linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *
  42 * The data to be stored is divided into chunks using chunksize.
  43 * Each device is divided into far_copies sections.
  44 * In each section, chunks are laid out in a style similar to raid0, but
  45 * near_copies copies of each chunk is stored (each on a different drive).
  46 * The starting device for each section is offset near_copies from the starting
  47 * device of the previous section.
  48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  49 * drive.
  50 * near_copies and far_copies must be at least one, and their product is at most
  51 * raid_disks.
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of be very far apart
  55 * on disk, there are adjacent stripes.
  56 */
  57
  58/*
  59 * Number of guaranteed r10bios in case of extreme VM load:
  60 */
  61#define NR_RAID10_BIOS 256
  62
  63/* When there are this many requests queue to be written by
  64 * the raid10 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r10conf *conf);
  70static void lower_barrier(struct r10conf *conf);
  71static int enough(struct r10conf *conf, int ignore);
  72static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  73                                int *skipped);
  74static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  75static void end_reshape_write(struct bio *bio, int error);
  76static void end_reshape(struct r10conf *conf);
  77
  78static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  79{
  80        struct r10conf *conf = data;
  81        int size = offsetof(struct r10bio, devs[conf->copies]);
  82
  83        /* allocate a r10bio with room for raid_disks entries in the
  84         * bios array */
  85        return kzalloc(size, gfp_flags);
  86}
  87
  88static void r10bio_pool_free(void *r10_bio, void *data)
  89{
  90        kfree(r10_bio);
  91}
  92
  93/* Maximum size of each resync request */
  94#define RESYNC_BLOCK_SIZE (64*1024)
  95#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  96/* amount of memory to reserve for resync requests */
  97#define RESYNC_WINDOW (1024*1024)
  98/* maximum number of concurrent requests, memory permitting */
  99#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 100
 101/*
 102 * When performing a resync, we need to read and compare, so
 103 * we need as many pages are there are copies.
 104 * When performing a recovery, we need 2 bios, one for read,
 105 * one for write (we recover only one drive per r10buf)
 106 *
 107 */
 108static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 109{
 110        struct r10conf *conf = data;
 111        struct page *page;
 112        struct r10bio *r10_bio;
 113        struct bio *bio;
 114        int i, j;
 115        int nalloc;
 116
 117        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 118        if (!r10_bio)
 119                return NULL;
 120
 121        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 122            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 123                nalloc = conf->copies; /* resync */
 124        else
 125                nalloc = 2; /* recovery */
 126
 127        /*
 128         * Allocate bios.
 129         */
 130        for (j = nalloc ; j-- ; ) {
 131                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 132                if (!bio)
 133                        goto out_free_bio;
 134                r10_bio->devs[j].bio = bio;
 135                if (!conf->have_replacement)
 136                        continue;
 137                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 138                if (!bio)
 139                        goto out_free_bio;
 140                r10_bio->devs[j].repl_bio = bio;
 141        }
 142        /*
 143         * Allocate RESYNC_PAGES data pages and attach them
 144         * where needed.
 145         */
 146        for (j = 0 ; j < nalloc; j++) {
 147                struct bio *rbio = r10_bio->devs[j].repl_bio;
 148                bio = r10_bio->devs[j].bio;
 149                for (i = 0; i < RESYNC_PAGES; i++) {
 150                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 151                                               &conf->mddev->recovery)) {
 152                                /* we can share bv_page's during recovery
 153                                 * and reshape */
 154                                struct bio *rbio = r10_bio->devs[0].bio;
 155                                page = rbio->bi_io_vec[i].bv_page;
 156                                get_page(page);
 157                        } else
 158                                page = alloc_page(gfp_flags);
 159                        if (unlikely(!page))
 160                                goto out_free_pages;
 161
 162                        bio->bi_io_vec[i].bv_page = page;
 163                        if (rbio)
 164                                rbio->bi_io_vec[i].bv_page = page;
 165                }
 166        }
 167
 168        return r10_bio;
 169
 170out_free_pages:
 171        for ( ; i > 0 ; i--)
 172                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 173        while (j--)
 174                for (i = 0; i < RESYNC_PAGES ; i++)
 175                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 176        j = 0;
 177out_free_bio:
 178        for ( ; j < nalloc; j++) {
 179                if (r10_bio->devs[j].bio)
 180                        bio_put(r10_bio->devs[j].bio);
 181                if (r10_bio->devs[j].repl_bio)
 182                        bio_put(r10_bio->devs[j].repl_bio);
 183        }
 184        r10bio_pool_free(r10_bio, conf);
 185        return NULL;
 186}
 187
 188static void r10buf_pool_free(void *__r10_bio, void *data)
 189{
 190        int i;
 191        struct r10conf *conf = data;
 192        struct r10bio *r10bio = __r10_bio;
 193        int j;
 194
 195        for (j=0; j < conf->copies; j++) {
 196                struct bio *bio = r10bio->devs[j].bio;
 197                if (bio) {
 198                        for (i = 0; i < RESYNC_PAGES; i++) {
 199                                safe_put_page(bio->bi_io_vec[i].bv_page);
 200                                bio->bi_io_vec[i].bv_page = NULL;
 201                        }
 202                        bio_put(bio);
 203                }
 204                bio = r10bio->devs[j].repl_bio;
 205                if (bio)
 206                        bio_put(bio);
 207        }
 208        r10bio_pool_free(r10bio, conf);
 209}
 210
 211static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 212{
 213        int i;
 214
 215        for (i = 0; i < conf->copies; i++) {
 216                struct bio **bio = & r10_bio->devs[i].bio;
 217                if (!BIO_SPECIAL(*bio))
 218                        bio_put(*bio);
 219                *bio = NULL;
 220                bio = &r10_bio->devs[i].repl_bio;
 221                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 222                        bio_put(*bio);
 223                *bio = NULL;
 224        }
 225}
 226
 227static void free_r10bio(struct r10bio *r10_bio)
 228{
 229        struct r10conf *conf = r10_bio->mddev->private;
 230
 231        put_all_bios(conf, r10_bio);
 232        mempool_free(r10_bio, conf->r10bio_pool);
 233}
 234
 235static void put_buf(struct r10bio *r10_bio)
 236{
 237        struct r10conf *conf = r10_bio->mddev->private;
 238
 239        mempool_free(r10_bio, conf->r10buf_pool);
 240
 241        lower_barrier(conf);
 242}
 243
 244static void reschedule_retry(struct r10bio *r10_bio)
 245{
 246        unsigned long flags;
 247        struct mddev *mddev = r10_bio->mddev;
 248        struct r10conf *conf = mddev->private;
 249
 250        spin_lock_irqsave(&conf->device_lock, flags);
 251        list_add(&r10_bio->retry_list, &conf->retry_list);
 252        conf->nr_queued ++;
 253        spin_unlock_irqrestore(&conf->device_lock, flags);
 254
 255        /* wake up frozen array... */
 256        wake_up(&conf->wait_barrier);
 257
 258        md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void raid_end_bio_io(struct r10bio *r10_bio)
 267{
 268        struct bio *bio = r10_bio->master_bio;
 269        int done;
 270        struct r10conf *conf = r10_bio->mddev->private;
 271
 272        if (bio->bi_phys_segments) {
 273                unsigned long flags;
 274                spin_lock_irqsave(&conf->device_lock, flags);
 275                bio->bi_phys_segments--;
 276                done = (bio->bi_phys_segments == 0);
 277                spin_unlock_irqrestore(&conf->device_lock, flags);
 278        } else
 279                done = 1;
 280        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 281                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 282        if (done) {
 283                bio_endio(bio, 0);
 284                /*
 285                 * Wake up any possible resync thread that waits for the device
 286                 * to go idle.
 287                 */
 288                allow_barrier(conf);
 289        }
 290        free_r10bio(r10_bio);
 291}
 292
 293/*
 294 * Update disk head position estimator based on IRQ completion info.
 295 */
 296static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 297{
 298        struct r10conf *conf = r10_bio->mddev->private;
 299
 300        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 301                r10_bio->devs[slot].addr + (r10_bio->sectors);
 302}
 303
 304/*
 305 * Find the disk number which triggered given bio
 306 */
 307static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 308                         struct bio *bio, int *slotp, int *replp)
 309{
 310        int slot;
 311        int repl = 0;
 312
 313        for (slot = 0; slot < conf->copies; slot++) {
 314                if (r10_bio->devs[slot].bio == bio)
 315                        break;
 316                if (r10_bio->devs[slot].repl_bio == bio) {
 317                        repl = 1;
 318                        break;
 319                }
 320        }
 321
 322        BUG_ON(slot == conf->copies);
 323        update_head_pos(slot, r10_bio);
 324
 325        if (slotp)
 326                *slotp = slot;
 327        if (replp)
 328                *replp = repl;
 329        return r10_bio->devs[slot].devnum;
 330}
 331
 332static void raid10_end_read_request(struct bio *bio, int error)
 333{
 334        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 335        struct r10bio *r10_bio = bio->bi_private;
 336        int slot, dev;
 337        struct md_rdev *rdev;
 338        struct r10conf *conf = r10_bio->mddev->private;
 339
 340
 341        slot = r10_bio->read_slot;
 342        dev = r10_bio->devs[slot].devnum;
 343        rdev = r10_bio->devs[slot].rdev;
 344        /*
 345         * this branch is our 'one mirror IO has finished' event handler:
 346         */
 347        update_head_pos(slot, r10_bio);
 348
 349        if (uptodate) {
 350                /*
 351                 * Set R10BIO_Uptodate in our master bio, so that
 352                 * we will return a good error code to the higher
 353                 * levels even if IO on some other mirrored buffer fails.
 354                 *
 355                 * The 'master' represents the composite IO operation to
 356                 * user-side. So if something waits for IO, then it will
 357                 * wait for the 'master' bio.
 358                 */
 359                set_bit(R10BIO_Uptodate, &r10_bio->state);
 360        } else {
 361                /* If all other devices that store this block have
 362                 * failed, we want to return the error upwards rather
 363                 * than fail the last device.  Here we redefine
 364                 * "uptodate" to mean "Don't want to retry"
 365                 */
 366                unsigned long flags;
 367                spin_lock_irqsave(&conf->device_lock, flags);
 368                if (!enough(conf, rdev->raid_disk))
 369                        uptodate = 1;
 370                spin_unlock_irqrestore(&conf->device_lock, flags);
 371        }
 372        if (uptodate) {
 373                raid_end_bio_io(r10_bio);
 374                rdev_dec_pending(rdev, conf->mddev);
 375        } else {
 376                /*
 377                 * oops, read error - keep the refcount on the rdev
 378                 */
 379                char b[BDEVNAME_SIZE];
 380                printk_ratelimited(KERN_ERR
 381                                   "md/raid10:%s: %s: rescheduling sector %llu\n",
 382                                   mdname(conf->mddev),
 383                                   bdevname(rdev->bdev, b),
 384                                   (unsigned long long)r10_bio->sector);
 385                set_bit(R10BIO_ReadError, &r10_bio->state);
 386                reschedule_retry(r10_bio);
 387        }
 388}
 389
 390static void close_write(struct r10bio *r10_bio)
 391{
 392        /* clear the bitmap if all writes complete successfully */
 393        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 394                        r10_bio->sectors,
 395                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 396                        0);
 397        md_write_end(r10_bio->mddev);
 398}
 399
 400static void one_write_done(struct r10bio *r10_bio)
 401{
 402        if (atomic_dec_and_test(&r10_bio->remaining)) {
 403                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 404                        reschedule_retry(r10_bio);
 405                else {
 406                        close_write(r10_bio);
 407                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 408                                reschedule_retry(r10_bio);
 409                        else
 410                                raid_end_bio_io(r10_bio);
 411                }
 412        }
 413}
 414
 415static void raid10_end_write_request(struct bio *bio, int error)
 416{
 417        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 418        struct r10bio *r10_bio = bio->bi_private;
 419        int dev;
 420        int dec_rdev = 1;
 421        struct r10conf *conf = r10_bio->mddev->private;
 422        int slot, repl;
 423        struct md_rdev *rdev = NULL;
 424
 425        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 426
 427        if (repl)
 428                rdev = conf->mirrors[dev].replacement;
 429        if (!rdev) {
 430                smp_rmb();
 431                repl = 0;
 432                rdev = conf->mirrors[dev].rdev;
 433        }
 434        /*
 435         * this branch is our 'one mirror IO has finished' event handler:
 436         */
 437        if (!uptodate) {
 438                if (repl)
 439                        /* Never record new bad blocks to replacement,
 440                         * just fail it.
 441                         */
 442                        md_error(rdev->mddev, rdev);
 443                else {
 444                        set_bit(WriteErrorSeen, &rdev->flags);
 445                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 446                                set_bit(MD_RECOVERY_NEEDED,
 447                                        &rdev->mddev->recovery);
 448                        set_bit(R10BIO_WriteError, &r10_bio->state);
 449                        dec_rdev = 0;
 450                }
 451        } else {
 452                /*
 453                 * Set R10BIO_Uptodate in our master bio, so that
 454                 * we will return a good error code for to the higher
 455                 * levels even if IO on some other mirrored buffer fails.
 456                 *
 457                 * The 'master' represents the composite IO operation to
 458                 * user-side. So if something waits for IO, then it will
 459                 * wait for the 'master' bio.
 460                 */
 461                sector_t first_bad;
 462                int bad_sectors;
 463
 464                set_bit(R10BIO_Uptodate, &r10_bio->state);
 465
 466                /* Maybe we can clear some bad blocks. */
 467                if (is_badblock(rdev,
 468                                r10_bio->devs[slot].addr,
 469                                r10_bio->sectors,
 470                                &first_bad, &bad_sectors)) {
 471                        bio_put(bio);
 472                        if (repl)
 473                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 474                        else
 475                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 476                        dec_rdev = 0;
 477                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 478                }
 479        }
 480
 481        /*
 482         *
 483         * Let's see if all mirrored write operations have finished
 484         * already.
 485         */
 486        one_write_done(r10_bio);
 487        if (dec_rdev)
 488                rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
 489}
 490
 491/*
 492 * RAID10 layout manager
 493 * As well as the chunksize and raid_disks count, there are two
 494 * parameters: near_copies and far_copies.
 495 * near_copies * far_copies must be <= raid_disks.
 496 * Normally one of these will be 1.
 497 * If both are 1, we get raid0.
 498 * If near_copies == raid_disks, we get raid1.
 499 *
 500 * Chunks are laid out in raid0 style with near_copies copies of the
 501 * first chunk, followed by near_copies copies of the next chunk and
 502 * so on.
 503 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 504 * as described above, we start again with a device offset of near_copies.
 505 * So we effectively have another copy of the whole array further down all
 506 * the drives, but with blocks on different drives.
 507 * With this layout, and block is never stored twice on the one device.
 508 *
 509 * raid10_find_phys finds the sector offset of a given virtual sector
 510 * on each device that it is on.
 511 *
 512 * raid10_find_virt does the reverse mapping, from a device and a
 513 * sector offset to a virtual address
 514 */
 515
 516static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 517{
 518        int n,f;
 519        sector_t sector;
 520        sector_t chunk;
 521        sector_t stripe;
 522        int dev;
 523        int slot = 0;
 524
 525        /* now calculate first sector/dev */
 526        chunk = r10bio->sector >> geo->chunk_shift;
 527        sector = r10bio->sector & geo->chunk_mask;
 528
 529        chunk *= geo->near_copies;
 530        stripe = chunk;
 531        dev = sector_div(stripe, geo->raid_disks);
 532        if (geo->far_offset)
 533                stripe *= geo->far_copies;
 534
 535        sector += stripe << geo->chunk_shift;
 536
 537        /* and calculate all the others */
 538        for (n = 0; n < geo->near_copies; n++) {
 539                int d = dev;
 540                sector_t s = sector;
 541                r10bio->devs[slot].addr = sector;
 542                r10bio->devs[slot].devnum = d;
 543                slot++;
 544
 545                for (f = 1; f < geo->far_copies; f++) {
 546                        d += geo->near_copies;
 547                        if (d >= geo->raid_disks)
 548                                d -= geo->raid_disks;
 549                        s += geo->stride;
 550                        r10bio->devs[slot].devnum = d;
 551                        r10bio->devs[slot].addr = s;
 552                        slot++;
 553                }
 554                dev++;
 555                if (dev >= geo->raid_disks) {
 556                        dev = 0;
 557                        sector += (geo->chunk_mask + 1);
 558                }
 559        }
 560}
 561
 562static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 563{
 564        struct geom *geo = &conf->geo;
 565
 566        if (conf->reshape_progress != MaxSector &&
 567            ((r10bio->sector >= conf->reshape_progress) !=
 568             conf->mddev->reshape_backwards)) {
 569                set_bit(R10BIO_Previous, &r10bio->state);
 570                geo = &conf->prev;
 571        } else
 572                clear_bit(R10BIO_Previous, &r10bio->state);
 573
 574        __raid10_find_phys(geo, r10bio);
 575}
 576
 577static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 578{
 579        sector_t offset, chunk, vchunk;
 580        /* Never use conf->prev as this is only called during resync
 581         * or recovery, so reshape isn't happening
 582         */
 583        struct geom *geo = &conf->geo;
 584
 585        offset = sector & geo->chunk_mask;
 586        if (geo->far_offset) {
 587                int fc;
 588                chunk = sector >> geo->chunk_shift;
 589                fc = sector_div(chunk, geo->far_copies);
 590                dev -= fc * geo->near_copies;
 591                if (dev < 0)
 592                        dev += geo->raid_disks;
 593        } else {
 594                while (sector >= geo->stride) {
 595                        sector -= geo->stride;
 596                        if (dev < geo->near_copies)
 597                                dev += geo->raid_disks - geo->near_copies;
 598                        else
 599                                dev -= geo->near_copies;
 600                }
 601                chunk = sector >> geo->chunk_shift;
 602        }
 603        vchunk = chunk * geo->raid_disks + dev;
 604        sector_div(vchunk, geo->near_copies);
 605        return (vchunk << geo->chunk_shift) + offset;
 606}
 607
 608/**
 609 *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 610 *      @q: request queue
 611 *      @bvm: properties of new bio
 612 *      @biovec: the request that could be merged to it.
 613 *
 614 *      Return amount of bytes we can accept at this offset
 615 *      This requires checking for end-of-chunk if near_copies != raid_disks,
 616 *      and for subordinate merge_bvec_fns if merge_check_needed.
