert to cachelines */
 748
 749        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 750                      plane ? "B" : "A", size);
 751
 752        return size;
 753}
 754
 755static int i845_get_fifo_size(struct drm_device *dev, int plane)
 756{
 757        struct drm_i915_private *dev_priv = dev->dev_private;
 758        uint32_t dsparb = I915_READ(DSPARB);
 759        int size;
 760
 761        size = dsparb & 0x7f;
 762        size >>= 2; /* Convert to cachelines */
 763
 764        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 765                      plane ? "B" : "A",
 766                      size);
 767
 768        return size;
 769}
 770
 771static int i830_get_fifo_size(struct drm_device *dev, int plane)
 772{
 773        struct drm_i915_private *dev_priv = dev->dev_private;
 774        uint32_t dsparb = I915_READ(DSPARB);
 775        int size;
 776
 777        size = dsparb & 0x7f;
 778        size >>= 1; /* Convert to cachelines */
 779
 780        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 781                      plane ? "B" : "A", size);
 782
 783        return size;
 784}
 785
 786/* Pineview has different values for various configs */
 787static const struct intel_watermark_params pineview_display_wm = {
 788        PINEVIEW_DISPLAY_FIFO,
 789        PINEVIEW_MAX_WM,
 790        PINEVIEW_DFT_WM,
 791        PINEVIEW_GUARD_WM,
 792        PINEVIEW_FIFO_LINE_SIZE
 793};
 794static const struct intel_watermark_params pineview_display_hplloff_wm = {
 795        PINEVIEW_DISPLAY_FIFO,
 796        PINEVIEW_MAX_WM,
 797        PINEVIEW_DFT_HPLLOFF_WM,
 798        PINEVIEW_GUARD_WM,
 799        PINEVIEW_FIFO_LINE_SIZE
 800};
 801static const struct intel_watermark_params pineview_cursor_wm = {
 802        PINEVIEW_CURSOR_FIFO,
 803        PINEVIEW_CURSOR_MAX_WM,
 804        PINEVIEW_CURSOR_DFT_WM,
 805        PINEVIEW_CURSOR_GUARD_WM,
 806        PINEVIEW_FIFO_LINE_SIZE,
 807};
 808static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 809        PINEVIEW_CURSOR_FIFO,
 810        PINEVIEW_CURSOR_MAX_WM,
 811        PINEVIEW_CURSOR_DFT_WM,
 812        PINEVIEW_CURSOR_GUARD_WM,
 813        PINEVIEW_FIFO_LINE_SIZE
 814};
 815static const struct intel_watermark_params g4x_wm_info = {
 816        G4X_FIFO_SIZE,
 817        G4X_MAX_WM,
 818        G4X_MAX_WM,
 819        2,
 820        G4X_FIFO_LINE_SIZE,
 821};
 822static const struct intel_watermark_params g4x_cursor_wm_info = {
 823        I965_CURSOR_FIFO,
 824        I965_CURSOR_MAX_WM,
 825        I965_CURSOR_DFT_WM,
 826        2,
 827        G4X_FIFO_LINE_SIZE,
 828};
 829static const struct intel_watermark_params valleyview_wm_info = {
 830        VALLEYVIEW_FIFO_SIZE,
 831        VALLEYVIEW_MAX_WM,
 832        VALLEYVIEW_MAX_WM,
 833        2,
 834        G4X_FIFO_LINE_SIZE,
 835};
 836static const struct intel_watermark_params valleyview_cursor_wm_info = {
 837        I965_CURSOR_FIFO,
 838        VALLEYVIEW_CURSOR_MAX_WM,
 839        I965_CURSOR_DFT_WM,
 840        2,
 841        G4X_FIFO_LINE_SIZE,
 842};
 843static const struct intel_watermark_params i965_cursor_wm_info = {
 844        I965_CURSOR_FIFO,
 845        I965_CURSOR_MAX_WM,
 846        I965_CURSOR_DFT_WM,
 847        2,
 848        I915_FIFO_LINE_SIZE,
 849};
 850static const struct intel_watermark_params i945_wm_info = {
 851        I945_FIFO_SIZE,
 852        I915_MAX_WM,
 853        1,
 854        2,
 855        I915_FIFO_LINE_SIZE
 856};
 857static const struct intel_watermark_params i915_wm_info = {
 858        I915_FIFO_SIZE,
 859        I915_MAX_WM,
 860        1,
 861        2,
 862        I915_FIFO_LINE_SIZE
 863};
 864static const struct intel_watermark_params i855_wm_info = {
 865        I855GM_FIFO_SIZE,
 866        I915_MAX_WM,
 867        1,
 868        2,
 869        I830_FIFO_LINE_SIZE
 870};
 871static const struct intel_watermark_params i830_wm_info = {
 872        I830_FIFO_SIZE,
 873        I915_MAX_WM,
 874        1,
 875        2,
 876        I830_FIFO_LINE_SIZE
 877};
 878
 879static const struct intel_watermark_params ironlake_display_wm_info = {
 880        ILK_DISPLAY_FIFO,
 881        ILK_DISPLAY_MAXWM,
 882        ILK_DISPLAY_DFTWM,
 883        2,
 884        ILK_FIFO_LINE_SIZE
 885};
 886static const struct intel_watermark_params ironlake_cursor_wm_info = {
 887        ILK_CURSOR_FIFO,
 888        ILK_CURSOR_MAXWM,
 889        ILK_CURSOR_DFTWM,
 890        2,
 891        ILK_FIFO_LINE_SIZE
 892};
 893static const struct intel_watermark_params ironlake_display_srwm_info = {
 894        ILK_DISPLAY_SR_FIFO,
 895        ILK_DISPLAY_MAX_SRWM,
 896        ILK_DISPLAY_DFT_SRWM,
 897        2,
 898        ILK_FIFO_LINE_SIZE
 899};
 900static const struct intel_watermark_params ironlake_cursor_srwm_info = {
 901        ILK_CURSOR_SR_FIFO,
 902        ILK_CURSOR_MAX_SRWM,
 903        ILK_CURSOR_DFT_SRWM,
 904        2,
 905        ILK_FIFO_LINE_SIZE
 906};
 907
 908static const struct intel_watermark_params sandybridge_display_wm_info = {
 909        SNB_DISPLAY_FIFO,
 910        SNB_DISPLAY_MAXWM,
 911        SNB_DISPLAY_DFTWM,
 912        2,
 913        SNB_FIFO_LINE_SIZE
 914};
 915static const struct intel_watermark_params sandybridge_cursor_wm_info = {
 916        SNB_CURSOR_FIFO,
 917        SNB_CURSOR_MAXWM,
 918        SNB_CURSOR_DFTWM,
 919        2,
 920        SNB_FIFO_LINE_SIZE
 921};
 922static const struct intel_watermark_params sandybridge_display_srwm_info = {
 923        SNB_DISPLAY_SR_FIFO,
 924        SNB_DISPLAY_MAX_SRWM,
 925        SNB_DISPLAY_DFT_SRWM,
 926        2,
 927        SNB_FIFO_LINE_SIZE
 928};
 929static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
 930        SNB_CURSOR_SR_FIFO,
 931        SNB_CURSOR_MAX_SRWM,
 932        SNB_CURSOR_DFT_SRWM,
 933        2,
 934        SNB_FIFO_LINE_SIZE
 935};
 936
 937
 938/**
 939 * intel_calculate_wm - calculate watermark level
 940 * @clock_in_khz: pixel clock
 941 * @wm: chip FIFO params
 942 * @pixel_size: display pixel size
 943 * @latency_ns: memory latency for the platform
 944 *
 945 * Calculate the watermark level (the level at which the display plane will
 946 * start fetching from memory again).  Each chip has a different display
 947 * FIFO size and allocation, so the caller needs to figure that out and pass
 948 * in the correct intel_watermark_params structure.
 949 *
 950 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 951 * on the pixel size.  When it reaches the watermark level, it'll start
 952 * fetching FIFO line sized based chunks from memory until the FIFO fills
 953 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 954 * will occur, and a display engine hang could result.
 955 */
 956static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 957                                        const struct intel_watermark_params *wm,
 958                                        int fifo_size,
 959                                        int pixel_size,
 960                                        unsigned long latency_ns)
 961{
 962        long entries_required, wm_size;
 963
 964        /*
 965         * Note: we need to make sure we don't overflow for various clock &
 966         * latency values.
 967         * clocks go from a few thousand to several hundred thousand.
 968         * latency is usually a few thousand
 969         */
 970        entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 971                1000;
 972        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 973
 974        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 975
 976        wm_size = fifo_size - (entries_required + wm->guard_size);
 977
 978        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 979
 980        /* Don't promote wm_size to unsigned... */
 981        if (wm_size > (long)wm->max_wm)
 982                wm_size = wm->max_wm;
 983        if (wm_size <= 0)
 984                wm_size = wm->default_wm;
 985        return wm_size;
 986}
 987
 988static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 989{
 990        struct drm_crtc *crtc, *enabled = NULL;
 991
 992        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 993                if (crtc->enabled && crtc->fb) {
 994                        if (enabled)
 995                                return NULL;
 996                        enabled = crtc;
 997                }
 998        }
 999
1000        return enabled;
1001}
1002
1003static void pineview_update_wm(struct drm_device *dev)
1004{
1005        struct drm_i915_private *dev_priv = dev->dev_private;
1006        struct drm_crtc *crtc;
1007        const struct cxsr_latency *latency;
1008        u32 reg;
1009        unsigned long wm;
1010
1011        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012                                         dev_priv->fsb_freq, dev_priv->mem_freq);
1013        if (!latency) {
1014                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015                pineview_disable_cxsr(dev);
1016                return;
1017        }
1018
1019        crtc = single_enabled_crtc(dev);
1020        if (crtc) {
1021                int clock = crtc->mode.clock;
1022                int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024                /* Display SR */
1025                wm = intel_calculate_wm(clock, &pineview_display_wm,
1026                                        pineview_display_wm.fifo_size,
1027                                        pixel_size, latency->display_sr);
1028                reg = I915_READ(DSPFW1);
1029                reg &= ~DSPFW_SR_MASK;
1030                reg |= wm << DSPFW_SR_SHIFT;
1031                I915_WRITE(DSPFW1, reg);
1032                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034                /* cursor SR */
1035                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036                                        pineview_display_wm.fifo_size,
1037                                        pixel_size, latency->cursor_sr);
1038                reg = I915_READ(DSPFW3);
1039                reg &= ~DSPFW_CURSOR_SR_MASK;
1040                reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041                I915_WRITE(DSPFW3, reg);
1042
1043                /* Display HPLL off SR */
1044                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045                                        pineview_display_hplloff_wm.fifo_size,
1046                                        pixel_size, latency->display_hpll_disable);
1047                reg = I915_READ(DSPFW3);
1048                reg &= ~DSPFW_HPLL_SR_MASK;
1049                reg |= wm & DSPFW_HPLL_SR_MASK;
1050                I915_WRITE(DSPFW3, reg);
1051
1052                /* cursor HPLL off SR */
1053                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054                                        pineview_display_hplloff_wm.fifo_size,
1055                                        pixel_size, latency->cursor_hpll_disable);
1056                reg = I915_READ(DSPFW3);
1057                reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058                reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059                I915_WRITE(DSPFW3, reg);
1060                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062                /* activate cxsr */
1063                I915_WRITE(DSPFW3,
1064                           I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065                DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066        } else {
1067                pineview_disable_cxsr(dev);
1068                DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069        }
1070}
1071
1072static bool g4x_compute_wm0(struct drm_device *dev,
1073                            int plane,
1074                            const struct intel_watermark_params *display,
1075                            int display_latency_ns,
1076                            const struct intel_watermark_params *cursor,
1077                            int cursor_latency_ns,
1078                            int *plane_wm,
1079                            int *cursor_wm)
1080{
1081        struct drm_crtc *crtc;
1082        int htotal, hdisplay, clock, pixel_size;
1083        int line_time_us, line_count;
1084        int entries, tlb_miss;
1085
1086        crtc = intel_get_crtc_for_plane(dev, plane);
1087        if (crtc->fb == NULL || !crtc->enabled) {
1088                *cursor_wm = cursor->guard_size;
1089                *plane_wm = display->guard_size;
1090                return false;
1091        }
1092
1093        htotal = crtc->mode.htotal;
1094        hdisplay = crtc->mode.hdisplay;
1095        clock = crtc->mode.clock;
1096        pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098        /* Use the small buffer method to calculate plane watermark */
1099        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101        if (tlb_miss > 0)
1102                entries += tlb_miss;
1103        entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104        *plane_wm = entries + display->guard_size;
1105        if (*plane_wm > (int)display->max_wm)
1106                *plane_wm = display->max_wm;
1107
1108        /* Use the large buffer method to calculate cursor watermark */
1109        line_time_us = ((htotal * 1000) / clock);
1110        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111        entries = line_count * 64 * pixel_size;
1112        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113        if (tlb_miss > 0)
1114                entries += tlb_miss;
1115        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116        *cursor_wm = entries + cursor->guard_size;
1117        if (*cursor_wm > (int)cursor->max_wm)
1118                *cursor_wm = (int)cursor->max_wm;
1119
1120        return true;
1121}
1122
1123/*
1124 * Check the wm result.
