linux/drivers/net/ethernet/intel/e1000/e1000_hw.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37                                e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41                                              bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46                                  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51                                  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53                                  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70                                  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72                                        u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78                                  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80                                 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89                                u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91                                 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97        5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98        25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99        40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100        60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101        90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102            100,
 103        100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104            110, 110,
 105        110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106            120, 120
 107};
 108
 109static DEFINE_SPINLOCK(e1000_eeprom_lock);
 110
 111/**
 112 * e1000_set_phy_type - Set the phy type member in the hw struct.
 113 * @hw: Struct containing variables accessed by shared code
 114 */
 115static s32 e1000_set_phy_type(struct e1000_hw *hw)
 116{
 117        e_dbg("e1000_set_phy_type");
 118
 119        if (hw->mac_type == e1000_undefined)
 120                return -E1000_ERR_PHY_TYPE;
 121
 122        switch (hw->phy_id) {
 123        case M88E1000_E_PHY_ID:
 124        case M88E1000_I_PHY_ID:
 125        case M88E1011_I_PHY_ID:
 126        case M88E1111_I_PHY_ID:
 127        case M88E1118_E_PHY_ID:
 128                hw->phy_type = e1000_phy_m88;
 129                break;
 130        case IGP01E1000_I_PHY_ID:
 131                if (hw->mac_type == e1000_82541 ||
 132                    hw->mac_type == e1000_82541_rev_2 ||
 133                    hw->mac_type == e1000_82547 ||
 134                    hw->mac_type == e1000_82547_rev_2)
 135                        hw->phy_type = e1000_phy_igp;
 136                break;
 137        case RTL8211B_PHY_ID:
 138                hw->phy_type = e1000_phy_8211;
 139                break;
 140        case RTL8201N_PHY_ID:
 141                hw->phy_type = e1000_phy_8201;
 142                break;
 143        default:
 144                /* Should never have loaded on this device */
 145                hw->phy_type = e1000_phy_undefined;
 146                return -E1000_ERR_PHY_TYPE;
 147        }
 148
 149        return E1000_SUCCESS;
 150}
 151
 152/**
 153 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 154 * @hw: Struct containing variables accessed by shared code
 155 */
 156static void e1000_phy_init_script(struct e1000_hw *hw)
 157{
 158        u32 ret_val;
 159        u16 phy_saved_data;
 160
 161        e_dbg("e1000_phy_init_script");
 162
 163        if (hw->phy_init_script) {
 164                msleep(20);
 165
 166                /* Save off the current value of register 0x2F5B to be restored at
 167                 * the end of this routine. */
 168                ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 169
 170                /* Disabled the PHY transmitter */
 171                e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 172                msleep(20);
 173
 174                e1000_write_phy_reg(hw, 0x0000, 0x0140);
 175                msleep(5);
 176
 177                switch (hw->mac_type) {
 178                case e1000_82541:
 179                case e1000_82547:
 180                        e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 181                        e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 182                        e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 183                        e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 184                        e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 185                        e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 186                        e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 187                        e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 188                        e1000_write_phy_reg(hw, 0x2010, 0x0008);
 189                        break;
 190
 191                case e1000_82541_rev_2:
 192                case e1000_82547_rev_2:
 193                        e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 194                        break;
 195                default:
 196                        break;
 197                }
 198
 199                e1000_write_phy_reg(hw, 0x0000, 0x3300);
 200                msleep(20);
 201
 202                /* Now enable the transmitter */
 203                e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 204
 205                if (hw->mac_type == e1000_82547) {
 206                        u16 fused, fine, coarse;
 207
 208                        /* Move to analog registers page */
 209                        e1000_read_phy_reg(hw,
 210                                           IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 211                                           &fused);
 212
 213                        if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 214                                e1000_read_phy_reg(hw,
 215                                                   IGP01E1000_ANALOG_FUSE_STATUS,
 216                                                   &fused);
 217
 218                                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 219                                coarse =
 220                                    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 221
 222                                if (coarse >
 223                                    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 224                                        coarse -=
 225                                            IGP01E1000_ANALOG_FUSE_COARSE_10;
 226                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 227                                } else if (coarse ==
 228                                           IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 229                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 230
 231                                fused =
 232                                    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 233                                    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 234                                    (coarse &
 235                                     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 236
 237                                e1000_write_phy_reg(hw,
 238                                                    IGP01E1000_ANALOG_FUSE_CONTROL,
 239                                                    fused);
 240                                e1000_write_phy_reg(hw,
 241                                                    IGP01E1000_ANALOG_FUSE_BYPASS,
 242                                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 243                        }
 244                }
 245        }
 246}
 247
 248/**
 249 * e1000_set_mac_type - Set the mac type member in the hw struct.
 250 * @hw: Struct containing variables accessed by shared code
 251 */
 252s32 e1000_set_mac_type(struct e1000_hw *hw)
 253{
 254        e_dbg("e1000_set_mac_type");
 255
 256        switch (hw->device_id) {
 257        case E1000_DEV_ID_82542:
 258                switch (hw->revision_id) {
 259                case E1000_82542_2_0_REV_ID:
 260                        hw->mac_type = e1000_82542_rev2_0;
 261                        break;
 262                case E1000_82542_2_1_REV_ID:
 263                        hw->mac_type = e1000_82542_rev2_1;
 264                        break;
 265                default:
 266                        /* Invalid 82542 revision ID */
 267                        return -E1000_ERR_MAC_TYPE;
 268                }
 269                break;
 270        case E1000_DEV_ID_82543GC_FIBER:
 271        case E1000_DEV_ID_82543GC_COPPER:
 272                hw->mac_type = e1000_82543;
 273                break;
 274        case E1000_DEV_ID_82544EI_COPPER:
 275        case E1000_DEV_ID_82544EI_FIBER:
 276        case E1000_DEV_ID_82544GC_COPPER:
 277        case E1000_DEV_ID_82544GC_LOM:
 278                hw->mac_type = e1000_82544;
 279                break;
 280        case E1000_DEV_ID_82540EM:
 281        case E1000_DEV_ID_82540EM_LOM:
 282        case E1000_DEV_ID_82540EP:
 283        case E1000_DEV_ID_82540EP_LOM:
 284        case E1000_DEV_ID_82540EP_LP:
 285                hw->mac_type = e1000_82540;
 286                break;
 287        case E1000_DEV_ID_82545EM_COPPER:
 288        case E1000_DEV_ID_82545EM_FIBER:
 289                hw->mac_type = e1000_82545;
 290                break;
 291        case E1000_DEV_ID_82545GM_COPPER:
 292        case E1000_DEV_ID_82545GM_FIBER:
 293        case E1000_DEV_ID_82545GM_SERDES:
 294                hw->mac_type = e1000_82545_rev_3;
 295                break;
 296        case E1000_DEV_ID_82546EB_COPPER:
 297        case E1000_DEV_ID_82546EB_FIBER:
 298        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 299                hw->mac_type = e1000_82546;
 300                break;
 301        case E1000_DEV_ID_82546GB_COPPER:
 302        case E1000_DEV_ID_82546GB_FIBER:
 303        case E1000_DEV_ID_82546GB_SERDES:
 304        case E1000_DEV_ID_82546GB_PCIE:
 305        case E1000_DEV_ID_82546GB_QUAD_COPPER:
 306        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 307                hw->mac_type = e1000_82546_rev_3;
 308                break;
 309        case E1000_DEV_ID_82541EI:
 310        case E1000_DEV_ID_82541EI_MOBILE:
 311        case E1000_DEV_ID_82541ER_LOM:
 312                hw->mac_type = e1000_82541;
 313                break;
 314        case E1000_DEV_ID_82541ER:
 315        case E1000_DEV_ID_82541GI:
 316        case E1000_DEV_ID_82541GI_LF:
 317        case E1000_DEV_ID_82541GI_MOBILE:
 318                hw->mac_type = e1000_82541_rev_2;
 319                break;
 320        case E1000_DEV_ID_82547EI:
 321        case E1000_DEV_ID_82547EI_MOBILE:
 322                hw->mac_type = e1000_82547;
 323                break;
 324        case E1000_DEV_ID_82547GI:
 325                hw->mac_type = e1000_82547_rev_2;
 326                break;
 327        case E1000_DEV_ID_INTEL_CE4100_GBE:
 328                hw->mac_type = e1000_ce4100;
 329                break;
 330        default:
 331                /* Should never have loaded on this device */
 332                return -E1000_ERR_MAC_TYPE;
 333        }
 334
 335        switch (hw->mac_type) {
 336        case e1000_82541:
 337        case e1000_82547:
 338        case e1000_82541_rev_2:
 339        case e1000_82547_rev_2:
 340                hw->asf_firmware_present = true;
 341                break;
 342        default:
 343                break;
 344        }
 345
 346        /* The 82543 chip does not count tx_carrier_errors properly in
 347         * FD mode
 348         */
 349        if (hw->mac_type == e1000_82543)
 350                hw->bad_tx_carr_stats_fd = true;
 351
 352        if (hw->mac_type > e1000_82544)
 353                hw->has_smbus = true;
 354
 355        return E1000_SUCCESS;
 356}
 357
 358/**
 359 * e1000_set_media_type - Set media type and TBI compatibility.
 360 * @hw: Struct containing variables accessed by shared code
 361 */
 362void e1000_set_media_type(struct e1000_hw *hw)
 363{
 364        u32 status;
 365
 366        e_dbg("e1000_set_media_type");
 367
 368        if (hw->mac_type != e1000_82543) {
 369                /* tbi_compatibility is only valid on 82543 */
 370                hw->tbi_compatibility_en = false;
 371        }
 372
 373        switch (hw->device_id) {
 374        case E1000_DEV_ID_82545GM_SERDES:
 375        case E1000_DEV_ID_82546GB_SERDES:
 376                hw->media_type = e1000_media_type_internal_serdes;
 377                break;
 378        default:
 379                switch (hw->mac_type) {
 380                case e1000_82542_rev2_0:
 381                case e1000_82542_rev2_1:
 382                        hw->media_type = e1000_media_type_fiber;
 383                        break;
 384                case e1000_ce4100:
 385                        hw->media_type = e1000_media_type_copper;
 386                        break;
 387                default:
 388                        status = er32(STATUS);
 389                        if (status & E1000_STATUS_TBIMODE) {
 390                                hw->media_type = e1000_media_type_fiber;
 391                                /* tbi_compatibility not valid on fiber */
 392                                hw->tbi_compatibility_en = false;
 393                        } else {
 394                                hw->media_type = e1000_media_type_copper;
 395                        }
 396                        break;
 397                }
 398        }
 399}
 400
 401/**
 402 * e1000_reset_hw: reset the hardware completely
 403 * @hw: Struct containing variables accessed by shared code
 404 *
 405 * Reset the transmit and receive units; mask and clear all interrupts.
 406 */
 407s32 e1000_reset_hw(struct e1000_hw *hw)
 408{
 409        u32 ctrl;
 410        u32 ctrl_ext;
 411        u32 icr;
 412        u32 manc;
 413        u32 led_ctrl;
 414        s32 ret_val;
 415
 416        e_dbg("e1000_reset_hw");
 417
 418        /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 419        if (hw->mac_type == e1000_82542_rev2_0) {
 420                e_dbg("Disabling MWI on 82542 rev 2.0\n");
 421                e1000_pci_clear_mwi(hw);
 422        }
 423
 424        /* Clear interrupt mask to stop board from generating interrupts */
 425        e_dbg("Masking off all interrupts\n");
 426        ew32(IMC, 0xffffffff);
 427
 428        /* Disable the Transmit and Receive units.  Then delay to allow
 429         * any pending transactions to complete before we hit the MAC with
 430         * the global reset.
 431         */
 432        ew32(RCTL, 0);
 433        ew32(TCTL, E1000_TCTL_PSP);
 434        E1000_WRITE_FLUSH();
 435
 436        /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 437        hw->tbi_compatibility_on = false;
 438
 439        /* Delay to allow any outstanding PCI transactions to complete before
 440         * resetting the device
 441         */
 442        msleep(10);
 443
 444        ctrl = er32(CTRL);
 445
 446        /* Must reset the PHY before resetting the MAC */
 447        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 448                ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 449                E1000_WRITE_FLUSH();
 450                msleep(5);
 451        }
 452
 453        /* Issue a global reset to the MAC.  This will reset the chip's
 454         * transmit, receive, DMA, and link units.  It will not effect
 455         * the current PCI configuration.  The global reset bit is self-
 456         * clearing, and should clear within a microsecond.
 457         */
 458        e_dbg("Issuing a global reset to MAC\n");
 459
 460        switch (hw->mac_type) {
 461        case e1000_82544:
 462        case e1000_82540:
 463        case e1000_82545:
 464        case e1000_82546:
 465        case e1000_82541:
 466        case e1000_82541_rev_2:
 467                /* These controllers can't ack the 64-bit write when issuing the
 468                 * reset, so use IO-mapping as a workaround to issue the reset */
 469                E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 470                break;
 471        case e1000_82545_rev_3:
 472        case e1000_82546_rev_3:
 473                /* Reset is performed on a shadow of the control register */
 474                ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 475                break;
 476        case e1000_ce4100:
 477        default:
 478                ew32(CTRL, (ctrl | E1000_CTRL_RST));
 479                break;
 480        }
 481
 482        /* After MAC reset, force reload of EEPROM to restore power-on settings to
 483         * device.  Later controllers reload the EEPROM automatically, so just wait
 484         * for reload to complete.
 485         */
 486        switch (hw->mac_type) {
 487        case e1000_82542_rev2_0:
 488        case e1000_82542_rev2_1:
 489        case e1000_82543:
 490        case e1000_82544:
 491                /* Wait for reset to complete */
 492                udelay(10);
 493                ctrl_ext = er32(CTRL_EXT);
 494                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 495                ew32(CTRL_EXT, ctrl_ext);
 496                E1000_WRITE_FLUSH();
 497                /* Wait for EEPROM reload */
 498                msleep(2);
 499                break;
 500        case e1000_82541:
 501        case e1000_82541_rev_2:
 502        case e1000_82547:
 503        case e1000_82547_rev_2:
 504                /* Wait for EEPROM reload */
 505                msleep(20);
 506                break;
 507        default:
 508                /* Auto read done will delay 5ms or poll based on mac type */
 509                ret_val = e1000_get_auto_rd_done(hw);
 510                if (ret_val)
 511                        return ret_val;
 512                break;
 513        }
 514
 515        /* Disable HW ARPs on ASF enabled adapters */
 516        if (hw->mac_type >= e1000_82540) {
 517                manc = er32(MANC);
 518                manc &= ~(E1000_MANC_ARP_EN);
 519                ew32(MANC, manc);
 520        }
 521
 522        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 523                e1000_phy_init_script(hw);
 524
 525                /* Configure activity LED after PHY reset */
 526                led_ctrl = er32(LEDCTL);
 527                led_ctrl &= IGP_ACTIVITY_LED_MASK;
 528                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 529                ew32(LEDCTL, led_ctrl);
 530        }
 531
 532        /* Clear interrupt mask to stop board from generating interrupts */
 533        e_dbg("Masking off all interrupts\n");
 534        ew32(IMC, 0xffffffff);
 535
 536        /* Clear any pending interrupt events. */
 537        icr = er32(ICR);
 538
 539        /* If MWI was previously enabled, reenable it. */
 540        if (hw->mac_type == e1000_82542_rev2_0) {
 541                if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 542                        e1000_pci_set_mwi(hw);
 543        }
 544
 545        return E1000_SUCCESS;
 546}
 547
 548/**
 549 * e1000_init_hw: Performs basic configuration of the adapter.
 550 * @hw: Struct containing variables accessed by shared code
 551 *
 552 * Assumes that the controller has previously been reset and is in a
 553 * post-reset uninitialized state. Initializes the receive address registers,
 554 * multicast table, and VLAN filter table. Calls routines to setup link
 555 * configuration and flow control settings. Clears all on-chip counters. Leaves
 556 * the transmit and receive units disabled and uninitialized.
 557 */
 558s32 e1000_init_hw(struct e1000_hw *hw)
 559{
 560        u32 ctrl;
 561        u32 i;
 562        s32 ret_val;
 563        u32 mta_size;
 564        u32 ctrl_ext;
 565
 566        e_dbg("e1000_init_hw");
 567
 568        /* Initialize Identification LED */
 569        ret_val = e1000_id_led_init(hw);
 570        if (ret_val) {
 571                e_dbg("Error Initializing Identification LED\n");
 572                return ret_val;
 573        }
 574
 575        /* Set the media type and TBI compatibility */
 576        e1000_set_media_type(hw);
 577
 578        /* Disabling VLAN filtering. */
 579        e_dbg("Initializing the IEEE VLAN\n");
 580        if (hw->mac_type < e1000_82545_rev_3)
 581                ew32(VET, 0);
 582        e1000_clear_vfta(hw);
 583
 584        /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 585        if (hw->mac_type == e1000_82542_rev2_0) {
 586                e_dbg("Disabling MWI on 82542 rev 2.0\n");
 587                e1000_pci_clear_mwi(hw);
 588                ew32(RCTL, E1000_RCTL_RST);
 589                E1000_WRITE_FLUSH();
 590                msleep(5);
 591        }
 592
 593        /* Setup the receive address. This involves initializing all of the Receive
 594         * Address Registers (RARs 0 - 15).