 617 */
 618static int raid10_mergeable_bvec(struct request_queue *q,
 619                                 struct bvec_merge_data *bvm,
 620                                 struct bio_vec *biovec)
 621{
 622        struct mddev *mddev = q->queuedata;
 623        struct r10conf *conf = mddev->private;
 624        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 625        int max;
 626        unsigned int chunk_sectors;
 627        unsigned int bio_sectors = bvm->bi_size >> 9;
 628        struct geom *geo = &conf->geo;
 629
 630        chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 631        if (conf->reshape_progress != MaxSector &&
 632            ((sector >= conf->reshape_progress) !=
 633             conf->mddev->reshape_backwards))
 634                geo = &conf->prev;
 635
 636        if (geo->near_copies < geo->raid_disks) {
 637                max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 638                                        + bio_sectors)) << 9;
 639                if (max < 0)
 640                        /* bio_add cannot handle a negative return */
 641                        max = 0;
 642                if (max <= biovec->bv_len && bio_sectors == 0)
 643                        return biovec->bv_len;
 644        } else
 645                max = biovec->bv_len;
 646
 647        if (mddev->merge_check_needed) {
 648                struct r10bio r10_bio;
 649                int s;
 650                if (conf->reshape_progress != MaxSector) {
 651                        /* Cannot give any guidance during reshape */
 652                        if (max <= biovec->bv_len && bio_sectors == 0)
 653                                return biovec->bv_len;
 654                        return 0;
 655                }
 656                r10_bio.sector = sector;
 657                raid10_find_phys(conf, &r10_bio);
 658                rcu_read_lock();
 659                for (s = 0; s < conf->copies; s++) {
 660                        int disk = r10_bio.devs[s].devnum;
 661                        struct md_rdev *rdev = rcu_dereference(
 662                                conf->mirrors[disk].rdev);
 663                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 664                                struct request_queue *q =
 665                                        bdev_get_queue(rdev->bdev);
 666                                if (q->merge_bvec_fn) {
 667                                        bvm->bi_sector = r10_bio.devs[s].addr
 668                                                + rdev->data_offset;
 669                                        bvm->bi_bdev = rdev->bdev;
 670                                        max = min(max, q->merge_bvec_fn(
 671                                                          q, bvm, biovec));
 672                                }
 673                        }
 674                        rdev = rcu_dereference(conf->mirrors[disk].replacement);
 675                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 676                                struct request_queue *q =
 677                                        bdev_get_queue(rdev->bdev);
 678                                if (q->merge_bvec_fn) {
 679                                        bvm->bi_sector = r10_bio.devs[s].addr
 680                                                + rdev->data_offset;
 681                                        bvm->bi_bdev = rdev->bdev;
 682                                        max = min(max, q->merge_bvec_fn(
 683                                                          q, bvm, biovec));
 684                                }
 685                        }
 686                }
 687                rcu_read_unlock();
 688        }
 689        return max;
 690}
 691
 692/*
 693 * This routine returns the disk from which the requested read should
 694 * be done. There is a per-array 'next expected sequential IO' sector
 695 * number - if this matches on the next IO then we use the last disk.
 696 * There is also a per-disk 'last know head position' sector that is
 697 * maintained from IRQ contexts, both the normal and the resync IO
 698 * completion handlers update this position correctly. If there is no
 699 * perfect sequential match then we pick the disk whose head is closest.
 700 *
 701 * If there are 2 mirrors in the same 2 devices, performance degrades
 702 * because position is mirror, not device based.
 703 *
 704 * The rdev for the device selected will have nr_pending incremented.
 705 */
 706
 707/*
 708 * FIXME: possibly should rethink readbalancing and do it differently
 709 * depending on near_copies / far_copies geometry.
 710 */
 711static struct md_rdev *read_balance(struct r10conf *conf,
 712                                    struct r10bio *r10_bio,
 713                                    int *max_sectors)
 714{
 715        const sector_t this_sector = r10_bio->sector;
 716        int disk, slot;
 717        int sectors = r10_bio->sectors;
 718        int best_good_sectors;
 719        sector_t new_distance, best_dist;
 720        struct md_rdev *rdev, *best_rdev;
 721        int do_balance;
 722        int best_slot;
 723        struct geom *geo = &conf->geo;
 724
 725        raid10_find_phys(conf, r10_bio);
 726        rcu_read_lock();
 727retry:
 728        sectors = r10_bio->sectors;
 729        best_slot = -1;
 730        best_rdev = NULL;
 731        best_dist = MaxSector;
 732        best_good_sectors = 0;
 733        do_balance = 1;
 734        /*
 735         * Check if we can balance. We can balance on the whole
 736         * device if no resync is going on (recovery is ok), or below
 737         * the resync window. We take the first readable disk when
 738         * above the resync window.
 739         */
 740        if (conf->mddev->recovery_cp < MaxSector
 741            && (this_sector + sectors >= conf->next_resync))
 742                do_balance = 0;
 743
 744        for (slot = 0; slot < conf->copies ; slot++) {
 745                sector_t first_bad;
 746                int bad_sectors;
 747                sector_t dev_sector;
 748
 749                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750                        continue;
 751                disk = r10_bio->devs[slot].devnum;
 752                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754                    test_bit(Unmerged, &rdev->flags) ||
 755                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 756                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 757                if (rdev == NULL ||
 758                    test_bit(Faulty, &rdev->flags) ||
 759                    test_bit(Unmerged, &rdev->flags))
 760                        continue;
 761                if (!test_bit(In_sync, &rdev->flags) &&
 762                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 763                        continue;
 764
 765                dev_sector = r10_bio->devs[slot].addr;
 766                if (is_badblock(rdev, dev_sector, sectors,
 767                                &first_bad, &bad_sectors)) {
 768                        if (best_dist < MaxSector)
 769                                /* Already have a better slot */
 770                                continue;
 771                        if (first_bad <= dev_sector) {
 772                                /* Cannot read here.  If this is the
 773                                 * 'primary' device, then we must not read
 774                                 * beyond 'bad_sectors' from another device.
 775                                 */
 776                                bad_sectors -= (dev_sector - first_bad);
 777                                if (!do_balance && sectors > bad_sectors)
 778                                        sectors = bad_sectors;
 779                                if (best_good_sectors > sectors)
 780                                        best_good_sectors = sectors;
 781                        } else {
 782                                sector_t good_sectors =
 783                                        first_bad - dev_sector;
 784                                if (good_sectors > best_good_sectors) {
 785                                        best_good_sectors = good_sectors;
 786                                        best_slot = slot;
 787                                        best_rdev = rdev;
 788                                }
 789                                if (!do_balance)
 790                                        /* Must read from here */
 791                                        break;
 792                        }
 793                        continue;
 794                } else
 795                        best_good_sectors = sectors;
 796
 797                if (!do_balance)
 798                        break;
 799
 800                /* This optimisation is debatable, and completely destroys
 801                 * sequential read speed for 'far copies' arrays.  So only
 802                 * keep it for 'near' arrays, and review those later.
 803                 */
 804                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 805                        break;
 806
 807                /* for far > 1 always use the lowest address */
 808                if (geo->far_copies > 1)
 809                        new_distance = r10_bio->devs[slot].addr;
 810                else
 811                        new_distance = abs(r10_bio->devs[slot].addr -
 812                                           conf->mirrors[disk].head_position);
 813                if (new_distance < best_dist) {
 814                        best_dist = new_distance;
 815                        best_slot = slot;
 816                        best_rdev = rdev;
 817                }
 818        }
 819        if (slot >= conf->copies) {
 820                slot = best_slot;
 821                rdev = best_rdev;
 822        }
 823
 824        if (slot >= 0) {
 825                atomic_inc(&rdev->nr_pending);
 826                if (test_bit(Faulty, &rdev->flags)) {
 827                        /* Cannot risk returning a device that failed
 828                         * before we inc'ed nr_pending
 829                         */
 830                        rdev_dec_pending(rdev, conf->mddev);
 831                        goto retry;
 832                }
 833                r10_bio->read_slot = slot;
 834        } else
 835                rdev = NULL;
 836        rcu_read_unlock();
 837        *max_sectors = best_good_sectors;
 838
 839        return rdev;
 840}
 841
 842static int raid10_congested(void *data, int bits)
 843{
 844        struct mddev *mddev = data;
 845        struct r10conf *conf = mddev->private;
 846        int i, ret = 0;
 847
 848        if ((bits & (1 << BDI_async_congested)) &&
 849            conf->pending_count >= max_queued_requests)
 850                return 1;
 851
 852        if (mddev_congested(mddev, bits))
 853                return 1;
 854        rcu_read_lock();
 855        for (i = 0;
 856             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 857                     && ret == 0;
 858             i++) {
 859                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 860                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 861                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 862
 863                        ret |= bdi_congested(&q->backing_dev_info, bits);
 864                }
 865        }
 866        rcu_read_unlock();
 867        return ret;
 868}
 869
 870static void flush_pending_writes(struct r10conf *conf)
 871{
 872        /* Any writes that have been queued but are awaiting
 873         * bitmap updates get flushed here.
 874         */
 875        spin_lock_irq(&conf->device_lock);
 876
 877        if (conf->pending_bio_list.head) {
 878                struct bio *bio;
 879                bio = bio_list_get(&conf->pending_bio_list);
 880                conf->pending_count = 0;
 881                spin_unlock_irq(&conf->device_lock);
 882                /* flush any pending bitmap writes to disk
 883                 * before proceeding w/ I/O */
 884                bitmap_unplug(conf->mddev->bitmap);
 885                wake_up(&conf->wait_barrier);
 886
 887                while (bio) { /* submit pending writes */
 888                        struct bio *next = bio->bi_next;
 889                        bio->bi_next = NULL;
 890                        generic_make_request(bio);
 891                        bio = next;
 892                }
 893        } else
 894                spin_unlock_irq(&conf->device_lock);
 895}
 896
 897/* Barriers....
 898 * Sometimes we need to suspend IO while we do something else,
 899 * either some resync/recovery, or reconfigure the array.
 900 * To do this we raise a 'barrier'.
 901 * The 'barrier' is a counter that can be raised multiple times
 902 * to count how many activities are happening which preclude
 903 * normal IO.
 904 * We can only raise the barrier if there is no pending IO.
 905 * i.e. if nr_pending == 0.
 906 * We choose only to raise the barrier if no-one is waiting for the
 907 * barrier to go down.  This means that as soon as an IO request
 908 * is ready, no other operations which require a barrier will start
 909 * until the IO request has had a chance.
 910 *
 911 * So: regular IO calls 'wait_barrier'.  When that returns there
 912 *    is no backgroup IO happening,  It must arrange to call
 913 *    allow_barrier when it has finished its IO.
 914 * backgroup IO calls must call raise_barrier.  Once that returns
 915 *    there is no normal IO happeing.  It must arrange to call
 916 *    lower_barrier when the particular background IO completes.
 917 */
 918
 919static void raise_barrier(struct r10conf *conf, int force)
 920{
 921        BUG_ON(force && !conf->barrier);
 922        spin_lock_irq(&conf->resync_lock);
 923
 924        /* Wait until no block IO is waiting (unless 'force') */
 925        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 926                            conf->resync_lock, );
 927
 928        /* block any new IO from starting */
 929        conf->barrier++;
 930
 931        /* Now wait for all pending IO to complete */
 932        wait_event_lock_irq(conf->wait_barrier,
 933                            !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 934                            conf->resync_lock, );
 935
 936        spin_unlock_irq(&conf->resync_lock);
 937}
 938
 939static void lower_barrier(struct r10conf *conf)
 940{
 941        unsigned long flags;
 942        spin_lock_irqsave(&conf->resync_lock, flags);
 943        conf->barrier--;
 944        spin_unlock_irqrestore(&conf->resync_lock, flags);
 945        wake_up(&conf->wait_barrier);
 946}
 947
 948static void wait_barrier(struct r10conf *conf)
 949{
 950        spin_lock_irq(&conf->resync_lock);
 951        if (conf->barrier) {
 952                conf->nr_waiting++;
 953                /* Wait for the barrier to drop.
 954                 * However if there are already pending
 955                 * requests (preventing the barrier from
 956                 * rising completely), and the
 957                 * pre-process bio queue isn't empty,
 958                 * then don't wait, as we need to empty
 959                 * that queue to get the nr_pending
 960                 * count down.
 961                 */
 962                wait_event_lock_irq(conf->wait_barrier,
 963                                    !conf->barrier ||
 964                                    (conf->nr_pending &&
 965                                     current->bio_list &&
 966                                     !bio_list_empty(current->bio_list)),
 967                                    conf->resync_lock,
 968                        );
 969                conf->nr_waiting--;
 970        }
 971        conf->nr_pending++;
 972        spin_unlock_irq(&conf->resync_lock);
 973}
 974
 975static void allow_barrier(struct r10conf *conf)
 976{
 977        unsigned long flags;
 978        spin_lock_irqsave(&conf->resync_lock, flags);
 979        conf->nr_pending--;
 980        spin_unlock_irqrestore(&conf->resync_lock, flags);
 981        wake_up(&conf->wait_barrier);
 982}
 983
 984static void freeze_array(struct r10conf *conf)
 985{
 986        /* stop syncio and normal IO and wait for everything to
 987         * go quiet.
 988         * We increment barrier and nr_waiting, and then
 989         * wait until nr_pending match nr_queued+1
 990         * This is called in the context of one normal IO request
 991         * that has failed. Thus any sync request that might be pending
 992         * will be blocked by nr_pending, and we need to wait for
 993         * pending IO requests to complete or be queued for re-try.
 994         * Thus the number queued (nr_queued) plus this request (1)
 995         * must match the number of pending IOs (nr_pending) before
 996         * we continue.
 997         */
 998        spin_lock_irq(&conf->resync_lock);
 999        conf->barrier++;
1000        conf->nr_waiting++;
1001        wait_event_lock_irq(conf->wait_barrier,
1002                            conf->nr_pending == conf->nr_queued+1,
1003                            conf->resync_lock,
1004                            flush_pending_writes(conf));
1005
1006        spin_unlock_irq(&conf->resync_lock);
1007}
1008
1009static void unfreeze_array(struct r10conf *conf)
1010{
1011        /* reverse the effect of the freeze */
1012        spin_lock_irq(&conf->resync_lock);
1013        conf->barrier--;
1014        conf->nr_waiting--;
1015        wake_up(&conf->wait_barrier);
1016        spin_unlock_irq(&conf->resync_lock);
1017}
1018
1019static sector_t choose_data_offset(struct r10bio *r10_bio,
1020                                   struct md_rdev *rdev)
1021{
1022        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023            test_bit(R10BIO_Previous, &r10_bio->state))
1024                return rdev->data_offset;
1025        else
1026                return rdev->new_data_offset;
1027}
1028
1029static void make_request(struct mddev *mddev, struct bio * bio)
1030{
1031        struct r10conf *conf = mddev->private;
1032        struct r10bio *r10_bio;
1033        struct bio *read_bio;
1034        int i;
1035        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1036        int chunk_sects = chunk_mask + 1;
1037        const int rw = bio_data_dir(bio);
1038        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1039        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1040        unsigned long flags;
1041        struct md_rdev *blocked_rdev;
1042        int sectors_handled;
1043        int max_sectors;
1044        int sectors;
1045
1046        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1047                md_flush_request(mddev, bio);
1048                return;
1049        }
1050
1051        /* If this request crosses a chunk boundary, we need to
1052         * split it.  This will only happen for 1 PAGE (or less) requests.
1053         */
1054        if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1055                     > chunk_sects
1056                     && (conf->geo.near_copies < conf->geo.raid_disks
1057                         || conf->prev.near_copies < conf->prev.raid_disks))) {
1058                struct bio_pair *bp;
1059                /* Sanity check -- queue functions should prevent this happening */
1060                if (bio->bi_vcnt != 1 ||
1061                    bio->bi_idx != 0)
1062                        goto bad_map;
1063                /* This is a one page bio that upper layers
1064                 * refuse to split for us, so we need to split it.
1065                 */
1066                bp = bio_split(bio,
1067                               chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1068
1069                /* Each of these 'make_request' calls will call 'wait_barrier'.
1070                 * If the first succeeds but the second blocks due to the resync
1071                 * thread raising the barrier, we will deadlock because the
1072                 * IO to the underlying device will be queued in generic_make_request
1073                 * and will never complete, so will never reduce nr_pending.
1074                 * So increment nr_waiting here so no new raise_barriers will
1075                 * succeed, and so the second wait_barrier cannot block.
1076                 */
1077                spin_lock_irq(&conf->resync_lock);
1078                conf->nr_waiting++;
1079                spin_unlock_irq(&conf->resync_lock);
1080
1081                make_request(mddev, &bp->bio1);
1082                make_request(mddev, &bp->bio2);
1083
1084                spin_lock_irq(&conf->resync_lock);
1085                conf->nr_waiting--;
1086                wake_up(&conf->wait_barrier);
1087                spin_unlock_irq(&conf->resync_lock);
1088
1089                bio_pair_release(bp);
1090                return;
1091        bad_map:
1092                printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1093                       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1094                       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1095
1096                bio_io_error(bio);
1097                return;
1098        }
1099
1100        md_write_start(mddev, bio);
1101
1102        /*
1103         * Register the new request and wait if the reconstruction
1104         * thread has put up a bar for new requests.
1105         * Continue immediately if no resync is active currently.
1106         */
1107        wait_barrier(conf);
1108
1109        sectors = bio->bi_size >> 9;
1110        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111            bio->bi_sector < conf->reshape_progress &&
1112            bio->bi_sector + sectors > conf->reshape_progress) {
1113                /* IO spans the reshape position.  Need to wait for
1114                 * reshape to pass
1115                 */
1116                allow_barrier(conf);
1117                wait_event(conf->wait_barrier,
1118                           conf->reshape_progress <= bio->bi_sector ||
1119                           conf->reshape_progress >= bio->bi_sector + sectors);
1120                wait_barrier(conf);
1121        }
1122        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1123            bio_data_dir(bio) == WRITE &&
1124            (mddev->reshape_backwards
1125             ? (bio->bi_sector < conf->reshape_safe &&
1126                bio->bi_sector + sectors > conf->reshape_progress)
1127             : (bio->bi_sector + sectors > conf->reshape_safe &&
1128                bio->bi_sector < conf->reshape_progress))) {
1129                /* Need to update reshape_position in metadata */
1130                mddev->reshape_position = conf->reshape_progress;
1131                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1132                set_bit(MD_CHANGE_PENDING, &mddev->flags);
1133                md_wakeup_thread(mddev->thread);
1134                wait_event(mddev->sb_wait,
1135                           !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1136
1137                conf->reshape_safe = mddev->reshape_position;
1138        }
1139
1140        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1141
1142        r10_bio->master_bio = bio;
1143        r10_bio->sectors = sectors;
1144
1145        r10_bio->mddev = mddev;
1146        r10_bio->sector = bio->bi_sector;
1147        r10_bio->state = 0;
1148
1149        /* We might need to issue multiple reads to different
1150         * devices if there are bad blocks around, so we keep
1151         * track of the number of reads in bio->bi_phys_segments.
1152         * If this is 0, there is only one r10_bio and no locking
1153         * will be needed when the request completes.  If it is
1154         * non-zero, then it is the number of not-completed requests.
1155         */
1156        bio->bi_phys_segments = 0;
1157        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158
1159        if (rw == READ) {
1160                /*
1161                 * read balancing logic:
1162                 */
1163                struct md_rdev *rdev;
1164                int slot;
1165
1166read_again:
1167                rdev = read_balance(conf, r10_bio, &max_sectors);
1168                if (!rdev) {
1169                        raid_end_bio_io(r10_bio);
1170                        return;
1171                }
1172                slot = r10_bio->read_slot;
1173
1174                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1175                md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1176                            max_sectors);
1177
1178                r10_bio->devs[slot].bio = read_bio;
1179                r10_bio->devs[slot].rdev = rdev;
1180
1181                read_bio->bi_sector = r10_bio->devs[slot].addr +
1182                        choose_data_offset(r10_bio, rdev);
1183                read_bio->bi_bdev = rdev->bdev;
1184                read_bio->bi_end_io = raid10_end_read_request;
1185                read_bio->bi_rw = READ | do_sync;
1186                read_bio->bi_private = r10_bio;
1187
1188                if (max_sectors < r10_bio->sectors) {
1189                        /* Could not read all from this device, so we will
1190                         * need another r10_bio.