1125 *
1126 * If any calculated watermark values is larger than the maximum value that
1127 * can be programmed into the associated watermark register, that watermark
1128 * must be disabled.
1129 */
1130static bool g4x_check_srwm(struct drm_device *dev,
1131                           int display_wm, int cursor_wm,
1132                           const struct intel_watermark_params *display,
1133                           const struct intel_watermark_params *cursor)
1134{
1135        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136                      display_wm, cursor_wm);
1137
1138        if (display_wm > display->max_wm) {
1139                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140                              display_wm, display->max_wm);
1141                return false;
1142        }
1143
1144        if (cursor_wm > cursor->max_wm) {
1145                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146                              cursor_wm, cursor->max_wm);
1147                return false;
1148        }
1149
1150        if (!(display_wm || cursor_wm)) {
1151                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152                return false;
1153        }
1154
1155        return true;
1156}
1157
1158static bool g4x_compute_srwm(struct drm_device *dev,
1159                             int plane,
1160                             int latency_ns,
1161                             const struct intel_watermark_params *display,
1162                             const struct intel_watermark_params *cursor,
1163                             int *display_wm, int *cursor_wm)
1164{
1165        struct drm_crtc *crtc;
1166        int hdisplay, htotal, pixel_size, clock;
1167        unsigned long line_time_us;
1168        int line_count, line_size;
1169        int small, large;
1170        int entries;
1171
1172        if (!latency_ns) {
1173                *display_wm = *cursor_wm = 0;
1174                return false;
1175        }
1176
1177        crtc = intel_get_crtc_for_plane(dev, plane);
1178        hdisplay = crtc->mode.hdisplay;
1179        htotal = crtc->mode.htotal;
1180        clock = crtc->mode.clock;
1181        pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183        line_time_us = (htotal * 1000) / clock;
1184        line_count = (latency_ns / line_time_us + 1000) / 1000;
1185        line_size = hdisplay * pixel_size;
1186
1187        /* Use the minimum of the small and large buffer method for primary */
1188        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189        large = line_count * line_size;
1190
1191        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192        *display_wm = entries + display->guard_size;
1193
1194        /* calculate the self-refresh watermark for display cursor */
1195        entries = line_count * pixel_size * 64;
1196        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197        *cursor_wm = entries + cursor->guard_size;
1198
1199        return g4x_check_srwm(dev,
1200                              *display_wm, *cursor_wm,
1201                              display, cursor);
1202}
1203
1204static bool vlv_compute_drain_latency(struct drm_device *dev,
1205                                     int plane,
1206                                     int *plane_prec_mult,
1207                                     int *plane_dl,
1208                                     int *cursor_prec_mult,
1209                                     int *cursor_dl)
1210{
1211        struct drm_crtc *crtc;
1212        int clock, pixel_size;
1213        int entries;
1214
1215        crtc = intel_get_crtc_for_plane(dev, plane);
1216        if (crtc->fb == NULL || !crtc->enabled)
1217                return false;
1218
1219        clock = crtc->mode.clock;       /* VESA DOT Clock */
1220        pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1221
1222        entries = (clock / 1000) * pixel_size;
1223        *plane_prec_mult = (entries > 256) ?
1224                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225        *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226                                                     pixel_size);
1227
1228        entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1229        *cursor_prec_mult = (entries > 256) ?
1230                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231        *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233        return true;
1234}
1235
1236/*
1237 * Update drain latency registers of memory arbiter
1238 *
1239 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240 * to be programmed. Each plane has a drain latency multiplier and a drain
1241 * latency value.
1242 */
1243
1244static void vlv_update_drain_latency(struct drm_device *dev)
1245{
1246        struct drm_i915_private *dev_priv = dev->dev_private;
1247        int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248        int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249        int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250                                                        either 16 or 32 */
1251
1252        /* For plane A, Cursor A */
1253        if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254                                      &cursor_prec_mult, &cursora_dl)) {
1255                cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256                        DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257                planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258                        DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260                I915_WRITE(VLV_DDL1, cursora_prec |
1261                                (cursora_dl << DDL_CURSORA_SHIFT) |
1262                                planea_prec | planea_dl);
1263        }
1264
1265        /* For plane B, Cursor B */
1266        if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267                                      &cursor_prec_mult, &cursorb_dl)) {
1268                cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                        DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270                planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                        DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273                I915_WRITE(VLV_DDL2, cursorb_prec |
1274                                (cursorb_dl << DDL_CURSORB_SHIFT) |
1275                                planeb_prec | planeb_dl);
1276        }
1277}
1278
1279#define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281static void valleyview_update_wm(struct drm_device *dev)
1282{
1283        static const int sr_latency_ns = 12000;
1284        struct drm_i915_private *dev_priv = dev->dev_private;
1285        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286        int plane_sr, cursor_sr;
1287        unsigned int enabled = 0;
1288
1289        vlv_update_drain_latency(dev);
1290
1291        if (g4x_compute_wm0(dev, 0,
1292                            &valleyview_wm_info, latency_ns,
1293                            &valleyview_cursor_wm_info, latency_ns,
1294                            &planea_wm, &cursora_wm))
1295                enabled |= 1;
1296
1297        if (g4x_compute_wm0(dev, 1,
1298                            &valleyview_wm_info, latency_ns,
1299                            &valleyview_cursor_wm_info, latency_ns,
1300                            &planeb_wm, &cursorb_wm))
1301                enabled |= 2;
1302
1303        plane_sr = cursor_sr = 0;
1304        if (single_plane_enabled(enabled) &&
1305            g4x_compute_srwm(dev, ffs(enabled) - 1,
1306                             sr_latency_ns,
1307                             &valleyview_wm_info,
1308                             &valleyview_cursor_wm_info,
1309                             &plane_sr, &cursor_sr))
1310                I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311        else
1312                I915_WRITE(FW_BLC_SELF_VLV,
1313                           I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316                      planea_wm, cursora_wm,
1317                      planeb_wm, cursorb_wm,
1318                      plane_sr, cursor_sr);
1319
1320        I915_WRITE(DSPFW1,
1321                   (plane_sr << DSPFW_SR_SHIFT) |
1322                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324                   planea_wm);
1325        I915_WRITE(DSPFW2,
1326                   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327                   (cursora_wm << DSPFW_CURSORA_SHIFT));
1328        I915_WRITE(DSPFW3,
1329                   (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330}
1331
1332static void g4x_update_wm(struct drm_device *dev)
1333{
1334        static const int sr_latency_ns = 12000;
1335        struct drm_i915_private *dev_priv = dev->dev_private;
1336        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337        int plane_sr, cursor_sr;
1338        unsigned int enabled = 0;
1339
1340        if (g4x_compute_wm0(dev, 0,
1341                            &g4x_wm_info, latency_ns,
1342                            &g4x_cursor_wm_info, latency_ns,
1343                            &planea_wm, &cursora_wm))
1344                enabled |= 1;
1345
1346        if (g4x_compute_wm0(dev, 1,
1347                            &g4x_wm_info, latency_ns,
1348                            &g4x_cursor_wm_info, latency_ns,
1349                            &planeb_wm, &cursorb_wm))
1350                enabled |= 2;
1351
1352        plane_sr = cursor_sr = 0;
1353        if (single_plane_enabled(enabled) &&
1354            g4x_compute_srwm(dev, ffs(enabled) - 1,
1355                             sr_latency_ns,
1356                             &g4x_wm_info,
1357                             &g4x_cursor_wm_info,
1358                             &plane_sr, &cursor_sr))
1359                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360        else
1361                I915_WRITE(FW_BLC_SELF,
1362                           I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365                      planea_wm, cursora_wm,
1366                      planeb_wm, cursorb_wm,
1367                      plane_sr, cursor_sr);
1368
1369        I915_WRITE(DSPFW1,
1370                   (plane_sr << DSPFW_SR_SHIFT) |
1371                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373                   planea_wm);
1374        I915_WRITE(DSPFW2,
1375                   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376                   (cursora_wm << DSPFW_CURSORA_SHIFT));
1377        /* HPLL off in SR has some issues on G4x... disable it */
1378        I915_WRITE(DSPFW3,
1379                   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381}
1382
1383static void i965_update_wm(struct drm_device *dev)
1384{
1385        struct drm_i915_private *dev_priv = dev->dev_private;
1386        struct drm_crtc *crtc;
1387        int srwm = 1;
1388        int cursor_sr = 16;
1389
1390        /* Calc sr entries for one plane configs */
1391        crtc = single_enabled_crtc(dev);
1392        if (crtc) {
1393                /* self-refresh has much higher latency */
1394                static const int sr_latency_ns = 12000;
1395                int clock = crtc->mode.clock;
1396                int htotal = crtc->mode.htotal;
1397                int hdisplay = crtc->mode.hdisplay;
1398                int pixel_size = crtc->fb->bits_per_pixel / 8;
1399                unsigned long line_time_us;
1400                int entries;
1401
1402                line_time_us = ((htotal * 1000) / clock);
1403
1404                /* Use ns/us then divide to preserve precision */
1405                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406                        pixel_size * hdisplay;
1407                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408                srwm = I965_FIFO_SIZE - entries;
1409                if (srwm < 0)
1410                        srwm = 1;
1411                srwm &= 0x1ff;
1412                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413                              entries, srwm);
1414
1415                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416                        pixel_size * 64;
1417                entries = DIV_ROUND_UP(entries,
1418                                          i965_cursor_wm_info.cacheline_size);
1419                cursor_sr = i965_cursor_wm_info.fifo_size -
1420                        (entries + i965_cursor_wm_info.guard_size);
1421
1422                if (cursor_sr > i965_cursor_wm_info.max_wm)
1423                        cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426                              "cursor %d\n", srwm, cursor_sr);
1427
1428                if (IS_CRESTLINE(dev))
1429                        I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430        } else {
1431                /* Turn off self refresh if both pipes are enabled */
1432                if (IS_CRESTLINE(dev))
1433                        I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434                                   & ~FW_BLC_SELF_EN);
1435        }
1436
1437        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438                      srwm);
1439
1440        /* 965 has limitations... */
1441        I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442                   (8 << 16) | (8 << 8) | (8 << 0));
1443        I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444        /* update cursor SR watermark */
1445        I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446}
1447
1448static void i9xx_update_wm(struct drm_device *dev)
1449{
1450        struct drm_i915_private *dev_priv = dev->dev_private;
1451        const struct intel_watermark_params *wm_info;
1452        uint32_t fwater_lo;
1453        uint32_t fwater_hi;
1454        int cwm, srwm = 1;
1455        int fifo_size;
1456        int planea_wm, planeb_wm;
1457        struct drm_crtc *crtc, *enabled = NULL;
1458
1459        if (IS_I945GM(dev))
1460                wm_info = &i945_wm_info;
1461        else if (!IS_GEN2(dev))
1462                wm_info = &i915_wm_info;
1463        else
1464                wm_info = &i855_wm_info;
1465
1466        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467        crtc = intel_get_crtc_for_plane(dev, 0);
1468        if (crtc->enabled && crtc->fb) {
1469                planea_wm = intel_calculate_wm(crtc->mode.clock,
1470                                               wm_info, fifo_size,
1471                                               crtc->fb->bits_per_pixel / 8,
1472                                               latency_ns);
1473                enabled = crtc;
1474        } else
1475                planea_wm = fifo_size - wm_info->guard_size;
1476
1477        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478        crtc = intel_get_crtc_for_plane(dev, 1);
1479        if (crtc->enabled && crtc->fb) {
1480                planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481                                               wm_info, fifo_size,
1482                                               crtc->fb->bits_per_pixel / 8,
1483                                               latency_ns);
1484                if (enabled == NULL)
1485                        enabled = crtc;
1486                else
1487                        enabled = NULL;
1488        } else
1489                planeb_wm = fifo_size - wm_info->guard_size;
1490
1491        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493        /*
1494         * Overlay gets an aggressive default since video jitter is bad.