 595         */
 596        e1000_init_rx_addrs(hw);
 597
 598        /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 599        if (hw->mac_type == e1000_82542_rev2_0) {
 600                ew32(RCTL, 0);
 601                E1000_WRITE_FLUSH();
 602                msleep(1);
 603                if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 604                        e1000_pci_set_mwi(hw);
 605        }
 606
 607        /* Zero out the Multicast HASH table */
 608        e_dbg("Zeroing the MTA\n");
 609        mta_size = E1000_MC_TBL_SIZE;
 610        for (i = 0; i < mta_size; i++) {
 611                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 612                /* use write flush to prevent Memory Write Block (MWB) from
 613                 * occurring when accessing our register space */
 614                E1000_WRITE_FLUSH();
 615        }
 616
 617        /* Set the PCI priority bit correctly in the CTRL register.  This
 618         * determines if the adapter gives priority to receives, or if it
 619         * gives equal priority to transmits and receives.  Valid only on
 620         * 82542 and 82543 silicon.
 621         */
 622        if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 623                ctrl = er32(CTRL);
 624                ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 625        }
 626
 627        switch (hw->mac_type) {
 628        case e1000_82545_rev_3:
 629        case e1000_82546_rev_3:
 630                break;
 631        default:
 632                /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
 633                if (hw->bus_type == e1000_bus_type_pcix
 634                    && e1000_pcix_get_mmrbc(hw) > 2048)
 635                        e1000_pcix_set_mmrbc(hw, 2048);
 636                break;
 637        }
 638
 639        /* Call a subroutine to configure the link and setup flow control. */
 640        ret_val = e1000_setup_link(hw);
 641
 642        /* Set the transmit descriptor write-back policy */
 643        if (hw->mac_type > e1000_82544) {
 644                ctrl = er32(TXDCTL);
 645                ctrl =
 646                    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 647                    E1000_TXDCTL_FULL_TX_DESC_WB;
 648                ew32(TXDCTL, ctrl);
 649        }
 650
 651        /* Clear all of the statistics registers (clear on read).  It is
 652         * important that we do this after we have tried to establish link
 653         * because the symbol error count will increment wildly if there
 654         * is no link.
 655         */
 656        e1000_clear_hw_cntrs(hw);
 657
 658        if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 659            hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 660                ctrl_ext = er32(CTRL_EXT);
 661                /* Relaxed ordering must be disabled to avoid a parity
 662                 * error crash in a PCI slot. */
 663                ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 664                ew32(CTRL_EXT, ctrl_ext);
 665        }
 666
 667        return ret_val;
 668}
 669
 670/**
 671 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 672 * @hw: Struct containing variables accessed by shared code.
 673 */
 674static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 675{
 676        u16 eeprom_data;
 677        s32 ret_val;
 678
 679        e_dbg("e1000_adjust_serdes_amplitude");
 680
 681        if (hw->media_type != e1000_media_type_internal_serdes)
 682                return E1000_SUCCESS;
 683
 684        switch (hw->mac_type) {
 685        case e1000_82545_rev_3:
 686        case e1000_82546_rev_3:
 687                break;
 688        default:
 689                return E1000_SUCCESS;
 690        }
 691
 692        ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 693                                    &eeprom_data);
 694        if (ret_val) {
 695                return ret_val;
 696        }
 697
 698        if (eeprom_data != EEPROM_RESERVED_WORD) {
 699                /* Adjust SERDES output amplitude only. */
 700                eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 701                ret_val =
 702                    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 703                if (ret_val)
 704                        return ret_val;
 705        }
 706
 707        return E1000_SUCCESS;
 708}
 709
 710/**
 711 * e1000_setup_link - Configures flow control and link settings.
 712 * @hw: Struct containing variables accessed by shared code
 713 *
 714 * Determines which flow control settings to use. Calls the appropriate media-
 715 * specific link configuration function. Configures the flow control settings.
 716 * Assuming the adapter has a valid link partner, a valid link should be
 717 * established. Assumes the hardware has previously been reset and the
 718 * transmitter and receiver are not enabled.
 719 */
 720s32 e1000_setup_link(struct e1000_hw *hw)
 721{
 722        u32 ctrl_ext;
 723        s32 ret_val;
 724        u16 eeprom_data;
 725
 726        e_dbg("e1000_setup_link");
 727
 728        /* Read and store word 0x0F of the EEPROM. This word contains bits
 729         * that determine the hardware's default PAUSE (flow control) mode,
 730         * a bit that determines whether the HW defaults to enabling or
 731         * disabling auto-negotiation, and the direction of the
 732         * SW defined pins. If there is no SW over-ride of the flow
 733         * control setting, then the variable hw->fc will
 734         * be initialized based on a value in the EEPROM.
 735         */
 736        if (hw->fc == E1000_FC_DEFAULT) {
 737                ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 738                                            1, &eeprom_data);
 739                if (ret_val) {
 740                        e_dbg("EEPROM Read Error\n");
 741                        return -E1000_ERR_EEPROM;
 742                }
 743                if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 744                        hw->fc = E1000_FC_NONE;
 745                else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 746                         EEPROM_WORD0F_ASM_DIR)
 747                        hw->fc = E1000_FC_TX_PAUSE;
 748                else
 749                        hw->fc = E1000_FC_FULL;
 750        }
 751
 752        /* We want to save off the original Flow Control configuration just
 753         * in case we get disconnected and then reconnected into a different
 754         * hub or switch with different Flow Control capabilities.
 755         */
 756        if (hw->mac_type == e1000_82542_rev2_0)
 757                hw->fc &= (~E1000_FC_TX_PAUSE);
 758
 759        if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 760                hw->fc &= (~E1000_FC_RX_PAUSE);
 761
 762        hw->original_fc = hw->fc;
 763
 764        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 765
 766        /* Take the 4 bits from EEPROM word 0x0F that determine the initial
 767         * polarity value for the SW controlled pins, and setup the
 768         * Extended Device Control reg with that info.
 769         * This is needed because one of the SW controlled pins is used for
 770         * signal detection.  So this should be done before e1000_setup_pcs_link()
 771         * or e1000_phy_setup() is called.
 772         */
 773        if (hw->mac_type == e1000_82543) {
 774                ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 775                                            1, &eeprom_data);
 776                if (ret_val) {
 777                        e_dbg("EEPROM Read Error\n");
 778                        return -E1000_ERR_EEPROM;
 779                }
 780                ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 781                            SWDPIO__EXT_SHIFT);
 782                ew32(CTRL_EXT, ctrl_ext);
 783        }
 784
 785        /* Call the necessary subroutine to configure the link. */
 786        ret_val = (hw->media_type == e1000_media_type_copper) ?
 787            e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 788
 789        /* Initialize the flow control address, type, and PAUSE timer
 790         * registers to their default values.  This is done even if flow
 791         * control is disabled, because it does not hurt anything to
 792         * initialize these registers.
 793         */
 794        e_dbg("Initializing the Flow Control address, type and timer regs\n");
 795
 796        ew32(FCT, FLOW_CONTROL_TYPE);
 797        ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 798        ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 799
 800        ew32(FCTTV, hw->fc_pause_time);
 801
 802        /* Set the flow control receive threshold registers.  Normally,
 803         * these registers will be set to a default threshold that may be
 804         * adjusted later by the driver's runtime code.  However, if the
 805         * ability to transmit pause frames in not enabled, then these
 806         * registers will be set to 0.
 807         */
 808        if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 809                ew32(FCRTL, 0);
 810                ew32(FCRTH, 0);
 811        } else {
 812                /* We need to set up the Receive Threshold high and low water marks
 813                 * as well as (optionally) enabling the transmission of XON frames.
 814                 */
 815                if (hw->fc_send_xon) {
 816                        ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 817                        ew32(FCRTH, hw->fc_high_water);
 818                } else {
 819                        ew32(FCRTL, hw->fc_low_water);
 820                        ew32(FCRTH, hw->fc_high_water);
 821                }
 822        }
 823        return ret_val;
 824}
 825
 826/**
 827 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 828 * @hw: Struct containing variables accessed by shared code
 829 *
 830 * Manipulates Physical Coding Sublayer functions in order to configure
 831 * link. Assumes the hardware has been previously reset and the transmitter
 832 * and receiver are not enabled.
 833 */
 834static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 835{
 836        u32 ctrl;
 837        u32 status;
 838        u32 txcw = 0;
 839        u32 i;
 840        u32 signal = 0;
 841        s32 ret_val;
 842
 843        e_dbg("e1000_setup_fiber_serdes_link");
 844
 845        /* On adapters with a MAC newer than 82544, SWDP 1 will be
 846         * set when the optics detect a signal. On older adapters, it will be
 847         * cleared when there is a signal.  This applies to fiber media only.
 848         * If we're on serdes media, adjust the output amplitude to value
 849         * set in the EEPROM.
 850         */
 851        ctrl = er32(CTRL);
 852        if (hw->media_type == e1000_media_type_fiber)
 853                signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 854
 855        ret_val = e1000_adjust_serdes_amplitude(hw);
 856        if (ret_val)
 857                return ret_val;
 858
 859        /* Take the link out of reset */
 860        ctrl &= ~(E1000_CTRL_LRST);
 861
 862        /* Adjust VCO speed to improve BER performance */
 863        ret_val = e1000_set_vco_speed(hw);
 864        if (ret_val)
 865                return ret_val;
 866
 867        e1000_config_collision_dist(hw);
 868
 869        /* Check for a software override of the flow control settings, and setup
 870         * the device accordingly.  If auto-negotiation is enabled, then software
 871         * will have to set the "PAUSE" bits to the correct value in the Tranmsit
 872         * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
 873         * auto-negotiation is disabled, then software will have to manually
 874         * configure the two flow control enable bits in the CTRL register.
 875         *
 876         * The possible values of the "fc" parameter are:
 877         *      0:  Flow control is completely disabled
 878         *      1:  Rx flow control is enabled (we can receive pause frames, but
 879         *          not send pause frames).
 880         *      2:  Tx flow control is enabled (we can send pause frames but we do
 881         *          not support receiving pause frames).
 882         *      3:  Both Rx and TX flow control (symmetric) are enabled.
 883         */
 884        switch (hw->fc) {
 885        case E1000_FC_NONE:
 886                /* Flow control is completely disabled by a software over-ride. */
 887                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 888                break;
 889        case E1000_FC_RX_PAUSE:
 890                /* RX Flow control is enabled and TX Flow control is disabled by a
 891                 * software over-ride. Since there really isn't a way to advertise
 892                 * that we are capable of RX Pause ONLY, we will advertise that we
 893                 * support both symmetric and asymmetric RX PAUSE. Later, we will
 894                 *  disable the adapter's ability to send PAUSE frames.
 895                 */
 896                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 897                break;
 898        case E1000_FC_TX_PAUSE:
 899                /* TX Flow control is enabled, and RX Flow control is disabled, by a
 900                 * software over-ride.
 901                 */
 902                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 903                break;
 904        case E1000_FC_FULL:
 905                /* Flow control (both RX and TX) is enabled by a software over-ride. */
 906                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 907                break;
 908        default:
 909                e_dbg("Flow control param set incorrectly\n");
 910                return -E1000_ERR_CONFIG;
 911                break;
 912        }
 913
 914        /* Since auto-negotiation is enabled, take the link out of reset (the link
 915         * will be in reset, because we previously reset the chip). This will
 916         * restart auto-negotiation.  If auto-negotiation is successful then the
 917         * link-up status bit will be set and the flow control enable bits (RFCE
 918         * and TFCE) will be set according to their negotiated value.
 919         */
 920        e_dbg("Auto-negotiation enabled\n");
 921
 922        ew32(TXCW, txcw);
 923        ew32(CTRL, ctrl);
 924        E1000_WRITE_FLUSH();
 925
 926        hw->txcw = txcw;
 927        msleep(1);
 928
 929        /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
 930         * indication in the Device Status Register.  Time-out if a link isn't
 931         * seen in 500 milliseconds seconds (Auto-negotiation should complete in
 932         * less than 500 milliseconds even if the other end is doing it in SW).
 933         * For internal serdes, we just assume a signal is present, then poll.
 934         */
 935        if (hw->media_type == e1000_media_type_internal_serdes ||
 936            (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 937                e_dbg("Looking for Link\n");
 938                for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 939                        msleep(10);
 940                        status = er32(STATUS);
 941                        if (status & E1000_STATUS_LU)
 942                                break;
 943                }
 944                if (i == (LINK_UP_TIMEOUT / 10)) {
 945                        e_dbg("Never got a valid link from auto-neg!!!\n");
 946                        hw->autoneg_failed = 1;
 947                        /* AutoNeg failed to achieve a link, so we'll call
 948                         * e1000_check_for_link. This routine will force the link up if
 949                         * we detect a signal. This will allow us to communicate with
 950                         * non-autonegotiating link partners.
 951                         */
 952                        ret_val = e1000_check_for_link(hw);
 953                        if (ret_val) {
 954                                e_dbg("Error while checking for link\n");
 955                                return ret_val;
 956                        }
 957                        hw->autoneg_failed = 0;
 958                } else {
 959                        hw->autoneg_failed = 0;
 960                        e_dbg("Valid Link Found\n");
 961                }
 962        } else {
 963                e_dbg("No Signal Detected\n");
 964        }
 965        return E1000_SUCCESS;
 966}
 967
 968/**
 969 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 970 * @hw: Struct containing variables accessed by shared code
 971 *
 972 * Commits changes to PHY configuration by calling e1000_phy_reset().
 973 */
 974static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 975{
 976        s32 ret_val;
 977
 978        /* SW reset the PHY so all changes take effect */
 979        ret_val = e1000_phy_reset(hw);
 980        if (ret_val) {
 981                e_dbg("Error Resetting the PHY\n");
 982                return ret_val;
 983        }
 984
 985        return E1000_SUCCESS;
 986}
 987
 988static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 989{
 990        s32 ret_val;
 991        u32 ctrl_aux;
 992
 993        switch (hw->phy_type) {
 994        case e1000_phy_8211:
 995                ret_val = e1000_copper_link_rtl_setup(hw);
 996                if (ret_val) {
 997                        e_dbg("e1000_copper_link_rtl_setup failed!\n");
 998                        return ret_val;
 999                }
1000                break;
1001        case e1000_phy_8201:
1002                /* Set RMII mode */
1003                ctrl_aux = er32(CTL_AUX);
1004                ctrl_aux |= E1000_CTL_AUX_RMII;
1005                ew32(CTL_AUX, ctrl_aux);
1006                E1000_WRITE_FLUSH();
1007
1008                /* Disable the J/K bits required for receive */
1009                ctrl_aux = er32(CTL_AUX);
1010                ctrl_aux |= 0x4;
1011                ctrl_aux &= ~0x2;
1012                ew32(CTL_AUX, ctrl_aux);
1013                E1000_WRITE_FLUSH();
1014                ret_val = e1000_copper_link_rtl_setup(hw);
1015
1016                if (ret_val) {
1017                        e_dbg("e1000_copper_link_rtl_setup failed!\n");
1018                        return ret_val;
1019                }
1020                break;
1021        default:
1022                e_dbg("Error Resetting the PHY\n");
1023                return E1000_ERR_PHY_TYPE;
1024        }
1025
1026        return E1000_SUCCESS;
1027}
1028
1029/**
1030 * e1000_copper_link_preconfig - early configuration for copper
1031 * @hw: Struct containing variables accessed by shared code
1032 *
1033 * Make sure we have a valid PHY and change PHY mode before link setup.
1034 */
1035static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1036{
1037        u32 ctrl;
1038        s32 ret_val;
1039        u16 phy_data;
1040
1041        e_dbg("e1000_copper_link_preconfig");
1042
1043        ctrl = er32(CTRL);
1044        /* With 82543, we need to force speed and duplex on the MAC equal to what
1045         * the PHY speed and duplex configuration is. In addition, we need to
1046         * perform a hardware reset on the PHY to take it out of reset.