1191                         */
1192                        sectors_handled = (r10_bio->sectors + max_sectors
1193                                           - bio->bi_sector);
1194                        r10_bio->sectors = max_sectors;
1195                        spin_lock_irq(&conf->device_lock);
1196                        if (bio->bi_phys_segments == 0)
1197                                bio->bi_phys_segments = 2;
1198                        else
1199                                bio->bi_phys_segments++;
1200                        spin_unlock(&conf->device_lock);
1201                        /* Cannot call generic_make_request directly
1202                         * as that will be queued in __generic_make_request
1203                         * and subsequent mempool_alloc might block
1204                         * waiting for it.  so hand bio over to raid10d.
1205                         */
1206                        reschedule_retry(r10_bio);
1207
1208                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1209
1210                        r10_bio->master_bio = bio;
1211                        r10_bio->sectors = ((bio->bi_size >> 9)
1212                                            - sectors_handled);
1213                        r10_bio->state = 0;
1214                        r10_bio->mddev = mddev;
1215                        r10_bio->sector = bio->bi_sector + sectors_handled;
1216                        goto read_again;
1217                } else
1218                        generic_make_request(read_bio);
1219                return;
1220        }
1221
1222        /*
1223         * WRITE:
1224         */
1225        if (conf->pending_count >= max_queued_requests) {
1226                md_wakeup_thread(mddev->thread);
1227                wait_event(conf->wait_barrier,
1228                           conf->pending_count < max_queued_requests);
1229        }
1230        /* first select target devices under rcu_lock and
1231         * inc refcount on their rdev.  Record them by setting
1232         * bios[x] to bio
1233         * If there are known/acknowledged bad blocks on any device
1234         * on which we have seen a write error, we want to avoid
1235         * writing to those blocks.  This potentially requires several
1236         * writes to write around the bad blocks.  Each set of writes
1237         * gets its own r10_bio with a set of bios attached.  The number
1238         * of r10_bios is recored in bio->bi_phys_segments just as with
1239         * the read case.
1240         */
1241
1242        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1243        raid10_find_phys(conf, r10_bio);
1244retry_write:
1245        blocked_rdev = NULL;
1246        rcu_read_lock();
1247        max_sectors = r10_bio->sectors;
1248
1249        for (i = 0;  i < conf->copies; i++) {
1250                int d = r10_bio->devs[i].devnum;
1251                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1252                struct md_rdev *rrdev = rcu_dereference(
1253                        conf->mirrors[d].replacement);
1254                if (rdev == rrdev)
1255                        rrdev = NULL;
1256                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257                        atomic_inc(&rdev->nr_pending);
1258                        blocked_rdev = rdev;
1259                        break;
1260                }
1261                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1262                        atomic_inc(&rrdev->nr_pending);
1263                        blocked_rdev = rrdev;
1264                        break;
1265                }
1266                if (rrdev && (test_bit(Faulty, &rrdev->flags)
1267                              || test_bit(Unmerged, &rrdev->flags)))
1268                        rrdev = NULL;
1269
1270                r10_bio->devs[i].bio = NULL;
1271                r10_bio->devs[i].repl_bio = NULL;
1272                if (!rdev || test_bit(Faulty, &rdev->flags) ||
1273                    test_bit(Unmerged, &rdev->flags)) {
1274                        set_bit(R10BIO_Degraded, &r10_bio->state);
1275                        continue;
1276                }
1277                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278                        sector_t first_bad;
1279                        sector_t dev_sector = r10_bio->devs[i].addr;
1280                        int bad_sectors;
1281                        int is_bad;
1282
1283                        is_bad = is_badblock(rdev, dev_sector,
1284                                             max_sectors,
1285                                             &first_bad, &bad_sectors);
1286                        if (is_bad < 0) {
1287                                /* Mustn't write here until the bad block
1288                                 * is acknowledged
1289                                 */
1290                                atomic_inc(&rdev->nr_pending);
1291                                set_bit(BlockedBadBlocks, &rdev->flags);
1292                                blocked_rdev = rdev;
1293                                break;
1294                        }
1295                        if (is_bad && first_bad <= dev_sector) {
1296                                /* Cannot write here at all */
1297                                bad_sectors -= (dev_sector - first_bad);
1298                                if (bad_sectors < max_sectors)
1299                                        /* Mustn't write more than bad_sectors
1300                                         * to other devices yet
1301                                         */
1302                                        max_sectors = bad_sectors;
1303                                /* We don't set R10BIO_Degraded as that
1304                                 * only applies if the disk is missing,
1305                                 * so it might be re-added, and we want to
1306                                 * know to recover this chunk.
1307                                 * In this case the device is here, and the
1308                                 * fact that this chunk is not in-sync is
1309                                 * recorded in the bad block log.
1310                                 */
1311                                continue;
1312                        }
1313                        if (is_bad) {
1314                                int good_sectors = first_bad - dev_sector;
1315                                if (good_sectors < max_sectors)
1316                                        max_sectors = good_sectors;
1317                        }
1318                }
1319                r10_bio->devs[i].bio = bio;
1320                atomic_inc(&rdev->nr_pending);
1321                if (rrdev) {
1322                        r10_bio->devs[i].repl_bio = bio;
1323                        atomic_inc(&rrdev->nr_pending);
1324                }
1325        }
1326        rcu_read_unlock();
1327
1328        if (unlikely(blocked_rdev)) {
1329                /* Have to wait for this device to get unblocked, then retry */
1330                int j;
1331                int d;
1332
1333                for (j = 0; j < i; j++) {
1334                        if (r10_bio->devs[j].bio) {
1335                                d = r10_bio->devs[j].devnum;
1336                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1337                        }
1338                        if (r10_bio->devs[j].repl_bio) {
1339                                struct md_rdev *rdev;
1340                                d = r10_bio->devs[j].devnum;
1341                                rdev = conf->mirrors[d].replacement;
1342                                if (!rdev) {
1343                                        /* Race with remove_disk */
1344                                        smp_mb();
1345                                        rdev = conf->mirrors[d].rdev;
1346                                }
1347                                rdev_dec_pending(rdev, mddev);
1348                        }
1349                }
1350                allow_barrier(conf);
1351                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1352                wait_barrier(conf);
1353                goto retry_write;
1354        }
1355
1356        if (max_sectors < r10_bio->sectors) {
1357                /* We are splitting this into multiple parts, so
1358                 * we need to prepare for allocating another r10_bio.
1359                 */
1360                r10_bio->sectors = max_sectors;
1361                spin_lock_irq(&conf->device_lock);
1362                if (bio->bi_phys_segments == 0)
1363                        bio->bi_phys_segments = 2;
1364                else
1365                        bio->bi_phys_segments++;
1366                spin_unlock_irq(&conf->device_lock);
1367        }
1368        sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1369
1370        atomic_set(&r10_bio->remaining, 1);
1371        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1372
1373        for (i = 0; i < conf->copies; i++) {
1374                struct bio *mbio;
1375                int d = r10_bio->devs[i].devnum;
1376                if (!r10_bio->devs[i].bio)
1377                        continue;
1378
1379                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1380                md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1381                            max_sectors);
1382                r10_bio->devs[i].bio = mbio;
1383
1384                mbio->bi_sector = (r10_bio->devs[i].addr+
1385                                   choose_data_offset(r10_bio,
1386                                                      conf->mirrors[d].rdev));
1387                mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1388                mbio->bi_end_io = raid10_end_write_request;
1389                mbio->bi_rw = WRITE | do_sync | do_fua;
1390                mbio->bi_private = r10_bio;
1391
1392                atomic_inc(&r10_bio->remaining);
1393                spin_lock_irqsave(&conf->device_lock, flags);
1394                bio_list_add(&conf->pending_bio_list, mbio);
1395                conf->pending_count++;
1396                spin_unlock_irqrestore(&conf->device_lock, flags);
1397                if (!mddev_check_plugged(mddev))
1398                        md_wakeup_thread(mddev->thread);
1399
1400                if (!r10_bio->devs[i].repl_bio)
1401                        continue;
1402
1403                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404                md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405                            max_sectors);
1406                r10_bio->devs[i].repl_bio = mbio;
1407
1408                /* We are actively writing to the original device
1409                 * so it cannot disappear, so the replacement cannot
1410                 * become NULL here
1411                 */
1412                mbio->bi_sector = (r10_bio->devs[i].addr +
1413                                   choose_data_offset(
1414                                           r10_bio,
1415                                           conf->mirrors[d].replacement));
1416                mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417                mbio->bi_end_io = raid10_end_write_request;
1418                mbio->bi_rw = WRITE | do_sync | do_fua;
1419                mbio->bi_private = r10_bio;
1420
1421                atomic_inc(&r10_bio->remaining);
1422                spin_lock_irqsave(&conf->device_lock, flags);
1423                bio_list_add(&conf->pending_bio_list, mbio);
1424                conf->pending_count++;
1425                spin_unlock_irqrestore(&conf->device_lock, flags);
1426                if (!mddev_check_plugged(mddev))
1427                        md_wakeup_thread(mddev->thread);
1428        }
1429
1430        /* Don't remove the bias on 'remaining' (one_write_done) until
1431         * after checking if we need to go around again.
1432         */
1433
1434        if (sectors_handled < (bio->bi_size >> 9)) {
1435                one_write_done(r10_bio);
1436                /* We need another r10_bio.  It has already been counted
1437                 * in bio->bi_phys_segments.
1438                 */
1439                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1440
1441                r10_bio->master_bio = bio;
1442                r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1443
1444                r10_bio->mddev = mddev;
1445                r10_bio->sector = bio->bi_sector + sectors_handled;
1446                r10_bio->state = 0;
1447                goto retry_write;
1448        }
1449        one_write_done(r10_bio);
1450
1451        /* In case raid10d snuck in to freeze_array */
1452        wake_up(&conf->wait_barrier);
1453}
1454
1455static void status(struct seq_file *seq, struct mddev *mddev)
1456{
1457        struct r10conf *conf = mddev->private;
1458        int i;
1459
1460        if (conf->geo.near_copies < conf->geo.raid_disks)
1461                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1462        if (conf->geo.near_copies > 1)
1463                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1464        if (conf->geo.far_copies > 1) {
1465                if (conf->geo.far_offset)
1466                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1467                else
1468                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1469        }
1470        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1471                                        conf->geo.raid_disks - mddev->degraded);
1472        for (i = 0; i < conf->geo.raid_disks; i++)
1473                seq_printf(seq, "%s",
1474                              conf->mirrors[i].rdev &&
1475                              test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1476        seq_printf(seq, "]");
1477}
1478
1479/* check if there are enough drives for
1480 * every block to appear on atleast one.
1481 * Don't consider the device numbered 'ignore'
1482 * as we might be about to remove it.
1483 */
1484static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1485{
1486        int first = 0;
1487
1488        do {
1489                int n = conf->copies;
1490                int cnt = 0;
1491                while (n--) {
1492                        if (conf->mirrors[first].rdev &&
1493                            first != ignore)
1494                                cnt++;
1495                        first = (first+1) % geo->raid_disks;
1496                }
1497                if (cnt == 0)
1498                        return 0;
1499        } while (first != 0);
1500        return 1;
1501}
1502
1503static int enough(struct r10conf *conf, int ignore)
1504{
1505        return _enough(conf, &conf->geo, ignore) &&
1506                _enough(conf, &conf->prev, ignore);
1507}
1508
1509static void error(struct mddev *mddev, struct md_rdev *rdev)
1510{
1511        char b[BDEVNAME_SIZE];
1512        struct r10conf *conf = mddev->private;
1513
1514        /*
1515         * If it is not operational, then we have already marked it as dead
1516         * else if it is the last working disks, ignore the error, let the
1517         * next level up know.
1518         * else mark the drive as failed
1519         */
1520        if (test_bit(In_sync, &rdev->flags)
1521            && !enough(conf, rdev->raid_disk))
1522                /*
1523                 * Don't fail the drive, just return an IO error.
1524                 */
1525                return;
1526        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1527                unsigned long flags;
1528                spin_lock_irqsave(&conf->device_lock, flags);
1529                mddev->degraded++;
1530                spin_unlock_irqrestore(&conf->device_lock, flags);
1531                /*
1532                 * if recovery is running, make sure it aborts.
1533                 */
1534                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535        }
1536        set_bit(Blocked, &rdev->flags);
1537        set_bit(Faulty, &rdev->flags);
1538        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1539        printk(KERN_ALERT
1540               "md/raid10:%s: Disk failure on %s, disabling device.\n"
1541               "md/raid10:%s: Operation continuing on %d devices.\n",
1542               mdname(mddev), bdevname(rdev->bdev, b),
1543               mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1544}
1545
1546static void print_conf(struct r10conf *conf)
1547{
1548        int i;
1549        struct mirror_info *tmp;
1550
1551        printk(KERN_DEBUG "RAID10 conf printout:\n");
1552        if (!conf) {
1553                printk(KERN_DEBUG "(!conf)\n");
1554                return;
1555        }
1556        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1557                conf->geo.raid_disks);
1558
1559        for (i = 0; i < conf->geo.raid_disks; i++) {
1560                char b[BDEVNAME_SIZE];
1561                tmp = conf->mirrors + i;
1562                if (tmp->rdev)
1563                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1564                                i, !test_bit(In_sync, &tmp->rdev->flags),
1565                                !test_bit(Faulty, &tmp->rdev->flags),
1566                                bdevname(tmp->rdev->bdev,b));
1567        }
1568}
1569
1570static void close_sync(struct r10conf *conf)
1571{
1572        wait_barrier(conf);
1573        allow_barrier(conf);
1574
1575        mempool_destroy(conf->r10buf_pool);
1576        conf->r10buf_pool = NULL;
1577}
1578
1579static int raid10_spare_active(struct mddev *mddev)
1580{
1581        int i;
1582        struct r10conf *conf = mddev->private;
1583        struct mirror_info *tmp;
1584        int count = 0;
1585        unsigned long flags;
1586
1587        /*
1588         * Find all non-in_sync disks within the RAID10 configuration
1589         * and mark them in_sync
1590         */
1591        for (i = 0; i < conf->geo.raid_disks; i++) {
1592                tmp = conf->mirrors + i;
1593                if (tmp->replacement
1594                    && tmp->replacement->recovery_offset == MaxSector
1595                    && !test_bit(Faulty, &tmp->replacement->flags)
1596                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1597                        /* Replacement has just become active */
1598                        if (!tmp->rdev
1599                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1600                                count++;
1601                        if (tmp->rdev) {
1602                                /* Replaced device not technically faulty,
1603                                 * but we need to be sure it gets removed
1604                                 * and never re-added.
1605                                 */
1606                                set_bit(Faulty, &tmp->rdev->flags);
1607                                sysfs_notify_dirent_safe(
1608                                        tmp->rdev->sysfs_state);
1609                        }
1610                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1611                } else if (tmp->rdev
1612                           && !test_bit(Faulty, &tmp->rdev->flags)
1613                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1614                        count++;
1615                        sysfs_notify_dirent(tmp->rdev->sysfs_state);
1616                }
1617        }
1618        spin_lock_irqsave(&conf->device_lock, flags);
1619        mddev->degraded -= count;
1620        spin_unlock_irqrestore(&conf->device_lock, flags);
1621
1622        print_conf(conf);
1623        return count;
1624}
1625
1626
1627static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1628{
1629        struct r10conf *conf = mddev->private;
1630        int err = -EEXIST;
1631        int mirror;
1632        int first = 0;
1633        int last = conf->geo.raid_disks - 1;
1634        struct request_queue *q = bdev_get_queue(rdev->bdev);
1635
1636        if (mddev->recovery_cp < MaxSector)
1637                /* only hot-add to in-sync arrays, as recovery is
1638                 * very different from resync
1639                 */
1640                return -EBUSY;
1641        if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1642                return -EINVAL;
1643
1644        if (rdev->raid_disk >= 0)
1645                first = last = rdev->raid_disk;
1646
1647        if (q->merge_bvec_fn) {
1648                set_bit(Unmerged, &rdev->flags);
1649                mddev->merge_check_needed = 1;
1650        }
1651
1652        if (rdev->saved_raid_disk >= first &&
1653            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1654                mirror = rdev->saved_raid_disk;
1655        else
1656                mirror = first;
1657        for ( ; mirror <= last ; mirror++) {
1658                struct mirror_info *p = &conf->mirrors[mirror];
1659                if (p->recovery_disabled == mddev->recovery_disabled)
1660                        continue;
1661                if (p->rdev) {
1662                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1663                            p->replacement != NULL)
1664                                continue;
1665                        clear_bit(In_sync, &rdev->flags);
1666                        set_bit(Replacement, &rdev->flags);
1667                        rdev->raid_disk = mirror;
1668                        err = 0;
1669                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1670                                          rdev->data_offset << 9);
1671                        conf->fullsync = 1;
1672                        rcu_assign_pointer(p->replacement, rdev);
1673                        break;
1674                }
1675
1676                disk_stack_limits(mddev->gendisk, rdev->bdev,
1677                                  rdev->data_offset << 9);
1678
1679                p->head_position = 0;
1680                p->recovery_disabled = mddev->recovery_disabled - 1;
1681                rdev->raid_disk = mirror;
1682                err = 0;
1683                if (rdev->saved_raid_disk != mirror)
1684                        conf->fullsync = 1;
1685                rcu_assign_pointer(p->rdev, rdev);
1686                break;
1687        }
1688        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1689                /* Some requests might not have seen this new
1690                 * merge_bvec_fn.  We must wait for them to complete
1691                 * before merging the device fully.
1692                 * First we make sure any code which has tested
1693                 * our function has submitted the request, then
1694                 * we wait for all outstanding requests to complete.
1695                 */
1696                synchronize_sched();
1697                raise_barrier(conf, 0);
1698                lower_barrier(conf);
1699                clear_bit(Unmerged, &rdev->flags);
1700        }
1701        md_integrity_add_rdev(rdev, mddev);
1702        print_conf(conf);
1703        return err;
1704}
1705
1706static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1707{
1708        struct r10conf *conf = mddev->private;
1709        int err = 0;
1710        int number = rdev->raid_disk;
1711        struct md_rdev **rdevp;
1712        struct mirror_info *p = conf->mirrors + number;
1713
1714        print_conf(conf);
1715        if (rdev == p->rdev)
1716                rdevp = &p->rdev;
1717        else if (rdev == p->replacement)
1718                rdevp = &p->replacement;
1719        else
1720                return 0;
1721
1722        if (test_bit(In_sync, &rdev->flags) ||
1723            atomic_read(&rdev->nr_pending)) {
1724                err = -EBUSY;
1725                goto abort;
1726        }
1727        /* Only remove faulty devices if recovery
1728         * is not possible.
1729         */
1730        if (!test_bit(Faulty, &rdev->flags) &&
1731            mddev->recovery_disabled != p->recovery_disabled &&
1732            (!p->replacement || p->replacement == rdev) &&
1733            number < conf->geo.raid_disks &&
1734            enough(conf, -1)) {
1735                err = -EBUSY;
1736                goto abort;
1737        }
1738        *rdevp = NULL;
1739        synchronize_rcu();
1740        if (atomic_read(&rdev->nr_pending)) {
1741                /* lost the race, try later */
1742                err = -EBUSY;
1743                *rdevp = rdev;
1744                goto abort;
1745        } else if (p->replacement) {
1746                /* We must have just cleared 'rdev' */
1747                p->rdev = p->replacement;
1748                clear_bit(Replacement, &p->replacement->flags);
1749                smp_mb(); /* Make sure other CPUs may see both as identical
1750                           * but will never see neither -- if they are careful.