1495         */
1496        cwm = 2;
1497
1498        /* Play safe and disable self-refresh before adjusting watermarks. */
1499        if (IS_I945G(dev) || IS_I945GM(dev))
1500                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501        else if (IS_I915GM(dev))
1502                I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504        /* Calc sr entries for one plane configs */
1505        if (HAS_FW_BLC(dev) && enabled) {
1506                /* self-refresh has much higher latency */
1507                static const int sr_latency_ns = 6000;
1508                int clock = enabled->mode.clock;
1509                int htotal = enabled->mode.htotal;
1510                int hdisplay = enabled->mode.hdisplay;
1511                int pixel_size = enabled->fb->bits_per_pixel / 8;
1512                unsigned long line_time_us;
1513                int entries;
1514
1515                line_time_us = (htotal * 1000) / clock;
1516
1517                /* Use ns/us then divide to preserve precision */
1518                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519                        pixel_size * hdisplay;
1520                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522                srwm = wm_info->fifo_size - entries;
1523                if (srwm < 0)
1524                        srwm = 1;
1525
1526                if (IS_I945G(dev) || IS_I945GM(dev))
1527                        I915_WRITE(FW_BLC_SELF,
1528                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529                else if (IS_I915GM(dev))
1530                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531        }
1532
1533        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534                      planea_wm, planeb_wm, cwm, srwm);
1535
1536        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537        fwater_hi = (cwm & 0x1f);
1538
1539        /* Set request length to 8 cachelines per fetch */
1540        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541        fwater_hi = fwater_hi | (1 << 8);
1542
1543        I915_WRITE(FW_BLC, fwater_lo);
1544        I915_WRITE(FW_BLC2, fwater_hi);
1545
1546        if (HAS_FW_BLC(dev)) {
1547                if (enabled) {
1548                        if (IS_I945G(dev) || IS_I945GM(dev))
1549                                I915_WRITE(FW_BLC_SELF,
1550                                           FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551                        else if (IS_I915GM(dev))
1552                                I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553                        DRM_DEBUG_KMS("memory self refresh enabled\n");
1554                } else
1555                        DRM_DEBUG_KMS("memory self refresh disabled\n");
1556        }
1557}
1558
1559static void i830_update_wm(struct drm_device *dev)
1560{
1561        struct drm_i915_private *dev_priv = dev->dev_private;
1562        struct drm_crtc *crtc;
1563        uint32_t fwater_lo;
1564        int planea_wm;
1565
1566        crtc = single_enabled_crtc(dev);
1567        if (crtc == NULL)
1568                return;
1569
1570        planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571                                       dev_priv->display.get_fifo_size(dev, 0),
1572                                       crtc->fb->bits_per_pixel / 8,
1573                                       latency_ns);
1574        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575        fwater_lo |= (3<<8) | planea_wm;
1576
1577        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579        I915_WRITE(FW_BLC, fwater_lo);
1580}
1581
1582#define ILK_LP0_PLANE_LATENCY           700
1583#define ILK_LP0_CURSOR_LATENCY          1300
1584
1585/*
1586 * Check the wm result.
1587 *
1588 * If any calculated watermark values is larger than the maximum value that
1589 * can be programmed into the associated watermark register, that watermark
1590 * must be disabled.
1591 */
1592static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593                                int fbc_wm, int display_wm, int cursor_wm,
1594                                const struct intel_watermark_params *display,
1595                                const struct intel_watermark_params *cursor)
1596{
1597        struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599        DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600                      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602        if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603                DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604                              fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606                /* fbc has it's own way to disable FBC WM */
1607                I915_WRITE(DISP_ARB_CTL,
1608                           I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609                return false;
1610        }
1611
1612        if (display_wm > display->max_wm) {
1613                DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614                              display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615                return false;
1616        }
1617
1618        if (cursor_wm > cursor->max_wm) {
1619                DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620                              cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621                return false;
1622        }
1623
1624        if (!(fbc_wm || display_wm || cursor_wm)) {
1625                DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626                return false;
1627        }
1628
1629        return true;
1630}
1631
1632/*
1633 * Compute watermark values of WM[1-3],
1634 */
1635static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636                                  int latency_ns,
1637                                  const struct intel_watermark_params *display,
1638                                  const struct intel_watermark_params *cursor,
1639                                  int *fbc_wm, int *display_wm, int *cursor_wm)
1640{
1641        struct drm_crtc *crtc;
1642        unsigned long line_time_us;
1643        int hdisplay, htotal, pixel_size, clock;
1644        int line_count, line_size;
1645        int small, large;
1646        int entries;
1647
1648        if (!latency_ns) {
1649                *fbc_wm = *display_wm = *cursor_wm = 0;
1650                return false;
1651        }
1652
1653        crtc = intel_get_crtc_for_plane(dev, plane);
1654        hdisplay = crtc->mode.hdisplay;
1655        htotal = crtc->mode.htotal;
1656        clock = crtc->mode.clock;
1657        pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659        line_time_us = (htotal * 1000) / clock;
1660        line_count = (latency_ns / line_time_us + 1000) / 1000;
1661        line_size = hdisplay * pixel_size;
1662
1663        /* Use the minimum of the small and large buffer method for primary */
1664        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665        large = line_count * line_size;
1666
1667        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668        *display_wm = entries + display->guard_size;
1669
1670        /*
1671         * Spec says:
1672         * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673         */
1674        *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676        /* calculate the self-refresh watermark for display cursor */
1677        entries = line_count * pixel_size * 64;
1678        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679        *cursor_wm = entries + cursor->guard_size;
1680
1681        return ironlake_check_srwm(dev, level,
1682                                   *fbc_wm, *display_wm, *cursor_wm,
1683                                   display, cursor);
1684}
1685
1686static void ironlake_update_wm(struct drm_device *dev)
1687{
1688        struct drm_i915_private *dev_priv = dev->dev_private;
1689        int fbc_wm, plane_wm, cursor_wm;
1690        unsigned int enabled;
1691
1692        enabled = 0;
1693        if (g4x_compute_wm0(dev, 0,
1694                            &ironlake_display_wm_info,
1695                            ILK_LP0_PLANE_LATENCY,
1696                            &ironlake_cursor_wm_info,
1697                            ILK_LP0_CURSOR_LATENCY,
1698                            &plane_wm, &cursor_wm)) {
1699                I915_WRITE(WM0_PIPEA_ILK,
1700                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702                              " plane %d, " "cursor: %d\n",
1703                              plane_wm, cursor_wm);
1704                enabled |= 1;
1705        }
1706
1707        if (g4x_compute_wm0(dev, 1,
1708                            &ironlake_display_wm_info,
1709                            ILK_LP0_PLANE_LATENCY,
1710                            &ironlake_cursor_wm_info,
1711                            ILK_LP0_CURSOR_LATENCY,
1712                            &plane_wm, &cursor_wm)) {
1713                I915_WRITE(WM0_PIPEB_ILK,
1714                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716                              " plane %d, cursor: %d\n",
1717                              plane_wm, cursor_wm);
1718                enabled |= 2;
1719        }
1720
1721        /*
1722         * Calculate and update the self-refresh watermark only when one
1723         * display plane is used.
1724         */
1725        I915_WRITE(WM3_LP_ILK, 0);
1726        I915_WRITE(WM2_LP_ILK, 0);
1727        I915_WRITE(WM1_LP_ILK, 0);
1728
1729        if (!single_plane_enabled(enabled))
1730                return;
1731        enabled = ffs(enabled) - 1;
1732
1733        /* WM1 */
1734        if (!ironlake_compute_srwm(dev, 1, enabled,
1735                                   ILK_READ_WM1_LATENCY() * 500,
1736                                   &ironlake_display_srwm_info,
1737                                   &ironlake_cursor_srwm_info,
1738                                   &fbc_wm, &plane_wm, &cursor_wm))
1739                return;
1740
1741        I915_WRITE(WM1_LP_ILK,
1742                   WM1_LP_SR_EN |
1743                   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1745                   (plane_wm << WM1_LP_SR_SHIFT) |
1746                   cursor_wm);
1747
1748        /* WM2 */
1749        if (!ironlake_compute_srwm(dev, 2, enabled,
1750                                   ILK_READ_WM2_LATENCY() * 500,
1751                                   &ironlake_display_srwm_info,
1752                                   &ironlake_cursor_srwm_info,
1753                                   &fbc_wm, &plane_wm, &cursor_wm))
1754                return;
1755
1756        I915_WRITE(WM2_LP_ILK,
1757                   WM2_LP_EN |
1758                   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1760                   (plane_wm << WM1_LP_SR_SHIFT) |
1761                   cursor_wm);
1762
1763        /*
1764         * WM3 is unsupported on ILK, probably because we don't have latency
1765         * data for that power state
1766         */
1767}
1768
1769static void sandybridge_update_wm(struct drm_device *dev)
1770{
1771        struct drm_i915_private *dev_priv = dev->dev_private;
1772        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1773        u32 val;
1774        int fbc_wm, plane_wm, cursor_wm;
1775        unsigned int enabled;
1776
1777        enabled = 0;
1778        if (g4x_compute_wm0(dev, 0,
1779                            &sandybridge_display_wm_info, latency,
1780                            &sandybridge_cursor_wm_info, latency,
1781                            &plane_wm, &cursor_wm)) {
1782                val = I915_READ(WM0_PIPEA_ILK);
1783                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784                I915_WRITE(WM0_PIPEA_ILK, val |
1785                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787                              " plane %d, " "cursor: %d\n",
1788                              plane_wm, cursor_wm);
1789                enabled |= 1;
1790        }
1791
1792        if (g4x_compute_wm0(dev, 1,
1793                            &sandybridge_display_wm_info, latency,
1794                            &sandybridge_cursor_wm_info, latency,
1795                            &plane_wm, &cursor_wm)) {
1796                val = I915_READ(WM0_PIPEB_ILK);
1797                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798                I915_WRITE(WM0_PIPEB_ILK, val |
1799                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801                              " plane %d, cursor: %d\n",
1802                              plane_wm, cursor_wm);
1803                enabled |= 2;
1804        }
1805
1806        if ((dev_priv->num_pipe == 3) &&
1807            g4x_compute_wm0(dev, 2,
1808                            &sandybridge_display_wm_info, latency,
1809                            &sandybridge_cursor_wm_info, latency,
1810                            &plane_wm, &cursor_wm)) {
1811                val = I915_READ(WM0_PIPEC_IVB);
1812                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813                I915_WRITE(WM0_PIPEC_IVB, val |
1814                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815                DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816                              " plane %d, cursor: %d\n",
1817                              plane_wm, cursor_wm);
1818                enabled |= 3;
1819        }
1820
1821        /*
1822         * Calculate and update the self-refresh watermark only when one
1823         * display plane is used.
1824         *
1825         * SNB support 3 levels of watermark.
1826         *
1827         * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828         * and disabled in the descending order
1829         *
1830         */
1831        I915_WRITE(WM3_LP_ILK, 0);
1832        I915_WRITE(WM2_LP_ILK, 0);
1833        I915_WRITE(WM1_LP_ILK, 0);
1834
1835        if (!single_plane_enabled(enabled) ||
1836            dev_priv->sprite_scaling_enabled)
1837                return;
1838        enabled = ffs(enabled) - 1;
1839
1840        /* WM1 */
1841        if (!ironlake_compute_srwm(dev, 1, enabled,
1842                                   SNB_READ_WM1_LATENCY() * 500,
1843                                   &sandybridge_display_srwm_info,
1844                                   &sandybridge_cursor_srwm_info,
1845                                   &fbc_wm, &plane_wm, &cursor_wm))
1846                return;
1847
1848        I915_WRITE(WM1_LP_ILK,
1849                   WM1_LP_SR_EN |
1850                   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                   (plane_wm << WM1_LP_SR_SHIFT) |
1853                   cursor_wm);
1854
1855        /* WM2 */
1856        if (!ironlake_compute_srwm(dev, 2, enabled,
1857                                   SNB_READ_WM2_LATENCY() * 500,
1858                                   &sandybridge_display_srwm_info,
1859                                   &sandybridge_cursor_srwm_info,
1860                                   &fbc_wm, &plane_wm, &cursor_wm))
1861                return;
1862
1863        I915_WRITE(WM2_LP_ILK,
1864                   WM2_LP_EN |
1865                   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1867                   (plane_wm << WM1_LP_SR_SHIFT) |
1868                   cursor_wm);
1869
1870        /* WM3 */
1871        if (!ironlake_compute_srwm(dev, 3, enabled,
1872                                   SNB_READ_WM3_LATENCY() * 500,
1873                                   &sandybridge_display_srwm_info,
1874                                   &sandybridge_cursor_srwm_info,
1875                                   &fbc_wm, &plane_wm, &cursor_wm))
1876                return;
1877
1878        I915_WRITE(WM3_LP_ILK,
1879                   WM3_LP_EN |
1880                   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1882                   (plane_wm << WM1_LP_SR_SHIFT) |
1883                   cursor_wm);
1884}
1885
1886static void
1887haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888                                 struct drm_display_mode *mode)
1889{
1890        struct drm_i915_private *dev_priv = dev->dev_private;
1891        u32 temp;
1892
1893        temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894        temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896        /* The WM are computed with base on how long it takes to fill a single
1897         * row at the given clock rate, multiplied by 8.