1047         */
1048        if (hw->mac_type > e1000_82543) {
1049                ctrl |= E1000_CTRL_SLU;
1050                ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1051                ew32(CTRL, ctrl);
1052        } else {
1053                ctrl |=
1054                    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1055                ew32(CTRL, ctrl);
1056                ret_val = e1000_phy_hw_reset(hw);
1057                if (ret_val)
1058                        return ret_val;
1059        }
1060
1061        /* Make sure we have a valid PHY */
1062        ret_val = e1000_detect_gig_phy(hw);
1063        if (ret_val) {
1064                e_dbg("Error, did not detect valid phy.\n");
1065                return ret_val;
1066        }
1067        e_dbg("Phy ID = %x\n", hw->phy_id);
1068
1069        /* Set PHY to class A mode (if necessary) */
1070        ret_val = e1000_set_phy_mode(hw);
1071        if (ret_val)
1072                return ret_val;
1073
1074        if ((hw->mac_type == e1000_82545_rev_3) ||
1075            (hw->mac_type == e1000_82546_rev_3)) {
1076                ret_val =
1077                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1078                phy_data |= 0x00000008;
1079                ret_val =
1080                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1081        }
1082
1083        if (hw->mac_type <= e1000_82543 ||
1084            hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1085            hw->mac_type == e1000_82541_rev_2
1086            || hw->mac_type == e1000_82547_rev_2)
1087                hw->phy_reset_disable = false;
1088
1089        return E1000_SUCCESS;
1090}
1091
1092/**
1093 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1094 * @hw: Struct containing variables accessed by shared code
1095 */
1096static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1097{
1098        u32 led_ctrl;
1099        s32 ret_val;
1100        u16 phy_data;
1101
1102        e_dbg("e1000_copper_link_igp_setup");
1103
1104        if (hw->phy_reset_disable)
1105                return E1000_SUCCESS;
1106
1107        ret_val = e1000_phy_reset(hw);
1108        if (ret_val) {
1109                e_dbg("Error Resetting the PHY\n");
1110                return ret_val;
1111        }
1112
1113        /* Wait 15ms for MAC to configure PHY from eeprom settings */
1114        msleep(15);
1115        /* Configure activity LED after PHY reset */
1116        led_ctrl = er32(LEDCTL);
1117        led_ctrl &= IGP_ACTIVITY_LED_MASK;
1118        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1119        ew32(LEDCTL, led_ctrl);
1120
1121        /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1122        if (hw->phy_type == e1000_phy_igp) {
1123                /* disable lplu d3 during driver init */
1124                ret_val = e1000_set_d3_lplu_state(hw, false);
1125                if (ret_val) {
1126                        e_dbg("Error Disabling LPLU D3\n");
1127                        return ret_val;
1128                }
1129        }
1130
1131        /* Configure mdi-mdix settings */
1132        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1133        if (ret_val)
1134                return ret_val;
1135
1136        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1137                hw->dsp_config_state = e1000_dsp_config_disabled;
1138                /* Force MDI for earlier revs of the IGP PHY */
1139                phy_data &=
1140                    ~(IGP01E1000_PSCR_AUTO_MDIX |
1141                      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1142                hw->mdix = 1;
1143
1144        } else {
1145                hw->dsp_config_state = e1000_dsp_config_enabled;
1146                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1147
1148                switch (hw->mdix) {
1149                case 1:
1150                        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1151                        break;
1152                case 2:
1153                        phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1154                        break;
1155                case 0:
1156                default:
1157                        phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1158                        break;
1159                }
1160        }
1161        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1162        if (ret_val)
1163                return ret_val;
1164
1165        /* set auto-master slave resolution settings */
1166        if (hw->autoneg) {
1167                e1000_ms_type phy_ms_setting = hw->master_slave;
1168
1169                if (hw->ffe_config_state == e1000_ffe_config_active)
1170                        hw->ffe_config_state = e1000_ffe_config_enabled;
1171
1172                if (hw->dsp_config_state == e1000_dsp_config_activated)
1173                        hw->dsp_config_state = e1000_dsp_config_enabled;
1174
1175                /* when autonegotiation advertisement is only 1000Mbps then we
1176                 * should disable SmartSpeed and enable Auto MasterSlave
1177                 * resolution as hardware default. */
1178                if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1179                        /* Disable SmartSpeed */
1180                        ret_val =
1181                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1182                                               &phy_data);
1183                        if (ret_val)
1184                                return ret_val;
1185                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1186                        ret_val =
1187                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1188                                                phy_data);
1189                        if (ret_val)
1190                                return ret_val;
1191                        /* Set auto Master/Slave resolution process */
1192                        ret_val =
1193                            e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194                        if (ret_val)
1195                                return ret_val;
1196                        phy_data &= ~CR_1000T_MS_ENABLE;
1197                        ret_val =
1198                            e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1199                        if (ret_val)
1200                                return ret_val;
1201                }
1202
1203                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1204                if (ret_val)
1205                        return ret_val;
1206
1207                /* load defaults for future use */
1208                hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1209                    ((phy_data & CR_1000T_MS_VALUE) ?
1210                     e1000_ms_force_master :
1211                     e1000_ms_force_slave) : e1000_ms_auto;
1212
1213                switch (phy_ms_setting) {
1214                case e1000_ms_force_master:
1215                        phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1216                        break;
1217                case e1000_ms_force_slave:
1218                        phy_data |= CR_1000T_MS_ENABLE;
1219                        phy_data &= ~(CR_1000T_MS_VALUE);
1220                        break;
1221                case e1000_ms_auto:
1222                        phy_data &= ~CR_1000T_MS_ENABLE;
1223                default:
1224                        break;
1225                }
1226                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1227                if (ret_val)
1228                        return ret_val;
1229        }
1230
1231        return E1000_SUCCESS;
1232}
1233
1234/**
1235 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1236 * @hw: Struct containing variables accessed by shared code
1237 */
1238static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1239{
1240        s32 ret_val;
1241        u16 phy_data;
1242
1243        e_dbg("e1000_copper_link_mgp_setup");
1244
1245        if (hw->phy_reset_disable)
1246                return E1000_SUCCESS;
1247
1248        /* Enable CRS on TX. This must be set for half-duplex operation. */
1249        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1250        if (ret_val)
1251                return ret_val;
1252
1253        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1254
1255        /* Options:
1256         *   MDI/MDI-X = 0 (default)
1257         *   0 - Auto for all speeds
1258         *   1 - MDI mode
1259         *   2 - MDI-X mode
1260         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1261         */
1262        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1263
1264        switch (hw->mdix) {
1265        case 1:
1266                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1267                break;
1268        case 2:
1269                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1270                break;
1271        case 3:
1272                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1273                break;
1274        case 0:
1275        default:
1276                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1277                break;
1278        }
1279
1280        /* Options:
1281         *   disable_polarity_correction = 0 (default)
1282         *       Automatic Correction for Reversed Cable Polarity
1283         *   0 - Disabled
1284         *   1 - Enabled
1285         */
1286        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1287        if (hw->disable_polarity_correction == 1)
1288                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1289        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290        if (ret_val)
1291                return ret_val;
1292
1293        if (hw->phy_revision < M88E1011_I_REV_4) {
1294                /* Force TX_CLK in the Extended PHY Specific Control Register
1295                 * to 25MHz clock.
1296                 */
1297                ret_val =
1298                    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1299                                       &phy_data);
1300                if (ret_val)
1301                        return ret_val;
1302
1303                phy_data |= M88E1000_EPSCR_TX_CLK_25;
1304
1305                if ((hw->phy_revision == E1000_REVISION_2) &&
1306                    (hw->phy_id == M88E1111_I_PHY_ID)) {
1307                        /* Vidalia Phy, set the downshift counter to 5x */
1308                        phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1309                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1310                        ret_val = e1000_write_phy_reg(hw,
1311                                                      M88E1000_EXT_PHY_SPEC_CTRL,
1312                                                      phy_data);
1313                        if (ret_val)
1314                                return ret_val;
1315                } else {
1316                        /* Configure Master and Slave downshift values */
1317                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1318                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1319                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1320                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1321                        ret_val = e1000_write_phy_reg(hw,
1322                                                      M88E1000_EXT_PHY_SPEC_CTRL,
1323                                                      phy_data);
1324                        if (ret_val)
1325                                return ret_val;
1326                }
1327        }
1328
1329        /* SW Reset the PHY so all changes take effect */
1330        ret_val = e1000_phy_reset(hw);
1331        if (ret_val) {
1332                e_dbg("Error Resetting the PHY\n");
1333                return ret_val;
1334        }
1335
1336        return E1000_SUCCESS;
1337}
1338
1339/**
1340 * e1000_copper_link_autoneg - setup auto-neg
1341 * @hw: Struct containing variables accessed by shared code
1342 *
1343 * Setup auto-negotiation and flow control advertisements,
1344 * and then perform auto-negotiation.
1345 */
1346static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1347{
1348        s32 ret_val;
1349        u16 phy_data;
1350
1351        e_dbg("e1000_copper_link_autoneg");
1352
1353        /* Perform some bounds checking on the hw->autoneg_advertised
1354         * parameter.  If this variable is zero, then set it to the default.
1355         */
1356        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1357
1358        /* If autoneg_advertised is zero, we assume it was not defaulted
1359         * by the calling code so we set to advertise full capability.
1360         */
1361        if (hw->autoneg_advertised == 0)
1362                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1363
1364        /* IFE/RTL8201N PHY only supports 10/100 */
1365        if (hw->phy_type == e1000_phy_8201)
1366                hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1367
1368        e_dbg("Reconfiguring auto-neg advertisement params\n");
1369        ret_val = e1000_phy_setup_autoneg(hw);
1370        if (ret_val) {
1371                e_dbg("Error Setting up Auto-Negotiation\n");
1372                return ret_val;
1373        }
1374        e_dbg("Restarting Auto-Neg\n");
1375
1376        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1377         * the Auto Neg Restart bit in the PHY control register.
1378         */
1379        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1380        if (ret_val)
1381                return ret_val;
1382
1383        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1384        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1385        if (ret_val)
1386                return ret_val;
1387
1388        /* Does the user want to wait for Auto-Neg to complete here, or
1389         * check at a later time (for example, callback routine).
1390         */
1391        if (hw->wait_autoneg_complete) {
1392                ret_val = e1000_wait_autoneg(hw);
1393                if (ret_val) {
1394                        e_dbg
1395                            ("Error while waiting for autoneg to complete\n");
1396                        return ret_val;
1397                }
1398        }
1399
1400        hw->get_link_status = true;
1401
1402        return E1000_SUCCESS;
1403}
1404
1405/**
1406 * e1000_copper_link_postconfig - post link setup
1407 * @hw: Struct containing variables accessed by shared code
1408 *
1409 * Config the MAC and the PHY after link is up.
1410 *   1) Set up the MAC to the current PHY speed/duplex
1411 *      if we are on 82543.  If we
1412 *      are on newer silicon, we only need to configure
1413 *      collision distance in the Transmit Control Register.
1414 *   2) Set up flow control on the MAC to that established with
1415 *      the link partner.
1416 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1417 */
1418static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1419{
1420        s32 ret_val;
1421        e_dbg("e1000_copper_link_postconfig");
1422
1423        if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1424                e1000_config_collision_dist(hw);
1425        } else {
1426                ret_val = e1000_config_mac_to_phy(hw);
1427                if (ret_val) {
1428                        e_dbg("Error configuring MAC to PHY settings\n");
1429                        return ret_val;
1430                }
1431        }
1432        ret_val = e1000_config_fc_after_link_up(hw);
1433        if (ret_val) {
1434                e_dbg("Error Configuring Flow Control\n");
1435                return ret_val;
1436        }
1437
1438        /* Config DSP to improve Giga link quality */
1439        if (hw->phy_type == e1000_phy_igp) {
1440                ret_val = e1000_config_dsp_after_link_change(hw, true);
1441                if (ret_val) {
1442                        e_dbg("Error Configuring DSP after link up\n");
1443                        return ret_val;
1444                }
1445        }
1446
1447        return E1000_SUCCESS;
1448}
1449
1450/**
1451 * e1000_setup_copper_link - phy/speed/duplex setting
1452 * @hw: Struct containing variables accessed by shared code
1453 *
1454 * Detects which PHY is present and sets up the speed and duplex
1455 */
1456static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1457{
1458        s32 ret_val;
1459        u16 i;
1460        u16 phy_data;
1461
1462        e_dbg("e1000_setup_copper_link");
1463
1464        /* Check if it is a valid PHY and set PHY mode if necessary. */
1465        ret_val = e1000_copper_link_preconfig(hw);
1466        if (ret_val)
1467                return ret_val;
1468
1469        if (hw->phy_type == e1000_phy_igp) {
1470                ret_val = e1000_copper_link_igp_setup(hw);
1471                if (ret_val)
1472                        return ret_val;
1473        } else if (hw->phy_type == e1000_phy_m88) {
1474                ret_val = e1000_copper_link_mgp_setup(hw);
1475                if (ret_val)
1476                        return ret_val;
1477        } else {
1478                ret_val = gbe_dhg_phy_setup(hw);
1479                if (ret_val) {
1480                        e_dbg("gbe_dhg_phy_setup failed!\n");
1481                        return ret_val;
1482                }
1483        }
1484
1485        if (hw->autoneg) {
1486                /* Setup autoneg and flow control advertisement
1487                 * and perform autonegotiation */
1488                ret_val = e1000_copper_link_autoneg(hw);
1489                if (ret_val)
1490                        return ret_val;
1491        } else {
1492                /* PHY will be set to 10H, 10F, 100H,or 100F
1493                 * depending on value from forced_speed_duplex. */
1494                e_dbg("Forcing speed and duplex\n");
1495                ret_val = e1000_phy_force_speed_duplex(hw);
1496                if (ret_val) {
1497                        e_dbg("Error Forcing Speed and Duplex\n");
1498                        return ret_val;
1499                }
1500        }
1501
1502        /* Check link status. Wait up to 100 microseconds for link to become
1503         * valid.
1504         */
1505        for (i = 0; i < 10; i++) {
1506                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1507                if (ret_val)
1508                        return ret_val;
1509                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1510                if (ret_val)
1511                        return ret_val;
1512
1513                if (phy_data & MII_SR_LINK_STATUS) {
1514                        /* Config the MAC and PHY after link is up */
1515                        ret_val = e1000_copper_link_postconfig(hw);
1516                        if (ret_val)
1517                                return ret_val;
1518
1519                        e_dbg("Valid link established!!!\n");
1520                        return E1000_SUCCESS;
1521                }
1522                udelay(10);
1523        }
1524
1525        e_dbg("Unable to establish link!!!\n");
1526        return E1000_SUCCESS;
1527}
1528
1529/**
1530 * e1000_phy_setup_autoneg - phy settings
1531 * @hw: Struct containing variables accessed by shared code
1532 *
1533 * Configures PHY autoneg and flow control advertisement settings
1534 */
1535s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1536{
1537        s32 ret_val;
1538        u16 mii_autoneg_adv_reg;
1539        u16 mii_1000t_ctrl_reg;
1540
1541        e_dbg("e1000_phy_setup_autoneg");
1542
1543        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1544        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1545        if (ret_val)
1546                return ret_val;
1547
1548        /* Read the MII 1000Base-T Control Register (Address 9). */
1549        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1550        if (ret_val)
1551                return ret_val;
1552        else if (hw->phy_type == e1000_phy_8201)
1553                mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1554
1555        /* Need to parse both autoneg_advertised and fc and set up
1556         * the appropriate PHY registers.  First we will parse for
1557         * autoneg_advertised software override.  Since we can advertise
1558         * a plethora of combinations, we need to check each bit
1559         * individually.
1560         */
1561
1562        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1563         * Advertisement Register (Address 4) and the 1000 mb speed bits in
1564         * the  1000Base-T Control Register (Address 9).
1565         */
1566        mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1567        mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1568
1569        e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1570
1571        /* Do we want to advertise 10 Mb Half Duplex? */
1572        if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1573                e_dbg("Advertise 10mb Half duplex\n");
1574                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1575        }
1576
1577        /* Do we want to advertise 10 Mb Full Duplex? */
1578        if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1579                e_dbg("Advertise 10mb Full duplex\n");
1580                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1581        }
1582
1583        /* Do we want to advertise 100 Mb Half Duplex? */
1584        if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1585                e_dbg("Advertise 100mb Half duplex\n");
1586                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1587        }
1588
1589        /* Do we want to advertise 100 Mb Full Duplex? */
1590        if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1591                e_dbg("Advertise 100mb Full duplex\n");
1592                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1593        }
1594
1595        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1596        if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1597                e_dbg
1598                    ("Advertise 1000mb Half duplex requested, request denied!\n");
1599        }
1600
1601        /* Do we want to advertise 1000 Mb Full Duplex? */
1602        if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1603                e_dbg("Advertise 1000mb Full duplex\n");
1604                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1605        }
1606
1607        /* Check for a software override of the flow control settings, and
1608         * setup the PHY advertisement registers accordingly.  If
1609         * auto-negotiation is enabled, then software will have to set the
1610         * "PAUSE" bits to the correct value in the Auto-Negotiation
1611         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1612         *
1613         * The possible values of the "fc" parameter are:
1614         *      0:  Flow control is completely disabled
1615         *      1:  Rx flow control is enabled (we can receive pause frames
1616         *          but not send pause frames).
1617         *      2:  Tx flow control is enabled (we can send pause frames
1618         *          but we do not support receiving pause frames).
1619         *      3:  Both Rx and TX flow control (symmetric) are enabled.
1620         *  other:  No software override.  The flow control configuration
1621         *          in the EEPROM is used.
1622         */
1623        switch (hw->fc) {
1624        case E1000_FC_NONE:     /* 0 */
1625                /* Flow control (RX & TX) is completely disabled by a
1626                 * software over-ride.
1627                 */
1628                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1629                break;
1630        case E1000_FC_RX_PAUSE: /* 1 */
1631                /* RX Flow control is enabled, and TX Flow control is
1632                 * disabled, by a software over-ride.
1633                 */
1634                /* Since there really isn't a way to advertise that we are
1635                 * capable of RX Pause ONLY, we will advertise that we
1636                 * support both symmetric and asymmetric RX PAUSE.  Later
1637                 * (in e1000_config_fc_after_link_up) we will disable the
1638                 *hw's ability to send PAUSE frames.
1639                 */
1640                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1641                break;
1642        case E1000_FC_TX_PAUSE: /* 2 */
1643                /* TX Flow control is enabled, and RX Flow control is
1644                 * disabled, by a software over-ride.
1645                 */
1646                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1647                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1648                break;
1649        case E1000_FC_FULL:     /* 3 */
1650                /* Flow control (both RX and TX) is enabled by a software
1651                 * over-ride.
1652                 */
1653                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1654                break;
1655        default:
1656                e_dbg("Flow control param set incorrectly\n");
1657                return -E1000_ERR_CONFIG;
1658        }
1659
1660        ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1661        if (ret_val)
1662                return ret_val;
1663
1664        e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1665
1666        if (hw->phy_type == e1000_phy_8201) {
1667                mii_1000t_ctrl_reg = 0;
1668        } else {
1669                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1670                                              mii_1000t_ctrl_reg);
1671                if (ret_val)
1672                        return ret_val;
1673        }
1674
1675        return E1000_SUCCESS;
1676}
1677
1678/**
1679 * e1000_phy_force_speed_duplex - force link settings
1680 * @hw: Struct containing variables accessed by shared code
1681 *
1682 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1683 */
1684static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1685{
1686        u32 ctrl;
1687        s32 ret_val;
1688        u16 mii_ctrl_reg;
1689        u16 mii_status_reg;
1690        u16 phy_data;
1691        u16 i;
1692
1693        e_dbg("e1000_phy_force_speed_duplex");
1694
1695        /* Turn off Flow control if we are forcing speed and duplex. */
1696        hw->fc = E1000_FC_NONE;
1697
1698        e_dbg("hw->fc = %d\n", hw->fc);
1699
1700        /* Read the Device Control Register. */
1701        ctrl = er32(CTRL);
1702
1703        /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1704        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1705        ctrl &= ~(DEVICE_SPEED_MASK);
1706
1707        /* Clear the Auto Speed Detect Enable bit. */
1708        ctrl &= ~E1000_CTRL_ASDE;
1709
1710        /* Read the MII Control Register. */
1711        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1712        if (ret_val)
1713                return ret_val;
1714
1715        /* We need to disable autoneg in order to force link and duplex. */
1716
1717        mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1718
1719        /* Are we forcing Full or Half Duplex? */
1720        if (hw->forced_speed_duplex == e1000_100_full ||
1721            hw->forced_speed_duplex == e1000_10_full) {
1722                /* We want to force full duplex so we SET the full duplex bits in the
1723                 * Device and MII Control Registers.