1751                           */
1752                p->replacement = NULL;
1753                clear_bit(WantReplacement, &rdev->flags);
1754        } else
1755                /* We might have just remove the Replacement as faulty
1756                 * Clear the flag just in case
1757                 */
1758                clear_bit(WantReplacement, &rdev->flags);
1759
1760        err = md_integrity_register(mddev);
1761
1762abort:
1763
1764        print_conf(conf);
1765        return err;
1766}
1767
1768
1769static void end_sync_read(struct bio *bio, int error)
1770{
1771        struct r10bio *r10_bio = bio->bi_private;
1772        struct r10conf *conf = r10_bio->mddev->private;
1773        int d;
1774
1775        if (bio == r10_bio->master_bio) {
1776                /* this is a reshape read */
1777                d = r10_bio->read_slot; /* really the read dev */
1778        } else
1779                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1780
1781        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1782                set_bit(R10BIO_Uptodate, &r10_bio->state);
1783        else
1784                /* The write handler will notice the lack of
1785                 * R10BIO_Uptodate and record any errors etc
1786                 */
1787                atomic_add(r10_bio->sectors,
1788                           &conf->mirrors[d].rdev->corrected_errors);
1789
1790        /* for reconstruct, we always reschedule after a read.
1791         * for resync, only after all reads
1792         */
1793        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1794        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1795            atomic_dec_and_test(&r10_bio->remaining)) {
1796                /* we have read all the blocks,
1797                 * do the comparison in process context in raid10d
1798                 */
1799                reschedule_retry(r10_bio);
1800        }
1801}
1802
1803static void end_sync_request(struct r10bio *r10_bio)
1804{
1805        struct mddev *mddev = r10_bio->mddev;
1806
1807        while (atomic_dec_and_test(&r10_bio->remaining)) {
1808                if (r10_bio->master_bio == NULL) {
1809                        /* the primary of several recovery bios */
1810                        sector_t s = r10_bio->sectors;
1811                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1812                            test_bit(R10BIO_WriteError, &r10_bio->state))
1813                                reschedule_retry(r10_bio);
1814                        else
1815                                put_buf(r10_bio);
1816                        md_done_sync(mddev, s, 1);
1817                        break;
1818                } else {
1819                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1820                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1821                            test_bit(R10BIO_WriteError, &r10_bio->state))
1822                                reschedule_retry(r10_bio);
1823                        else
1824                                put_buf(r10_bio);
1825                        r10_bio = r10_bio2;
1826                }
1827        }
1828}
1829
1830static void end_sync_write(struct bio *bio, int error)
1831{
1832        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1833        struct r10bio *r10_bio = bio->bi_private;
1834        struct mddev *mddev = r10_bio->mddev;
1835        struct r10conf *conf = mddev->private;
1836        int d;
1837        sector_t first_bad;
1838        int bad_sectors;
1839        int slot;
1840        int repl;
1841        struct md_rdev *rdev = NULL;
1842
1843        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1844        if (repl)
1845                rdev = conf->mirrors[d].replacement;
1846        else
1847                rdev = conf->mirrors[d].rdev;
1848
1849        if (!uptodate) {
1850                if (repl)
1851                        md_error(mddev, rdev);
1852                else {
1853                        set_bit(WriteErrorSeen, &rdev->flags);
1854                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1855                                set_bit(MD_RECOVERY_NEEDED,
1856                                        &rdev->mddev->recovery);
1857                        set_bit(R10BIO_WriteError, &r10_bio->state);
1858                }
1859        } else if (is_badblock(rdev,
1860                             r10_bio->devs[slot].addr,
1861                             r10_bio->sectors,
1862                             &first_bad, &bad_sectors))
1863                set_bit(R10BIO_MadeGood, &r10_bio->state);
1864
1865        rdev_dec_pending(rdev, mddev);
1866
1867        end_sync_request(r10_bio);
1868}
1869
1870/*
1871 * Note: sync and recover and handled very differently for raid10
1872 * This code is for resync.
1873 * For resync, we read through virtual addresses and read all blocks.
1874 * If there is any error, we schedule a write.  The lowest numbered
1875 * drive is authoritative.
1876 * However requests come for physical address, so we need to map.
1877 * For every physical address there are raid_disks/copies virtual addresses,
1878 * which is always are least one, but is not necessarly an integer.
1879 * This means that a physical address can span multiple chunks, so we may
1880 * have to submit multiple io requests for a single sync request.
1881 */
1882/*
1883 * We check if all blocks are in-sync and only write to blocks that
1884 * aren't in sync
1885 */
1886static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1887{
1888        struct r10conf *conf = mddev->private;
1889        int i, first;
1890        struct bio *tbio, *fbio;
1891        int vcnt;
1892
1893        atomic_set(&r10_bio->remaining, 1);
1894
1895        /* find the first device with a block */
1896        for (i=0; i<conf->copies; i++)
1897                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1898                        break;
1899
1900        if (i == conf->copies)
1901                goto done;
1902
1903        first = i;
1904        fbio = r10_bio->devs[i].bio;
1905
1906        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1907        /* now find blocks with errors */
1908        for (i=0 ; i < conf->copies ; i++) {
1909                int  j, d;
1910
1911                tbio = r10_bio->devs[i].bio;
1912
1913                if (tbio->bi_end_io != end_sync_read)
1914                        continue;
1915                if (i == first)
1916                        continue;
1917                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1918                        /* We know that the bi_io_vec layout is the same for
1919                         * both 'first' and 'i', so we just compare them.
1920                         * All vec entries are PAGE_SIZE;
1921                         */
1922                        for (j = 0; j < vcnt; j++)
1923                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1924                                           page_address(tbio->bi_io_vec[j].bv_page),
1925                                           fbio->bi_io_vec[j].bv_len))
1926                                        break;
1927                        if (j == vcnt)
1928                                continue;
1929                        mddev->resync_mismatches += r10_bio->sectors;
1930                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1931                                /* Don't fix anything. */
1932                                continue;
1933                }
1934                /* Ok, we need to write this bio, either to correct an
1935                 * inconsistency or to correct an unreadable block.
1936                 * First we need to fixup bv_offset, bv_len and
1937                 * bi_vecs, as the read request might have corrupted these
1938                 */
1939                tbio->bi_vcnt = vcnt;
1940                tbio->bi_size = r10_bio->sectors << 9;
1941                tbio->bi_idx = 0;
1942                tbio->bi_phys_segments = 0;
1943                tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944                tbio->bi_flags |= 1 << BIO_UPTODATE;
1945                tbio->bi_next = NULL;
1946                tbio->bi_rw = WRITE;
1947                tbio->bi_private = r10_bio;
1948                tbio->bi_sector = r10_bio->devs[i].addr;
1949
1950                for (j=0; j < vcnt ; j++) {
1951                        tbio->bi_io_vec[j].bv_offset = 0;
1952                        tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1953
1954                        memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1955                               page_address(fbio->bi_io_vec[j].bv_page),
1956                               PAGE_SIZE);
1957                }
1958                tbio->bi_end_io = end_sync_write;
1959
1960                d = r10_bio->devs[i].devnum;
1961                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1962                atomic_inc(&r10_bio->remaining);
1963                md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1964
1965                tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1966                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1967                generic_make_request(tbio);
1968        }
1969
1970        /* Now write out to any replacement devices
1971         * that are active
1972         */
1973        for (i = 0; i < conf->copies; i++) {
1974                int j, d;
1975
1976                tbio = r10_bio->devs[i].repl_bio;
1977                if (!tbio || !tbio->bi_end_io)
1978                        continue;
1979                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1980                    && r10_bio->devs[i].bio != fbio)
1981                        for (j = 0; j < vcnt; j++)
1982                                memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1983                                       page_address(fbio->bi_io_vec[j].bv_page),
1984                                       PAGE_SIZE);
1985                d = r10_bio->devs[i].devnum;
1986                atomic_inc(&r10_bio->remaining);
1987                md_sync_acct(conf->mirrors[d].replacement->bdev,
1988                             tbio->bi_size >> 9);
1989                generic_make_request(tbio);
1990        }
1991
1992done:
1993        if (atomic_dec_and_test(&r10_bio->remaining)) {
1994                md_done_sync(mddev, r10_bio->sectors, 1);
1995                put_buf(r10_bio);
1996        }
1997}
1998
1999/*
2000 * Now for the recovery code.
2001 * Recovery happens across physical sectors.
2002 * We recover all non-is_sync drives by finding the virtual address of
2003 * each, and then choose a working drive that also has that virt address.
2004 * There is a separate r10_bio for each non-in_sync drive.
2005 * Only the first two slots are in use. The first for reading,
2006 * The second for writing.
2007 *
2008 */
2009static void fix_recovery_read_error(struct r10bio *r10_bio)
2010{
2011        /* We got a read error during recovery.
2012         * We repeat the read in smaller page-sized sections.
2013         * If a read succeeds, write it to the new device or record
2014         * a bad block if we cannot.
2015         * If a read fails, record a bad block on both old and
2016         * new devices.
2017         */
2018        struct mddev *mddev = r10_bio->mddev;
2019        struct r10conf *conf = mddev->private;
2020        struct bio *bio = r10_bio->devs[0].bio;
2021        sector_t sect = 0;
2022        int sectors = r10_bio->sectors;
2023        int idx = 0;
2024        int dr = r10_bio->devs[0].devnum;
2025        int dw = r10_bio->devs[1].devnum;
2026
2027        while (sectors) {
2028                int s = sectors;
2029                struct md_rdev *rdev;
2030                sector_t addr;
2031                int ok;
2032
2033                if (s > (PAGE_SIZE>>9))
2034                        s = PAGE_SIZE >> 9;
2035
2036                rdev = conf->mirrors[dr].rdev;
2037                addr = r10_bio->devs[0].addr + sect,
2038                ok = sync_page_io(rdev,
2039                                  addr,
2040                                  s << 9,
2041                                  bio->bi_io_vec[idx].bv_page,
2042                                  READ, false);
2043                if (ok) {
2044                        rdev = conf->mirrors[dw].rdev;
2045                        addr = r10_bio->devs[1].addr + sect;
2046                        ok = sync_page_io(rdev,
2047                                          addr,
2048                                          s << 9,
2049                                          bio->bi_io_vec[idx].bv_page,
2050                                          WRITE, false);
2051                        if (!ok) {
2052                                set_bit(WriteErrorSeen, &rdev->flags);
2053                                if (!test_and_set_bit(WantReplacement,
2054                                                      &rdev->flags))
2055                                        set_bit(MD_RECOVERY_NEEDED,
2056                                                &rdev->mddev->recovery);
2057                        }
2058                }
2059                if (!ok) {
2060                        /* We don't worry if we cannot set a bad block -
2061                         * it really is bad so there is no loss in not
2062                         * recording it yet
2063                         */
2064                        rdev_set_badblocks(rdev, addr, s, 0);
2065
2066                        if (rdev != conf->mirrors[dw].rdev) {
2067                                /* need bad block on destination too */
2068                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2069                                addr = r10_bio->devs[1].addr + sect;
2070                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2071                                if (!ok) {
2072                                        /* just abort the recovery */
2073                                        printk(KERN_NOTICE
2074                                               "md/raid10:%s: recovery aborted"
2075                                               " due to read error\n",
2076                                               mdname(mddev));
2077
2078                                        conf->mirrors[dw].recovery_disabled
2079                                                = mddev->recovery_disabled;
2080                                        set_bit(MD_RECOVERY_INTR,
2081                                                &mddev->recovery);
2082                                        break;
2083                                }
2084                        }
2085                }
2086
2087                sectors -= s;
2088                sect += s;
2089                idx++;
2090        }
2091}
2092
2093static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2094{
2095        struct r10conf *conf = mddev->private;
2096        int d;
2097        struct bio *wbio, *wbio2;
2098
2099        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2100                fix_recovery_read_error(r10_bio);
2101                end_sync_request(r10_bio);
2102                return;
2103        }
2104
2105        /*
2106         * share the pages with the first bio
2107         * and submit the write request
2108         */
2109        d = r10_bio->devs[1].devnum;
2110        wbio = r10_bio->devs[1].bio;
2111        wbio2 = r10_bio->devs[1].repl_bio;
2112        if (wbio->bi_end_io) {
2113                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2114                md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2115                generic_make_request(wbio);
2116        }
2117        if (wbio2 && wbio2->bi_end_io) {
2118                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2119                md_sync_acct(conf->mirrors[d].replacement->bdev,
2120                             wbio2->bi_size >> 9);
2121                generic_make_request(wbio2);
2122        }
2123}
2124
2125
2126/*
2127 * Used by fix_read_error() to decay the per rdev read_errors.
2128 * We halve the read error count for every hour that has elapsed
2129 * since the last recorded read error.
2130 *
2131 */
2132static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2133{
2134        struct timespec cur_time_mon;
2135        unsigned long hours_since_last;
2136        unsigned int read_errors = atomic_read(&rdev->read_errors);
2137
2138        ktime_get_ts(&cur_time_mon);
2139
2140        if (rdev->last_read_error.tv_sec == 0 &&
2141            rdev->last_read_error.tv_nsec == 0) {
2142                /* first time we've seen a read error */
2143                rdev->last_read_error = cur_time_mon;
2144                return;
2145        }
2146
2147        hours_since_last = (cur_time_mon.tv_sec -
2148                            rdev->last_read_error.tv_sec) / 3600;
2149
2150        rdev->last_read_error = cur_time_mon;
2151
2152        /*
2153         * if hours_since_last is > the number of bits in read_errors
2154         * just set read errors to 0. We do this to avoid
2155         * overflowing the shift of read_errors by hours_since_last.
2156         */
2157        if (hours_since_last >= 8 * sizeof(read_errors))
2158                atomic_set(&rdev->read_errors, 0);
2159        else
2160                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2161}
2162
2163static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2164                            int sectors, struct page *page, int rw)
2165{
2166        sector_t first_bad;
2167        int bad_sectors;
2168
2169        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2170            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2171                return -1;
2172        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2173                /* success */
2174                return 1;
2175        if (rw == WRITE) {
2176                set_bit(WriteErrorSeen, &rdev->flags);
2177                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2178                        set_bit(MD_RECOVERY_NEEDED,
2179                                &rdev->mddev->recovery);
2180        }
2181        /* need to record an error - either for the block or the device */
2182        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2183                md_error(rdev->mddev, rdev);
2184        return 0;
2185}
2186
2187/*
2188 * This is a kernel thread which:
2189 *
2190 *      1.      Retries failed read operations on working mirrors.
2191 *      2.      Updates the raid superblock when problems encounter.
2192 *      3.      Performs writes following reads for array synchronising.
2193 */
2194
2195static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2196{
2197        int sect = 0; /* Offset from r10_bio->sector */
2198        int sectors = r10_bio->sectors;
2199        struct md_rdev*rdev;
2200        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2201        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2202
2203        /* still own a reference to this rdev, so it cannot
2204         * have been cleared recently.
2205         */
2206        rdev = conf->mirrors[d].rdev;
2207
2208        if (test_bit(Faulty, &rdev->flags))
2209                /* drive has already been failed, just ignore any
2210                   more fix_read_error() attempts */
2211                return;
2212
2213        check_decay_read_errors(mddev, rdev);
2214        atomic_inc(&rdev->read_errors);
2215        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2216                char b[BDEVNAME_SIZE];
2217                bdevname(rdev->bdev, b);
2218
2219                printk(KERN_NOTICE
2220                       "md/raid10:%s: %s: Raid device exceeded "
2221                       "read_error threshold [cur %d:max %d]\n",
2222                       mdname(mddev), b,
2223                       atomic_read(&rdev->read_errors), max_read_errors);
2224                printk(KERN_NOTICE
2225                       "md/raid10:%s: %s: Failing raid device\n",
2226                       mdname(mddev), b);
2227                md_error(mddev, conf->mirrors[d].rdev);
2228                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2229                return;
2230        }
2231
2232        while(sectors) {
2233                int s = sectors;
2234                int sl = r10_bio->read_slot;
2235                int success = 0;
2236                int start;
2237
2238                if (s > (PAGE_SIZE>>9))
2239                        s = PAGE_SIZE >> 9;
2240
2241                rcu_read_lock();
2242                do {
2243                        sector_t first_bad;
2244                        int bad_sectors;
2245
2246                        d = r10_bio->devs[sl].devnum;
2247                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2248                        if (rdev &&
2249                            !test_bit(Unmerged, &rdev->flags) &&
2250                            test_bit(In_sync, &rdev->flags) &&
2251                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2252                                        &first_bad, &bad_sectors) == 0) {
2253                                atomic_inc(&rdev->nr_pending);
2254                                rcu_read_unlock();
2255                                success = sync_page_io(rdev,
2256                                                       r10_bio->devs[sl].addr +
2257                                                       sect,
2258                                                       s<<9,
2259                                                       conf->tmppage, READ, false);
2260                                rdev_dec_pending(rdev, mddev);
2261                                rcu_read_lock();
2262                                if (success)
2263                                        break;
2264                        }
2265                        sl++;
2266                        if (sl == conf->copies)
2267                                sl = 0;
2268                } while (!success && sl != r10_bio->read_slot);
2269                rcu_read_unlock();
2270
2271                if (!success) {
2272                        /* Cannot read from anywhere, just mark the block
2273                         * as bad on the first device to discourage future
2274                         * reads.