1898         * */
1899        temp |= PIPE_WM_LINETIME_TIME(
1900                ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902        /* IPS watermarks are only used by pipe A, and are ignored by
1903         * pipes B and C.  They are calculated similarly to the common
1904         * linetime values, except that we are using CD clock frequency
1905         * in MHz instead of pixel rate for the division.
1906         *
1907         * This is a placeholder for the IPS watermark calculation code.
1908         */
1909
1910        I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911}
1912
1913static bool
1914sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915                              uint32_t sprite_width, int pixel_size,
1916                              const struct intel_watermark_params *display,
1917                              int display_latency_ns, int *sprite_wm)
1918{
1919        struct drm_crtc *crtc;
1920        int clock;
1921        int entries, tlb_miss;
1922
1923        crtc = intel_get_crtc_for_plane(dev, plane);
1924        if (crtc->fb == NULL || !crtc->enabled) {
1925                *sprite_wm = display->guard_size;
1926                return false;
1927        }
1928
1929        clock = crtc->mode.clock;
1930
1931        /* Use the small buffer method to calculate the sprite watermark */
1932        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933        tlb_miss = display->fifo_size*display->cacheline_size -
1934                sprite_width * 8;
1935        if (tlb_miss > 0)
1936                entries += tlb_miss;
1937        entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938        *sprite_wm = entries + display->guard_size;
1939        if (*sprite_wm > (int)display->max_wm)
1940                *sprite_wm = display->max_wm;
1941
1942        return true;
1943}
1944
1945static bool
1946sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947                                uint32_t sprite_width, int pixel_size,
1948                                const struct intel_watermark_params *display,
1949                                int latency_ns, int *sprite_wm)
1950{
1951        struct drm_crtc *crtc;
1952        unsigned long line_time_us;
1953        int clock;
1954        int line_count, line_size;
1955        int small, large;
1956        int entries;
1957
1958        if (!latency_ns) {
1959                *sprite_wm = 0;
1960                return false;
1961        }
1962
1963        crtc = intel_get_crtc_for_plane(dev, plane);
1964        clock = crtc->mode.clock;
1965        if (!clock) {
1966                *sprite_wm = 0;
1967                return false;
1968        }
1969
1970        line_time_us = (sprite_width * 1000) / clock;
1971        if (!line_time_us) {
1972                *sprite_wm = 0;
1973                return false;
1974        }
1975
1976        line_count = (latency_ns / line_time_us + 1000) / 1000;
1977        line_size = sprite_width * pixel_size;
1978
1979        /* Use the minimum of the small and large buffer method for primary */
1980        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981        large = line_count * line_size;
1982
1983        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984        *sprite_wm = entries + display->guard_size;
1985
1986        return *sprite_wm > 0x3ff ? false : true;
1987}
1988
1989static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990                                         uint32_t sprite_width, int pixel_size)
1991{
1992        struct drm_i915_private *dev_priv = dev->dev_private;
1993        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1994        u32 val;
1995        int sprite_wm, reg;
1996        int ret;
1997
1998        switch (pipe) {
1999        case 0:
2000                reg = WM0_PIPEA_ILK;
2001                break;
2002        case 1:
2003                reg = WM0_PIPEB_ILK;
2004                break;
2005        case 2:
2006                reg = WM0_PIPEC_IVB;
2007                break;
2008        default:
2009                return; /* bad pipe */
2010        }
2011
2012        ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013                                            &sandybridge_display_wm_info,
2014                                            latency, &sprite_wm);
2015        if (!ret) {
2016                DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017                              pipe);
2018                return;
2019        }
2020
2021        val = I915_READ(reg);
2022        val &= ~WM0_PIPE_SPRITE_MASK;
2023        I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024        DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028                                              pixel_size,
2029                                              &sandybridge_display_srwm_info,
2030                                              SNB_READ_WM1_LATENCY() * 500,
2031                                              &sprite_wm);
2032        if (!ret) {
2033                DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034                              pipe);
2035                return;
2036        }
2037        I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039        /* Only IVB has two more LP watermarks for sprite */
2040        if (!IS_IVYBRIDGE(dev))
2041                return;
2042
2043        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044                                              pixel_size,
2045                                              &sandybridge_display_srwm_info,
2046                                              SNB_READ_WM2_LATENCY() * 500,
2047                                              &sprite_wm);
2048        if (!ret) {
2049                DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050                              pipe);
2051                return;
2052        }
2053        I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056                                              pixel_size,
2057                                              &sandybridge_display_srwm_info,
2058                                              SNB_READ_WM3_LATENCY() * 500,
2059                                              &sprite_wm);
2060        if (!ret) {
2061                DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062                              pipe);
2063                return;
2064        }
2065        I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066}
2067
2068/**
2069 * intel_update_watermarks - update FIFO watermark values based on current modes
2070 *
2071 * Calculate watermark values for the various WM regs based on current mode
2072 * and plane configuration.
2073 *
2074 * There are several cases to deal with here:
2075 *   - normal (i.e. non-self-refresh)
2076 *   - self-refresh (SR) mode
2077 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2078 *   - lines are small relative to FIFO size (buffer can hold more than 2
2079 *     lines), so need to account for TLB latency
2080 *
2081 *   The normal calculation is:
2082 *     watermark = dotclock * bytes per pixel * latency
2083 *   where latency is platform & configuration dependent (we assume pessimal
2084 *   values here).
2085 *
2086 *   The SR calculation is:
2087 *     watermark = (trunc(latency/line time)+1) * surface width *
2088 *       bytes per pixel
2089 *   where
2090 *     line time = htotal / dotclock
2091 *     surface width = hdisplay for normal plane and 64 for cursor
2092 *   and latency is assumed to be high, as above.
2093 *
2094 * The final value programmed to the register should always be rounded up,
2095 * and include an extra 2 entries to account for clock crossings.
2096 *
2097 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2098 * to set the non-SR watermarks to 8.
2099 */
2100void intel_update_watermarks(struct drm_device *dev)
2101{
2102        struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104        if (dev_priv->display.update_wm)
2105                dev_priv->display.update_wm(dev);
2106}
2107
2108void intel_update_linetime_watermarks(struct drm_device *dev,
2109                int pipe, struct drm_display_mode *mode)
2110{
2111        struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113        if (dev_priv->display.update_linetime_wm)
2114                dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115}
2116
2117void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118                                    uint32_t sprite_width, int pixel_size)
2119{
2120        struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122        if (dev_priv->display.update_sprite_wm)
2123                dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124                                                   pixel_size);
2125}
2126
2127static struct drm_i915_gem_object *
2128intel_alloc_context_page(struct drm_device *dev)
2129{
2130        struct drm_i915_gem_object *ctx;
2131        int ret;
2132
2133        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135        ctx = i915_gem_alloc_object(dev, 4096);
2136        if (!ctx) {
2137                DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138                return NULL;
2139        }
2140
2141        ret = i915_gem_object_pin(ctx, 4096, true);
2142        if (ret) {
2143                DRM_ERROR("failed to pin power context: %d\n", ret);
2144                goto err_unref;
2145        }
2146
2147        ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148        if (ret) {
2149                DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150                goto err_unpin;
2151        }
2152
2153        return ctx;
2154
2155err_unpin:
2156        i915_gem_object_unpin(ctx);
2157err_unref:
2158        drm_gem_object_unreference(&ctx->base);
2159        mutex_unlock(&dev->struct_mutex);
2160        return NULL;
2161}
2162
2163bool ironlake_set_drps(struct drm_device *dev, u8 val)
2164{
2165        struct drm_i915_private *dev_priv = dev->dev_private;
2166        u16 rgvswctl;
2167
2168        rgvswctl = I915_READ16(MEMSWCTL);
2169        if (rgvswctl & MEMCTL_CMD_STS) {
2170                DRM_DEBUG("gpu busy, RCS change rejected\n");
2171                return false; /* still busy with another command */
2172        }
2173
2174        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2175                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2176        I915_WRITE16(MEMSWCTL, rgvswctl);
2177        POSTING_READ16(MEMSWCTL);
2178
2179        rgvswctl |= MEMCTL_CMD_STS;
2180        I915_WRITE16(MEMSWCTL, rgvswctl);
2181
2182        return true;
2183}
2184
2185void ironlake_enable_drps(struct drm_device *dev)
2186{
2187        struct drm_i915_private *dev_priv = dev->dev_private;
2188        u32 rgvmodectl = I915_READ(MEMMODECTL);
2189        u8 fmax, fmin, fstart, vstart;
2190
2191        /* Enable temp reporting */
2192        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2193        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2194
2195        /* 100ms RC evaluation intervals */
2196        I915_WRITE(RCUPEI, 100000);
2197        I915_WRITE(RCDNEI, 100000);
2198
2199        /* Set max/min thresholds to 90ms and 80ms respectively */
2200        I915_WRITE(RCBMAXAVG, 90000);
2201        I915_WRITE(RCBMINAVG, 80000);
2202
2203        I915_WRITE(MEMIHYST, 1);
2204
2205        /* Set up min, max, and cur for interrupt handling */
2206        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2207        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2208        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2209                MEMMODE_FSTART_SHIFT;
2210
2211        vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2212                PXVFREQ_PX_SHIFT;
2213
2214        dev_priv->fmax = fmax; /* IPS callback will increase this */
2215        dev_priv->fstart = fstart;
2216
2217        dev_priv->max_delay = fstart;
2218        dev_priv->min_delay = fmin;
2219        dev_priv->cur_delay = fstart;
2220
2221        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2222                         fmax, fmin, fstart);
2223
2224        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2225
2226        /*
2227         * Interrupts will be enabled in ironlake_irq_postinstall
2228         */
2229
2230        I915_WRITE(VIDSTART, vstart);
2231        POSTING_READ(VIDSTART);
2232
2233        rgvmodectl |= MEMMODE_SWMODE_EN;
2234        I915_WRITE(MEMMODECTL, rgvmodectl);
2235
2236        if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2237                DRM_ERROR("stuck trying to change perf mode\n");
2238        msleep(1);
2239
2240        ironlake_set_drps(dev, fstart);
2241
2242        dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2243                I915_READ(0x112e0);
2244        dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2245        dev_priv->last_count2 = I915_READ(0x112f4);
2246        getrawmonotonic(&dev_priv->last_time2);
2247}
2248
2249void ironlake_disable_drps(struct drm_device *dev)
2250{
2251        struct drm_i915_private *dev_priv = dev->dev_private;
2252        u16 rgvswctl = I915_READ16(MEMSWCTL);
2253
2254        /* Ack interrupts, disable EFC interrupt */
2255        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2256        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2257        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2258        I915_WRITE(DEIIR, DE_PCU_EVENT);
2259        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2260
2261        /* Go back to the starting frequency */
2262        ironlake_set_drps(dev, dev_priv->fstart);
2263        msleep(1);
2264        rgvswctl |= MEMCTL_CMD_STS;
2265        I915_WRITE(MEMSWCTL, rgvswctl);
2266        msleep(1);
2267
2268}
2269
2270void gen6_set_rps(struct drm_device *dev, u8 val)
2271{
2272        struct drm_i915_private *dev_priv = dev->dev_private;
2273        u32 limits;
2274
2275        limits = 0;
2276        if (val >= dev_priv->max_delay)
2277                val = dev_priv->max_delay;
2278        else
2279                limits |= dev_priv->max_delay << 24;
2280
2281        if (val <= dev_priv->min_delay)
2282                val = dev_priv->min_delay;
2283        else
2284                limits |= dev_priv->min_delay << 16;
2285
2286        if (val == dev_priv->cur_delay)
2287                return;
2288
2289        I915_WRITE(GEN6_RPNSWREQ,
2290                   GEN6_FREQUENCY(val) |
2291                   GEN6_OFFSET(0) |
2292                   GEN6_AGGRESSIVE_TURBO);
2293
2294        /* Make sure we continue to get interrupts
2295         * until we hit the minimum or maximum frequencies.