1724                 */
1725                ctrl |= E1000_CTRL_FD;
1726                mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1727                e_dbg("Full Duplex\n");
1728        } else {
1729                /* We want to force half duplex so we CLEAR the full duplex bits in
1730                 * the Device and MII Control Registers.
1731                 */
1732                ctrl &= ~E1000_CTRL_FD;
1733                mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1734                e_dbg("Half Duplex\n");
1735        }
1736
1737        /* Are we forcing 100Mbps??? */
1738        if (hw->forced_speed_duplex == e1000_100_full ||
1739            hw->forced_speed_duplex == e1000_100_half) {
1740                /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1741                ctrl |= E1000_CTRL_SPD_100;
1742                mii_ctrl_reg |= MII_CR_SPEED_100;
1743                mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1744                e_dbg("Forcing 100mb ");
1745        } else {
1746                /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1747                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1748                mii_ctrl_reg |= MII_CR_SPEED_10;
1749                mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1750                e_dbg("Forcing 10mb ");
1751        }
1752
1753        e1000_config_collision_dist(hw);
1754
1755        /* Write the configured values back to the Device Control Reg. */
1756        ew32(CTRL, ctrl);
1757
1758        if (hw->phy_type == e1000_phy_m88) {
1759                ret_val =
1760                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1761                if (ret_val)
1762                        return ret_val;
1763
1764                /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1765                 * forced whenever speed are duplex are forced.
1766                 */
1767                phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1768                ret_val =
1769                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1770                if (ret_val)
1771                        return ret_val;
1772
1773                e_dbg("M88E1000 PSCR: %x\n", phy_data);
1774
1775                /* Need to reset the PHY or these changes will be ignored */
1776                mii_ctrl_reg |= MII_CR_RESET;
1777
1778                /* Disable MDI-X support for 10/100 */
1779        } else {
1780                /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1781                 * forced whenever speed or duplex are forced.
1782                 */
1783                ret_val =
1784                    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1785                if (ret_val)
1786                        return ret_val;
1787
1788                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1789                phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1790
1791                ret_val =
1792                    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1793                if (ret_val)
1794                        return ret_val;
1795        }
1796
1797        /* Write back the modified PHY MII control register. */
1798        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1799        if (ret_val)
1800                return ret_val;
1801
1802        udelay(1);
1803
1804        /* The wait_autoneg_complete flag may be a little misleading here.
1805         * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1806         * But we do want to delay for a period while forcing only so we
1807         * don't generate false No Link messages.  So we will wait here
1808         * only if the user has set wait_autoneg_complete to 1, which is
1809         * the default.
1810         */
1811        if (hw->wait_autoneg_complete) {
1812                /* We will wait for autoneg to complete. */
1813                e_dbg("Waiting for forced speed/duplex link.\n");
1814                mii_status_reg = 0;
1815
1816                /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1817                for (i = PHY_FORCE_TIME; i > 0; i--) {
1818                        /* Read the MII Status Register and wait for Auto-Neg Complete bit
1819                         * to be set.
1820                         */
1821                        ret_val =
1822                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1823                        if (ret_val)
1824                                return ret_val;
1825
1826                        ret_val =
1827                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1828                        if (ret_val)
1829                                return ret_val;
1830
1831                        if (mii_status_reg & MII_SR_LINK_STATUS)
1832                                break;
1833                        msleep(100);
1834                }
1835                if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1836                        /* We didn't get link.  Reset the DSP and wait again for link. */
1837                        ret_val = e1000_phy_reset_dsp(hw);
1838                        if (ret_val) {
1839                                e_dbg("Error Resetting PHY DSP\n");
1840                                return ret_val;
1841                        }
1842                }
1843                /* This loop will early-out if the link condition has been met.  */
1844                for (i = PHY_FORCE_TIME; i > 0; i--) {
1845                        if (mii_status_reg & MII_SR_LINK_STATUS)
1846                                break;
1847                        msleep(100);
1848                        /* Read the MII Status Register and wait for Auto-Neg Complete bit
1849                         * to be set.
1850                         */
1851                        ret_val =
1852                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1853                        if (ret_val)
1854                                return ret_val;
1855
1856                        ret_val =
1857                            e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1858                        if (ret_val)
1859                                return ret_val;
1860                }
1861        }
1862
1863        if (hw->phy_type == e1000_phy_m88) {
1864                /* Because we reset the PHY above, we need to re-force TX_CLK in the
1865                 * Extended PHY Specific Control Register to 25MHz clock.  This value
1866                 * defaults back to a 2.5MHz clock when the PHY is reset.
1867                 */
1868                ret_val =
1869                    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1870                                       &phy_data);
1871                if (ret_val)
1872                        return ret_val;
1873
1874                phy_data |= M88E1000_EPSCR_TX_CLK_25;
1875                ret_val =
1876                    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1877                                        phy_data);
1878                if (ret_val)
1879                        return ret_val;
1880
1881                /* In addition, because of the s/w reset above, we need to enable CRS on
1882                 * TX.  This must be set for both full and half duplex operation.
1883                 */
1884                ret_val =
1885                    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1886                if (ret_val)
1887                        return ret_val;
1888
1889                phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1890                ret_val =
1891                    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1892                if (ret_val)
1893                        return ret_val;
1894
1895                if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1896                    && (!hw->autoneg)
1897                    && (hw->forced_speed_duplex == e1000_10_full
1898                        || hw->forced_speed_duplex == e1000_10_half)) {
1899                        ret_val = e1000_polarity_reversal_workaround(hw);
1900                        if (ret_val)
1901                                return ret_val;
1902                }
1903        }
1904        return E1000_SUCCESS;
1905}
1906
1907/**
1908 * e1000_config_collision_dist - set collision distance register
1909 * @hw: Struct containing variables accessed by shared code
1910 *
1911 * Sets the collision distance in the Transmit Control register.
1912 * Link should have been established previously. Reads the speed and duplex
1913 * information from the Device Status register.
1914 */
1915void e1000_config_collision_dist(struct e1000_hw *hw)
1916{
1917        u32 tctl, coll_dist;
1918
1919        e_dbg("e1000_config_collision_dist");
1920
1921        if (hw->mac_type < e1000_82543)
1922                coll_dist = E1000_COLLISION_DISTANCE_82542;
1923        else
1924                coll_dist = E1000_COLLISION_DISTANCE;
1925
1926        tctl = er32(TCTL);
1927
1928        tctl &= ~E1000_TCTL_COLD;
1929        tctl |= coll_dist << E1000_COLD_SHIFT;
1930
1931        ew32(TCTL, tctl);
1932        E1000_WRITE_FLUSH();
1933}
1934
1935/**
1936 * e1000_config_mac_to_phy - sync phy and mac settings
1937 * @hw: Struct containing variables accessed by shared code
1938 * @mii_reg: data to write to the MII control register
1939 *
1940 * Sets MAC speed and duplex settings to reflect the those in the PHY
1941 * The contents of the PHY register containing the needed information need to
1942 * be passed in.
1943 */
1944static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1945{
1946        u32 ctrl;
1947        s32 ret_val;
1948        u16 phy_data;
1949
1950        e_dbg("e1000_config_mac_to_phy");
1951
1952        /* 82544 or newer MAC, Auto Speed Detection takes care of
1953         * MAC speed/duplex configuration.*/
1954        if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1955                return E1000_SUCCESS;
1956
1957        /* Read the Device Control Register and set the bits to Force Speed
1958         * and Duplex.
1959         */
1960        ctrl = er32(CTRL);
1961        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1962        ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1963
1964        switch (hw->phy_type) {
1965        case e1000_phy_8201:
1966                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1967                if (ret_val)
1968                        return ret_val;
1969
1970                if (phy_data & RTL_PHY_CTRL_FD)
1971                        ctrl |= E1000_CTRL_FD;
1972                else
1973                        ctrl &= ~E1000_CTRL_FD;
1974
1975                if (phy_data & RTL_PHY_CTRL_SPD_100)
1976                        ctrl |= E1000_CTRL_SPD_100;
1977                else
1978                        ctrl |= E1000_CTRL_SPD_10;
1979
1980                e1000_config_collision_dist(hw);
1981                break;
1982        default:
1983                /* Set up duplex in the Device Control and Transmit Control
1984                 * registers depending on negotiated values.
1985                 */
1986                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1987                                             &phy_data);
1988                if (ret_val)
1989                        return ret_val;
1990
1991                if (phy_data & M88E1000_PSSR_DPLX)
1992                        ctrl |= E1000_CTRL_FD;
1993                else
1994                        ctrl &= ~E1000_CTRL_FD;
1995
1996                e1000_config_collision_dist(hw);
1997
1998                /* Set up speed in the Device Control register depending on
1999                 * negotiated values.
2000                 */
2001                if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2002                        ctrl |= E1000_CTRL_SPD_1000;
2003                else if ((phy_data & M88E1000_PSSR_SPEED) ==
2004                         M88E1000_PSSR_100MBS)
2005                        ctrl |= E1000_CTRL_SPD_100;
2006        }
2007
2008        /* Write the configured values back to the Device Control Reg. */
2009        ew32(CTRL, ctrl);
2010        return E1000_SUCCESS;
2011}
2012
2013/**
2014 * e1000_force_mac_fc - force flow control settings
2015 * @hw: Struct containing variables accessed by shared code
2016 *
2017 * Forces the MAC's flow control settings.
2018 * Sets the TFCE and RFCE bits in the device control register to reflect
2019 * the adapter settings. TFCE and RFCE need to be explicitly set by
2020 * software when a Copper PHY is used because autonegotiation is managed
2021 * by the PHY rather than the MAC. Software must also configure these
2022 * bits when link is forced on a fiber connection.
2023 */
2024s32 e1000_force_mac_fc(struct e1000_hw *hw)
2025{
2026        u32 ctrl;
2027
2028        e_dbg("e1000_force_mac_fc");
2029
2030        /* Get the current configuration of the Device Control Register */
2031        ctrl = er32(CTRL);
2032
2033        /* Because we didn't get link via the internal auto-negotiation
2034         * mechanism (we either forced link or we got link via PHY
2035         * auto-neg), we have to manually enable/disable transmit an
2036         * receive flow control.
2037         *
2038         * The "Case" statement below enables/disable flow control
2039         * according to the "hw->fc" parameter.
2040         *
2041         * The possible values of the "fc" parameter are:
2042         *      0:  Flow control is completely disabled
2043         *      1:  Rx flow control is enabled (we can receive pause
2044         *          frames but not send pause frames).
2045         *      2:  Tx flow control is enabled (we can send pause frames
2046         *          frames but we do not receive pause frames).
2047         *      3:  Both Rx and TX flow control (symmetric) is enabled.
2048         *  other:  No other values should be possible at this point.
2049         */
2050
2051        switch (hw->fc) {
2052        case E1000_FC_NONE:
2053                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2054                break;
2055        case E1000_FC_RX_PAUSE:
2056                ctrl &= (~E1000_CTRL_TFCE);
2057                ctrl |= E1000_CTRL_RFCE;
2058                break;
2059        case E1000_FC_TX_PAUSE:
2060                ctrl &= (~E1000_CTRL_RFCE);
2061                ctrl |= E1000_CTRL_TFCE;
2062                break;
2063        case E1000_FC_FULL:
2064                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2065                break;
2066        default:
2067                e_dbg("Flow control param set incorrectly\n");
2068                return -E1000_ERR_CONFIG;
2069        }
2070
2071        /* Disable TX Flow Control for 82542 (rev 2.0) */
2072        if (hw->mac_type == e1000_82542_rev2_0)
2073                ctrl &= (~E1000_CTRL_TFCE);
2074
2075        ew32(CTRL, ctrl);
2076        return E1000_SUCCESS;
2077}
2078
2079/**
2080 * e1000_config_fc_after_link_up - configure flow control after autoneg
2081 * @hw: Struct containing variables accessed by shared code
2082 *
2083 * Configures flow control settings after link is established
2084 * Should be called immediately after a valid link has been established.
2085 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2086 * and autonegotiation is enabled, the MAC flow control settings will be set
2087 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2088 * and RFCE bits will be automatically set to the negotiated flow control mode.
2089 */
2090static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2091{
2092        s32 ret_val;
2093        u16 mii_status_reg;
2094        u16 mii_nway_adv_reg;
2095        u16 mii_nway_lp_ability_reg;
2096        u16 speed;
2097        u16 duplex;
2098
2099        e_dbg("e1000_config_fc_after_link_up");
2100
2101        /* Check for the case where we have fiber media and auto-neg failed
2102         * so we had to force link.  In this case, we need to force the
2103         * configuration of the MAC to match the "fc" parameter.
2104         */
2105        if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2106            || ((hw->media_type == e1000_media_type_internal_serdes)
2107                && (hw->autoneg_failed))
2108            || ((hw->media_type == e1000_media_type_copper)
2109                && (!hw->autoneg))) {
2110                ret_val = e1000_force_mac_fc(hw);
2111                if (ret_val) {
2112                        e_dbg("Error forcing flow control settings\n");
2113                        return ret_val;
2114                }
2115        }
2116
2117        /* Check for the case where we have copper media and auto-neg is
2118         * enabled.  In this case, we need to check and see if Auto-Neg
2119         * has completed, and if so, how the PHY and link partner has
2120         * flow control configured.
2121         */
2122        if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2123                /* Read the MII Status Register and check to see if AutoNeg
2124                 * has completed.  We read this twice because this reg has
2125                 * some "sticky" (latched) bits.
2126                 */
2127                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2128                if (ret_val)
2129                        return ret_val;
2130                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2131                if (ret_val)
2132                        return ret_val;
2133
2134                if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2135                        /* The AutoNeg process has completed, so we now need to
2136                         * read both the Auto Negotiation Advertisement Register
2137                         * (Address 4) and the Auto_Negotiation Base Page Ability
2138                         * Register (Address 5) to determine how flow control was
2139                         * negotiated.
2140                         */
2141                        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2142                                                     &mii_nway_adv_reg);
2143                        if (ret_val)
2144                                return ret_val;
2145                        ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2146                                                     &mii_nway_lp_ability_reg);
2147                        if (ret_val)
2148                                return ret_val;
2149
2150                        /* Two bits in the Auto Negotiation Advertisement Register
2151                         * (Address 4) and two bits in the Auto Negotiation Base
2152                         * Page Ability Register (Address 5) determine flow control
2153                         * for both the PHY and the link partner.  The following
2154                         * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2155                         * 1999, describes these PAUSE resolution bits and how flow
2156                         * control is determined based upon these settings.
2157                         * NOTE:  DC = Don't Care
2158                         *
2159                         *   LOCAL DEVICE  |   LINK PARTNER
2160                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2161                         *-------|---------|-------|---------|--------------------
2162                         *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2163                         *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2164                         *   0   |    1    |   1   |    0    | E1000_FC_NONE
2165                         *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166                         *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2167                         *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2168                         *   1   |    1    |   0   |    0    | E1000_FC_NONE
2169                         *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2170                         *
2171                         */
2172                        /* Are both PAUSE bits set to 1?  If so, this implies
2173                         * Symmetric Flow Control is enabled at both ends.  The
2174                         * ASM_DIR bits are irrelevant per the spec.
2175                         *
2176                         * For Symmetric Flow Control:
2177                         *
2178                         *   LOCAL DEVICE  |   LINK PARTNER
2179                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180                         *-------|---------|-------|---------|--------------------
2181                         *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2182                         *
2183                         */
2184                        if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185                            (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2186                                /* Now we need to check if the user selected RX ONLY
2187                                 * of pause frames.  In this case, we had to advertise
2188                                 * FULL flow control because we could not advertise RX
2189                                 * ONLY. Hence, we must now check to see if we need to
2190                                 * turn OFF  the TRANSMISSION of PAUSE frames.
2191                                 */
2192                                if (hw->original_fc == E1000_FC_FULL) {
2193                                        hw->fc = E1000_FC_FULL;
2194                                        e_dbg("Flow Control = FULL.\n");
2195                                } else {
2196                                        hw->fc = E1000_FC_RX_PAUSE;
2197                                        e_dbg
2198                                            ("Flow Control = RX PAUSE frames only.\n");
2199                                }
2200                        }
2201                        /* For receiving PAUSE frames ONLY.
2202                         *
2203                         *   LOCAL DEVICE  |   LINK PARTNER
2204                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2205                         *-------|---------|-------|---------|--------------------
2206                         *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2207                         *
2208                         */
2209                        else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2211                                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2212                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2213                        {
2214                                hw->fc = E1000_FC_TX_PAUSE;
2215                                e_dbg
2216                                    ("Flow Control = TX PAUSE frames only.\n");
2217                        }
2218                        /* For transmitting PAUSE frames ONLY.