2275                         */
2276                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2277                        rdev = conf->mirrors[dn].rdev;
2278
2279                        if (!rdev_set_badblocks(
2280                                    rdev,
2281                                    r10_bio->devs[r10_bio->read_slot].addr
2282                                    + sect,
2283                                    s, 0)) {
2284                                md_error(mddev, rdev);
2285                                r10_bio->devs[r10_bio->read_slot].bio
2286                                        = IO_BLOCKED;
2287                        }
2288                        break;
2289                }
2290
2291                start = sl;
2292                /* write it back and re-read */
2293                rcu_read_lock();
2294                while (sl != r10_bio->read_slot) {
2295                        char b[BDEVNAME_SIZE];
2296
2297                        if (sl==0)
2298                                sl = conf->copies;
2299                        sl--;
2300                        d = r10_bio->devs[sl].devnum;
2301                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2302                        if (!rdev ||
2303                            test_bit(Unmerged, &rdev->flags) ||
2304                            !test_bit(In_sync, &rdev->flags))
2305                                continue;
2306
2307                        atomic_inc(&rdev->nr_pending);
2308                        rcu_read_unlock();
2309                        if (r10_sync_page_io(rdev,
2310                                             r10_bio->devs[sl].addr +
2311                                             sect,
2312                                             s, conf->tmppage, WRITE)
2313                            == 0) {
2314                                /* Well, this device is dead */
2315                                printk(KERN_NOTICE
2316                                       "md/raid10:%s: read correction "
2317                                       "write failed"
2318                                       " (%d sectors at %llu on %s)\n",
2319                                       mdname(mddev), s,
2320                                       (unsigned long long)(
2321                                               sect +
2322                                               choose_data_offset(r10_bio,
2323                                                                  rdev)),
2324                                       bdevname(rdev->bdev, b));
2325                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2326                                       "drive\n",
2327                                       mdname(mddev),
2328                                       bdevname(rdev->bdev, b));
2329                        }
2330                        rdev_dec_pending(rdev, mddev);
2331                        rcu_read_lock();
2332                }
2333                sl = start;
2334                while (sl != r10_bio->read_slot) {
2335                        char b[BDEVNAME_SIZE];
2336
2337                        if (sl==0)
2338                                sl = conf->copies;
2339                        sl--;
2340                        d = r10_bio->devs[sl].devnum;
2341                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2342                        if (!rdev ||
2343                            !test_bit(In_sync, &rdev->flags))
2344                                continue;
2345
2346                        atomic_inc(&rdev->nr_pending);
2347                        rcu_read_unlock();
2348                        switch (r10_sync_page_io(rdev,
2349                                             r10_bio->devs[sl].addr +
2350                                             sect,
2351                                             s, conf->tmppage,
2352                                                 READ)) {
2353                        case 0:
2354                                /* Well, this device is dead */
2355                                printk(KERN_NOTICE
2356                                       "md/raid10:%s: unable to read back "
2357                                       "corrected sectors"
2358                                       " (%d sectors at %llu on %s)\n",
2359                                       mdname(mddev), s,
2360                                       (unsigned long long)(
2361                                               sect +
2362                                               choose_data_offset(r10_bio, rdev)),
2363                                       bdevname(rdev->bdev, b));
2364                                printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365                                       "drive\n",
2366                                       mdname(mddev),
2367                                       bdevname(rdev->bdev, b));
2368                                break;
2369                        case 1:
2370                                printk(KERN_INFO
2371                                       "md/raid10:%s: read error corrected"
2372                                       " (%d sectors at %llu on %s)\n",
2373                                       mdname(mddev), s,
2374                                       (unsigned long long)(
2375                                               sect +
2376                                               choose_data_offset(r10_bio, rdev)),
2377                                       bdevname(rdev->bdev, b));
2378                                atomic_add(s, &rdev->corrected_errors);
2379                        }
2380
2381                        rdev_dec_pending(rdev, mddev);
2382                        rcu_read_lock();
2383                }
2384                rcu_read_unlock();
2385
2386                sectors -= s;
2387                sect += s;
2388        }
2389}
2390
2391static void bi_complete(struct bio *bio, int error)
2392{
2393        complete((struct completion *)bio->bi_private);
2394}
2395
2396static int submit_bio_wait(int rw, struct bio *bio)
2397{
2398        struct completion event;
2399        rw |= REQ_SYNC;
2400
2401        init_completion(&event);
2402        bio->bi_private = &event;
2403        bio->bi_end_io = bi_complete;
2404        submit_bio(rw, bio);
2405        wait_for_completion(&event);
2406
2407        return test_bit(BIO_UPTODATE, &bio->bi_flags);
2408}
2409
2410static int narrow_write_error(struct r10bio *r10_bio, int i)
2411{
2412        struct bio *bio = r10_bio->master_bio;
2413        struct mddev *mddev = r10_bio->mddev;
2414        struct r10conf *conf = mddev->private;
2415        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2416        /* bio has the data to be written to slot 'i' where
2417         * we just recently had a write error.
2418         * We repeatedly clone the bio and trim down to one block,
2419         * then try the write.  Where the write fails we record
2420         * a bad block.
2421         * It is conceivable that the bio doesn't exactly align with
2422         * blocks.  We must handle this.
2423         *
2424         * We currently own a reference to the rdev.
2425         */
2426
2427        int block_sectors;
2428        sector_t sector;
2429        int sectors;
2430        int sect_to_write = r10_bio->sectors;
2431        int ok = 1;
2432
2433        if (rdev->badblocks.shift < 0)
2434                return 0;
2435
2436        block_sectors = 1 << rdev->badblocks.shift;
2437        sector = r10_bio->sector;
2438        sectors = ((r10_bio->sector + block_sectors)
2439                   & ~(sector_t)(block_sectors - 1))
2440                - sector;
2441
2442        while (sect_to_write) {
2443                struct bio *wbio;
2444                if (sectors > sect_to_write)
2445                        sectors = sect_to_write;
2446                /* Write at 'sector' for 'sectors' */
2447                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2448                md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2449                wbio->bi_sector = (r10_bio->devs[i].addr+
2450                                   choose_data_offset(r10_bio, rdev) +
2451                                   (sector - r10_bio->sector));
2452                wbio->bi_bdev = rdev->bdev;
2453                if (submit_bio_wait(WRITE, wbio) == 0)
2454                        /* Failure! */
2455                        ok = rdev_set_badblocks(rdev, sector,
2456                                                sectors, 0)
2457                                && ok;
2458
2459                bio_put(wbio);
2460                sect_to_write -= sectors;
2461                sector += sectors;
2462                sectors = block_sectors;
2463        }
2464        return ok;
2465}
2466
2467static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2468{
2469        int slot = r10_bio->read_slot;
2470        struct bio *bio;
2471        struct r10conf *conf = mddev->private;
2472        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2473        char b[BDEVNAME_SIZE];
2474        unsigned long do_sync;
2475        int max_sectors;
2476
2477        /* we got a read error. Maybe the drive is bad.  Maybe just
2478         * the block and we can fix it.
2479         * We freeze all other IO, and try reading the block from
2480         * other devices.  When we find one, we re-write
2481         * and check it that fixes the read error.
2482         * This is all done synchronously while the array is
2483         * frozen.
2484         */
2485        bio = r10_bio->devs[slot].bio;
2486        bdevname(bio->bi_bdev, b);
2487        bio_put(bio);
2488        r10_bio->devs[slot].bio = NULL;
2489
2490        if (mddev->ro == 0) {
2491                freeze_array(conf);
2492                fix_read_error(conf, mddev, r10_bio);
2493                unfreeze_array(conf);
2494        } else
2495                r10_bio->devs[slot].bio = IO_BLOCKED;
2496
2497        rdev_dec_pending(rdev, mddev);
2498
2499read_more:
2500        rdev = read_balance(conf, r10_bio, &max_sectors);
2501        if (rdev == NULL) {
2502                printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2503                       " read error for block %llu\n",
2504                       mdname(mddev), b,
2505                       (unsigned long long)r10_bio->sector);
2506                raid_end_bio_io(r10_bio);
2507                return;
2508        }
2509
2510        do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2511        slot = r10_bio->read_slot;
2512        printk_ratelimited(
2513                KERN_ERR
2514                "md/raid10:%s: %s: redirecting "
2515                "sector %llu to another mirror\n",
2516                mdname(mddev),
2517                bdevname(rdev->bdev, b),
2518                (unsigned long long)r10_bio->sector);
2519        bio = bio_clone_mddev(r10_bio->master_bio,
2520                              GFP_NOIO, mddev);
2521        md_trim_bio(bio,
2522                    r10_bio->sector - bio->bi_sector,
2523                    max_sectors);
2524        r10_bio->devs[slot].bio = bio;
2525        r10_bio->devs[slot].rdev = rdev;
2526        bio->bi_sector = r10_bio->devs[slot].addr
2527                + choose_data_offset(r10_bio, rdev);
2528        bio->bi_bdev = rdev->bdev;
2529        bio->bi_rw = READ | do_sync;
2530        bio->bi_private = r10_bio;
2531        bio->bi_end_io = raid10_end_read_request;
2532        if (max_sectors < r10_bio->sectors) {
2533                /* Drat - have to split this up more */
2534                struct bio *mbio = r10_bio->master_bio;
2535                int sectors_handled =
2536                        r10_bio->sector + max_sectors
2537                        - mbio->bi_sector;
2538                r10_bio->sectors = max_sectors;
2539                spin_lock_irq(&conf->device_lock);
2540                if (mbio->bi_phys_segments == 0)
2541                        mbio->bi_phys_segments = 2;
2542                else
2543                        mbio->bi_phys_segments++;
2544                spin_unlock_irq(&conf->device_lock);
2545                generic_make_request(bio);
2546
2547                r10_bio = mempool_alloc(conf->r10bio_pool,
2548                                        GFP_NOIO);
2549                r10_bio->master_bio = mbio;
2550                r10_bio->sectors = (mbio->bi_size >> 9)
2551                        - sectors_handled;
2552                r10_bio->state = 0;
2553                set_bit(R10BIO_ReadError,
2554                        &r10_bio->state);
2555                r10_bio->mddev = mddev;
2556                r10_bio->sector = mbio->bi_sector
2557                        + sectors_handled;
2558
2559                goto read_more;
2560        } else
2561                generic_make_request(bio);
2562}
2563
2564static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2565{
2566        /* Some sort of write request has finished and it
2567         * succeeded in writing where we thought there was a
2568         * bad block.  So forget the bad block.
2569         * Or possibly if failed and we need to record
2570         * a bad block.
2571         */
2572        int m;
2573        struct md_rdev *rdev;
2574
2575        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2576            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2577                for (m = 0; m < conf->copies; m++) {
2578                        int dev = r10_bio->devs[m].devnum;
2579                        rdev = conf->mirrors[dev].rdev;
2580                        if (r10_bio->devs[m].bio == NULL)
2581                                continue;
2582                        if (test_bit(BIO_UPTODATE,
2583                                     &r10_bio->devs[m].bio->bi_flags)) {
2584                                rdev_clear_badblocks(
2585                                        rdev,
2586                                        r10_bio->devs[m].addr,
2587                                        r10_bio->sectors, 0);
2588                        } else {
2589                                if (!rdev_set_badblocks(
2590                                            rdev,
2591                                            r10_bio->devs[m].addr,
2592                                            r10_bio->sectors, 0))
2593                                        md_error(conf->mddev, rdev);
2594                        }
2595                        rdev = conf->mirrors[dev].replacement;
2596                        if (r10_bio->devs[m].repl_bio == NULL)
2597                                continue;
2598                        if (test_bit(BIO_UPTODATE,
2599                                     &r10_bio->devs[m].repl_bio->bi_flags)) {
2600                                rdev_clear_badblocks(
2601                                        rdev,
2602                                        r10_bio->devs[m].addr,
2603                                        r10_bio->sectors, 0);
2604                        } else {
2605                                if (!rdev_set_badblocks(
2606                                            rdev,
2607                                            r10_bio->devs[m].addr,
2608                                            r10_bio->sectors, 0))
2609                                        md_error(conf->mddev, rdev);
2610                        }
2611                }
2612                put_buf(r10_bio);
2613        } else {
2614                for (m = 0; m < conf->copies; m++) {
2615                        int dev = r10_bio->devs[m].devnum;
2616                        struct bio *bio = r10_bio->devs[m].bio;
2617                        rdev = conf->mirrors[dev].rdev;
2618                        if (bio == IO_MADE_GOOD) {
2619                                rdev_clear_badblocks(
2620                                        rdev,
2621                                        r10_bio->devs[m].addr,
2622                                        r10_bio->sectors, 0);
2623                                rdev_dec_pending(rdev, conf->mddev);
2624                        } else if (bio != NULL &&
2625                                   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2626                                if (!narrow_write_error(r10_bio, m)) {
2627                                        md_error(conf->mddev, rdev);
2628                                        set_bit(R10BIO_Degraded,
2629                                                &r10_bio->state);
2630                                }
2631                                rdev_dec_pending(rdev, conf->mddev);
2632                        }
2633                        bio = r10_bio->devs[m].repl_bio;
2634                        rdev = conf->mirrors[dev].replacement;
2635                        if (rdev && bio == IO_MADE_GOOD) {
2636                                rdev_clear_badblocks(
2637                                        rdev,
2638                                        r10_bio->devs[m].addr,
2639                                        r10_bio->sectors, 0);
2640                                rdev_dec_pending(rdev, conf->mddev);
2641                        }
2642                }
2643                if (test_bit(R10BIO_WriteError,
2644                             &r10_bio->state))
2645                        close_write(r10_bio);
2646                raid_end_bio_io(r10_bio);
2647        }
2648}
2649
2650static void raid10d(struct mddev *mddev)
2651{
2652        struct r10bio *r10_bio;
2653        unsigned long flags;
2654        struct r10conf *conf = mddev->private;
2655        struct list_head *head = &conf->retry_list;
2656        struct blk_plug plug;
2657
2658        md_check_recovery(mddev);
2659
2660        blk_start_plug(&plug);
2661        for (;;) {
2662
2663                if (atomic_read(&mddev->plug_cnt) == 0)
2664                        flush_pending_writes(conf);
2665
2666                spin_lock_irqsave(&conf->device_lock, flags);
2667                if (list_empty(head)) {
2668                        spin_unlock_irqrestore(&conf->device_lock, flags);
2669                        break;
2670                }
2671                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2672                list_del(head->prev);
2673                conf->nr_queued--;
2674                spin_unlock_irqrestore(&conf->device_lock, flags);
2675
2676                mddev = r10_bio->mddev;
2677                conf = mddev->private;
2678                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2679                    test_bit(R10BIO_WriteError, &r10_bio->state))
2680                        handle_write_completed(conf, r10_bio);
2681                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2682                        reshape_request_write(mddev, r10_bio);
2683                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2684                        sync_request_write(mddev, r10_bio);
2685                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2686                        recovery_request_write(mddev, r10_bio);
2687                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2688                        handle_read_error(mddev, r10_bio);
2689                else {
2690                        /* just a partial read to be scheduled from a
2691                         * separate context
2692                         */
2693                        int slot = r10_bio->read_slot;
2694                        generic_make_request(r10_bio->devs[slot].bio);
2695                }
2696
2697                cond_resched();
2698                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2699                        md_check_recovery(mddev);
2700        }
2701        blk_finish_plug(&plug);
2702}
2703
2704
2705static int init_resync(struct r10conf *conf)
2706{
2707        int buffs;
2708        int i;
2709
2710        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2711        BUG_ON(conf->r10buf_pool);
2712        conf->have_replacement = 0;
2713        for (i = 0; i < conf->geo.raid_disks; i++)
2714                if (conf->mirrors[i].replacement)
2715                        conf->have_replacement = 1;
2716        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2717        if (!conf->r10buf_pool)
2718                return -ENOMEM;
2719        conf->next_resync = 0;
2720        return 0;
2721}
2722
2723/*
2724 * perform a "sync" on one "block"
2725 *
2726 * We need to make sure that no normal I/O request - particularly write
2727 * requests - conflict with active sync requests.
2728 *
2729 * This is achieved by tracking pending requests and a 'barrier' concept
2730 * that can be installed to exclude normal IO requests.
2731 *
2732 * Resync and recovery are handled very differently.
2733 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2734 *
2735 * For resync, we iterate over virtual addresses, read all copies,
2736 * and update if there are differences.  If only one copy is live,
2737 * skip it.
2738 * For recovery, we iterate over physical addresses, read a good
2739 * value for each non-in_sync drive, and over-write.
2740 *
2741 * So, for recovery we may have several outstanding complex requests for a
2742 * given address, one for each out-of-sync device.  We model this by allocating
2743 * a number of r10_bio structures, one for each out-of-sync device.
2744 * As we setup these structures, we collect all bio's together into a list
2745 * which we then process collectively to add pages, and then process again
2746 * to pass to generic_make_request.
2747 *
2748 * The r10_bio structures are linked using a borrowed master_bio pointer.
2749 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2750 * has its remaining count decremented to 0, the whole complex operation
2751 * is complete.
2752 *
2753 */
2754
2755static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2756                             int *skipped, int go_faster)
2757{
2758        struct r10conf *conf = mddev->private;
2759        struct r10bio *r10_bio;
2760        struct bio *biolist = NULL, *bio;
2761        sector_t max_sector, nr_sectors;
2762        int i;
2763        int max_sync;
2764        sector_t sync_blocks;
2765        sector_t sectors_skipped = 0;
2766        int chunks_skipped = 0;
2767        sector_t chunk_mask = conf->geo.chunk_mask;
2768
2769        if (!conf->r10buf_pool)
2770                if (init_resync(conf))
2771                        return 0;
2772
2773 skipped:
2774        max_sector = mddev->dev_sectors;
2775        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2776            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2777                max_sector = mddev->resync_max_sectors;
2778        if (sector_nr >= max_sector) {
2779                /* If we aborted, we need to abort the
2780                 * sync on the 'current' bitmap chucks (there can
2781                 * be several when recovering multiple devices).
2782                 * as we may have started syncing it but not finished.
2783                 * We can find the current address in
2784                 * mddev->curr_resync, but for recovery,
2785                 * we need to convert that to several
2786                 * virtual addresses.
2787                 */
2788                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2789                        end_reshape(conf);
2790                        return 0;
2791                }
2792
2793                if (mddev->curr_resync < max_sector) { /* aborted */
2794                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2795                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2796                                                &sync_blocks, 1);
2797                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2798                                sector_t sect =
2799                                        raid10_find_virt(conf, mddev->curr_resync, i);
2800                                bitmap_end_sync(mddev->bitmap, sect,
2801                                                &sync_blocks, 1);
2802                        }
2803                } else {
2804                        /* completed sync */
2805                        if ((!mddev->bitmap || conf->fullsync)
2806                            && conf->have_replacement
2807                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2808                                /* Completed a full sync so the replacements
2809                                 * are now fully recovered.
2810                                 */
2811                                for (i = 0; i < conf->geo.raid_disks; i++)
2812                                        if (conf->mirrors[i].replacement)
2813                                                conf->mirrors[i].replacement
2814                                                        ->recovery_offset
2815                                                        = MaxSector;
2816                        }
2817                        conf->fullsync = 0;
2818                }
2819                bitmap_close_sync(mddev->bitmap);
2820                close_sync(conf);
2821                *skipped = 1;
2822                return sectors_skipped;
2823        }
2824
2825        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2826                return reshape_request(mddev, sector_nr, skipped);
2827
2828        if (chunks_skipped >= conf->geo.raid_disks) {
2829                /* if there has been nothing to do on any drive,
2830                 * then there is nothing to do at all..
2831                 */
2832                *skipped = 1;
2833                return (max_sector - sector_nr) + sectors_skipped;
2834        }
2835
2836        if (max_sector > mddev->resync_max)
2837                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2838
2839        /* make sure whole request will fit in a chunk - if chunks
2840         * are meaningful
2841         */
2842        if (conf->geo.near_copies < conf->geo.raid_disks &&
2843            max_sector > (sector_nr | chunk_mask))
2844                max_sector = (sector_nr | chunk_mask) + 1;
2845        /*
2846         * If there is non-resync activity waiting for us then
2847         * put in a delay to throttle resync.
2848         */
2849        if (!go_faster && conf->nr_waiting)
2850                msleep_interruptible(1000);
2851
2852        /* Again, very different code for resync and recovery.
2853         * Both must result in an r10bio with a list of bios that
2854         * have bi_end_io, bi_sector, bi_bdev set,
2855         * and bi_private set to the r10bio.
2856         * For recovery, we may actually create several r10bios
2857         * with 2 bios in each, that correspond to the bios in the main one.
2858         * In this case, the subordinate r10bios link back through a
2859         * borrowed master_bio pointer, and the counter in the master
2860         * includes a ref from each subordinate.
2861         */
2862        /* First, we decide what to do and set ->bi_end_io
2863         * To end_sync_read if we want to read, and
2864         * end_sync_write if we will want to write.