2296         */
2297        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2298
2299        dev_priv->cur_delay = val;
2300}
2301
2302void gen6_disable_rps(struct drm_device *dev)
2303{
2304        struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2307        I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2308        I915_WRITE(GEN6_PMIER, 0);
2309        /* Complete PM interrupt masking here doesn't race with the rps work
2310         * item again unmasking PM interrupts because that is using a different
2311         * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2312         * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2313
2314        spin_lock_irq(&dev_priv->rps_lock);
2315        dev_priv->pm_iir = 0;
2316        spin_unlock_irq(&dev_priv->rps_lock);
2317
2318        I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2319}
2320
2321int intel_enable_rc6(const struct drm_device *dev)
2322{
2323        /*
2324         * Respect the kernel parameter if it is set
2325         */
2326        if (i915_enable_rc6 >= 0)
2327                return i915_enable_rc6;
2328
2329        /*
2330         * Disable RC6 on Ironlake
2331         */
2332        if (INTEL_INFO(dev)->gen == 5)
2333                return 0;
2334
2335        /* Sorry Haswell, no RC6 for you for now. */
2336        if (IS_HASWELL(dev))
2337                return 0;
2338
2339        /*
2340         * Disable rc6 on Sandybridge
2341         */
2342        if (INTEL_INFO(dev)->gen == 6) {
2343                DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2344                return INTEL_RC6_ENABLE;
2345        }
2346        DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2347        return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2348}
2349
2350void gen6_enable_rps(struct drm_i915_private *dev_priv)
2351{
2352        struct intel_ring_buffer *ring;
2353        u32 rp_state_cap;
2354        u32 gt_perf_status;
2355        u32 pcu_mbox, rc6_mask = 0;
2356        u32 gtfifodbg;
2357        int rc6_mode;
2358        int i;
2359
2360        /* Here begins a magic sequence of register writes to enable
2361         * auto-downclocking.
2362         *
2363         * Perhaps there might be some value in exposing these to
2364         * userspace...
2365         */
2366        I915_WRITE(GEN6_RC_STATE, 0);
2367        mutex_lock(&dev_priv->dev->struct_mutex);
2368
2369        /* Clear the DBG now so we don't confuse earlier errors */
2370        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2371                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2372                I915_WRITE(GTFIFODBG, gtfifodbg);
2373        }
2374
2375        gen6_gt_force_wake_get(dev_priv);
2376
2377        rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2378        gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2379
2380        /* In units of 100MHz */
2381        dev_priv->max_delay = rp_state_cap & 0xff;
2382        dev_priv->min_delay = (rp_state_cap & 0xff0000) >> 16;
2383        dev_priv->cur_delay = 0;
2384
2385        /* disable the counters and set deterministic thresholds */
2386        I915_WRITE(GEN6_RC_CONTROL, 0);
2387
2388        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2389        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2390        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2391        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2392        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2393
2394        for_each_ring(ring, dev_priv, i)
2395                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2396
2397        I915_WRITE(GEN6_RC_SLEEP, 0);
2398        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2399        I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2400        I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2401        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2402
2403        rc6_mode = intel_enable_rc6(dev_priv->dev);
2404        if (rc6_mode & INTEL_RC6_ENABLE)
2405                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2406
2407        if (rc6_mode & INTEL_RC6p_ENABLE)
2408                rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2409
2410        if (rc6_mode & INTEL_RC6pp_ENABLE)
2411                rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2412
2413        DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2414                        (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2415                        (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2416                        (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2417
2418        I915_WRITE(GEN6_RC_CONTROL,
2419                   rc6_mask |
2420                   GEN6_RC_CTL_EI_MODE(1) |
2421                   GEN6_RC_CTL_HW_ENABLE);
2422
2423        I915_WRITE(GEN6_RPNSWREQ,
2424                   GEN6_FREQUENCY(10) |
2425                   GEN6_OFFSET(0) |
2426                   GEN6_AGGRESSIVE_TURBO);
2427        I915_WRITE(GEN6_RC_VIDEO_FREQ,
2428                   GEN6_FREQUENCY(12));
2429
2430        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2431        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2432                   dev_priv->max_delay << 24 |
2433                   dev_priv->min_delay << 16);
2434        I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2435        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2436        I915_WRITE(GEN6_RP_UP_EI, 100000);
2437        I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2438        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2439        I915_WRITE(GEN6_RP_CONTROL,
2440                   GEN6_RP_MEDIA_TURBO |
2441                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2442                   GEN6_RP_MEDIA_IS_GFX |
2443                   GEN6_RP_ENABLE |
2444                   GEN6_RP_UP_BUSY_AVG |
2445                   GEN6_RP_DOWN_IDLE_CONT);
2446
2447        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2448                     500))
2449                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2450
2451        I915_WRITE(GEN6_PCODE_DATA, 0);
2452        I915_WRITE(GEN6_PCODE_MAILBOX,
2453                   GEN6_PCODE_READY |
2454                   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2455        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2456                     500))
2457                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2458
2459        /* Check for overclock support */
2460        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2461                     500))
2462                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2463        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2464        pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2465        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2466                     500))
2467                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2468        if (pcu_mbox & (1<<31)) { /* OC supported */
2469                dev_priv->max_delay = pcu_mbox & 0xff;
2470                DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2471        }
2472
2473        gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2474
2475        /* requires MSI enabled */
2476        I915_WRITE(GEN6_PMIER,
2477                   GEN6_PM_MBOX_EVENT |
2478                   GEN6_PM_THERMAL_EVENT |
2479                   GEN6_PM_RP_DOWN_TIMEOUT |
2480                   GEN6_PM_RP_UP_THRESHOLD |
2481                   GEN6_PM_RP_DOWN_THRESHOLD |
2482                   GEN6_PM_RP_UP_EI_EXPIRED |
2483                   GEN6_PM_RP_DOWN_EI_EXPIRED);
2484        spin_lock_irq(&dev_priv->rps_lock);
2485        WARN_ON(dev_priv->pm_iir != 0);
2486        I915_WRITE(GEN6_PMIMR, 0);
2487        spin_unlock_irq(&dev_priv->rps_lock);
2488        /* enable all PM interrupts */
2489        I915_WRITE(GEN6_PMINTRMSK, 0);
2490
2491        gen6_gt_force_wake_put(dev_priv);
2492        mutex_unlock(&dev_priv->dev->struct_mutex);
2493}
2494
2495void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2496{
2497        int min_freq = 15;
2498        int gpu_freq, ia_freq, max_ia_freq;
2499        int scaling_factor = 180;
2500
2501        max_ia_freq = cpufreq_quick_get_max(0);
2502        /*
2503         * Default to measured freq if none found, PCU will ensure we don't go
2504         * over
2505         */
2506        if (!max_ia_freq)
2507                max_ia_freq = tsc_khz;
2508
2509        /* Convert from kHz to MHz */
2510        max_ia_freq /= 1000;
2511
2512        mutex_lock(&dev_priv->dev->struct_mutex);
2513
2514        /*
2515         * For each potential GPU frequency, load a ring frequency we'd like
2516         * to use for memory access.  We do this by specifying the IA frequency
2517         * the PCU should use as a reference to determine the ring frequency.
2518         */
2519        for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2520             gpu_freq--) {
2521                int diff = dev_priv->max_delay - gpu_freq;
2522
2523                /*
2524                 * For GPU frequencies less than 750MHz, just use the lowest
2525                 * ring freq.
2526                 */
2527                if (gpu_freq < min_freq)
2528                        ia_freq = 800;
2529                else
2530                        ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2531                ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2532
2533                I915_WRITE(GEN6_PCODE_DATA,
2534                           (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2535                           gpu_freq);
2536                I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2537                           GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2538                if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2539                              GEN6_PCODE_READY) == 0, 10)) {
2540                        DRM_ERROR("pcode write of freq table timed out\n");
2541                        continue;
2542                }
2543        }
2544
2545        mutex_unlock(&dev_priv->dev->struct_mutex);
2546}
2547
2548static void ironlake_teardown_rc6(struct drm_device *dev)
2549{
2550        struct drm_i915_private *dev_priv = dev->dev_private;
2551
2552        if (dev_priv->renderctx) {
2553                i915_gem_object_unpin(dev_priv->renderctx);
2554                drm_gem_object_unreference(&dev_priv->renderctx->base);
2555                dev_priv->renderctx = NULL;
2556        }
2557
2558        if (dev_priv->pwrctx) {
2559                i915_gem_object_unpin(dev_priv->pwrctx);
2560                drm_gem_object_unreference(&dev_priv->pwrctx->base);
2561                dev_priv->pwrctx = NULL;
2562        }
2563}
2564
2565void ironlake_disable_rc6(struct drm_device *dev)
2566{
2567        struct drm_i915_private *dev_priv = dev->dev_private;
2568
2569        if (I915_READ(PWRCTXA)) {
2570                /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2571                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2572                wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2573                         50);
2574
2575                I915_WRITE(PWRCTXA, 0);
2576                POSTING_READ(PWRCTXA);
2577
2578                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2579                POSTING_READ(RSTDBYCTL);
2580        }
2581
2582        ironlake_teardown_rc6(dev);
2583}
2584
2585static int ironlake_setup_rc6(struct drm_device *dev)
2586{
2587        struct drm_i915_private *dev_priv = dev->dev_private;
2588
2589        if (dev_priv->renderctx == NULL)
2590                dev_priv->renderctx = intel_alloc_context_page(dev);
2591        if (!dev_priv->renderctx)
2592                return -ENOMEM;
2593
2594        if (dev_priv->pwrctx == NULL)
2595                dev_priv->pwrctx = intel_alloc_context_page(dev);
2596        if (!dev_priv->pwrctx) {
2597                ironlake_teardown_rc6(dev);
2598                return -ENOMEM;
2599        }
2600
2601        return 0;
2602}
2603
2604void ironlake_enable_rc6(struct drm_device *dev)
2605{
2606        struct drm_i915_private *dev_priv = dev->dev_private;
2607        struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2608        int ret;
2609
2610        /* rc6 disabled by default due to repeated reports of hanging during
2611         * boot and resume.
2612         */
2613        if (!intel_enable_rc6(dev))
2614                return;
2615
2616        mutex_lock(&dev->struct_mutex);
2617        ret = ironlake_setup_rc6(dev);
2618        if (ret) {
2619                mutex_unlock(&dev->struct_mutex);
2620                return;
2621        }
2622
2623        /*
2624         * GPU can automatically power down the render unit if given a page
2625         * to save state.
2626         */
2627        ret = intel_ring_begin(ring, 6);
2628        if (ret) {
2629                ironlake_teardown_rc6(dev);
2630                mutex_unlock(&dev->struct_mutex);
2631                return;
2632        }
2633
2634        intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2635        intel_ring_emit(ring, MI_SET_CONTEXT);
2636        intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2637                        MI_MM_SPACE_GTT |
2638                        MI_SAVE_EXT_STATE_EN |
2639                        MI_RESTORE_EXT_STATE_EN |
2640                        MI_RESTORE_INHIBIT);
2641        intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2642        intel_ring_emit(ring, MI_NOOP);
2643        intel_ring_emit(ring, MI_FLUSH);
2644        intel_ring_advance(ring);
2645
2646        /*
2647         * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2648         * does an implicit flush, combined with MI_FLUSH above, it should be
2649         * safe to assume that renderctx is valid
2650         */
2651        ret = intel_wait_ring_idle(ring);
2652        if (ret) {
2653                DRM_ERROR("failed to enable ironlake power power savings\n");
2654                ironlake_teardown_rc6(dev);
2655                mutex_unlock(&dev->struct_mutex);
2656                return;
2657        }
2658
2659        I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2660        I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2661        mutex_unlock(&dev->struct_mutex);
2662}
2663
2664static unsigned long intel_pxfreq(u32 vidfreq)
2665{
2666        unsigned long freq;
2667        int div = (vidfreq & 0x3f0000) >> 16;
2668        int post = (vidfreq & 0x3000) >> 12;
2669        int pre = (vidfreq & 0x7);
2670
2671        if (!pre)
2672                return 0;
2673
2674        freq = ((div * 133333) / ((1<<post) * pre));
2675
2676        return freq;
2677}
2678
2679static const struct cparams {
2680        u16 i;
2681        u16 t;
2682        u16 m;
2683        u16 c;
2684} cparams[] = {
2685        { 1, 1333, 301, 28664 },
2686        { 1, 1066, 294, 24460 },
2687        { 1, 800, 294, 25192 },
2688        { 0, 1333, 276, 27605 },
2689        { 0, 1066, 276, 27605 },
2690        { 0, 800, 231, 23784 },
2691};
2692
2693unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2694{
2695        u64 total_count, diff, ret;
2696        u32 count1, count2, count3, m = 0, c = 0;
2697        unsigned long now = jiffies_to_msecs(jiffies), diff1;
2698        int i;
2699
2700        diff1 = now - dev_priv->last_time1;
2701
2702        /* Prevent division-by-zero if we are asking too fast.