2219                         *
2220                         *   LOCAL DEVICE  |   LINK PARTNER
2221                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2222                         *-------|---------|-------|---------|--------------------
2223                         *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2224                         *
2225                         */
2226                        else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2227                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2228                                 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2229                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2230                        {
2231                                hw->fc = E1000_FC_RX_PAUSE;
2232                                e_dbg
2233                                    ("Flow Control = RX PAUSE frames only.\n");
2234                        }
2235                        /* Per the IEEE spec, at this point flow control should be
2236                         * disabled.  However, we want to consider that we could
2237                         * be connected to a legacy switch that doesn't advertise
2238                         * desired flow control, but can be forced on the link
2239                         * partner.  So if we advertised no flow control, that is
2240                         * what we will resolve to.  If we advertised some kind of
2241                         * receive capability (Rx Pause Only or Full Flow Control)
2242                         * and the link partner advertised none, we will configure
2243                         * ourselves to enable Rx Flow Control only.  We can do
2244                         * this safely for two reasons:  If the link partner really
2245                         * didn't want flow control enabled, and we enable Rx, no
2246                         * harm done since we won't be receiving any PAUSE frames
2247                         * anyway.  If the intent on the link partner was to have
2248                         * flow control enabled, then by us enabling RX only, we
2249                         * can at least receive pause frames and process them.
2250                         * This is a good idea because in most cases, since we are
2251                         * predominantly a server NIC, more times than not we will
2252                         * be asked to delay transmission of packets than asking
2253                         * our link partner to pause transmission of frames.
2254                         */
2255                        else if ((hw->original_fc == E1000_FC_NONE ||
2256                                  hw->original_fc == E1000_FC_TX_PAUSE) ||
2257                                 hw->fc_strict_ieee) {
2258                                hw->fc = E1000_FC_NONE;
2259                                e_dbg("Flow Control = NONE.\n");
2260                        } else {
2261                                hw->fc = E1000_FC_RX_PAUSE;
2262                                e_dbg
2263                                    ("Flow Control = RX PAUSE frames only.\n");
2264                        }
2265
2266                        /* Now we need to do one last check...  If we auto-
2267                         * negotiated to HALF DUPLEX, flow control should not be
2268                         * enabled per IEEE 802.3 spec.
2269                         */
2270                        ret_val =
2271                            e1000_get_speed_and_duplex(hw, &speed, &duplex);
2272                        if (ret_val) {
2273                                e_dbg
2274                                    ("Error getting link speed and duplex\n");
2275                                return ret_val;
2276                        }
2277
2278                        if (duplex == HALF_DUPLEX)
2279                                hw->fc = E1000_FC_NONE;
2280
2281                        /* Now we call a subroutine to actually force the MAC
2282                         * controller to use the correct flow control settings.
2283                         */
2284                        ret_val = e1000_force_mac_fc(hw);
2285                        if (ret_val) {
2286                                e_dbg
2287                                    ("Error forcing flow control settings\n");
2288                                return ret_val;
2289                        }
2290                } else {
2291                        e_dbg
2292                            ("Copper PHY and Auto Neg has not completed.\n");
2293                }
2294        }
2295        return E1000_SUCCESS;
2296}
2297
2298/**
2299 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2300 * @hw: pointer to the HW structure
2301 *
2302 * Checks for link up on the hardware.  If link is not up and we have
2303 * a signal, then we need to force link up.
2304 */
2305static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2306{
2307        u32 rxcw;
2308        u32 ctrl;
2309        u32 status;
2310        s32 ret_val = E1000_SUCCESS;
2311
2312        e_dbg("e1000_check_for_serdes_link_generic");
2313
2314        ctrl = er32(CTRL);
2315        status = er32(STATUS);
2316        rxcw = er32(RXCW);
2317
2318        /*
2319         * If we don't have link (auto-negotiation failed or link partner
2320         * cannot auto-negotiate), and our link partner is not trying to
2321         * auto-negotiate with us (we are receiving idles or data),
2322         * we need to force link up. We also need to give auto-negotiation
2323         * time to complete.
2324         */
2325        /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2326        if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2327                if (hw->autoneg_failed == 0) {
2328                        hw->autoneg_failed = 1;
2329                        goto out;
2330                }
2331                e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2332
2333                /* Disable auto-negotiation in the TXCW register */
2334                ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2335
2336                /* Force link-up and also force full-duplex. */
2337                ctrl = er32(CTRL);
2338                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2339                ew32(CTRL, ctrl);
2340
2341                /* Configure Flow Control after forcing link up. */
2342                ret_val = e1000_config_fc_after_link_up(hw);
2343                if (ret_val) {
2344                        e_dbg("Error configuring flow control\n");
2345                        goto out;
2346                }
2347        } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2348                /*
2349                 * If we are forcing link and we are receiving /C/ ordered
2350                 * sets, re-enable auto-negotiation in the TXCW register
2351                 * and disable forced link in the Device Control register
2352                 * in an attempt to auto-negotiate with our link partner.
2353                 */
2354                e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2355                ew32(TXCW, hw->txcw);
2356                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2357
2358                hw->serdes_has_link = true;
2359        } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2360                /*
2361                 * If we force link for non-auto-negotiation switch, check
2362                 * link status based on MAC synchronization for internal
2363                 * serdes media type.
2364                 */
2365                /* SYNCH bit and IV bit are sticky. */
2366                udelay(10);
2367                rxcw = er32(RXCW);
2368                if (rxcw & E1000_RXCW_SYNCH) {
2369                        if (!(rxcw & E1000_RXCW_IV)) {
2370                                hw->serdes_has_link = true;
2371                                e_dbg("SERDES: Link up - forced.\n");
2372                        }
2373                } else {
2374                        hw->serdes_has_link = false;
2375                        e_dbg("SERDES: Link down - force failed.\n");
2376                }
2377        }
2378
2379        if (E1000_TXCW_ANE & er32(TXCW)) {
2380                status = er32(STATUS);
2381                if (status & E1000_STATUS_LU) {
2382                        /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2383                        udelay(10);
2384                        rxcw = er32(RXCW);
2385                        if (rxcw & E1000_RXCW_SYNCH) {
2386                                if (!(rxcw & E1000_RXCW_IV)) {
2387                                        hw->serdes_has_link = true;
2388                                        e_dbg("SERDES: Link up - autoneg "
2389                                                 "completed successfully.\n");
2390                                } else {
2391                                        hw->serdes_has_link = false;
2392                                        e_dbg("SERDES: Link down - invalid"
2393                                                 "codewords detected in autoneg.\n");
2394                                }
2395                        } else {
2396                                hw->serdes_has_link = false;
2397                                e_dbg("SERDES: Link down - no sync.\n");
2398                        }
2399                } else {
2400                        hw->serdes_has_link = false;
2401                        e_dbg("SERDES: Link down - autoneg failed\n");
2402                }
2403        }
2404
2405      out:
2406        return ret_val;
2407}
2408
2409/**
2410 * e1000_check_for_link
2411 * @hw: Struct containing variables accessed by shared code
2412 *
2413 * Checks to see if the link status of the hardware has changed.
2414 * Called by any function that needs to check the link status of the adapter.
2415 */
2416s32 e1000_check_for_link(struct e1000_hw *hw)
2417{
2418        u32 rxcw = 0;
2419        u32 ctrl;
2420        u32 status;
2421        u32 rctl;
2422        u32 icr;
2423        u32 signal = 0;
2424        s32 ret_val;
2425        u16 phy_data;
2426
2427        e_dbg("e1000_check_for_link");
2428
2429        ctrl = er32(CTRL);
2430        status = er32(STATUS);
2431
2432        /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2433         * set when the optics detect a signal. On older adapters, it will be
2434         * cleared when there is a signal.  This applies to fiber media only.
2435         */
2436        if ((hw->media_type == e1000_media_type_fiber) ||
2437            (hw->media_type == e1000_media_type_internal_serdes)) {
2438                rxcw = er32(RXCW);
2439
2440                if (hw->media_type == e1000_media_type_fiber) {
2441                        signal =
2442                            (hw->mac_type >
2443                             e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2444                        if (status & E1000_STATUS_LU)
2445                                hw->get_link_status = false;
2446                }
2447        }
2448
2449        /* If we have a copper PHY then we only want to go out to the PHY
2450         * registers to see if Auto-Neg has completed and/or if our link
2451         * status has changed.  The get_link_status flag will be set if we
2452         * receive a Link Status Change interrupt or we have Rx Sequence
2453         * Errors.
2454         */
2455        if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2456                /* First we want to see if the MII Status Register reports
2457                 * link.  If so, then we want to get the current speed/duplex
2458                 * of the PHY.
2459                 * Read the register twice since the link bit is sticky.
2460                 */
2461                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2462                if (ret_val)
2463                        return ret_val;
2464                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2465                if (ret_val)
2466                        return ret_val;
2467
2468                if (phy_data & MII_SR_LINK_STATUS) {
2469                        hw->get_link_status = false;
2470                        /* Check if there was DownShift, must be checked immediately after
2471                         * link-up */
2472                        e1000_check_downshift(hw);
2473
2474                        /* If we are on 82544 or 82543 silicon and speed/duplex
2475                         * are forced to 10H or 10F, then we will implement the polarity
2476                         * reversal workaround.  We disable interrupts first, and upon
2477                         * returning, place the devices interrupt state to its previous
2478                         * value except for the link status change interrupt which will
2479                         * happen due to the execution of this workaround.
2480                         */
2481
2482                        if ((hw->mac_type == e1000_82544
2483                             || hw->mac_type == e1000_82543) && (!hw->autoneg)
2484                            && (hw->forced_speed_duplex == e1000_10_full
2485                                || hw->forced_speed_duplex == e1000_10_half)) {
2486                                ew32(IMC, 0xffffffff);
2487                                ret_val =
2488                                    e1000_polarity_reversal_workaround(hw);
2489                                icr = er32(ICR);
2490                                ew32(ICS, (icr & ~E1000_ICS_LSC));
2491                                ew32(IMS, IMS_ENABLE_MASK);
2492                        }
2493
2494                } else {
2495                        /* No link detected */
2496                        e1000_config_dsp_after_link_change(hw, false);
2497                        return 0;
2498                }
2499
2500                /* If we are forcing speed/duplex, then we simply return since
2501                 * we have already determined whether we have link or not.
2502                 */
2503                if (!hw->autoneg)
2504                        return -E1000_ERR_CONFIG;
2505
2506                /* optimize the dsp settings for the igp phy */
2507                e1000_config_dsp_after_link_change(hw, true);
2508
2509                /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2510                 * have Si on board that is 82544 or newer, Auto
2511                 * Speed Detection takes care of MAC speed/duplex
2512                 * configuration.  So we only need to configure Collision
2513                 * Distance in the MAC.  Otherwise, we need to force
2514                 * speed/duplex on the MAC to the current PHY speed/duplex
2515                 * settings.
2516                 */
2517                if ((hw->mac_type >= e1000_82544) &&
2518                    (hw->mac_type != e1000_ce4100))
2519                        e1000_config_collision_dist(hw);
2520                else {
2521                        ret_val = e1000_config_mac_to_phy(hw);
2522                        if (ret_val) {
2523                                e_dbg
2524                                    ("Error configuring MAC to PHY settings\n");
2525                                return ret_val;
2526                        }
2527                }
2528
2529                /* Configure Flow Control now that Auto-Neg has completed. First, we
2530                 * need to restore the desired flow control settings because we may
2531                 * have had to re-autoneg with a different link partner.
2532                 */
2533                ret_val = e1000_config_fc_after_link_up(hw);
2534                if (ret_val) {
2535                        e_dbg("Error configuring flow control\n");
2536                        return ret_val;
2537                }
2538
2539                /* At this point we know that we are on copper and we have
2540                 * auto-negotiated link.  These are conditions for checking the link
2541                 * partner capability register.  We use the link speed to determine if
2542                 * TBI compatibility needs to be turned on or off.  If the link is not
2543                 * at gigabit speed, then TBI compatibility is not needed.  If we are
2544                 * at gigabit speed, we turn on TBI compatibility.
2545                 */
2546                if (hw->tbi_compatibility_en) {
2547                        u16 speed, duplex;
2548                        ret_val =
2549                            e1000_get_speed_and_duplex(hw, &speed, &duplex);
2550                        if (ret_val) {
2551                                e_dbg
2552                                    ("Error getting link speed and duplex\n");
2553                                return ret_val;
2554                        }
2555                        if (speed != SPEED_1000) {
2556                                /* If link speed is not set to gigabit speed, we do not need
2557                                 * to enable TBI compatibility.
2558                                 */
2559                                if (hw->tbi_compatibility_on) {
2560                                        /* If we previously were in the mode, turn it off. */
2561                                        rctl = er32(RCTL);
2562                                        rctl &= ~E1000_RCTL_SBP;
2563                                        ew32(RCTL, rctl);
2564                                        hw->tbi_compatibility_on = false;
2565                                }
2566                        } else {
2567                                /* If TBI compatibility is was previously off, turn it on. For
2568                                 * compatibility with a TBI link partner, we will store bad
2569                                 * packets. Some frames have an additional byte on the end and
2570                                 * will look like CRC errors to to the hardware.
2571                                 */
2572                                if (!hw->tbi_compatibility_on) {
2573                                        hw->tbi_compatibility_on = true;
2574                                        rctl = er32(RCTL);
2575                                        rctl |= E1000_RCTL_SBP;
2576                                        ew32(RCTL, rctl);
2577                                }
2578                        }
2579                }
2580        }
2581
2582        if ((hw->media_type == e1000_media_type_fiber) ||
2583            (hw->media_type == e1000_media_type_internal_serdes))
2584                e1000_check_for_serdes_link_generic(hw);
2585
2586        return E1000_SUCCESS;
2587}
2588
2589/**
2590 * e1000_get_speed_and_duplex
2591 * @hw: Struct containing variables accessed by shared code
2592 * @speed: Speed of the connection
2593 * @duplex: Duplex setting of the connection
2594
2595 * Detects the current speed and duplex settings of the hardware.
2596 */
2597s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2598{
2599        u32 status;
2600        s32 ret_val;
2601        u16 phy_data;
2602
2603        e_dbg("e1000_get_speed_and_duplex");
2604
2605        if (hw->mac_type >= e1000_82543) {
2606                status = er32(STATUS);
2607                if (status & E1000_STATUS_SPEED_1000) {
2608                        *speed = SPEED_1000;
2609                        e_dbg("1000 Mbs, ");
2610                } else if (status & E1000_STATUS_SPEED_100) {
2611                        *speed = SPEED_100;
2612                        e_dbg("100 Mbs, ");
2613                } else {
2614                        *speed = SPEED_10;
2615                        e_dbg("10 Mbs, ");
2616                }
2617
2618                if (status & E1000_STATUS_FD) {
2619                        *duplex = FULL_DUPLEX;
2620                        e_dbg("Full Duplex\n");
2621                } else {
2622                        *duplex = HALF_DUPLEX;
2623                        e_dbg(" Half Duplex\n");
2624                }
2625        } else {
2626                e_dbg("1000 Mbs, Full Duplex\n");
2627                *speed = SPEED_1000;
2628                *duplex = FULL_DUPLEX;
2629        }
2630
2631        /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2632         * if it is operating at half duplex.  Here we set the duplex settings to
2633         * match the duplex in the link partner's capabilities.
2634         */
2635        if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2636                ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2637                if (ret_val)
2638                        return ret_val;
2639
2640                if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2641                        *duplex = HALF_DUPLEX;
2642                else {
2643                        ret_val =
2644                            e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2645                        if (ret_val)
2646                                return ret_val;
2647                        if ((*speed == SPEED_100
2648                             && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2649                            || (*speed == SPEED_10
2650                                && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2651                                *duplex = HALF_DUPLEX;
2652                }
2653        }
2654
2655        return E1000_SUCCESS;
2656}
2657
2658/**
2659 * e1000_wait_autoneg
2660 * @hw: Struct containing variables accessed by shared code
2661 *
2662 * Blocks until autoneg completes or times out (~4.5 seconds)
2663 */
2664static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2665{
2666        s32 ret_val;
2667        u16 i;
2668        u16 phy_data;
2669
2670        e_dbg("e1000_wait_autoneg");
2671        e_dbg("Waiting for Auto-Neg to complete.\n");
2672
2673        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2674        for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2675                /* Read the MII Status Register and wait for Auto-Neg
2676                 * Complete bit to be set.
2677                 */
2678                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2679                if (ret_val)
2680                        return ret_val;
2681                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2682                if (ret_val)
2683                        return ret_val;
2684                if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2685                        return E1000_SUCCESS;
2686                }
2687                msleep(100);
2688        }
2689        return E1000_SUCCESS;
2690}
2691
2692/**
2693 * e1000_raise_mdi_clk - Raises the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699        /* Raise the clock input to the Management Data Clock (by setting the MDC
2700         * bit), and then delay 10 microseconds.
2701         */
2702        ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2703        E1000_WRITE_FLUSH();
2704        udelay(10);
2705}
2706
2707/**
2708 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2709 * @hw: Struct containing variables accessed by shared code
2710 * @ctrl: Device control register's current value
2711 */
2712static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2713{
2714        /* Lower the clock input to the Management Data Clock (by clearing the MDC
2715         * bit), and then delay 10 microseconds.
2716         */
2717        ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2718        E1000_WRITE_FLUSH();
2719        udelay(10);
2720}
2721
2722/**
2723 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2724 * @hw: Struct containing variables accessed by shared code
2725 * @data: Data to send out to the PHY
2726 * @count: Number of bits to shift out
2727 *
2728 * Bits are shifted out in MSB to LSB order.