2865         */
2866
2867        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2868        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2869                /* recovery... the complicated one */
2870                int j;
2871                r10_bio = NULL;
2872
2873                for (i = 0 ; i < conf->geo.raid_disks; i++) {
2874                        int still_degraded;
2875                        struct r10bio *rb2;
2876                        sector_t sect;
2877                        int must_sync;
2878                        int any_working;
2879                        struct mirror_info *mirror = &conf->mirrors[i];
2880
2881                        if ((mirror->rdev == NULL ||
2882                             test_bit(In_sync, &mirror->rdev->flags))
2883                            &&
2884                            (mirror->replacement == NULL ||
2885                             test_bit(Faulty,
2886                                      &mirror->replacement->flags)))
2887                                continue;
2888
2889                        still_degraded = 0;
2890                        /* want to reconstruct this device */
2891                        rb2 = r10_bio;
2892                        sect = raid10_find_virt(conf, sector_nr, i);
2893                        if (sect >= mddev->resync_max_sectors) {
2894                                /* last stripe is not complete - don't
2895                                 * try to recover this sector.
2896                                 */
2897                                continue;
2898                        }
2899                        /* Unless we are doing a full sync, or a replacement
2900                         * we only need to recover the block if it is set in
2901                         * the bitmap
2902                         */
2903                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
2904                                                      &sync_blocks, 1);
2905                        if (sync_blocks < max_sync)
2906                                max_sync = sync_blocks;
2907                        if (!must_sync &&
2908                            mirror->replacement == NULL &&
2909                            !conf->fullsync) {
2910                                /* yep, skip the sync_blocks here, but don't assume
2911                                 * that there will never be anything to do here
2912                                 */
2913                                chunks_skipped = -1;
2914                                continue;
2915                        }
2916
2917                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2918                        raise_barrier(conf, rb2 != NULL);
2919                        atomic_set(&r10_bio->remaining, 0);
2920
2921                        r10_bio->master_bio = (struct bio*)rb2;
2922                        if (rb2)
2923                                atomic_inc(&rb2->remaining);
2924                        r10_bio->mddev = mddev;
2925                        set_bit(R10BIO_IsRecover, &r10_bio->state);
2926                        r10_bio->sector = sect;
2927
2928                        raid10_find_phys(conf, r10_bio);
2929
2930                        /* Need to check if the array will still be
2931                         * degraded
2932                         */
2933                        for (j = 0; j < conf->geo.raid_disks; j++)
2934                                if (conf->mirrors[j].rdev == NULL ||
2935                                    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2936                                        still_degraded = 1;
2937                                        break;
2938                                }
2939
2940                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
2941                                                      &sync_blocks, still_degraded);
2942
2943                        any_working = 0;
2944                        for (j=0; j<conf->copies;j++) {
2945                                int k;
2946                                int d = r10_bio->devs[j].devnum;
2947                                sector_t from_addr, to_addr;
2948                                struct md_rdev *rdev;
2949                                sector_t sector, first_bad;
2950                                int bad_sectors;
2951                                if (!conf->mirrors[d].rdev ||
2952                                    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2953                                        continue;
2954                                /* This is where we read from */
2955                                any_working = 1;
2956                                rdev = conf->mirrors[d].rdev;
2957                                sector = r10_bio->devs[j].addr;
2958
2959                                if (is_badblock(rdev, sector, max_sync,
2960                                                &first_bad, &bad_sectors)) {
2961                                        if (first_bad > sector)
2962                                                max_sync = first_bad - sector;
2963                                        else {
2964                                                bad_sectors -= (sector
2965                                                                - first_bad);
2966                                                if (max_sync > bad_sectors)
2967                                                        max_sync = bad_sectors;
2968                                                continue;
2969                                        }
2970                                }
2971                                bio = r10_bio->devs[0].bio;
2972                                bio->bi_next = biolist;
2973                                biolist = bio;
2974                                bio->bi_private = r10_bio;
2975                                bio->bi_end_io = end_sync_read;
2976                                bio->bi_rw = READ;
2977                                from_addr = r10_bio->devs[j].addr;
2978                                bio->bi_sector = from_addr + rdev->data_offset;
2979                                bio->bi_bdev = rdev->bdev;
2980                                atomic_inc(&rdev->nr_pending);
2981                                /* and we write to 'i' (if not in_sync) */
2982
2983                                for (k=0; k<conf->copies; k++)
2984                                        if (r10_bio->devs[k].devnum == i)
2985                                                break;
2986                                BUG_ON(k == conf->copies);
2987                                to_addr = r10_bio->devs[k].addr;
2988                                r10_bio->devs[0].devnum = d;
2989                                r10_bio->devs[0].addr = from_addr;
2990                                r10_bio->devs[1].devnum = i;
2991                                r10_bio->devs[1].addr = to_addr;
2992
2993                                rdev = mirror->rdev;
2994                                if (!test_bit(In_sync, &rdev->flags)) {
2995                                        bio = r10_bio->devs[1].bio;
2996                                        bio->bi_next = biolist;
2997                                        biolist = bio;
2998                                        bio->bi_private = r10_bio;
2999                                        bio->bi_end_io = end_sync_write;
3000                                        bio->bi_rw = WRITE;
3001                                        bio->bi_sector = to_addr
3002                                                + rdev->data_offset;
3003                                        bio->bi_bdev = rdev->bdev;
3004                                        atomic_inc(&r10_bio->remaining);
3005                                } else
3006                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3007
3008                                /* and maybe write to replacement */
3009                                bio = r10_bio->devs[1].repl_bio;
3010                                if (bio)
3011                                        bio->bi_end_io = NULL;
3012                                rdev = mirror->replacement;
3013                                /* Note: if rdev != NULL, then bio
3014                                 * cannot be NULL as r10buf_pool_alloc will
3015                                 * have allocated it.
3016                                 * So the second test here is pointless.
3017                                 * But it keeps semantic-checkers happy, and
3018                                 * this comment keeps human reviewers
3019                                 * happy.
3020                                 */
3021                                if (rdev == NULL || bio == NULL ||
3022                                    test_bit(Faulty, &rdev->flags))
3023                                        break;
3024                                bio->bi_next = biolist;
3025                                biolist = bio;
3026                                bio->bi_private = r10_bio;
3027                                bio->bi_end_io = end_sync_write;
3028                                bio->bi_rw = WRITE;
3029                                bio->bi_sector = to_addr + rdev->data_offset;
3030                                bio->bi_bdev = rdev->bdev;
3031                                atomic_inc(&r10_bio->remaining);
3032                                break;
3033                        }
3034                        if (j == conf->copies) {
3035                                /* Cannot recover, so abort the recovery or
3036                                 * record a bad block */
3037                                put_buf(r10_bio);
3038                                if (rb2)
3039                                        atomic_dec(&rb2->remaining);
3040                                r10_bio = rb2;
3041                                if (any_working) {
3042                                        /* problem is that there are bad blocks
3043                                         * on other device(s)
3044                                         */
3045                                        int k;
3046                                        for (k = 0; k < conf->copies; k++)
3047                                                if (r10_bio->devs[k].devnum == i)
3048                                                        break;
3049                                        if (!test_bit(In_sync,
3050                                                      &mirror->rdev->flags)
3051                                            && !rdev_set_badblocks(
3052                                                    mirror->rdev,
3053                                                    r10_bio->devs[k].addr,
3054                                                    max_sync, 0))
3055                                                any_working = 0;
3056                                        if (mirror->replacement &&
3057                                            !rdev_set_badblocks(
3058                                                    mirror->replacement,
3059                                                    r10_bio->devs[k].addr,
3060                                                    max_sync, 0))
3061                                                any_working = 0;
3062                                }
3063                                if (!any_working)  {
3064                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3065                                                              &mddev->recovery))
3066                                                printk(KERN_INFO "md/raid10:%s: insufficient "
3067                                                       "working devices for recovery.\n",
3068                                                       mdname(mddev));
3069                                        mirror->recovery_disabled
3070                                                = mddev->recovery_disabled;
3071                                }
3072                                break;
3073                        }
3074                }
3075                if (biolist == NULL) {
3076                        while (r10_bio) {
3077                                struct r10bio *rb2 = r10_bio;
3078                                r10_bio = (struct r10bio*) rb2->master_bio;
3079                                rb2->master_bio = NULL;
3080                                put_buf(rb2);
3081                        }
3082                        goto giveup;
3083                }
3084        } else {
3085                /* resync. Schedule a read for every block at this virt offset */
3086                int count = 0;
3087
3088                bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3089
3090                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3091                                       &sync_blocks, mddev->degraded) &&
3092                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3093                                                 &mddev->recovery)) {
3094                        /* We can skip this block */
3095                        *skipped = 1;
3096                        return sync_blocks + sectors_skipped;
3097                }
3098                if (sync_blocks < max_sync)
3099                        max_sync = sync_blocks;
3100                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3101
3102                r10_bio->mddev = mddev;
3103                atomic_set(&r10_bio->remaining, 0);
3104                raise_barrier(conf, 0);
3105                conf->next_resync = sector_nr;
3106
3107                r10_bio->master_bio = NULL;
3108                r10_bio->sector = sector_nr;
3109                set_bit(R10BIO_IsSync, &r10_bio->state);
3110                raid10_find_phys(conf, r10_bio);
3111                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3112
3113                for (i = 0; i < conf->copies; i++) {
3114                        int d = r10_bio->devs[i].devnum;
3115                        sector_t first_bad, sector;
3116                        int bad_sectors;
3117
3118                        if (r10_bio->devs[i].repl_bio)
3119                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3120
3121                        bio = r10_bio->devs[i].bio;
3122                        bio->bi_end_io = NULL;
3123                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3124                        if (conf->mirrors[d].rdev == NULL ||
3125                            test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3126                                continue;
3127                        sector = r10_bio->devs[i].addr;
3128                        if (is_badblock(conf->mirrors[d].rdev,
3129                                        sector, max_sync,
3130                                        &first_bad, &bad_sectors)) {
3131                                if (first_bad > sector)
3132                                        max_sync = first_bad - sector;
3133                                else {
3134                                        bad_sectors -= (sector - first_bad);
3135                                        if (max_sync > bad_sectors)
3136                                                max_sync = max_sync;
3137                                        continue;
3138                                }
3139                        }
3140                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3141                        atomic_inc(&r10_bio->remaining);
3142                        bio->bi_next = biolist;
3143                        biolist = bio;
3144                        bio->bi_private = r10_bio;
3145                        bio->bi_end_io = end_sync_read;
3146                        bio->bi_rw = READ;
3147                        bio->bi_sector = sector +
3148                                conf->mirrors[d].rdev->data_offset;
3149                        bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3150                        count++;
3151
3152                        if (conf->mirrors[d].replacement == NULL ||
3153                            test_bit(Faulty,
3154                                     &conf->mirrors[d].replacement->flags))
3155                                continue;
3156
3157                        /* Need to set up for writing to the replacement */
3158                        bio = r10_bio->devs[i].repl_bio;
3159                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3160
3161                        sector = r10_bio->devs[i].addr;
3162                        atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3163                        bio->bi_next = biolist;
3164                        biolist = bio;
3165                        bio->bi_private = r10_bio;
3166                        bio->bi_end_io = end_sync_write;
3167                        bio->bi_rw = WRITE;
3168                        bio->bi_sector = sector +
3169                                conf->mirrors[d].replacement->data_offset;
3170                        bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3171                        count++;
3172                }
3173
3174                if (count < 2) {
3175                        for (i=0; i<conf->copies; i++) {
3176                                int d = r10_bio->devs[i].devnum;
3177                                if (r10_bio->devs[i].bio->bi_end_io)
3178                                        rdev_dec_pending(conf->mirrors[d].rdev,
3179                                                         mddev);
3180                                if (r10_bio->devs[i].repl_bio &&
3181                                    r10_bio->devs[i].repl_bio->bi_end_io)
3182                                        rdev_dec_pending(
3183                                                conf->mirrors[d].replacement,
3184                                                mddev);
3185                        }
3186                        put_buf(r10_bio);
3187                        biolist = NULL;
3188                        goto giveup;
3189                }
3190        }
3191
3192        for (bio = biolist; bio ; bio=bio->bi_next) {
3193
3194                bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3195                if (bio->bi_end_io)
3196                        bio->bi_flags |= 1 << BIO_UPTODATE;
3197                bio->bi_vcnt = 0;
3198                bio->bi_idx = 0;
3199                bio->bi_phys_segments = 0;
3200                bio->bi_size = 0;
3201        }
3202
3203        nr_sectors = 0;
3204        if (sector_nr + max_sync < max_sector)
3205                max_sector = sector_nr + max_sync;
3206        do {
3207                struct page *page;
3208                int len = PAGE_SIZE;
3209                if (sector_nr + (len>>9) > max_sector)
3210                        len = (max_sector - sector_nr) << 9;
3211                if (len == 0)
3212                        break;
3213                for (bio= biolist ; bio ; bio=bio->bi_next) {
3214                        struct bio *bio2;
3215                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3216                        if (bio_add_page(bio, page, len, 0))
3217                                continue;
3218
3219                        /* stop here */
3220                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3221                        for (bio2 = biolist;
3222                             bio2 && bio2 != bio;
3223                             bio2 = bio2->bi_next) {
3224                                /* remove last page from this bio */
3225                                bio2->bi_vcnt--;
3226                                bio2->bi_size -= len;
3227                                bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3228                        }
3229                        goto bio_full;
3230                }
3231                nr_sectors += len>>9;
3232                sector_nr += len>>9;
3233        } while (biolist->bi_vcnt < RESYNC_PAGES);
3234 bio_full:
3235        r10_bio->sectors = nr_sectors;
3236
3237        while (biolist) {
3238                bio = biolist;
3239                biolist = biolist->bi_next;
3240
3241                bio->bi_next = NULL;
3242                r10_bio = bio->bi_private;
3243                r10_bio->sectors = nr_sectors;
3244
3245                if (bio->bi_end_io == end_sync_read) {
3246                        md_sync_acct(bio->bi_bdev, nr_sectors);
3247                        generic_make_request(bio);
3248                }
3249        }
3250
3251        if (sectors_skipped)
3252                /* pretend they weren't skipped, it makes
3253                 * no important difference in this case
3254                 */
3255                md_done_sync(mddev, sectors_skipped, 1);
3256
3257        return sectors_skipped + nr_sectors;
3258 giveup:
3259        /* There is nowhere to write, so all non-sync
3260         * drives must be failed or in resync, all drives
3261         * have a bad block, so try the next chunk...
3262         */
3263        if (sector_nr + max_sync < max_sector)
3264                max_sector = sector_nr + max_sync;
3265
3266        sectors_skipped += (max_sector - sector_nr);
3267        chunks_skipped ++;
3268        sector_nr = max_sector;
3269        goto skipped;
3270}
3271
3272static sector_t
3273raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3274{
3275        sector_t size;
3276        struct r10conf *conf = mddev->private;
3277
3278        if (!raid_disks)
3279                raid_disks = min(conf->geo.raid_disks,
3280                                 conf->prev.raid_disks);
3281        if (!sectors)
3282                sectors = conf->dev_sectors;
3283
3284        size = sectors >> conf->geo.chunk_shift;
3285        sector_div(size, conf->geo.far_copies);
3286        size = size * raid_disks;
3287        sector_div(size, conf->geo.near_copies);
3288
3289        return size << conf->geo.chunk_shift;
3290}
3291
3292static void calc_sectors(struct r10conf *conf, sector_t size)
3293{
3294        /* Calculate the number of sectors-per-device that will
3295         * actually be used, and set conf->dev_sectors and
3296         * conf->stride
3297         */
3298
3299        size = size >> conf->geo.chunk_shift;
3300        sector_div(size, conf->geo.far_copies);
3301        size = size * conf->geo.raid_disks;
3302        sector_div(size, conf->geo.near_copies);
3303        /* 'size' is now the number of chunks in the array */
3304        /* calculate "used chunks per device" */
3305        size = size * conf->copies;
3306
3307        /* We need to round up when dividing by raid_disks to
3308         * get the stride size.