2703         * Also, we don't get interesting results if we are polling
2704         * faster than once in 10ms, so just return the saved value
2705         * in such cases.
2706         */
2707        if (diff1 <= 10)
2708                return dev_priv->chipset_power;
2709
2710        count1 = I915_READ(DMIEC);
2711        count2 = I915_READ(DDREC);
2712        count3 = I915_READ(CSIEC);
2713
2714        total_count = count1 + count2 + count3;
2715
2716        /* FIXME: handle per-counter overflow */
2717        if (total_count < dev_priv->last_count1) {
2718                diff = ~0UL - dev_priv->last_count1;
2719                diff += total_count;
2720        } else {
2721                diff = total_count - dev_priv->last_count1;
2722        }
2723
2724        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2725                if (cparams[i].i == dev_priv->c_m &&
2726                    cparams[i].t == dev_priv->r_t) {
2727                        m = cparams[i].m;
2728                        c = cparams[i].c;
2729                        break;
2730                }
2731        }
2732
2733        diff = div_u64(diff, diff1);
2734        ret = ((m * diff) + c);
2735        ret = div_u64(ret, 10);
2736
2737        dev_priv->last_count1 = total_count;
2738        dev_priv->last_time1 = now;
2739
2740        dev_priv->chipset_power = ret;
2741
2742        return ret;
2743}
2744
2745unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2746{
2747        unsigned long m, x, b;
2748        u32 tsfs;
2749
2750        tsfs = I915_READ(TSFS);
2751
2752        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2753        x = I915_READ8(TR1);
2754
2755        b = tsfs & TSFS_INTR_MASK;
2756
2757        return ((m * x) / 127) - b;
2758}
2759
2760static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2761{
2762        static const struct v_table {
2763                u16 vd; /* in .1 mil */
2764                u16 vm; /* in .1 mil */
2765        } v_table[] = {
2766                { 0, 0, },
2767                { 375, 0, },
2768                { 500, 0, },
2769                { 625, 0, },
2770                { 750, 0, },
2771                { 875, 0, },
2772                { 1000, 0, },
2773                { 1125, 0, },
2774                { 4125, 3000, },
2775                { 4125, 3000, },
2776                { 4125, 3000, },
2777                { 4125, 3000, },
2778                { 4125, 3000, },
2779                { 4125, 3000, },
2780                { 4125, 3000, },
2781                { 4125, 3000, },
2782                { 4125, 3000, },
2783                { 4125, 3000, },
2784                { 4125, 3000, },
2785                { 4125, 3000, },
2786                { 4125, 3000, },
2787                { 4125, 3000, },
2788                { 4125, 3000, },
2789                { 4125, 3000, },
2790                { 4125, 3000, },
2791                { 4125, 3000, },
2792                { 4125, 3000, },
2793                { 4125, 3000, },
2794                { 4125, 3000, },
2795                { 4125, 3000, },
2796                { 4125, 3000, },
2797                { 4125, 3000, },
2798                { 4250, 3125, },
2799                { 4375, 3250, },
2800                { 4500, 3375, },
2801                { 4625, 3500, },
2802                { 4750, 3625, },
2803                { 4875, 3750, },
2804                { 5000, 3875, },
2805                { 5125, 4000, },
2806                { 5250, 4125, },
2807                { 5375, 4250, },
2808                { 5500, 4375, },
2809                { 5625, 4500, },
2810                { 5750, 4625, },
2811                { 5875, 4750, },
2812                { 6000, 4875, },
2813                { 6125, 5000, },
2814                { 6250, 5125, },
2815                { 6375, 5250, },
2816                { 6500, 5375, },
2817                { 6625, 5500, },
2818                { 6750, 5625, },
2819                { 6875, 5750, },
2820                { 7000, 5875, },
2821                { 7125, 6000, },
2822                { 7250, 6125, },
2823                { 7375, 6250, },
2824                { 7500, 6375, },
2825                { 7625, 6500, },
2826                { 7750, 6625, },
2827                { 7875, 6750, },
2828                { 8000, 6875, },
2829                { 8125, 7000, },
2830                { 8250, 7125, },
2831                { 8375, 7250, },
2832                { 8500, 7375, },
2833                { 8625, 7500, },
2834                { 8750, 7625, },
2835                { 8875, 7750, },
2836                { 9000, 7875, },
2837                { 9125, 8000, },
2838                { 9250, 8125, },
2839                { 9375, 8250, },
2840                { 9500, 8375, },
2841                { 9625, 8500, },
2842                { 9750, 8625, },
2843                { 9875, 8750, },
2844                { 10000, 8875, },
2845                { 10125, 9000, },
2846                { 10250, 9125, },
2847                { 10375, 9250, },
2848                { 10500, 9375, },
2849                { 10625, 9500, },
2850                { 10750, 9625, },
2851                { 10875, 9750, },
2852                { 11000, 9875, },
2853                { 11125, 10000, },
2854                { 11250, 10125, },
2855                { 11375, 10250, },
2856                { 11500, 10375, },
2857                { 11625, 10500, },
2858                { 11750, 10625, },
2859                { 11875, 10750, },
2860                { 12000, 10875, },
2861                { 12125, 11000, },
2862                { 12250, 11125, },
2863                { 12375, 11250, },
2864                { 12500, 11375, },
2865                { 12625, 11500, },
2866                { 12750, 11625, },
2867                { 12875, 11750, },
2868                { 13000, 11875, },
2869                { 13125, 12000, },
2870                { 13250, 12125, },
2871                { 13375, 12250, },
2872                { 13500, 12375, },
2873                { 13625, 12500, },
2874                { 13750, 12625, },
2875                { 13875, 12750, },
2876                { 14000, 12875, },
2877                { 14125, 13000, },
2878                { 14250, 13125, },
2879                { 14375, 13250, },
2880                { 14500, 13375, },
2881                { 14625, 13500, },
2882                { 14750, 13625, },
2883                { 14875, 13750, },
2884                { 15000, 13875, },
2885                { 15125, 14000, },
2886                { 15250, 14125, },
2887                { 15375, 14250, },
2888                { 15500, 14375, },
2889                { 15625, 14500, },
2890                { 15750, 14625, },
2891                { 15875, 14750, },
2892                { 16000, 14875, },
2893                { 16125, 15000, },
2894        };
2895        if (dev_priv->info->is_mobile)
2896                return v_table[pxvid].vm;
2897        else
2898                return v_table[pxvid].vd;
2899}
2900
2901void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2902{
2903        struct timespec now, diff1;
2904        u64 diff;
2905        unsigned long diffms;
2906        u32 count;
2907
2908        if (dev_priv->info->gen != 5)
2909                return;
2910
2911        getrawmonotonic(&now);
2912        diff1 = timespec_sub(now, dev_priv->last_time2);
2913
2914        /* Don't divide by 0 */
2915        diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2916        if (!diffms)
2917                return;
2918
2919        count = I915_READ(GFXEC);
2920
2921        if (count < dev_priv->last_count2) {
2922                diff = ~0UL - dev_priv->last_count2;
2923                diff += count;
2924        } else {
2925                diff = count - dev_priv->last_count2;
2926        }
2927
2928        dev_priv->last_count2 = count;
2929        dev_priv->last_time2 = now;
2930
2931        /* More magic constants... */
2932        diff = diff * 1181;
2933        diff = div_u64(diff, diffms * 10);
2934        dev_priv->gfx_power = diff;
2935}
2936
2937unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2938{
2939        unsigned long t, corr, state1, corr2, state2;
2940        u32 pxvid, ext_v;
2941
2942        pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2943        pxvid = (pxvid >> 24) & 0x7f;
2944        ext_v = pvid_to_extvid(dev_priv, pxvid);
2945
2946        state1 = ext_v;
2947
2948        t = i915_mch_val(dev_priv);
2949
2950        /* Revel in the empirically derived constants */
2951
2952        /* Correction factor in 1/100000 units */
2953        if (t > 80)
2954                corr = ((t * 2349) + 135940);
2955        else if (t >= 50)
2956                corr = ((t * 964) + 29317);
2957        else /* < 50 */
2958                corr = ((t * 301) + 1004);
2959
2960        corr = corr * ((150142 * state1) / 10000 - 78642);
2961        corr /= 100000;
2962        corr2 = (corr * dev_priv->corr);
2963
2964        state2 = (corr2 * state1) / 10000;
2965        state2 /= 100; /* convert to mW */
2966
2967        i915_update_gfx_val(dev_priv);
2968
2969        return dev_priv->gfx_power + state2;
2970}
2971
2972/* Global for IPS driver to get at the current i915 device */
2973static struct drm_i915_private *i915_mch_dev;
2974/*
2975 * Lock protecting IPS related data structures
2976 *   - i915_mch_dev
2977 *   - dev_priv->max_delay
2978 *   - dev_priv->min_delay
2979 *   - dev_priv->fmax
2980 *   - dev_priv->gpu_busy
2981 */
2982static DEFINE_SPINLOCK(mchdev_lock);
2983
2984/**
2985 * i915_read_mch_val - return value for IPS use
2986 *
2987 * Calculate and return a value for the IPS driver to use when deciding whether
2988 * we have thermal and power headroom to increase CPU or GPU power budget.
2989 */
2990unsigned long i915_read_mch_val(void)
2991{
2992        struct drm_i915_private *dev_priv;
2993        unsigned long chipset_val, graphics_val, ret = 0;
2994
2995        spin_lock(&mchdev_lock);
2996        if (!i915_mch_dev)
2997                goto out_unlock;
2998        dev_priv = i915_mch_dev;
2999
3000        chipset_val = i915_chipset_val(dev_priv);
3001        graphics_val = i915_gfx_val(dev_priv);
3002
3003        ret = chipset_val + graphics_val;
3004
3005out_unlock:
3006        spin_unlock(&mchdev_lock);
3007
3008        return ret;
3009}
3010EXPORT_SYMBOL_GPL(i915_read_mch_val);
3011
3012/**
3013 * i915_gpu_raise - raise GPU frequency limit
3014 *
3015 * Raise the limit; IPS indicates we have thermal headroom.
3016 */
3017bool i915_gpu_raise(void)
3018{
3019        struct drm_i915_private *dev_priv;
3020        bool ret = true;
3021
3022        spin_lock(&mchdev_lock);
3023        if (!i915_mch_dev) {
3024                ret = false;
3025                goto out_unlock;
3026        }
3027        dev_priv = i915_mch_dev;
3028
3029        if (dev_priv->max_delay > dev_priv->fmax)
3030                dev_priv->max_delay--;
3031
3032out_unlock:
3033        spin_unlock(&mchdev_lock);
3034
3035        return ret;
3036}
3037EXPORT_SYMBOL_GPL(i915_gpu_raise);
3038
3039/**
3040 * i915_gpu_lower - lower GPU frequency limit
3041 *
3042 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3043 * frequency maximum.
3044 */
3045bool i915_gpu_lower(void)
3046{
3047        struct drm_i915_private *dev_priv;
3048        bool ret = true;
3049
3050        spin_lock(&mchdev_lock);
3051        if (!i915_mch_dev) {
3052                ret = false;
3053                goto out_unlock;
3054        }
3055        dev_priv = i915_mch_dev;
3056
3057        if (dev_priv->max_delay < dev_priv->min_delay)
3058                dev_priv->max_delay++;
3059
3060out_unlock:
3061        spin_unlock(&mchdev_lock);
3062
3063        return ret;
3064}
3065EXPORT_SYMBOL_GPL(i915_gpu_lower);
3066
3067/**
3068 * i915_gpu_busy - indicate GPU business to IPS
3069 *
3070 * Tell the IPS driver whether or not the GPU is busy.
3071 */
3072bool i915_gpu_busy(void)
3073{
3074        struct drm_i915_private *dev_priv;
3075        bool ret = false;
3076
3077        spin_lock(&mchdev_lock);
3078        if (!i915_mch_dev)
3079                goto out_unlock;
3080        dev_priv = i915_mch_dev;
3081
3082        ret = dev_priv->busy;
3083
3084out_unlock:
3085        spin_unlock(&mchdev_lock);
3086
3087        return ret;
3088}
3089EXPORT_SYMBOL_GPL(i915_gpu_busy);
3090
3091/**
3092 * i915_gpu_turbo_disable - disable graphics turbo
3093 *
3094 * Disable graphics turbo by resetting the max frequency and setting the
3095 * current frequency to the default.