2729 */
2730static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2731{
2732        u32 ctrl;
2733        u32 mask;
2734
2735        /* We need to shift "count" number of bits out to the PHY. So, the value
2736         * in the "data" parameter will be shifted out to the PHY one bit at a
2737         * time. In order to do this, "data" must be broken down into bits.
2738         */
2739        mask = 0x01;
2740        mask <<= (count - 1);
2741
2742        ctrl = er32(CTRL);
2743
2744        /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2745        ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2746
2747        while (mask) {
2748                /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2749                 * then raising and lowering the Management Data Clock. A "0" is
2750                 * shifted out to the PHY by setting the MDIO bit to "0" and then
2751                 * raising and lowering the clock.
2752                 */
2753                if (data & mask)
2754                        ctrl |= E1000_CTRL_MDIO;
2755                else
2756                        ctrl &= ~E1000_CTRL_MDIO;
2757
2758                ew32(CTRL, ctrl);
2759                E1000_WRITE_FLUSH();
2760
2761                udelay(10);
2762
2763                e1000_raise_mdi_clk(hw, &ctrl);
2764                e1000_lower_mdi_clk(hw, &ctrl);
2765
2766                mask = mask >> 1;
2767        }
2768}
2769
2770/**
2771 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2772 * @hw: Struct containing variables accessed by shared code
2773 *
2774 * Bits are shifted in in MSB to LSB order.
2775 */
2776static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2777{
2778        u32 ctrl;
2779        u16 data = 0;
2780        u8 i;
2781
2782        /* In order to read a register from the PHY, we need to shift in a total
2783         * of 18 bits from the PHY. The first two bit (turnaround) times are used
2784         * to avoid contention on the MDIO pin when a read operation is performed.
2785         * These two bits are ignored by us and thrown away. Bits are "shifted in"
2786         * by raising the input to the Management Data Clock (setting the MDC bit),
2787         * and then reading the value of the MDIO bit.
2788         */
2789        ctrl = er32(CTRL);
2790
2791        /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2792        ctrl &= ~E1000_CTRL_MDIO_DIR;
2793        ctrl &= ~E1000_CTRL_MDIO;
2794
2795        ew32(CTRL, ctrl);
2796        E1000_WRITE_FLUSH();
2797
2798        /* Raise and Lower the clock before reading in the data. This accounts for
2799         * the turnaround bits. The first clock occurred when we clocked out the
2800         * last bit of the Register Address.
2801         */
2802        e1000_raise_mdi_clk(hw, &ctrl);
2803        e1000_lower_mdi_clk(hw, &ctrl);
2804
2805        for (data = 0, i = 0; i < 16; i++) {
2806                data = data << 1;
2807                e1000_raise_mdi_clk(hw, &ctrl);
2808                ctrl = er32(CTRL);
2809                /* Check to see if we shifted in a "1". */
2810                if (ctrl & E1000_CTRL_MDIO)
2811                        data |= 1;
2812                e1000_lower_mdi_clk(hw, &ctrl);
2813        }
2814
2815        e1000_raise_mdi_clk(hw, &ctrl);
2816        e1000_lower_mdi_clk(hw, &ctrl);
2817
2818        return data;
2819}
2820
2821
2822/**
2823 * e1000_read_phy_reg - read a phy register
2824 * @hw: Struct containing variables accessed by shared code
2825 * @reg_addr: address of the PHY register to read
2826 *
2827 * Reads the value from a PHY register, if the value is on a specific non zero
2828 * page, sets the page first.
2829 */
2830s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2831{
2832        u32 ret_val;
2833
2834        e_dbg("e1000_read_phy_reg");
2835
2836        if ((hw->phy_type == e1000_phy_igp) &&
2837            (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2838                ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2839                                                 (u16) reg_addr);
2840                if (ret_val)
2841                        return ret_val;
2842        }
2843
2844        ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2845                                        phy_data);
2846
2847        return ret_val;
2848}
2849
2850static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2851                                 u16 *phy_data)
2852{
2853        u32 i;
2854        u32 mdic = 0;
2855        const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2856
2857        e_dbg("e1000_read_phy_reg_ex");
2858
2859        if (reg_addr > MAX_PHY_REG_ADDRESS) {
2860                e_dbg("PHY Address %d is out of range\n", reg_addr);
2861                return -E1000_ERR_PARAM;
2862        }
2863
2864        if (hw->mac_type > e1000_82543) {
2865                /* Set up Op-code, Phy Address, and register address in the MDI
2866                 * Control register.  The MAC will take care of interfacing with the
2867                 * PHY to retrieve the desired data.
2868                 */
2869                if (hw->mac_type == e1000_ce4100) {
2870                        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2871                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2872                                (INTEL_CE_GBE_MDIC_OP_READ) |
2873                                (INTEL_CE_GBE_MDIC_GO));
2874
2875                        writel(mdic, E1000_MDIO_CMD);
2876
2877                        /* Poll the ready bit to see if the MDI read
2878                         * completed
2879                         */
2880                        for (i = 0; i < 64; i++) {
2881                                udelay(50);
2882                                mdic = readl(E1000_MDIO_CMD);
2883                                if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2884                                        break;
2885                        }
2886
2887                        if (mdic & INTEL_CE_GBE_MDIC_GO) {
2888                                e_dbg("MDI Read did not complete\n");
2889                                return -E1000_ERR_PHY;
2890                        }
2891
2892                        mdic = readl(E1000_MDIO_STS);
2893                        if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2894                                e_dbg("MDI Read Error\n");
2895                                return -E1000_ERR_PHY;
2896                        }
2897                        *phy_data = (u16) mdic;
2898                } else {
2899                        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2900                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2901                                (E1000_MDIC_OP_READ));
2902
2903                        ew32(MDIC, mdic);
2904
2905                        /* Poll the ready bit to see if the MDI read
2906                         * completed
2907                         */
2908                        for (i = 0; i < 64; i++) {
2909                                udelay(50);
2910                                mdic = er32(MDIC);
2911                                if (mdic & E1000_MDIC_READY)
2912                                        break;
2913                        }
2914                        if (!(mdic & E1000_MDIC_READY)) {
2915                                e_dbg("MDI Read did not complete\n");
2916                                return -E1000_ERR_PHY;
2917                        }
2918                        if (mdic & E1000_MDIC_ERROR) {
2919                                e_dbg("MDI Error\n");
2920                                return -E1000_ERR_PHY;
2921                        }
2922                        *phy_data = (u16) mdic;
2923                }
2924        } else {
2925                /* We must first send a preamble through the MDIO pin to signal the
2926                 * beginning of an MII instruction.  This is done by sending 32
2927                 * consecutive "1" bits.
2928                 */
2929                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2930
2931                /* Now combine the next few fields that are required for a read
2932                 * operation.  We use this method instead of calling the
2933                 * e1000_shift_out_mdi_bits routine five different times. The format of
2934                 * a MII read instruction consists of a shift out of 14 bits and is
2935                 * defined as follows:
2936                 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2937                 * followed by a shift in of 18 bits.  This first two bits shifted in
2938                 * are TurnAround bits used to avoid contention on the MDIO pin when a
2939                 * READ operation is performed.  These two bits are thrown away
2940                 * followed by a shift in of 16 bits which contains the desired data.
2941                 */
2942                mdic = ((reg_addr) | (phy_addr << 5) |
2943                        (PHY_OP_READ << 10) | (PHY_SOF << 12));
2944
2945                e1000_shift_out_mdi_bits(hw, mdic, 14);
2946
2947                /* Now that we've shifted out the read command to the MII, we need to
2948                 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2949                 * register address.
2950                 */
2951                *phy_data = e1000_shift_in_mdi_bits(hw);
2952        }
2953        return E1000_SUCCESS;
2954}
2955
2956/**
2957 * e1000_write_phy_reg - write a phy register
2958 *
2959 * @hw: Struct containing variables accessed by shared code
2960 * @reg_addr: address of the PHY register to write
2961 * @data: data to write to the PHY
2962
2963 * Writes a value to a PHY register
2964 */
2965s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2966{
2967        u32 ret_val;
2968
2969        e_dbg("e1000_write_phy_reg");
2970
2971        if ((hw->phy_type == e1000_phy_igp) &&
2972            (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2973                ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2974                                                 (u16) reg_addr);
2975                if (ret_val)
2976                        return ret_val;
2977        }
2978
2979        ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2980                                         phy_data);
2981
2982        return ret_val;
2983}
2984
2985static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2986                                  u16 phy_data)
2987{
2988        u32 i;
2989        u32 mdic = 0;
2990        const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2991
2992        e_dbg("e1000_write_phy_reg_ex");
2993
2994        if (reg_addr > MAX_PHY_REG_ADDRESS) {
2995                e_dbg("PHY Address %d is out of range\n", reg_addr);
2996                return -E1000_ERR_PARAM;
2997        }
2998
2999        if (hw->mac_type > e1000_82543) {
3000                /* Set up Op-code, Phy Address, register address, and data
3001                 * intended for the PHY register in the MDI Control register.
3002                 * The MAC will take care of interfacing with the PHY to send
3003                 * the desired data.
3004                 */
3005                if (hw->mac_type == e1000_ce4100) {
3006                        mdic = (((u32) phy_data) |
3007                                (reg_addr << E1000_MDIC_REG_SHIFT) |
3008                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3009                                (INTEL_CE_GBE_MDIC_OP_WRITE) |
3010                                (INTEL_CE_GBE_MDIC_GO));
3011
3012                        writel(mdic, E1000_MDIO_CMD);
3013
3014                        /* Poll the ready bit to see if the MDI read
3015                         * completed
3016                         */
3017                        for (i = 0; i < 640; i++) {
3018                                udelay(5);
3019                                mdic = readl(E1000_MDIO_CMD);
3020                                if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3021                                        break;
3022                        }
3023                        if (mdic & INTEL_CE_GBE_MDIC_GO) {
3024                                e_dbg("MDI Write did not complete\n");
3025                                return -E1000_ERR_PHY;
3026                        }
3027                } else {
3028                        mdic = (((u32) phy_data) |
3029                                (reg_addr << E1000_MDIC_REG_SHIFT) |
3030                                (phy_addr << E1000_MDIC_PHY_SHIFT) |
3031                                (E1000_MDIC_OP_WRITE));
3032
3033                        ew32(MDIC, mdic);
3034
3035                        /* Poll the ready bit to see if the MDI read
3036                         * completed
3037                         */
3038                        for (i = 0; i < 641; i++) {
3039                                udelay(5);
3040                                mdic = er32(MDIC);
3041                                if (mdic & E1000_MDIC_READY)
3042                                        break;
3043                        }
3044                        if (!(mdic & E1000_MDIC_READY)) {
3045                                e_dbg("MDI Write did not complete\n");
3046                                return -E1000_ERR_PHY;
3047                        }
3048                }
3049        } else {
3050                /* We'll need to use the SW defined pins to shift the write command
3051                 * out to the PHY. We first send a preamble to the PHY to signal the
3052                 * beginning of the MII instruction.  This is done by sending 32
3053                 * consecutive "1" bits.
3054                 */
3055                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3056
3057                /* Now combine the remaining required fields that will indicate a
3058                 * write operation. We use this method instead of calling the
3059                 * e1000_shift_out_mdi_bits routine for each field in the command. The
3060                 * format of a MII write instruction is as follows:
3061                 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3062                 */
3063                mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3064                        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3065                mdic <<= 16;
3066                mdic |= (u32) phy_data;
3067
3068                e1000_shift_out_mdi_bits(hw, mdic, 32);
3069        }
3070
3071        return E1000_SUCCESS;
3072}
3073
3074/**
3075 * e1000_phy_hw_reset - reset the phy, hardware style
3076 * @hw: Struct containing variables accessed by shared code
3077 *
3078 * Returns the PHY to the power-on reset state
3079 */
3080s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3081{
3082        u32 ctrl, ctrl_ext;
3083        u32 led_ctrl;
3084
3085        e_dbg("e1000_phy_hw_reset");
3086
3087        e_dbg("Resetting Phy...\n");
3088
3089        if (hw->mac_type > e1000_82543) {
3090                /* Read the device control register and assert the E1000_CTRL_PHY_RST
3091                 * bit. Then, take it out of reset.
3092                 * For e1000 hardware, we delay for 10ms between the assert
3093                 * and deassert.
3094                 */
3095                ctrl = er32(CTRL);
3096                ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3097                E1000_WRITE_FLUSH();
3098
3099                msleep(10);
3100
3101                ew32(CTRL, ctrl);
3102                E1000_WRITE_FLUSH();
3103
3104        } else {
3105                /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3106                 * bit to put the PHY into reset. Then, take it out of reset.
3107                 */
3108                ctrl_ext = er32(CTRL_EXT);
3109                ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3110                ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3111                ew32(CTRL_EXT, ctrl_ext);
3112                E1000_WRITE_FLUSH();
3113                msleep(10);
3114                ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3115                ew32(CTRL_EXT, ctrl_ext);
3116                E1000_WRITE_FLUSH();
3117        }
3118        udelay(150);
3119
3120        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3121                /* Configure activity LED after PHY reset */
3122                led_ctrl = er32(LEDCTL);
3123                led_ctrl &= IGP_ACTIVITY_LED_MASK;
3124                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3125                ew32(LEDCTL, led_ctrl);
3126        }
3127
3128        /* Wait for FW to finish PHY configuration. */
3129        return e1000_get_phy_cfg_done(hw);
3130}
3131
3132/**
3133 * e1000_phy_reset - reset the phy to commit settings
3134 * @hw: Struct containing variables accessed by shared code
3135 *
3136 * Resets the PHY
3137 * Sets bit 15 of the MII Control register
3138 */
3139s32 e1000_phy_reset(struct e1000_hw *hw)
3140{
3141        s32 ret_val;
3142        u16 phy_data;
3143
3144        e_dbg("e1000_phy_reset");
3145
3146        switch (hw->phy_type) {
3147        case e1000_phy_igp:
3148                ret_val = e1000_phy_hw_reset(hw);
3149                if (ret_val)
3150                        return ret_val;
3151                break;
3152        default:
3153                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3154                if (ret_val)
3155                        return ret_val;
3156
3157                phy_data |= MII_CR_RESET;
3158                ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3159                if (ret_val)
3160                        return ret_val;
3161
3162                udelay(1);
3163                break;
3164        }
3165
3166        if (hw->phy_type == e1000_phy_igp)
3167                e1000_phy_init_script(hw);
3168
3169        return E1000_SUCCESS;
3170}
3171
3172/**
3173 * e1000_detect_gig_phy - check the phy type
3174 * @hw: Struct containing variables accessed by shared code
3175 *
3176 * Probes the expected PHY address for known PHY IDs
3177 */
3178static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3179{
3180        s32 phy_init_status, ret_val;
3181        u16 phy_id_high, phy_id_low;
3182        bool match = false;
3183
3184        e_dbg("e1000_detect_gig_phy");
3185
3186        if (hw->phy_id != 0)
3187                return E1000_SUCCESS;
3188
3189        /* Read the PHY ID Registers to identify which PHY is onboard. */
3190        ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3191        if (ret_val)
3192                return ret_val;
3193
3194        hw->phy_id = (u32) (phy_id_high << 16);
3195        udelay(20);
3196        ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3197        if (ret_val)
3198                return ret_val;
3199
3200        hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3201        hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3202
3203        switch (hw->mac_type) {
3204        case e1000_82543:
3205                if (hw->phy_id == M88E1000_E_PHY_ID)
3206                        match = true;
3207                break;
3208        case e1000_82544:
3209                if (hw->phy_id == M88E1000_I_PHY_ID)
3210                        match = true;
3211                break;
3212        case e1000_82540:
3213        case e1000_82545:
3214        case e1000_82545_rev_3:
3215        case e1000_82546:
3216        case e1000_82546_rev_3:
3217                if (hw->phy_id == M88E1011_I_PHY_ID)
3218                        match = true;
3219                break;
3220        case e1000_ce4100:
3221                if ((hw->phy_id == RTL8211B_PHY_ID) ||
3222                    (hw->phy_id == RTL8201N_PHY_ID) ||
3223                    (hw->phy_id == M88E1118_E_PHY_ID))
3224                        match = true;
3225                break;
3226        case e1000_82541:
3227        case e1000_82541_rev_2:
3228        case e1000_82547:
3229        case e1000_82547_rev_2:
3230                if (hw->phy_id == IGP01E1000_I_PHY_ID)
3231                        match = true;
3232                break;
3233        default:
3234                e_dbg("Invalid MAC type %d\n", hw->mac_type);
3235                return -E1000_ERR_CONFIG;
3236        }
3237        phy_init_status = e1000_set_phy_type(hw);
3238
3239        if ((match) && (phy_init_status == E1000_SUCCESS)) {
3240                e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3241                return E1000_SUCCESS;
3242        }
3243        e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3244        return -E1000_ERR_PHY;
3245}
3246
3247/**
3248 * e1000_phy_reset_dsp - reset DSP
3249 * @hw: Struct containing variables accessed by shared code
3250 *
3251 * Resets the PHY's DSP
3252 */
3253static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3254{
3255        s32 ret_val;
3256        e_dbg("e1000_phy_reset_dsp");
3257
3258        do {
3259                ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3260                if (ret_val)
3261                        break;
3262                ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3263                if (ret_val)
3264                        break;
3265                ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3266                if (ret_val)
3267                        break;
3268                ret_val = E1000_SUCCESS;
3269        } while (0);
3270
3271        return ret_val;
3272}
3273
3274/**
3275 * e1000_phy_igp_get_info - get igp specific registers
3276 * @hw: Struct containing variables accessed by shared code
3277 * @phy_info: PHY information structure
3278 *
3279 * Get PHY information from various PHY registers for igp PHY only.