3309         */
3310        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3311
3312        conf->dev_sectors = size << conf->geo.chunk_shift;
3313
3314        if (conf->geo.far_offset)
3315                conf->geo.stride = 1 << conf->geo.chunk_shift;
3316        else {
3317                sector_div(size, conf->geo.far_copies);
3318                conf->geo.stride = size << conf->geo.chunk_shift;
3319        }
3320}
3321
3322enum geo_type {geo_new, geo_old, geo_start};
3323static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3324{
3325        int nc, fc, fo;
3326        int layout, chunk, disks;
3327        switch (new) {
3328        case geo_old:
3329                layout = mddev->layout;
3330                chunk = mddev->chunk_sectors;
3331                disks = mddev->raid_disks - mddev->delta_disks;
3332                break;
3333        case geo_new:
3334                layout = mddev->new_layout;
3335                chunk = mddev->new_chunk_sectors;
3336                disks = mddev->raid_disks;
3337                break;
3338        default: /* avoid 'may be unused' warnings */
3339        case geo_start: /* new when starting reshape - raid_disks not
3340                         * updated yet. */
3341                layout = mddev->new_layout;
3342                chunk = mddev->new_chunk_sectors;
3343                disks = mddev->raid_disks + mddev->delta_disks;
3344                break;
3345        }
3346        if (layout >> 17)
3347                return -1;
3348        if (chunk < (PAGE_SIZE >> 9) ||
3349            !is_power_of_2(chunk))
3350                return -2;
3351        nc = layout & 255;
3352        fc = (layout >> 8) & 255;
3353        fo = layout & (1<<16);
3354        geo->raid_disks = disks;
3355        geo->near_copies = nc;
3356        geo->far_copies = fc;
3357        geo->far_offset = fo;
3358        geo->chunk_mask = chunk - 1;
3359        geo->chunk_shift = ffz(~chunk);
3360        return nc*fc;
3361}
3362
3363static struct r10conf *setup_conf(struct mddev *mddev)
3364{
3365        struct r10conf *conf = NULL;
3366        int err = -EINVAL;
3367        struct geom geo;
3368        int copies;
3369
3370        copies = setup_geo(&geo, mddev, geo_new);
3371
3372        if (copies == -2) {
3373                printk(KERN_ERR "md/raid10:%s: chunk size must be "
3374                       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3375                       mdname(mddev), PAGE_SIZE);
3376                goto out;
3377        }
3378
3379        if (copies < 2 || copies > mddev->raid_disks) {
3380                printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3381                       mdname(mddev), mddev->new_layout);
3382                goto out;
3383        }
3384
3385        err = -ENOMEM;
3386        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3387        if (!conf)
3388                goto out;
3389
3390        /* FIXME calc properly */
3391        conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3392                                                            max(0,mddev->delta_disks)),
3393                                GFP_KERNEL);
3394        if (!conf->mirrors)
3395                goto out;
3396
3397        conf->tmppage = alloc_page(GFP_KERNEL);
3398        if (!conf->tmppage)
3399                goto out;
3400
3401        conf->geo = geo;
3402        conf->copies = copies;
3403        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3404                                           r10bio_pool_free, conf);
3405        if (!conf->r10bio_pool)
3406                goto out;
3407
3408        calc_sectors(conf, mddev->dev_sectors);
3409        if (mddev->reshape_position == MaxSector) {
3410                conf->prev = conf->geo;
3411                conf->reshape_progress = MaxSector;
3412        } else {
3413                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3414                        err = -EINVAL;
3415                        goto out;
3416                }
3417                conf->reshape_progress = mddev->reshape_position;
3418                if (conf->prev.far_offset)
3419                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3420                else
3421                        /* far_copies must be 1 */
3422                        conf->prev.stride = conf->dev_sectors;
3423        }
3424        spin_lock_init(&conf->device_lock);
3425        INIT_LIST_HEAD(&conf->retry_list);
3426
3427        spin_lock_init(&conf->resync_lock);
3428        init_waitqueue_head(&conf->wait_barrier);
3429
3430        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3431        if (!conf->thread)
3432                goto out;
3433
3434        conf->mddev = mddev;
3435        return conf;
3436
3437 out:
3438        if (err == -ENOMEM)
3439                printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3440                       mdname(mddev));
3441        if (conf) {
3442                if (conf->r10bio_pool)
3443                        mempool_destroy(conf->r10bio_pool);
3444                kfree(conf->mirrors);
3445                safe_put_page(conf->tmppage);
3446                kfree(conf);
3447        }
3448        return ERR_PTR(err);
3449}
3450
3451static int run(struct mddev *mddev)
3452{
3453        struct r10conf *conf;
3454        int i, disk_idx, chunk_size;
3455        struct mirror_info *disk;
3456        struct md_rdev *rdev;
3457        sector_t size;
3458        sector_t min_offset_diff = 0;
3459        int first = 1;
3460
3461        if (mddev->private == NULL) {
3462                conf = setup_conf(mddev);
3463                if (IS_ERR(conf))
3464                        return PTR_ERR(conf);
3465                mddev->private = conf;
3466        }
3467        conf = mddev->private;
3468        if (!conf)
3469                goto out;
3470
3471        mddev->thread = conf->thread;
3472        conf->thread = NULL;
3473
3474        chunk_size = mddev->chunk_sectors << 9;
3475        blk_queue_io_min(mddev->queue, chunk_size);
3476        if (conf->geo.raid_disks % conf->geo.near_copies)
3477                blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3478        else
3479                blk_queue_io_opt(mddev->queue, chunk_size *
3480                                 (conf->geo.raid_disks / conf->geo.near_copies));
3481
3482        rdev_for_each(rdev, mddev) {
3483                long long diff;
3484                struct request_queue *q;
3485
3486                disk_idx = rdev->raid_disk;
3487                if (disk_idx < 0)
3488                        continue;
3489                if (disk_idx >= conf->geo.raid_disks &&
3490                    disk_idx >= conf->prev.raid_disks)
3491                        continue;
3492                disk = conf->mirrors + disk_idx;
3493
3494                if (test_bit(Replacement, &rdev->flags)) {
3495                        if (disk->replacement)
3496                                goto out_free_conf;
3497                        disk->replacement = rdev;
3498                } else {
3499                        if (disk->rdev)
3500                                goto out_free_conf;
3501                        disk->rdev = rdev;
3502                }
3503                q = bdev_get_queue(rdev->bdev);
3504                if (q->merge_bvec_fn)
3505                        mddev->merge_check_needed = 1;
3506                diff = (rdev->new_data_offset - rdev->data_offset);
3507                if (!mddev->reshape_backwards)
3508                        diff = -diff;
3509                if (diff < 0)
3510                        diff = 0;
3511                if (first || diff < min_offset_diff)
3512                        min_offset_diff = diff;
3513
3514                disk_stack_limits(mddev->gendisk, rdev->bdev,
3515                                  rdev->data_offset << 9);
3516
3517                disk->head_position = 0;
3518        }
3519
3520        /* need to check that every block has at least one working mirror */
3521        if (!enough(conf, -1)) {
3522                printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3523                       mdname(mddev));
3524                goto out_free_conf;
3525        }
3526
3527        if (conf->reshape_progress != MaxSector) {
3528                /* must ensure that shape change is supported */
3529                if (conf->geo.far_copies != 1 &&
3530                    conf->geo.far_offset == 0)
3531                        goto out_free_conf;
3532                if (conf->prev.far_copies != 1 &&
3533                    conf->geo.far_offset == 0)
3534                        goto out_free_conf;
3535        }
3536
3537        mddev->degraded = 0;
3538        for (i = 0;
3539             i < conf->geo.raid_disks
3540                     || i < conf->prev.raid_disks;
3541             i++) {
3542
3543                disk = conf->mirrors + i;
3544
3545                if (!disk->rdev && disk->replacement) {
3546                        /* The replacement is all we have - use it */
3547                        disk->rdev = disk->replacement;
3548                        disk->replacement = NULL;
3549                        clear_bit(Replacement, &disk->rdev->flags);
3550                }
3551
3552                if (!disk->rdev ||
3553                    !test_bit(In_sync, &disk->rdev->flags)) {
3554                        disk->head_position = 0;
3555                        mddev->degraded++;
3556                        if (disk->rdev)
3557                                conf->fullsync = 1;
3558                }
3559                disk->recovery_disabled = mddev->recovery_disabled - 1;
3560        }
3561
3562        if (mddev->recovery_cp != MaxSector)
3563                printk(KERN_NOTICE "md/raid10:%s: not clean"
3564                       " -- starting background reconstruction\n",
3565                       mdname(mddev));
3566        printk(KERN_INFO
3567                "md/raid10:%s: active with %d out of %d devices\n",
3568                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3569                conf->geo.raid_disks);
3570        /*
3571         * Ok, everything is just fine now
3572         */
3573        mddev->dev_sectors = conf->dev_sectors;
3574        size = raid10_size(mddev, 0, 0);
3575        md_set_array_sectors(mddev, size);
3576        mddev->resync_max_sectors = size;
3577
3578        mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3579        mddev->queue->backing_dev_info.congested_data = mddev;
3580
3581        /* Calculate max read-ahead size.
3582         * We need to readahead at least twice a whole stripe....
3583         * maybe...
3584         */
3585        {
3586                int stripe = conf->geo.raid_disks *
3587                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3588                stripe /= conf->geo.near_copies;
3589                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3590                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3591        }
3592
3593        blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3594
3595        if (md_integrity_register(mddev))
3596                goto out_free_conf;
3597
3598        if (conf->reshape_progress != MaxSector) {
3599                unsigned long before_length, after_length;
3600
3601                before_length = ((1 << conf->prev.chunk_shift) *
3602                                 conf->prev.far_copies);
3603                after_length = ((1 << conf->geo.chunk_shift) *
3604                                conf->geo.far_copies);
3605
3606                if (max(before_length, after_length) > min_offset_diff) {
3607                        /* This cannot work */
3608                        printk("md/raid10: offset difference not enough to continue reshape\n");
3609                        goto out_free_conf;
3610                }
3611                conf->offset_diff = min_offset_diff;
3612
3613                conf->reshape_safe = conf->reshape_progress;
3614                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3615                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3616                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3617                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3618                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3619                                                        "reshape");
3620        }
3621
3622        return 0;
3623
3624out_free_conf:
3625        md_unregister_thread(&mddev->thread);
3626        if (conf->r10bio_pool)
3627                mempool_destroy(conf->r10bio_pool);
3628        safe_put_page(conf->tmppage);
3629        kfree(conf->mirrors);
3630        kfree(conf);
3631        mddev->private = NULL;
3632out:
3633        return -EIO;
3634}
3635
3636static int stop(struct mddev *mddev)
3637{
3638        struct r10conf *conf = mddev->private;
3639
3640        raise_barrier(conf, 0);
3641        lower_barrier(conf);
3642
3643        md_unregister_thread(&mddev->thread);
3644        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3645        if (conf->r10bio_pool)
3646                mempool_destroy(conf->r10bio_pool);
3647        kfree(conf->mirrors);
3648        kfree(conf);
3649        mddev->private = NULL;
3650        return 0;
3651}
3652
3653static void raid10_quiesce(struct mddev *mddev, int state)
3654{
3655        struct r10conf *conf = mddev->private;
3656
3657        switch(state) {
3658        case 1:
3659                raise_barrier(conf, 0);
3660                break;
3661        case 0:
3662                lower_barrier(conf);
3663                break;
3664        }
3665}
3666
3667static int raid10_resize(struct mddev *mddev, sector_t sectors)
3668{
3669        /* Resize of 'far' arrays is not supported.
3670         * For 'near' and 'offset' arrays we can set the
3671         * number of sectors used to be an appropriate multiple
3672         * of the chunk size.
3673         * For 'offset', this is far_copies*chunksize.
3674         * For 'near' the multiplier is the LCM of
3675         * near_copies and raid_disks.
3676         * So if far_copies > 1 && !far_offset, fail.
3677         * Else find LCM(raid_disks, near_copy)*far_copies and
3678         * multiply by chunk_size.  Then round to this number.
3679         * This is mostly done by raid10_size()
3680         */
3681        struct r10conf *conf = mddev->private;
3682        sector_t oldsize, size;
3683
3684        if (mddev->reshape_position != MaxSector)
3685                return -EBUSY;
3686
3687        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3688                return -EINVAL;
3689
3690        oldsize = raid10_size(mddev, 0, 0);
3691        size = raid10_size(mddev, sectors, 0);
3692        if (mddev->external_size &&
3693            mddev->array_sectors > size)
3694                return -EINVAL;
3695        if (mddev->bitmap) {
3696                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3697                if (ret)
3698                        return ret;
3699        }
3700        md_set_array_sectors(mddev, size);
3701        set_capacity(mddev->gendisk, mddev->array_sectors);
3702        revalidate_disk(mddev->gendisk);
3703        if (sectors > mddev->dev_sectors &&
3704            mddev->recovery_cp > oldsize) {
3705                mddev->recovery_cp = oldsize;
3706                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3707        }
3708        calc_sectors(conf, sectors);
3709        mddev->dev_sectors = conf->dev_sectors;
3710        mddev->resync_max_sectors = size;
3711        return 0;
3712}
3713
3714static void *raid10_takeover_raid0(struct mddev *mddev)
3715{
3716        struct md_rdev *rdev;
3717        struct r10conf *conf;
3718
3719        if (mddev->degraded > 0) {
3720                printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3721                       mdname(mddev));
3722                return ERR_PTR(-EINVAL);
3723        }
3724
3725        /* Set new parameters */
3726        mddev->new_level = 10;
3727        /* new layout: far_copies = 1, near_copies = 2 */
3728        mddev->new_layout = (1<<8) + 2;
3729        mddev->new_chunk_sectors = mddev->chunk_sectors;
3730        mddev->delta_disks = mddev->raid_disks;
3731        mddev->raid_disks *= 2;
3732        /* make sure it will be not marked as dirty */
3733        mddev->recovery_cp = MaxSector;
3734
3735        conf = setup_conf(mddev);
3736        if (!IS_ERR(conf)) {
3737                rdev_for_each(rdev, mddev)
3738                        if (rdev->raid_disk >= 0)
3739                                rdev->new_raid_disk = rdev->raid_disk * 2;
3740                conf->barrier = 1;
3741        }
3742
3743        return conf;
3744}
3745
3746static void *raid10_takeover(struct mddev *mddev)
3747{
3748        struct r0conf *raid0_conf;
3749
3750        /* raid10 can take over:
3751         *  raid0 - providing it has only two drives
3752         */
3753        if (mddev->level == 0) {
3754                /* for raid0 takeover only one zone is supported */
3755                raid0_conf = mddev->private;
3756                if (raid0_conf->nr_strip_zones > 1) {
3757                        printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3758                               " with more than one zone.\n",
3759                               mdname(mddev));
3760                        return ERR_PTR(-EINVAL);
3761                }
3762                return raid10_takeover_raid0(mddev);
3763        }
3764        return ERR_PTR(-EINVAL);
3765}
3766
3767static int raid10_check_reshape(struct mddev *mddev)
3768{
3769        /* Called when there is a request to change
3770         * - layout (to ->new_layout)
3771         * - chunk size (to ->new_chunk_sectors)
3772         * - raid_disks (by delta_disks)
3773         * or when trying to restart a reshape that was ongoing.
3774         *
3775         * We need to validate the request and possibly allocate
3776         * space if that might be an issue later.
3777         *
3778         * Currently we reject any reshape of a 'far' mode array,
3779         * allow chunk size to change if new is generally acceptable,
3780         * allow raid_disks to increase, and allow
3781         * a switch between 'near' mode and 'offset' mode.
3782         */
3783        struct r10conf *conf = mddev->private;
3784        struct geom geo;
3785
3786        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3787                return -EINVAL;
3788
3789        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3790                /* mustn't change number of copies */
3791                return -EINVAL;
3792        if (geo.far_copies > 1 && !geo.far_offset)
3793                /* Cannot switch to 'far' mode */
3794                return -EINVAL;
3795
3796        if (mddev->array_sectors & geo.chunk_mask)
3797                        /* not factor of array size */
3798                        return -EINVAL;
3799
3800        if (!enough(conf, -1))
3801                return -EINVAL;
3802
3803        kfree(conf->mirrors_new);
3804        conf->mirrors_new = NULL;
3805        if (mddev->delta_disks > 0) {
3806                /* allocate new 'mirrors' list */
3807                conf->mirrors_new = kzalloc(
3808                        sizeof(struct mirror_info)
3809                        *(mddev->raid_disks +
3810                          mddev->delta_disks),
3811                        GFP_KERNEL);
3812                if (!conf->mirrors_new)
3813                        return -ENOMEM;
3814        }
3815        return 0;
3816}
3817
3818/*
3819 * Need to check if array has failed when deciding whether to:
3820 *  - start an array
3821 *  - remove non-faulty devices
3822 *  - add a spare
3823 *  - allow a reshape
3824 * This determination is simple when no reshape is happening.
3825 * However if there is a reshape, we need to carefully check
3826 * both the before and after sections.
3827 * This is because some failed devices may only affect one
3828 * of the two sections, and some non-in_sync devices may
3829 * be insync in the section most affected by failed devices.
3830 */
3831static int calc_degraded(struct r10conf *conf)
3832{
3833        int degraded, degraded2;
3834        int i;
3835
3836        rcu_read_lock();
3837        degraded = 0;
3838        /* 'prev' section first */
3839        for (i = 0; i < conf->prev.raid_disks; i++) {
3840                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3841                if (!rdev || test_bit(Faulty, &rdev->flags))
3842                        degraded++;
3843                else if (!test_bit(In_sync, &rdev->flags))
3844                        /* When we can reduce the number of devices in
3845                         * an array, this might not contribute to
3846                         * 'degraded'.  It does now.
3847                         */
3848                        degraded++;
3849        }
3850        rcu_read_unlock();
3851        if (conf->geo.raid_disks == conf->prev.raid_disks)
3852                return degraded;
3853        rcu_read_lock();
3854        degraded2 = 0;
3855        for (i = 0; i < conf->geo.raid_disks; i++) {
3856                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3857                if (!rdev || test_bit(Faulty, &rdev->flags))
3858                        degraded2++;
3859                else if (!test_bit(In_sync, &rdev->flags)) {
3860                        /* If reshape is increasing the number of devices,
3861                         * this section has already been recovered, so
3862                         * it doesn't contribute to degraded.
3863                         * else it does.
3864                         */
3865                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
3866                                degraded2++;
3867                }
3868        }
3869        rcu_read_unlock();
3870        if (degraded2 > degraded)
3871                return degraded2;
3872        return degraded;
3873}
3874
3875static int raid10_start_reshape(struct mddev *mddev)
3876{
3877        /* A 'reshape' has been requested. This commits
3878         * the various 'new' fields and sets MD_RECOVER_RESHAPE
3879         * This also checks if there are enough spares and adds them
3880         * to the array.
3881         * We currently require enough spares to make the final
3882         * array non-degraded.  We also require that the difference
3883         * between old and new data_offset - on each device - is
3884         * enough that we never risk over-writing.
3885         */
3886
3887        unsigned long before_length, after_length;
3888        sector_t min_offset_diff = 0;
3889        int first = 1;
3890        struct geom new;
3891        struct r10conf *conf = mddev->private;
3892        struct md_rdev *rdev;
3893        int spares = 0;
3894        int ret;
3895
3896        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3897                return -EBUSY;
3898
3899        if (setup_geo(&new, mddev, geo_start) != conf->copies)
3900                return -EINVAL;
3901
3902        before_length = ((1 << conf->prev.chunk_shift) *
3903                         conf->prev.far_copies);
3904        after_length = ((1 << conf->geo.chunk_shift) *
3905                        conf->geo.far_copies);
3906
3907        rdev_for_each(rdev, mddev) {
3908                if (!test_bit(In_sync, &rdev->flags)
3909                    && !test_bit(Faulty, &rdev->flags))
3910                        spares++;
3911                if (rdev->raid_disk >= 0) {
3912                        long long diff = (rdev->new_data_offset
3913                                          - rdev->data_offset);
3914                        if (!mddev->reshape_backwards)
3915                                diff = -diff;
3916                        if (diff < 0)
3917                                diff = 0;
3918                        if (first || diff < min_offset_diff)
3919                                min_offset_diff = diff;
3920                }
3921        }
3922
3923        if (max(before_length, after_length) > min_offset_diff)
3924                return -EINVAL;
3925
3926        if (spares < mddev->delta_disks)
3927                return -EINVAL;
3928
3929        conf->offset_diff = min_offset_diff;
3930        spin_lock_irq(&conf->device_lock);
3931        if (conf->mirrors_new) {
3932                memcpy(conf->mirrors_new, conf->mirrors,
3933                       sizeof(struct mirror_info)*conf->prev.raid_disks);
3934                smp_mb();
3935                kfree(conf->mirrors_old); /* FIXME and elsewhere */
3936                conf->mirrors_old = conf->mirrors;
3937                conf->mirrors = conf->mirrors_new;
3938                conf->mirrors_new = NULL;
3939        }
3940        setup_geo(&conf->geo, mddev, geo_start);
3941        smp_mb();
3942        if (mddev->reshape_backwards) {
3943                sector_t size = raid10_size(mddev, 0, 0);
3944                if (size < mddev->array_sectors) {
3945                        spin_unlock_irq(&conf->device_lock);
3946                        printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3947                               mdname(mddev));
3948                        return -EINVAL;
3949                }
3950                mddev->resync_max_sectors = size;
3951                conf->reshape_progress = size;
3952        } else
3953                conf->reshape_progress = 0;
3954        spin_unlock_irq(&conf->device_lock);
3955
3956        if (mddev->delta_disks && mddev->bitmap) {
3957                ret = bitmap_resize(mddev->bitmap,
3958                                    raid10_size(mddev, 0,
3959                                                conf->geo.raid_disks),
3960                                    0, 0);
3961                if (ret)
3962                        goto abort;
3963        }
3964        if (mddev->delta_disks > 0) {
3965                rdev_for_each(rdev, mddev)
3966                        if (rdev->raid_disk < 0 &&
3967                            !test_bit(Faulty, &rdev->flags)) {
3968                                if (raid10_add_disk(mddev, rdev) == 0) {
3969                                        if (rdev->raid_disk >=
3970                                            conf->prev.raid_disks)
3971                                                set_bit(In_sync, &rdev->flags);
3972                                        else
3973                                                rdev->recovery_offset = 0;
3974
3975                                        if (sysfs_link_rdev(mddev, rdev))
3976                                                /* Failure here  is OK */;
3977                                }
3978                        } else if (rdev->raid_disk >= conf->prev.raid_disks
3979                                   && !test_bit(Faulty, &rdev->flags)) {
3980                                /* This is a spare that was manually added */
3981                                set_bit(In_sync, &rdev->flags);
3982                        }
3983        }
3984        /* When a reshape changes the number of devices,
3985         * ->degraded is measured against the larger of the
3986         * pre and  post numbers.