3096 */
3097bool i915_gpu_turbo_disable(void)
3098{
3099        struct drm_i915_private *dev_priv;
3100        bool ret = true;
3101
3102        spin_lock(&mchdev_lock);
3103        if (!i915_mch_dev) {
3104                ret = false;
3105                goto out_unlock;
3106        }
3107        dev_priv = i915_mch_dev;
3108
3109        dev_priv->max_delay = dev_priv->fstart;
3110
3111        if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3112                ret = false;
3113
3114out_unlock:
3115        spin_unlock(&mchdev_lock);
3116
3117        return ret;
3118}
3119EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3120
3121/**
3122 * Tells the intel_ips driver that the i915 driver is now loaded, if
3123 * IPS got loaded first.
3124 *
3125 * This awkward dance is so that neither module has to depend on the
3126 * other in order for IPS to do the appropriate communication of
3127 * GPU turbo limits to i915.
3128 */
3129static void
3130ips_ping_for_i915_load(void)
3131{
3132        void (*link)(void);
3133
3134        link = symbol_get(ips_link_to_i915_driver);
3135        if (link) {
3136                link();
3137                symbol_put(ips_link_to_i915_driver);
3138        }
3139}
3140
3141void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3142{
3143        spin_lock(&mchdev_lock);
3144        i915_mch_dev = dev_priv;
3145        dev_priv->mchdev_lock = &mchdev_lock;
3146        spin_unlock(&mchdev_lock);
3147
3148        ips_ping_for_i915_load();
3149}
3150
3151void intel_gpu_ips_teardown(void)
3152{
3153        spin_lock(&mchdev_lock);
3154        i915_mch_dev = NULL;
3155        spin_unlock(&mchdev_lock);
3156}
3157
3158void intel_init_emon(struct drm_device *dev)
3159{
3160        struct drm_i915_private *dev_priv = dev->dev_private;
3161        u32 lcfuse;
3162        u8 pxw[16];
3163        int i;
3164
3165        /* Disable to program */
3166        I915_WRITE(ECR, 0);
3167        POSTING_READ(ECR);
3168
3169        /* Program energy weights for various events */
3170        I915_WRITE(SDEW, 0x15040d00);
3171        I915_WRITE(CSIEW0, 0x007f0000);
3172        I915_WRITE(CSIEW1, 0x1e220004);
3173        I915_WRITE(CSIEW2, 0x04000004);
3174
3175        for (i = 0; i < 5; i++)
3176                I915_WRITE(PEW + (i * 4), 0);
3177        for (i = 0; i < 3; i++)
3178                I915_WRITE(DEW + (i * 4), 0);
3179
3180        /* Program P-state weights to account for frequency power adjustment */
3181        for (i = 0; i < 16; i++) {
3182                u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3183                unsigned long freq = intel_pxfreq(pxvidfreq);
3184                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3185                        PXVFREQ_PX_SHIFT;
3186                unsigned long val;
3187
3188                val = vid * vid;
3189                val *= (freq / 1000);
3190                val *= 255;
3191                val /= (127*127*900);
3192                if (val > 0xff)
3193                        DRM_ERROR("bad pxval: %ld\n", val);
3194                pxw[i] = val;
3195        }
3196        /* Render standby states get 0 weight */
3197        pxw[14] = 0;
3198        pxw[15] = 0;
3199
3200        for (i = 0; i < 4; i++) {
3201                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3202                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3203                I915_WRITE(PXW + (i * 4), val);
3204        }
3205
3206        /* Adjust magic regs to magic values (more experimental results) */
3207        I915_WRITE(OGW0, 0);
3208        I915_WRITE(OGW1, 0);
3209        I915_WRITE(EG0, 0x00007f00);
3210        I915_WRITE(EG1, 0x0000000e);
3211        I915_WRITE(EG2, 0x000e0000);
3212        I915_WRITE(EG3, 0x68000300);
3213        I915_WRITE(EG4, 0x42000000);
3214        I915_WRITE(EG5, 0x00140031);
3215        I915_WRITE(EG6, 0);
3216        I915_WRITE(EG7, 0);
3217
3218        for (i = 0; i < 8; i++)
3219                I915_WRITE(PXWL + (i * 4), 0);
3220
3221        /* Enable PMON + select events */
3222        I915_WRITE(ECR, 0x80000019);
3223
3224        lcfuse = I915_READ(LCFUSE02);
3225
3226        dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3227}
3228
3229static void ironlake_init_clock_gating(struct drm_device *dev)
3230{
3231        struct drm_i915_private *dev_priv = dev->dev_private;
3232        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3233
3234        /* Required for FBC */
3235        dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3236                DPFCRUNIT_CLOCK_GATE_DISABLE |
3237                DPFDUNIT_CLOCK_GATE_DISABLE;
3238        /* Required for CxSR */
3239        dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3240
3241        I915_WRITE(PCH_3DCGDIS0,
3242                   MARIUNIT_CLOCK_GATE_DISABLE |
3243                   SVSMUNIT_CLOCK_GATE_DISABLE);
3244        I915_WRITE(PCH_3DCGDIS1,
3245                   VFMUNIT_CLOCK_GATE_DISABLE);
3246
3247        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3248
3249        /*
3250         * According to the spec the following bits should be set in
3251         * order to enable memory self-refresh
3252         * The bit 22/21 of 0x42004
3253         * The bit 5 of 0x42020
3254         * The bit 15 of 0x45000
3255         */
3256        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3257                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3258                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3259        I915_WRITE(ILK_DSPCLK_GATE,
3260                   (I915_READ(ILK_DSPCLK_GATE) |
3261                    ILK_DPARB_CLK_GATE));
3262        I915_WRITE(DISP_ARB_CTL,
3263                   (I915_READ(DISP_ARB_CTL) |
3264                    DISP_FBC_WM_DIS));
3265        I915_WRITE(WM3_LP_ILK, 0);
3266        I915_WRITE(WM2_LP_ILK, 0);
3267        I915_WRITE(WM1_LP_ILK, 0);
3268
3269        /*
3270         * Based on the document from hardware guys the following bits
3271         * should be set unconditionally in order to enable FBC.
3272         * The bit 22 of 0x42000
3273         * The bit 22 of 0x42004
3274         * The bit 7,8,9 of 0x42020.
3275         */
3276        if (IS_IRONLAKE_M(dev)) {
3277                I915_WRITE(ILK_DISPLAY_CHICKEN1,
3278                           I915_READ(ILK_DISPLAY_CHICKEN1) |
3279                           ILK_FBCQ_DIS);
3280                I915_WRITE(ILK_DISPLAY_CHICKEN2,
3281                           I915_READ(ILK_DISPLAY_CHICKEN2) |
3282                           ILK_DPARB_GATE);
3283                I915_WRITE(ILK_DSPCLK_GATE,
3284                           I915_READ(ILK_DSPCLK_GATE) |
3285                           ILK_DPFC_DIS1 |
3286                           ILK_DPFC_DIS2 |
3287                           ILK_CLK_FBC);
3288        }
3289
3290        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3291                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3292                   ILK_ELPIN_409_SELECT);
3293        I915_WRITE(_3D_CHICKEN2,
3294                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3295                   _3D_CHICKEN2_WM_READ_PIPELINED);
3296}
3297
3298static void gen6_init_clock_gating(struct drm_device *dev)
3299{
3300        struct drm_i915_private *dev_priv = dev->dev_private;
3301        int pipe;
3302        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3303
3304        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3305
3306        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3307                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3308                   ILK_ELPIN_409_SELECT);
3309
3310        I915_WRITE(WM3_LP_ILK, 0);
3311        I915_WRITE(WM2_LP_ILK, 0);
3312        I915_WRITE(WM1_LP_ILK, 0);
3313
3314        I915_WRITE(CACHE_MODE_0,
3315                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3316
3317        I915_WRITE(GEN6_UCGCTL1,
3318                   I915_READ(GEN6_UCGCTL1) |
3319                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3320                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3321
3322        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3323         * gating disable must be set.  Failure to set it results in
3324         * flickering pixels due to Z write ordering failures after
3325         * some amount of runtime in the Mesa "fire" demo, and Unigine
3326         * Sanctuary and Tropics, and apparently anything else with
3327         * alpha test or pixel discard.
3328         *
3329         * According to the spec, bit 11 (RCCUNIT) must also be set,
3330         * but we didn't debug actual testcases to find it out.
3331         */
3332        I915_WRITE(GEN6_UCGCTL2,
3333                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3334                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3335
3336        /* Bspec says we need to always set all mask bits. */
3337        I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3338                   _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3339
3340        /*
3341         * According to the spec the following bits should be
3342         * set in order to enable memory self-refresh and fbc:
3343         * The bit21 and bit22 of 0x42000
3344         * The bit21 and bit22 of 0x42004
3345         * The bit5 and bit7 of 0x42020
3346         * The bit14 of 0x70180
3347         * The bit14 of 0x71180
3348         */
3349        I915_WRITE(ILK_DISPLAY_CHICKEN1,
3350                   I915_READ(ILK_DISPLAY_CHICKEN1) |
3351                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3352        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3353                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3354                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3355        I915_WRITE(ILK_DSPCLK_GATE,
3356                   I915_READ(ILK_DSPCLK_GATE) |
3357                   ILK_DPARB_CLK_GATE  |
3358                   ILK_DPFD_CLK_GATE);
3359
3360        for_each_pipe(pipe) {
3361                I915_WRITE(DSPCNTR(pipe),
3362                           I915_READ(DSPCNTR(pipe)) |
3363                           DISPPLANE_TRICKLE_FEED_DISABLE);
3364                intel_flush_display_plane(dev_priv, pipe);
3365        }
3366}
3367
3368static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3369{
3370        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3371
3372        reg &= ~GEN7_FF_SCHED_MASK;
3373        reg |= GEN7_FF_TS_SCHED_HW;
3374        reg |= GEN7_FF_VS_SCHED_HW;
3375        reg |= GEN7_FF_DS_SCHED_HW;
3376
3377        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3378}
3379
3380static void ivybridge_init_clock_gating(struct drm_device *dev)
3381{
3382        struct drm_i915_private *dev_priv = dev->dev_private;
3383        int pipe;
3384        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3385
3386        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3387
3388        I915_WRITE(WM3_LP_ILK, 0);
3389        I915_WRITE(WM2_LP_ILK, 0);
3390        I915_WRITE(WM1_LP_ILK, 0);
3391
3392        /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3393         * This implements the WaDisableRCZUnitClockGating workaround.
3394         */
3395        I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3396
3397        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3398
3399        I915_WRITE(IVB_CHICKEN3,
3400                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3401                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3402
3403        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3404        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3405                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3406
3407        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3408        I915_WRITE(GEN7_L3CNTLREG1,
3409                        GEN7_WA_FOR_GEN7_L3_CONTROL);
3410        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3411                        GEN7_WA_L3_CHICKEN_MODE);
3412
3413        /* This is required by WaCatErrorRejectionIssue */
3414        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3415                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3416                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3417
3418        for_each_pipe(pipe) {
3419                I915_WRITE(DSPCNTR(pipe),
3420                           I915_READ(DSPCNTR(pipe)) |
3421                           DISPPLANE_TRICKLE_FEED_DISABLE);
3422                intel_flush_display_plane(dev_priv, pipe);
3423        }
3424
3425        gen7_setup_fixed_func_scheduler(dev_priv);
3426
3427        /* WaDisable4x2SubspanOptimization */
3428        I915_WRITE(CACHE_MODE_1,
3429                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3430}
3431
3432static void valleyview_init_clock_gating(struct drm_device *dev)
3433{
3434        struct drm_i915_private *dev_priv = dev->dev_private;
3435        int pipe;
3436        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3437
3438        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3439
3440        I915_WRITE(WM3_LP_ILK, 0);
3441        I915_WRITE(WM2_LP_ILK, 0);
3442        I915_WRITE(WM1_LP_ILK, 0);
3443
3444        /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3445         * This implements the WaDisableRCZUnitClockGating workaround.