3280 */
3281static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3282                                  struct e1000_phy_info *phy_info)
3283{
3284        s32 ret_val;
3285        u16 phy_data, min_length, max_length, average;
3286        e1000_rev_polarity polarity;
3287
3288        e_dbg("e1000_phy_igp_get_info");
3289
3290        /* The downshift status is checked only once, after link is established,
3291         * and it stored in the hw->speed_downgraded parameter. */
3292        phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3293
3294        /* IGP01E1000 does not need to support it. */
3295        phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3296
3297        /* IGP01E1000 always correct polarity reversal */
3298        phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3299
3300        /* Check polarity status */
3301        ret_val = e1000_check_polarity(hw, &polarity);
3302        if (ret_val)
3303                return ret_val;
3304
3305        phy_info->cable_polarity = polarity;
3306
3307        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3308        if (ret_val)
3309                return ret_val;
3310
3311        phy_info->mdix_mode =
3312            (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3313                                 IGP01E1000_PSSR_MDIX_SHIFT);
3314
3315        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3316            IGP01E1000_PSSR_SPEED_1000MBPS) {
3317                /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3318                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3319                if (ret_val)
3320                        return ret_val;
3321
3322                phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3323                                      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3324                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3325                phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3326                                       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3327                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3328
3329                /* Get cable length */
3330                ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3331                if (ret_val)
3332                        return ret_val;
3333
3334                /* Translate to old method */
3335                average = (max_length + min_length) / 2;
3336
3337                if (average <= e1000_igp_cable_length_50)
3338                        phy_info->cable_length = e1000_cable_length_50;
3339                else if (average <= e1000_igp_cable_length_80)
3340                        phy_info->cable_length = e1000_cable_length_50_80;
3341                else if (average <= e1000_igp_cable_length_110)
3342                        phy_info->cable_length = e1000_cable_length_80_110;
3343                else if (average <= e1000_igp_cable_length_140)
3344                        phy_info->cable_length = e1000_cable_length_110_140;
3345                else
3346                        phy_info->cable_length = e1000_cable_length_140;
3347        }
3348
3349        return E1000_SUCCESS;
3350}
3351
3352/**
3353 * e1000_phy_m88_get_info - get m88 specific registers
3354 * @hw: Struct containing variables accessed by shared code
3355 * @phy_info: PHY information structure
3356 *
3357 * Get PHY information from various PHY registers for m88 PHY only.
3358 */
3359static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3360                                  struct e1000_phy_info *phy_info)
3361{
3362        s32 ret_val;
3363        u16 phy_data;
3364        e1000_rev_polarity polarity;
3365
3366        e_dbg("e1000_phy_m88_get_info");
3367
3368        /* The downshift status is checked only once, after link is established,
3369         * and it stored in the hw->speed_downgraded parameter. */
3370        phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3371
3372        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3373        if (ret_val)
3374                return ret_val;
3375
3376        phy_info->extended_10bt_distance =
3377            ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3378             M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3379            e1000_10bt_ext_dist_enable_lower :
3380            e1000_10bt_ext_dist_enable_normal;
3381
3382        phy_info->polarity_correction =
3383            ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3384             M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3385            e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3386
3387        /* Check polarity status */
3388        ret_val = e1000_check_polarity(hw, &polarity);
3389        if (ret_val)
3390                return ret_val;
3391        phy_info->cable_polarity = polarity;
3392
3393        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3394        if (ret_val)
3395                return ret_val;
3396
3397        phy_info->mdix_mode =
3398            (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3399                                 M88E1000_PSSR_MDIX_SHIFT);
3400
3401        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3402                /* Cable Length Estimation and Local/Remote Receiver Information
3403                 * are only valid at 1000 Mbps.
3404                 */
3405                phy_info->cable_length =
3406                    (e1000_cable_length) ((phy_data &
3407                                           M88E1000_PSSR_CABLE_LENGTH) >>
3408                                          M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3409
3410                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3411                if (ret_val)
3412                        return ret_val;
3413
3414                phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3415                                      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3416                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3417                phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3418                                       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3419                    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3420
3421        }
3422
3423        return E1000_SUCCESS;
3424}
3425
3426/**
3427 * e1000_phy_get_info - request phy info
3428 * @hw: Struct containing variables accessed by shared code
3429 * @phy_info: PHY information structure
3430 *
3431 * Get PHY information from various PHY registers
3432 */
3433s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3434{
3435        s32 ret_val;
3436        u16 phy_data;
3437
3438        e_dbg("e1000_phy_get_info");
3439
3440        phy_info->cable_length = e1000_cable_length_undefined;
3441        phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3442        phy_info->cable_polarity = e1000_rev_polarity_undefined;
3443        phy_info->downshift = e1000_downshift_undefined;
3444        phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3445        phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3446        phy_info->local_rx = e1000_1000t_rx_status_undefined;
3447        phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3448
3449        if (hw->media_type != e1000_media_type_copper) {
3450                e_dbg("PHY info is only valid for copper media\n");
3451                return -E1000_ERR_CONFIG;
3452        }
3453
3454        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3455        if (ret_val)
3456                return ret_val;
3457
3458        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3459        if (ret_val)
3460                return ret_val;
3461
3462        if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3463                e_dbg("PHY info is only valid if link is up\n");
3464                return -E1000_ERR_CONFIG;
3465        }
3466
3467        if (hw->phy_type == e1000_phy_igp)
3468                return e1000_phy_igp_get_info(hw, phy_info);
3469        else if ((hw->phy_type == e1000_phy_8211) ||
3470                 (hw->phy_type == e1000_phy_8201))
3471                return E1000_SUCCESS;
3472        else
3473                return e1000_phy_m88_get_info(hw, phy_info);
3474}
3475
3476s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3477{
3478        e_dbg("e1000_validate_mdi_settings");
3479
3480        if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3481                e_dbg("Invalid MDI setting detected\n");
3482                hw->mdix = 1;
3483                return -E1000_ERR_CONFIG;
3484        }
3485        return E1000_SUCCESS;
3486}
3487
3488/**
3489 * e1000_init_eeprom_params - initialize sw eeprom vars
3490 * @hw: Struct containing variables accessed by shared code
3491 *
3492 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3493 * is configured.
3494 */
3495s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3496{
3497        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3498        u32 eecd = er32(EECD);
3499        s32 ret_val = E1000_SUCCESS;
3500        u16 eeprom_size;
3501
3502        e_dbg("e1000_init_eeprom_params");
3503
3504        switch (hw->mac_type) {
3505        case e1000_82542_rev2_0:
3506        case e1000_82542_rev2_1:
3507        case e1000_82543:
3508        case e1000_82544:
3509                eeprom->type = e1000_eeprom_microwire;
3510                eeprom->word_size = 64;
3511                eeprom->opcode_bits = 3;
3512                eeprom->address_bits = 6;
3513                eeprom->delay_usec = 50;
3514                break;
3515        case e1000_82540:
3516        case e1000_82545:
3517        case e1000_82545_rev_3:
3518        case e1000_82546:
3519        case e1000_82546_rev_3:
3520                eeprom->type = e1000_eeprom_microwire;
3521                eeprom->opcode_bits = 3;
3522                eeprom->delay_usec = 50;
3523                if (eecd & E1000_EECD_SIZE) {
3524                        eeprom->word_size = 256;
3525                        eeprom->address_bits = 8;
3526                } else {
3527                        eeprom->word_size = 64;
3528                        eeprom->address_bits = 6;
3529                }
3530                break;
3531        case e1000_82541:
3532        case e1000_82541_rev_2:
3533        case e1000_82547:
3534        case e1000_82547_rev_2:
3535                if (eecd & E1000_EECD_TYPE) {
3536                        eeprom->type = e1000_eeprom_spi;
3537                        eeprom->opcode_bits = 8;
3538                        eeprom->delay_usec = 1;
3539                        if (eecd & E1000_EECD_ADDR_BITS) {
3540                                eeprom->page_size = 32;
3541                                eeprom->address_bits = 16;
3542                        } else {
3543                                eeprom->page_size = 8;
3544                                eeprom->address_bits = 8;
3545                        }
3546                } else {
3547                        eeprom->type = e1000_eeprom_microwire;
3548                        eeprom->opcode_bits = 3;
3549                        eeprom->delay_usec = 50;
3550                        if (eecd & E1000_EECD_ADDR_BITS) {
3551                                eeprom->word_size = 256;
3552                                eeprom->address_bits = 8;
3553                        } else {
3554                                eeprom->word_size = 64;
3555                                eeprom->address_bits = 6;
3556                        }
3557                }
3558                break;
3559        default:
3560                break;
3561        }
3562
3563        if (eeprom->type == e1000_eeprom_spi) {
3564                /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3565                 * 32KB (incremented by powers of 2).
3566                 */
3567                /* Set to default value for initial eeprom read. */
3568                eeprom->word_size = 64;
3569                ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3570                if (ret_val)
3571                        return ret_val;
3572                eeprom_size =
3573                    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3574                /* 256B eeprom size was not supported in earlier hardware, so we
3575                 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3576                 * is never the result used in the shifting logic below. */
3577                if (eeprom_size)
3578                        eeprom_size++;
3579
3580                eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3581        }
3582        return ret_val;
3583}
3584
3585/**
3586 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3587 * @hw: Struct containing variables accessed by shared code
3588 * @eecd: EECD's current value
3589 */
3590static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3591{
3592        /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3593         * wait <delay> microseconds.
3594         */
3595        *eecd = *eecd | E1000_EECD_SK;
3596        ew32(EECD, *eecd);
3597        E1000_WRITE_FLUSH();
3598        udelay(hw->eeprom.delay_usec);
3599}
3600
3601/**
3602 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3603 * @hw: Struct containing variables accessed by shared code
3604 * @eecd: EECD's current value
3605 */
3606static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3607{
3608        /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3609         * wait 50 microseconds.
3610         */
3611        *eecd = *eecd & ~E1000_EECD_SK;
3612        ew32(EECD, *eecd);
3613        E1000_WRITE_FLUSH();
3614        udelay(hw->eeprom.delay_usec);
3615}
3616
3617/**
3618 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3619 * @hw: Struct containing variables accessed by shared code
3620 * @data: data to send to the EEPROM
3621 * @count: number of bits to shift out
3622 */
3623static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3624{
3625        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3626        u32 eecd;
3627        u32 mask;
3628
3629        /* We need to shift "count" bits out to the EEPROM. So, value in the
3630         * "data" parameter will be shifted out to the EEPROM one bit at a time.
3631         * In order to do this, "data" must be broken down into bits.
3632         */
3633        mask = 0x01 << (count - 1);
3634        eecd = er32(EECD);
3635        if (eeprom->type == e1000_eeprom_microwire) {
3636                eecd &= ~E1000_EECD_DO;
3637        } else if (eeprom->type == e1000_eeprom_spi) {
3638                eecd |= E1000_EECD_DO;
3639        }
3640        do {
3641                /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3642                 * and then raising and then lowering the clock (the SK bit controls
3643                 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
3644                 * by setting "DI" to "0" and then raising and then lowering the clock.
3645                 */
3646                eecd &= ~E1000_EECD_DI;
3647
3648                if (data & mask)
3649                        eecd |= E1000_EECD_DI;
3650
3651                ew32(EECD, eecd);
3652                E1000_WRITE_FLUSH();
3653
3654                udelay(eeprom->delay_usec);
3655
3656                e1000_raise_ee_clk(hw, &eecd);
3657                e1000_lower_ee_clk(hw, &eecd);
3658
3659                mask = mask >> 1;
3660
3661        } while (mask);
3662
3663        /* We leave the "DI" bit set to "0" when we leave this routine. */
3664        eecd &= ~E1000_EECD_DI;
3665        ew32(EECD, eecd);
3666}
3667
3668/**
3669 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3670 * @hw: Struct containing variables accessed by shared code
3671 * @count: number of bits to shift in
3672 */
3673static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3674{
3675        u32 eecd;
3676        u32 i;
3677        u16 data;
3678
3679        /* In order to read a register from the EEPROM, we need to shift 'count'
3680         * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3681         * input to the EEPROM (setting the SK bit), and then reading the value of
3682         * the "DO" bit.  During this "shifting in" process the "DI" bit should
3683         * always be clear.
3684         */
3685
3686        eecd = er32(EECD);
3687
3688        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3689        data = 0;
3690
3691        for (i = 0; i < count; i++) {
3692                data = data << 1;
3693                e1000_raise_ee_clk(hw, &eecd);
3694
3695                eecd = er32(EECD);
3696
3697                eecd &= ~(E1000_EECD_DI);
3698                if (eecd & E1000_EECD_DO)
3699                        data |= 1;
3700
3701                e1000_lower_ee_clk(hw, &eecd);
3702        }
3703
3704        return data;
3705}
3706
3707/**
3708 * e1000_acquire_eeprom - Prepares EEPROM for access
3709 * @hw: Struct containing variables accessed by shared code
3710 *
3711 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3712 * function should be called before issuing a command to the EEPROM.
3713 */
3714static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3715{
3716        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3717        u32 eecd, i = 0;
3718
3719        e_dbg("e1000_acquire_eeprom");
3720
3721        eecd = er32(EECD);
3722
3723        /* Request EEPROM Access */
3724        if (hw->mac_type > e1000_82544) {
3725                eecd |= E1000_EECD_REQ;
3726                ew32(EECD, eecd);
3727                eecd = er32(EECD);
3728                while ((!(eecd & E1000_EECD_GNT)) &&
3729                       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3730                        i++;
3731                        udelay(5);
3732                        eecd = er32(EECD);
3733                }
3734                if (!(eecd & E1000_EECD_GNT)) {
3735                        eecd &= ~E1000_EECD_REQ;
3736                        ew32(EECD, eecd);
3737                        e_dbg("Could not acquire EEPROM grant\n");
3738                        return -E1000_ERR_EEPROM;
3739                }
3740        }
3741
3742        /* Setup EEPROM for Read/Write */
3743
3744        if (eeprom->type == e1000_eeprom_microwire) {
3745                /* Clear SK and DI */
3746                eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3747                ew32(EECD, eecd);
3748
3749                /* Set CS */
3750                eecd |= E1000_EECD_CS;
3751                ew32(EECD, eecd);
3752        } else if (eeprom->type == e1000_eeprom_spi) {
3753                /* Clear SK and CS */
3754                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755                ew32(EECD, eecd);
3756                E1000_WRITE_FLUSH();
3757                udelay(1);
3758        }
3759
3760        return E1000_SUCCESS;
3761}
3762
3763/**
3764 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3765 * @hw: Struct containing variables accessed by shared code
3766 */
3767static void e1000_standby_eeprom(struct e1000_hw *hw)
3768{
3769        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3770        u32 eecd;
3771
3772        eecd = er32(EECD);
3773
3774        if (eeprom->type == e1000_eeprom_microwire) {
3775                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3776                ew32(EECD, eecd);
3777                E1000_WRITE_FLUSH();
3778                udelay(eeprom->delay_usec);
3779
3780                /* Clock high */
3781                eecd |= E1000_EECD_SK;
3782                ew32(EECD, eecd);
3783                E1000_WRITE_FLUSH();
3784                udelay(eeprom->delay_usec);
3785
3786                /* Select EEPROM */
3787                eecd |= E1000_EECD_CS;
3788                ew32(EECD, eecd);
3789                E1000_WRITE_FLUSH();
3790                udelay(eeprom->delay_usec);
3791
3792                /* Clock low */
3793                eecd &= ~E1000_EECD_SK;
3794                ew32(EECD, eecd);
3795                E1000_WRITE_FLUSH();
3796                udelay(eeprom->delay_usec);
3797        } else if (eeprom->type == e1000_eeprom_spi) {
3798                /* Toggle CS to flush commands */
3799                eecd |= E1000_EECD_CS;
3800                ew32(EECD, eecd);
3801                E1000_WRITE_FLUSH();
3802                udelay(eeprom->delay_usec);
3803                eecd &= ~E1000_EECD_CS;
3804                ew32(EECD, eecd);
3805                E1000_WRITE_FLUSH();
3806                udelay(eeprom->delay_usec);
3807        }
3808}
3809
3810/**
3811 * e1000_release_eeprom - drop chip select
3812 * @hw: Struct containing variables accessed by shared code
3813 *
3814 * Terminates a command by inverting the EEPROM's chip select pin
3815 */
3816static void e1000_release_eeprom(struct e1000_hw *hw)
3817{
3818        u32 eecd;
3819
3820        e_dbg("e1000_release_eeprom");
3821
3822        eecd = er32(EECD);
3823
3824        if (hw->eeprom.type == e1000_eeprom_spi) {
3825                eecd |= E1000_EECD_CS;  /* Pull CS high */
3826                eecd &= ~E1000_EECD_SK; /* Lower SCK */
3827
3828                ew32(EECD, eecd);
3829                E1000_WRITE_FLUSH();
3830
3831                udelay(hw->eeprom.delay_usec);
3832        } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833                /* cleanup eeprom */
3834
3835                /* CS on Microwire is active-high */
3836                eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3837
3838                ew32(EECD, eecd);
3839
3840                /* Rising edge of clock */
3841                eecd |= E1000_EECD_SK;
3842                ew32(EECD, eecd);
3843                E1000_WRITE_FLUSH();
3844                udelay(hw->eeprom.delay_usec);
3845
3846                /* Falling edge of clock */
3847                eecd &= ~E1000_EECD_SK;
3848                ew32(EECD, eecd);
3849                E1000_WRITE_FLUSH();
3850                udelay(hw->eeprom.delay_usec);
3851        }
3852
3853        /* Stop requesting EEPROM access */
3854        if (hw->mac_type > e1000_82544) {
3855                eecd &= ~E1000_EECD_REQ;
3856                ew32(EECD, eecd);
3857        }
3858}
3859
3860/**
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3863 */
3864static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3865{
3866        u16 retry_count = 0;
3867        u8 spi_stat_reg;
3868
3869        e_dbg("e1000_spi_eeprom_ready");
3870
3871        /* Read "Status Register" repeatedly until the LSB is cleared.  The
3872         * EEPROM will signal that the command has been completed by clearing
3873         * bit 0 of the internal status register.  If it's not cleared within
3874         * 5 milliseconds, then error out.