3987         */
3988        spin_lock_irq(&conf->device_lock);
3989        mddev->degraded = calc_degraded(conf);
3990        spin_unlock_irq(&conf->device_lock);
3991        mddev->raid_disks = conf->geo.raid_disks;
3992        mddev->reshape_position = conf->reshape_progress;
3993        set_bit(MD_CHANGE_DEVS, &mddev->flags);
3994
3995        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3996        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3997        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3998        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3999
4000        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4001                                                "reshape");
4002        if (!mddev->sync_thread) {
4003                ret = -EAGAIN;
4004                goto abort;
4005        }
4006        conf->reshape_checkpoint = jiffies;
4007        md_wakeup_thread(mddev->sync_thread);
4008        md_new_event(mddev);
4009        return 0;
4010
4011abort:
4012        mddev->recovery = 0;
4013        spin_lock_irq(&conf->device_lock);
4014        conf->geo = conf->prev;
4015        mddev->raid_disks = conf->geo.raid_disks;
4016        rdev_for_each(rdev, mddev)
4017                rdev->new_data_offset = rdev->data_offset;
4018        smp_wmb();
4019        conf->reshape_progress = MaxSector;
4020        mddev->reshape_position = MaxSector;
4021        spin_unlock_irq(&conf->device_lock);
4022        return ret;
4023}
4024
4025/* Calculate the last device-address that could contain
4026 * any block from the chunk that includes the array-address 's'
4027 * and report the next address.
4028 * i.e. the address returned will be chunk-aligned and after
4029 * any data that is in the chunk containing 's'.
4030 */
4031static sector_t last_dev_address(sector_t s, struct geom *geo)
4032{
4033        s = (s | geo->chunk_mask) + 1;
4034        s >>= geo->chunk_shift;
4035        s *= geo->near_copies;
4036        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4037        s *= geo->far_copies;
4038        s <<= geo->chunk_shift;
4039        return s;
4040}
4041
4042/* Calculate the first device-address that could contain
4043 * any block from the chunk that includes the array-address 's'.
4044 * This too will be the start of a chunk
4045 */
4046static sector_t first_dev_address(sector_t s, struct geom *geo)
4047{
4048        s >>= geo->chunk_shift;
4049        s *= geo->near_copies;
4050        sector_div(s, geo->raid_disks);
4051        s *= geo->far_copies;
4052        s <<= geo->chunk_shift;
4053        return s;
4054}
4055
4056static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4057                                int *skipped)
4058{
4059        /* We simply copy at most one chunk (smallest of old and new)
4060         * at a time, possibly less if that exceeds RESYNC_PAGES,
4061         * or we hit a bad block or something.
4062         * This might mean we pause for normal IO in the middle of
4063         * a chunk, but that is not a problem was mddev->reshape_position
4064         * can record any location.
4065         *
4066         * If we will want to write to a location that isn't
4067         * yet recorded as 'safe' (i.e. in metadata on disk) then
4068         * we need to flush all reshape requests and update the metadata.
4069         *
4070         * When reshaping forwards (e.g. to more devices), we interpret
4071         * 'safe' as the earliest block which might not have been copied
4072         * down yet.  We divide this by previous stripe size and multiply
4073         * by previous stripe length to get lowest device offset that we
4074         * cannot write to yet.
4075         * We interpret 'sector_nr' as an address that we want to write to.
4076         * From this we use last_device_address() to find where we might
4077         * write to, and first_device_address on the  'safe' position.
4078         * If this 'next' write position is after the 'safe' position,
4079         * we must update the metadata to increase the 'safe' position.
4080         *
4081         * When reshaping backwards, we round in the opposite direction
4082         * and perform the reverse test:  next write position must not be
4083         * less than current safe position.
4084         *
4085         * In all this the minimum difference in data offsets
4086         * (conf->offset_diff - always positive) allows a bit of slack,
4087         * so next can be after 'safe', but not by more than offset_disk
4088         *
4089         * We need to prepare all the bios here before we start any IO
4090         * to ensure the size we choose is acceptable to all devices.
4091         * The means one for each copy for write-out and an extra one for
4092         * read-in.
4093         * We store the read-in bio in ->master_bio and the others in
4094         * ->devs[x].bio and ->devs[x].repl_bio.
4095         */
4096        struct r10conf *conf = mddev->private;
4097        struct r10bio *r10_bio;
4098        sector_t next, safe, last;
4099        int max_sectors;
4100        int nr_sectors;
4101        int s;
4102        struct md_rdev *rdev;
4103        int need_flush = 0;
4104        struct bio *blist;
4105        struct bio *bio, *read_bio;
4106        int sectors_done = 0;
4107
4108        if (sector_nr == 0) {
4109                /* If restarting in the middle, skip the initial sectors */
4110                if (mddev->reshape_backwards &&
4111                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4112                        sector_nr = (raid10_size(mddev, 0, 0)
4113                                     - conf->reshape_progress);
4114                } else if (!mddev->reshape_backwards &&
4115                           conf->reshape_progress > 0)
4116                        sector_nr = conf->reshape_progress;
4117                if (sector_nr) {
4118                        mddev->curr_resync_completed = sector_nr;
4119                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120                        *skipped = 1;
4121                        return sector_nr;
4122                }
4123        }
4124
4125        /* We don't use sector_nr to track where we are up to
4126         * as that doesn't work well for ->reshape_backwards.
4127         * So just use ->reshape_progress.
4128         */
4129        if (mddev->reshape_backwards) {
4130                /* 'next' is the earliest device address that we might
4131                 * write to for this chunk in the new layout
4132                 */
4133                next = first_dev_address(conf->reshape_progress - 1,
4134                                         &conf->geo);
4135
4136                /* 'safe' is the last device address that we might read from
4137                 * in the old layout after a restart
4138                 */
4139                safe = last_dev_address(conf->reshape_safe - 1,
4140                                        &conf->prev);
4141
4142                if (next + conf->offset_diff < safe)
4143                        need_flush = 1;
4144
4145                last = conf->reshape_progress - 1;
4146                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4147                                               & conf->prev.chunk_mask);
4148                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4149                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4150        } else {
4151                /* 'next' is after the last device address that we
4152                 * might write to for this chunk in the new layout
4153                 */
4154                next = last_dev_address(conf->reshape_progress, &conf->geo);
4155
4156                /* 'safe' is the earliest device address that we might
4157                 * read from in the old layout after a restart
4158                 */
4159                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4160
4161                /* Need to update metadata if 'next' might be beyond 'safe'
4162                 * as that would possibly corrupt data
4163                 */
4164                if (next > safe + conf->offset_diff)
4165                        need_flush = 1;
4166
4167                sector_nr = conf->reshape_progress;
4168                last  = sector_nr | (conf->geo.chunk_mask
4169                                     & conf->prev.chunk_mask);
4170
4171                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4172                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4173        }
4174
4175        if (need_flush ||
4176            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177                /* Need to update reshape_position in metadata */
4178                wait_barrier(conf);
4179                mddev->reshape_position = conf->reshape_progress;
4180                if (mddev->reshape_backwards)
4181                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4182                                - conf->reshape_progress;
4183                else
4184                        mddev->curr_resync_completed = conf->reshape_progress;
4185                conf->reshape_checkpoint = jiffies;
4186                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4187                md_wakeup_thread(mddev->thread);
4188                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4189                           kthread_should_stop());
4190                conf->reshape_safe = mddev->reshape_position;
4191                allow_barrier(conf);
4192        }
4193
4194read_more:
4195        /* Now schedule reads for blocks from sector_nr to last */
4196        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4197        raise_barrier(conf, sectors_done != 0);
4198        atomic_set(&r10_bio->remaining, 0);
4199        r10_bio->mddev = mddev;
4200        r10_bio->sector = sector_nr;
4201        set_bit(R10BIO_IsReshape, &r10_bio->state);
4202        r10_bio->sectors = last - sector_nr + 1;
4203        rdev = read_balance(conf, r10_bio, &max_sectors);
4204        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4205
4206        if (!rdev) {
4207                /* Cannot read from here, so need to record bad blocks
4208                 * on all the target devices.
4209                 */
4210                // FIXME
4211                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4212                return sectors_done;
4213        }
4214
4215        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4216
4217        read_bio->bi_bdev = rdev->bdev;
4218        read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4219                               + rdev->data_offset);
4220        read_bio->bi_private = r10_bio;
4221        read_bio->bi_end_io = end_sync_read;
4222        read_bio->bi_rw = READ;
4223        read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4224        read_bio->bi_flags |= 1 << BIO_UPTODATE;
4225        read_bio->bi_vcnt = 0;
4226        read_bio->bi_idx = 0;
4227        read_bio->bi_size = 0;
4228        r10_bio->master_bio = read_bio;
4229        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4230
4231        /* Now find the locations in the new layout */
4232        __raid10_find_phys(&conf->geo, r10_bio);
4233
4234        blist = read_bio;
4235        read_bio->bi_next = NULL;
4236
4237        for (s = 0; s < conf->copies*2; s++) {
4238                struct bio *b;
4239                int d = r10_bio->devs[s/2].devnum;
4240                struct md_rdev *rdev2;
4241                if (s&1) {
4242                        rdev2 = conf->mirrors[d].replacement;
4243                        b = r10_bio->devs[s/2].repl_bio;
4244                } else {
4245                        rdev2 = conf->mirrors[d].rdev;
4246                        b = r10_bio->devs[s/2].bio;
4247                }
4248                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4249                        continue;
4250                b->bi_bdev = rdev2->bdev;
4251                b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4252                b->bi_private = r10_bio;
4253                b->bi_end_io = end_reshape_write;
4254                b->bi_rw = WRITE;
4255                b->bi_flags &= ~(BIO_POOL_MASK - 1);
4256                b->bi_flags |= 1 << BIO_UPTODATE;
4257                b->bi_next = blist;
4258                b->bi_vcnt = 0;
4259                b->bi_idx = 0;
4260                b->bi_size = 0;
4261                blist = b;
4262        }
4263
4264        /* Now add as many pages as possible to all of these bios. */
4265
4266        nr_sectors = 0;
4267        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4268                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4269                int len = (max_sectors - s) << 9;
4270                if (len > PAGE_SIZE)
4271                        len = PAGE_SIZE;
4272                for (bio = blist; bio ; bio = bio->bi_next) {
4273                        struct bio *bio2;
4274                        if (bio_add_page(bio, page, len, 0))
4275                                continue;
4276
4277                        /* Didn't fit, must stop */
4278                        for (bio2 = blist;
4279                             bio2 && bio2 != bio;
4280                             bio2 = bio2->bi_next) {
4281                                /* Remove last page from this bio */
4282                                bio2->bi_vcnt--;
4283                                bio2->bi_size -= len;
4284                                bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4285                        }
4286                        goto bio_full;
4287                }
4288                sector_nr += len >> 9;
4289                nr_sectors += len >> 9;
4290        }
4291bio_full:
4292        r10_bio->sectors = nr_sectors;
4293
4294        /* Now submit the read */
4295        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4296        atomic_inc(&r10_bio->remaining);
4297        read_bio->bi_next = NULL;
4298        generic_make_request(read_bio);
4299        sector_nr += nr_sectors;
4300        sectors_done += nr_sectors;
4301        if (sector_nr <= last)
4302                goto read_more;
4303
4304        /* Now that we have done the whole section we can
4305         * update reshape_progress
4306         */
4307        if (mddev->reshape_backwards)
4308                conf->reshape_progress -= sectors_done;
4309        else
4310                conf->reshape_progress += sectors_done;
4311
4312        return sectors_done;
4313}
4314
4315static void end_reshape_request(struct r10bio *r10_bio);
4316static int handle_reshape_read_error(struct mddev *mddev,
4317                                     struct r10bio *r10_bio);
4318static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4319{
4320        /* Reshape read completed.  Hopefully we have a block
4321         * to write out.
4322         * If we got a read error then we do sync 1-page reads from
4323         * elsewhere until we find the data - or give up.
4324         */
4325        struct r10conf *conf = mddev->private;
4326        int s;
4327
4328        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4329                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4330                        /* Reshape has been aborted */
4331                        md_done_sync(mddev, r10_bio->sectors, 0);
4332                        return;
4333                }
4334
4335        /* We definitely have the data in the pages, schedule the
4336         * writes.
4337         */
4338        atomic_set(&r10_bio->remaining, 1);
4339        for (s = 0; s < conf->copies*2; s++) {
4340                struct bio *b;
4341                int d = r10_bio->devs[s/2].devnum;
4342                struct md_rdev *rdev;
4343                if (s&1) {
4344                        rdev = conf->mirrors[d].replacement;
4345                        b = r10_bio->devs[s/2].repl_bio;
4346                } else {
4347                        rdev = conf->mirrors[d].rdev;
4348                        b = r10_bio->devs[s/2].bio;
4349                }
4350                if (!rdev || test_bit(Faulty, &rdev->flags))
4351                        continue;
4352                atomic_inc(&rdev->nr_pending);
4353                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4354                atomic_inc(&r10_bio->remaining);
4355                b->bi_next = NULL;
4356                generic_make_request(b);
4357        }
4358        end_reshape_request(r10_bio);
4359}
4360
4361static void end_reshape(struct r10conf *conf)
4362{
4363        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4364                return;
4365
4366        spin_lock_irq(&conf->device_lock);
4367        conf->prev = conf->geo;
4368        md_finish_reshape(conf->mddev);
4369        smp_wmb();
4370        conf->reshape_progress = MaxSector;
4371        spin_unlock_irq(&conf->device_lock);
4372
4373        /* read-ahead size must cover two whole stripes, which is
4374         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4375         */
4376        if (conf->mddev->queue) {
4377                int stripe = conf->geo.raid_disks *
4378                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4379                stripe /= conf->geo.near_copies;
4380                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4381                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4382        }
4383        conf->fullsync = 0;
4384}
4385
4386
4387static int handle_reshape_read_error(struct mddev *mddev,
4388                                     struct r10bio *r10_bio)
4389{
4390        /* Use sync reads to get the blocks from somewhere else */
4391        int sectors = r10_bio->sectors;
4392        struct r10bio r10b;
4393        struct r10conf *conf = mddev->private;
4394        int slot = 0;
4395        int idx = 0;
4396        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4397
4398        r10b.sector = r10_bio->sector;
4399        __raid10_find_phys(&conf->prev, &r10b);
4400
4401        while (sectors) {
4402                int s = sectors;
4403                int success = 0;
4404                int first_slot = slot;
4405
4406                if (s > (PAGE_SIZE >> 9))
4407                        s = PAGE_SIZE >> 9;
4408
4409                while (!success) {
4410                        int d = r10b.devs[slot].devnum;
4411                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4412                        sector_t addr;
4413                        if (rdev == NULL ||
4414                            test_bit(Faulty, &rdev->flags) ||
4415                            !test_bit(In_sync, &rdev->flags))
4416                                goto failed;
4417
4418                        addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4419                        success = sync_page_io(rdev,
4420                                               addr,
4421                                               s << 9,
4422                                               bvec[idx].bv_page,
4423                                               READ, false);
4424                        if (success)
4425                                break;
4426                failed:
4427                        slot++;
4428                        if (slot >= conf->copies)
4429                                slot = 0;
4430                        if (slot == first_slot)
4431                                break;
4432                }
4433                if (!success) {
4434                        /* couldn't read this block, must give up */
4435                        set_bit(MD_RECOVERY_INTR,
4436                                &mddev->recovery);
4437                        return -EIO;
4438                }
4439                sectors -= s;
4440                idx++;
4441        }
4442        return 0;
4443}
4444
4445static void end_reshape_write(struct bio *bio, int error)
4446{
4447        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4448        struct r10bio *r10_bio = bio->bi_private;
4449        struct mddev *mddev = r10_bio->mddev;
4450        struct r10conf *conf = mddev->private;
4451        int d;
4452        int slot;
4453        int repl;
4454        struct md_rdev *rdev = NULL;
4455
4456        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4457        if (repl)
4458                rdev = conf->mirrors[d].replacement;
4459        if (!rdev) {
4460                smp_mb();
4461                rdev = conf->mirrors[d].rdev;
4462        }
4463
4464        if (!uptodate) {
4465                /* FIXME should record badblock */
4466                md_error(mddev, rdev);
4467        }
4468
4469        rdev_dec_pending(rdev, mddev);
4470        end_reshape_request(r10_bio);
4471}
4472
4473static void end_reshape_request(struct r10bio *r10_bio)
4474{
4475        if (!atomic_dec_and_test(&r10_bio->remaining))
4476                return;
4477        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4478        bio_put(r10_bio->master_bio);
4479        put_buf(r10_bio);
4480}
4481
4482static void raid10_finish_reshape(struct mddev *mddev)
4483{
4484        struct r10conf *conf = mddev->private;
4485
4486        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4487                return;
4488
4489        if (mddev->delta_disks > 0) {
4490                sector_t size = raid10_size(mddev, 0, 0);
4491                md_set_array_sectors(mddev, size);
4492                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4493                        mddev->recovery_cp = mddev->resync_max_sectors;
4494                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4495                }
4496                mddev->resync_max_sectors = size;
4497                set_capacity(mddev->gendisk, mddev->array_sectors);
4498                revalidate_disk(mddev->gendisk);
4499        } else {
4500                int d;
4501                for (d = conf->geo.raid_disks ;
4502                     d < conf->geo.raid_disks - mddev->delta_disks;
4503                     d++) {
4504                        struct md_rdev *rdev = conf->mirrors[d].rdev;
4505                        if (rdev)
4506                                clear_bit(In_sync, &rdev->flags);
4507                        rdev = conf->mirrors[d].replacement;
4508                        if (rdev)
4509                                clear_bit(In_sync, &rdev->flags);
4510                }
4511        }
4512        mddev->layout = mddev->new_layout;
4513        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4514        mddev->reshape_position = MaxSector;
4515        mddev->delta_disks = 0;
4516        mddev->reshape_backwards = 0;
4517}
4518
4519static struct md_personality raid10_personality =
4520{
4521        .name           = "raid10",
4522        .level          = 10,
4523        .owner          = THIS_MODULE,
4524        .make_request   = make_request,
4525        .run            = run,
4526        .stop           = stop,
4527        .status         = status,
4528        .error_handler  = error,
4529        .hot_add_disk   = raid10_add_disk,
4530        .hot_remove_disk= raid10_remove_disk,
4531        .spare_active   = raid10_spare_active,
4532        .sync_request   = sync_request,
4533        .quiesce        = raid10_quiesce,
4534        .size           = raid10_size,
4535        .resize         = raid10_resize,
4536        .takeover       = raid10_takeover,
4537        .check_reshape  = raid10_check_reshape,
4538        .start_reshape  = raid10_start_reshape,
4539        .finish_reshape = raid10_finish_reshape,
4540};
4541
4542static int __init raid_init(void)
4543{
4544        return register_md_personality(&raid10_personality);
4545}
4546
4547static void raid_exit(void)
4548{
4549        unregister_md_personality(&raid10_personality);
4550}
4551
4552module_init(raid_init);
4553module_exit(raid_exit);
4554MODULE_LICENSE("GPL");
4555MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4556MODULE_ALIAS("md-personality-9"); /* RAID10 */
4557MODULE_ALIAS("md-raid10");
4558MODULE_ALIAS("md-level-10");
4559
4560module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4561