3446         */
3447        I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3448
3449        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3450
3451        I915_WRITE(IVB_CHICKEN3,
3452                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3453                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3454
3455        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3456        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3457                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3458
3459        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3460        I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3461        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3462
3463        /* This is required by WaCatErrorRejectionIssue */
3464        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3465                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3466                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3467
3468        for_each_pipe(pipe) {
3469                I915_WRITE(DSPCNTR(pipe),
3470                           I915_READ(DSPCNTR(pipe)) |
3471                           DISPPLANE_TRICKLE_FEED_DISABLE);
3472                intel_flush_display_plane(dev_priv, pipe);
3473        }
3474
3475        I915_WRITE(CACHE_MODE_1,
3476                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3477}
3478
3479static void g4x_init_clock_gating(struct drm_device *dev)
3480{
3481        struct drm_i915_private *dev_priv = dev->dev_private;
3482        uint32_t dspclk_gate;
3483
3484        I915_WRITE(RENCLK_GATE_D1, 0);
3485        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3486                   GS_UNIT_CLOCK_GATE_DISABLE |
3487                   CL_UNIT_CLOCK_GATE_DISABLE);
3488        I915_WRITE(RAMCLK_GATE_D, 0);
3489        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3490                OVRUNIT_CLOCK_GATE_DISABLE |
3491                OVCUNIT_CLOCK_GATE_DISABLE;
3492        if (IS_GM45(dev))
3493                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3494        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3495}
3496
3497static void crestline_init_clock_gating(struct drm_device *dev)
3498{
3499        struct drm_i915_private *dev_priv = dev->dev_private;
3500
3501        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3502        I915_WRITE(RENCLK_GATE_D2, 0);
3503        I915_WRITE(DSPCLK_GATE_D, 0);
3504        I915_WRITE(RAMCLK_GATE_D, 0);
3505        I915_WRITE16(DEUC, 0);
3506}
3507
3508static void broadwater_init_clock_gating(struct drm_device *dev)
3509{
3510        struct drm_i915_private *dev_priv = dev->dev_private;
3511
3512        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3513                   I965_RCC_CLOCK_GATE_DISABLE |
3514                   I965_RCPB_CLOCK_GATE_DISABLE |
3515                   I965_ISC_CLOCK_GATE_DISABLE |
3516                   I965_FBC_CLOCK_GATE_DISABLE);
3517        I915_WRITE(RENCLK_GATE_D2, 0);
3518}
3519
3520static void gen3_init_clock_gating(struct drm_device *dev)
3521{
3522        struct drm_i915_private *dev_priv = dev->dev_private;
3523        u32 dstate = I915_READ(D_STATE);
3524
3525        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3526                DSTATE_DOT_CLOCK_GATING;
3527        I915_WRITE(D_STATE, dstate);
3528
3529        if (IS_PINEVIEW(dev))
3530                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3531}
3532
3533static void i85x_init_clock_gating(struct drm_device *dev)
3534{
3535        struct drm_i915_private *dev_priv = dev->dev_private;
3536
3537        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3538}
3539
3540static void i830_init_clock_gating(struct drm_device *dev)
3541{
3542        struct drm_i915_private *dev_priv = dev->dev_private;
3543
3544        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3545}
3546
3547static void ibx_init_clock_gating(struct drm_device *dev)
3548{
3549        struct drm_i915_private *dev_priv = dev->dev_private;
3550
3551        /*
3552         * On Ibex Peak and Cougar Point, we need to disable clock
3553         * gating for the panel power sequencer or it will fail to
3554         * start up when no ports are active.
3555         */
3556        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3557}
3558
3559static void cpt_init_clock_gating(struct drm_device *dev)
3560{
3561        struct drm_i915_private *dev_priv = dev->dev_private;
3562        int pipe;
3563
3564        /*
3565         * On Ibex Peak and Cougar Point, we need to disable clock
3566         * gating for the panel power sequencer or it will fail to
3567         * start up when no ports are active.
3568         */
3569        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3570        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3571                   DPLS_EDP_PPS_FIX_DIS);
3572        /* Without this, mode sets may fail silently on FDI */
3573        for_each_pipe(pipe)
3574                I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3575}
3576
3577void intel_init_clock_gating(struct drm_device *dev)
3578{
3579        struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581        dev_priv->display.init_clock_gating(dev);
3582
3583        if (dev_priv->display.init_pch_clock_gating)
3584                dev_priv->display.init_pch_clock_gating(dev);
3585}
3586
3587static void gen6_sanitize_pm(struct drm_device *dev)
3588{
3589        struct drm_i915_private *dev_priv = dev->dev_private;
3590        u32 limits, delay, old;
3591
3592        gen6_gt_force_wake_get(dev_priv);
3593
3594        old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS);
3595        /* Make sure we continue to get interrupts
3596         * until we hit the minimum or maximum frequencies.
3597         */
3598        limits &= ~(0x3f << 16 | 0x3f << 24);
3599        delay = dev_priv->cur_delay;
3600        if (delay < dev_priv->max_delay)
3601                limits |= (dev_priv->max_delay & 0x3f) << 24;
3602        if (delay > dev_priv->min_delay)
3603                limits |= (dev_priv->min_delay & 0x3f) << 16;
3604
3605        if (old != limits) {
3606                /* Note that the known failure case is to read back 0. */
3607                DRM_DEBUG_DRIVER("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS "
3608                                 "expected %08x, was %08x\n", limits, old);
3609                I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3610        }
3611
3612        gen6_gt_force_wake_put(dev_priv);
3613}
3614
3615void intel_sanitize_pm(struct drm_device *dev)
3616{
3617        struct drm_i915_private *dev_priv = dev->dev_private;
3618
3619        if (dev_priv->display.sanitize_pm)
3620                dev_priv->display.sanitize_pm(dev);
3621}
3622
3623/* Starting with Haswell, we have different power wells for
3624 * different parts of the GPU. This attempts to enable them all.
3625 */
3626void intel_init_power_wells(struct drm_device *dev)
3627{
3628        struct drm_i915_private *dev_priv = dev->dev_private;
3629        unsigned long power_wells[] = {
3630                HSW_PWR_WELL_CTL1,
3631                HSW_PWR_WELL_CTL2,
3632                HSW_PWR_WELL_CTL4
3633        };
3634        int i;
3635
3636        if (!IS_HASWELL(dev))
3637                return;
3638
3639        mutex_lock(&dev->struct_mutex);
3640
3641        for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3642                int well = I915_READ(power_wells[i]);
3643
3644                if ((well & HSW_PWR_WELL_STATE) == 0) {
3645                        I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3646                        if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3647                                DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3648                }
3649        }
3650
3651        mutex_unlock(&dev->struct_mutex);
3652}
3653
3654/* Set up chip specific power management-related functions */
3655void intel_init_pm(struct drm_device *dev)
3656{
3657        struct drm_i915_private *dev_priv = dev->dev_private;
3658
3659        if (I915_HAS_FBC(dev)) {
3660                if (HAS_PCH_SPLIT(dev)) {
3661                        dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3662                        dev_priv->display.enable_fbc = ironlake_enable_fbc;
3663                        dev_priv->display.disable_fbc = ironlake_disable_fbc;
3664                } else if (IS_GM45(dev)) {
3665                        dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3666                        dev_priv->display.enable_fbc = g4x_enable_fbc;
3667                        dev_priv->display.disable_fbc = g4x_disable_fbc;
3668                } else if (IS_CRESTLINE(dev)) {
3669                        dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3670                        dev_priv->display.enable_fbc = i8xx_enable_fbc;
3671                        dev_priv->display.disable_fbc = i8xx_disable_fbc;
3672                }
3673                /* 855GM needs testing */
3674        }
3675
3676        /* For cxsr */
3677        if (IS_PINEVIEW(dev))
3678                i915_pineview_get_mem_freq(dev);
3679        else if (IS_GEN5(dev))
3680                i915_ironlake_get_mem_freq(dev);
3681
3682        /* For FIFO watermark updates */
3683        if (HAS_PCH_SPLIT(dev)) {
3684                dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
3685                dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
3686
3687                /* IVB configs may use multi-threaded forcewake */
3688                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3689                        u32     ecobus;
3690
3691                        /* A small trick here - if the bios hasn't configured MT forcewake,
3692                         * and if the device is in RC6, then force_wake_mt_get will not wake
3693                         * the device and the ECOBUS read will return zero. Which will be
3694                         * (correctly) interpreted by the test below as MT forcewake being
3695                         * disabled.
3696                         */
3697                        mutex_lock(&dev->struct_mutex);
3698                        __gen6_gt_force_wake_mt_get(dev_priv);
3699                        ecobus = I915_READ_NOTRACE(ECOBUS);
3700                        __gen6_gt_force_wake_mt_put(dev_priv);
3701                        mutex_unlock(&dev->struct_mutex);
3702
3703                        if (ecobus & FORCEWAKE_MT_ENABLE) {
3704                                DRM_DEBUG_KMS("Using MT version of forcewake\n");
3705                                dev_priv->display.force_wake_get =
3706                                        __gen6_gt_force_wake_mt_get;
3707                                dev_priv->display.force_wake_put =
3708                                        __gen6_gt_force_wake_mt_put;
3709                        }
3710                }
3711
3712                if (HAS_PCH_IBX(dev))
3713                        dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3714                else if (HAS_PCH_CPT(dev))
3715                        dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3716
3717                if (IS_GEN5(dev)) {
3718                        if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3719                                dev_priv->display.update_wm = ironlake_update_wm;
3720                        else {
3721                                DRM_DEBUG_KMS("Failed to get proper latency. "
3722                                              "Disable CxSR\n");
3723                                dev_priv->display.update_wm = NULL;
3724                        }
3725                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3726                } else if (IS_GEN6(dev)) {
3727                        if (SNB_READ_WM0_LATENCY()) {
3728                                dev_priv->display.update_wm = sandybridge_update_wm;
3729                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3730                        } else {
3731                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3732                                              "Disable CxSR\n");
3733                                dev_priv->display.update_wm = NULL;
3734                        }
3735                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3736                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3737                } else if (IS_IVYBRIDGE(dev)) {
3738                        /* FIXME: detect B0+ stepping and use auto training */
3739                        if (SNB_READ_WM0_LATENCY()) {
3740                                dev_priv->display.update_wm = sandybridge_update_wm;
3741                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3742                        } else {
3743                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3744                                              "Disable CxSR\n");
3745                                dev_priv->display.update_wm = NULL;
3746                        }
3747                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3748                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3749                } else if (IS_HASWELL(dev)) {
3750                        if (SNB_READ_WM0_LATENCY()) {
3751                                dev_priv->display.update_wm = sandybridge_update_wm;
3752                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3753                                dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3754                        } else {
3755                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3756                                              "Disable CxSR\n");
3757                                dev_priv->display.update_wm = NULL;
3758                        }
3759                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3760                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3761                } else
3762                        dev_priv->display.update_wm = NULL;
3763        } else if (IS_VALLEYVIEW(dev)) {
3764                dev_priv->display.update_wm = valleyview_update_wm;
3765                dev_priv->display.init_clock_gating =
3766                        valleyview_init_clock_gating;
3767                dev_priv->display.force_wake_get = vlv_force_wake_get;
3768                dev_priv->display.force_wake_put = vlv_force_wake_put;
3769        } else if (IS_PINEVIEW(dev)) {
3770                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3771                                            dev_priv->is_ddr3,
3772                                            dev_priv->fsb_freq,
3773                                            dev_priv->mem_freq)) {
3774                        DRM_INFO("failed to find known CxSR latency "
3775                                 "(found ddr%s fsb freq %d, mem freq %d), "
3776                                 "disabling CxSR\n",
3777                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3778                                 dev_priv->fsb_freq, dev_priv->mem_freq);
3779                        /* Disable CxSR and never update its watermark again */
3780                        pineview_disable_cxsr(dev);
3781                        dev_priv->display.update_wm = NULL;
3782                } else
3783                        dev_priv->display.update_wm = pineview_update_wm;
3784                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3785        } else if (IS_G4X(dev)) {
3786                dev_priv->display.update_wm = g4x_update_wm;
3787                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3788        } else if (IS_GEN4(dev)) {
3789                dev_priv->display.update_wm = i965_update_wm;
3790                if (IS_CRESTLINE(dev))
3791                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3792                else if (IS_BROADWATER(dev))
3793                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3794        } else if (IS_GEN3(dev)) {
3795                dev_priv->display.update_wm = i9xx_update_wm;
3796                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3797                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3798        } else if (IS_I865G(dev)) {
3799                dev_priv->display.update_wm = i830_update_wm;
3800                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3801                dev_priv->display.get_fifo_size = i830_get_fifo_size;
3802        } else if (IS_I85X(dev)) {
3803                dev_priv->display.update_wm = i9xx_update_wm;
3804                dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3805                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3806        } else {
3807                dev_priv->display.update_wm = i830_update_wm;
3808                dev_priv->display.init_clock_gating = i830_init_clock_gating;
3809                if (IS_845G(dev))
3810                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
3811                else
3812                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
3813        }
3814
3815        /* We attempt to init the necessary power wells early in the initialization
3816         * time, so the subsystems that expect power to be enabled can work.
3817         */
3818        intel_init_power_wells(dev);
3819}
3820
3821