3875         */
3876        retry_count = 0;
3877        do {
3878                e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879                                        hw->eeprom.opcode_bits);
3880                spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881                if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3882                        break;
3883
3884                udelay(5);
3885                retry_count += 5;
3886
3887                e1000_standby_eeprom(hw);
3888        } while (retry_count < EEPROM_MAX_RETRY_SPI);
3889
3890        /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891         * only 0-5mSec on 5V devices)
3892         */
3893        if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3894                e_dbg("SPI EEPROM Status error\n");
3895                return -E1000_ERR_EEPROM;
3896        }
3897
3898        return E1000_SUCCESS;
3899}
3900
3901/**
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of  word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3907 */
3908s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3909{
3910        s32 ret;
3911        spin_lock(&e1000_eeprom_lock);
3912        ret = e1000_do_read_eeprom(hw, offset, words, data);
3913        spin_unlock(&e1000_eeprom_lock);
3914        return ret;
3915}
3916
3917static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3918                                u16 *data)
3919{
3920        struct e1000_eeprom_info *eeprom = &hw->eeprom;
3921        u32 i = 0;
3922
3923        e_dbg("e1000_read_eeprom");
3924
3925        if (hw->mac_type == e1000_ce4100) {
3926                GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3927                                      data);
3928                return E1000_SUCCESS;
3929        }
3930
3931        /* If eeprom is not yet detected, do so now */
3932        if (eeprom->word_size == 0)
3933                e1000_init_eeprom_params(hw);
3934
3935        /* A check for invalid values:  offset too large, too many words, and not
3936         * enough words.
3937         */
3938        if ((offset >= eeprom->word_size)
3939            || (words > eeprom->word_size - offset) || (words == 0)) {
3940                e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941                      "size = %d\n", offset, eeprom->word_size);
3942                return -E1000_ERR_EEPROM;
3943        }
3944
3945        /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946         * directly. In this case, we need to acquire the EEPROM so that
3947         * FW or other port software does not interrupt.
3948         */
3949        /* Prepare the EEPROM for bit-bang reading */
3950        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951                return -E1000_ERR_EEPROM;
3952
3953        /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3954         * acquired the EEPROM at this point, so any returns should release it */
3955        if (eeprom->type == e1000_eeprom_spi) {
3956                u16 word_in;
3957                u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3958
3959                if (e1000_spi_eeprom_ready(hw)) {
3960                        e1000_release_eeprom(hw);
3961                        return -E1000_ERR_EEPROM;
3962                }
3963
3964                e1000_standby_eeprom(hw);
3965
3966                /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3967                if ((eeprom->address_bits == 8) && (offset >= 128))
3968                        read_opcode |= EEPROM_A8_OPCODE_SPI;
3969
3970                /* Send the READ command (opcode + addr)  */
3971                e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972                e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973                                        eeprom->address_bits);
3974
3975                /* Read the data.  The address of the eeprom internally increments with
3976                 * each byte (spi) being read, saving on the overhead of eeprom setup
3977                 * and tear-down.  The address counter will roll over if reading beyond
3978                 * the size of the eeprom, thus allowing the entire memory to be read
3979                 * starting from any offset. */
3980                for (i = 0; i < words; i++) {
3981                        word_in = e1000_shift_in_ee_bits(hw, 16);
3982                        data[i] = (word_in >> 8) | (word_in << 8);
3983                }
3984        } else if (eeprom->type == e1000_eeprom_microwire) {
3985                for (i = 0; i < words; i++) {
3986                        /* Send the READ command (opcode + addr)  */
3987                        e1000_shift_out_ee_bits(hw,
3988                                                EEPROM_READ_OPCODE_MICROWIRE,
3989                                                eeprom->opcode_bits);
3990                        e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991                                                eeprom->address_bits);
3992
3993                        /* Read the data.  For microwire, each word requires the overhead
3994                         * of eeprom setup and tear-down. */
3995                        data[i] = e1000_shift_in_ee_bits(hw, 16);
3996                        e1000_standby_eeprom(hw);
3997                }
3998        }
3999
4000        /* End this read operation */
4001        e1000_release_eeprom(hw);
4002
4003        return E1000_SUCCESS;
4004}
4005
4006/**
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
4009 *
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4012 * valid.
4013 */
4014s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4015{
4016        u16 checksum = 0;
4017        u16 i, eeprom_data;
4018
4019        e_dbg("e1000_validate_eeprom_checksum");
4020
4021        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022                if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4023                        e_dbg("EEPROM Read Error\n");
4024                        return -E1000_ERR_EEPROM;
4025                }
4026                checksum += eeprom_data;
4027        }
4028
4029#ifdef CONFIG_PARISC
4030        /* This is a signature and not a checksum on HP c8000 */
4031        if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4032                return E1000_SUCCESS;
4033
4034#endif
4035        if (checksum == (u16) EEPROM_SUM)
4036                return E1000_SUCCESS;
4037        else {
4038                e_dbg("EEPROM Checksum Invalid\n");
4039                return -E1000_ERR_EEPROM;
4040        }
4041}
4042
4043/**
4044 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4045 * @hw: Struct containing variables accessed by shared code
4046 *
4047 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4048 * Writes the difference to word offset 63 of the EEPROM.
4049 */
4050s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4051{
4052        u16 checksum = 0;
4053        u16 i, eeprom_data;
4054
4055        e_dbg("e1000_update_eeprom_checksum");
4056
4057        for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4058                if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4059                        e_dbg("EEPROM Read Error\n");
4060                        return -E1000_ERR_EEPROM;
4061                }
4062                checksum += eeprom_data;
4063        }
4064        checksum = (u16) EEPROM_SUM - checksum;
4065        if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4066                e_dbg("EEPROM Write Error\n");
4067                return -E1000_ERR_EEPROM;
4068        }
4069        return E1000_SUCCESS;
4070}
4071
4072/**
4073 * e1000_write_eeprom - write words to the different EEPROM types.
4074 * @hw: Struct containing variables accessed by shared code
4075 * @offset: offset within the EEPROM to be written to
4076 * @words: number of words to write
4077 * @data: 16 bit word to be written to the EEPROM
4078 *
4079 * If e1000_update_eeprom_checksum is not called after this function, the
4080 * EEPROM will most likely contain an invalid checksum.
4081 */
4082s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4083{
4084        s32 ret;
4085        spin_lock(&e1000_eeprom_lock);
4086        ret = e1000_do_write_eeprom(hw, offset, words, data);
4087        spin_unlock(&e1000_eeprom_lock);
4088        return ret;
4089}
4090
4091static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4092                                 u16 *data)
4093{
4094        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4095        s32 status = 0;
4096
4097        e_dbg("e1000_write_eeprom");
4098
4099        if (hw->mac_type == e1000_ce4100) {
4100                GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4101                                       data);
4102                return E1000_SUCCESS;
4103        }
4104
4105        /* If eeprom is not yet detected, do so now */
4106        if (eeprom->word_size == 0)
4107                e1000_init_eeprom_params(hw);
4108
4109        /* A check for invalid values:  offset too large, too many words, and not
4110         * enough words.
4111         */
4112        if ((offset >= eeprom->word_size)
4113            || (words > eeprom->word_size - offset) || (words == 0)) {
4114                e_dbg("\"words\" parameter out of bounds\n");
4115                return -E1000_ERR_EEPROM;
4116        }
4117
4118        /* Prepare the EEPROM for writing  */
4119        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4120                return -E1000_ERR_EEPROM;
4121
4122        if (eeprom->type == e1000_eeprom_microwire) {
4123                status = e1000_write_eeprom_microwire(hw, offset, words, data);
4124        } else {
4125                status = e1000_write_eeprom_spi(hw, offset, words, data);
4126                msleep(10);
4127        }
4128
4129        /* Done with writing */
4130        e1000_release_eeprom(hw);
4131
4132        return status;
4133}
4134
4135/**
4136 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4137 * @hw: Struct containing variables accessed by shared code
4138 * @offset: offset within the EEPROM to be written to
4139 * @words: number of words to write
4140 * @data: pointer to array of 8 bit words to be written to the EEPROM
4141 */
4142static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4143                                  u16 *data)
4144{
4145        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4146        u16 widx = 0;
4147
4148        e_dbg("e1000_write_eeprom_spi");
4149
4150        while (widx < words) {
4151                u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4152
4153                if (e1000_spi_eeprom_ready(hw))
4154                        return -E1000_ERR_EEPROM;
4155
4156                e1000_standby_eeprom(hw);
4157
4158                /*  Send the WRITE ENABLE command (8 bit opcode )  */
4159                e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4160                                        eeprom->opcode_bits);
4161
4162                e1000_standby_eeprom(hw);
4163
4164                /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4165                if ((eeprom->address_bits == 8) && (offset >= 128))
4166                        write_opcode |= EEPROM_A8_OPCODE_SPI;
4167
4168                /* Send the Write command (8-bit opcode + addr) */
4169                e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4170
4171                e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4172                                        eeprom->address_bits);
4173
4174                /* Send the data */
4175
4176                /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4177                while (widx < words) {
4178                        u16 word_out = data[widx];
4179                        word_out = (word_out >> 8) | (word_out << 8);
4180                        e1000_shift_out_ee_bits(hw, word_out, 16);
4181                        widx++;
4182
4183                        /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4184                         * operation, while the smaller eeproms are capable of an 8-byte
4185                         * PAGE WRITE operation.  Break the inner loop to pass new address
4186                         */
4187                        if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4188                                e1000_standby_eeprom(hw);
4189                                break;
4190                        }
4191                }
4192        }
4193
4194        return E1000_SUCCESS;
4195}
4196
4197/**
4198 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4199 * @hw: Struct containing variables accessed by shared code
4200 * @offset: offset within the EEPROM to be written to
4201 * @words: number of words to write
4202 * @data: pointer to array of 8 bit words to be written to the EEPROM
4203 */
4204static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4205                                        u16 words, u16 *data)
4206{
4207        struct e1000_eeprom_info *eeprom = &hw->eeprom;
4208        u32 eecd;
4209        u16 words_written = 0;
4210        u16 i = 0;
4211
4212        e_dbg("e1000_write_eeprom_microwire");
4213
4214        /* Send the write enable command to the EEPROM (3-bit opcode plus
4215         * 6/8-bit dummy address beginning with 11).  It's less work to include
4216         * the 11 of the dummy address as part of the opcode than it is to shift
4217         * it over the correct number of bits for the address.  This puts the
4218         * EEPROM into write/erase mode.
4219         */
4220        e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4221                                (u16) (eeprom->opcode_bits + 2));
4222
4223        e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4224
4225        /* Prepare the EEPROM */
4226        e1000_standby_eeprom(hw);
4227
4228        while (words_written < words) {
4229                /* Send the Write command (3-bit opcode + addr) */
4230                e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4231                                        eeprom->opcode_bits);
4232
4233                e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4234                                        eeprom->address_bits);
4235
4236                /* Send the data */
4237                e1000_shift_out_ee_bits(hw, data[words_written], 16);
4238
4239                /* Toggle the CS line.  This in effect tells the EEPROM to execute
4240                 * the previous command.
4241                 */
4242                e1000_standby_eeprom(hw);
4243
4244                /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
4245                 * signal that the command has been completed by raising the DO signal.
4246                 * If DO does not go high in 10 milliseconds, then error out.
4247                 */
4248                for (i = 0; i < 200; i++) {
4249                        eecd = er32(EECD);
4250                        if (eecd & E1000_EECD_DO)
4251                                break;
4252                        udelay(50);
4253                }
4254                if (i == 200) {
4255                        e_dbg("EEPROM Write did not complete\n");
4256                        return -E1000_ERR_EEPROM;
4257                }
4258
4259                /* Recover from write */
4260                e1000_standby_eeprom(hw);
4261
4262                words_written++;
4263        }
4264
4265        /* Send the write disable command to the EEPROM (3-bit opcode plus
4266         * 6/8-bit dummy address beginning with 10).  It's less work to include
4267         * the 10 of the dummy address as part of the opcode than it is to shift
4268         * it over the correct number of bits for the address.  This takes the
4269         * EEPROM out of write/erase mode.
4270         */
4271        e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4272                                (u16) (eeprom->opcode_bits + 2));
4273
4274        e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4275
4276        return E1000_SUCCESS;
4277}
4278
4279/**
4280 * e1000_read_mac_addr - read the adapters MAC from eeprom
4281 * @hw: Struct containing variables accessed by shared code
4282 *
4283 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4284 * second function of dual function devices
4285 */
4286s32 e1000_read_mac_addr(struct e1000_hw *hw)
4287{
4288        u16 offset;
4289        u16 eeprom_data, i;
4290
4291        e_dbg("e1000_read_mac_addr");
4292
4293        for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4294                offset = i >> 1;
4295                if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4296                        e_dbg("EEPROM Read Error\n");
4297                        return -E1000_ERR_EEPROM;
4298                }
4299                hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4300                hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4301        }
4302
4303        switch (hw->mac_type) {
4304        default:
4305                break;
4306        case e1000_82546:
4307        case e1000_82546_rev_3:
4308                if (er32(STATUS) & E1000_STATUS_FUNC_1)
4309                        hw->perm_mac_addr[5] ^= 0x01;
4310                break;
4311        }
4312
4313        for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4314                hw->mac_addr[i] = hw->perm_mac_addr[i];
4315        return E1000_SUCCESS;
4316}
4317
4318/**
4319 * e1000_init_rx_addrs - Initializes receive address filters.
4320 * @hw: Struct containing variables accessed by shared code
4321 *
4322 * Places the MAC address in receive address register 0 and clears the rest
4323 * of the receive address registers. Clears the multicast table. Assumes
4324 * the receiver is in reset when the routine is called.
4325 */
4326static void e1000_init_rx_addrs(struct e1000_hw *hw)
4327{
4328        u32 i;
4329        u32 rar_num;
4330
4331        e_dbg("e1000_init_rx_addrs");
4332
4333        /* Setup the receive address. */
4334        e_dbg("Programming MAC Address into RAR[0]\n");
4335
4336        e1000_rar_set(hw, hw->mac_addr, 0);
4337
4338        rar_num = E1000_RAR_ENTRIES;
4339
4340        /* Zero out the other 15 receive addresses. */
4341        e_dbg("Clearing RAR[1-15]\n");
4342        for (i = 1; i < rar_num; i++) {
4343                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4344                E1000_WRITE_FLUSH();
4345                E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4346                E1000_WRITE_FLUSH();
4347        }
4348}
4349
4350/**
4351 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4352 * @hw: Struct containing variables accessed by shared code
4353 * @mc_addr: the multicast address to hash
4354 */
4355u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4356{
4357        u32 hash_value = 0;
4358
4359        /* The portion of the address that is used for the hash table is
4360         * determined by the mc_filter_type setting.
4361         */
4362        switch (hw->mc_filter_type) {
4363                /* [0] [1] [2] [3] [4] [5]
4364                 * 01  AA  00  12  34  56
4365                 * LSB                 MSB
4366                 */
4367        case 0:
4368                /* [47:36] i.e. 0x563 for above example address */
4369                hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4370                break;
4371        case 1:
4372                /* [46:35] i.e. 0xAC6 for above example address */
4373                hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4374                break;
4375        case 2:
4376                /* [45:34] i.e. 0x5D8 for above example address */
4377                hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4378                break;
4379        case 3:
4380                /* [43:32] i.e. 0x634 for above example address */
4381                hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4382                break;
4383        }
4384
4385        hash_value &= 0xFFF;
4386        return hash_value;
4387}
4388
4389/**
4390 * e1000_rar_set - Puts an ethernet address into a receive address register.
4391 * @hw: Struct containing variables accessed by shared code
4392 * @addr: Address to put into receive address register
4393 * @index: Receive address register to write
4394 */
4395void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4396{
4397        u32 rar_low, rar_high;
4398
4399        /* HW expects these in little endian so we reverse the byte order
4400         * from network order (big endian) to little endian
4401         */
4402        rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4403                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4404        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4405
4406        /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4407         * unit hang.
4408         *
4409         * Description:
4410         * If there are any Rx frames queued up or otherwise present in the HW
4411         * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4412         * hang.  To work around this issue, we have to disable receives and
4413         * flush out all Rx frames before we enable RSS. To do so, we modify we
4414         * redirect all Rx traffic to manageability and then reset the HW.
4415         * This flushes away Rx frames, and (since the redirections to
4416         * manageability persists across resets) keeps new ones from coming in
4417         * while we work.  Then, we clear the Address Valid AV bit for all MAC
4418         * addresses and undo the re-direction to manageability.
4419         * Now, frames are coming in again, but the MAC won't accept them, so
4420         * far so good.  We now proceed to initialize RSS (if necessary) and
4421         * configure the Rx unit.  Last, we re-enable the AV bits and continue
4422         * on our merry way.
4423         */
4424        switch (hw->mac_type) {
4425        default:
4426                /* Indicate to hardware the Address is Valid. */
4427                rar_high |= E1000_RAH_AV;
4428                break;
4429        }
4430
4431        E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4432        E1000_WRITE_FLUSH();
4433        E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4434        E1000_WRITE_FLUSH();
4435}
4436
4437/**
4438 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4439 * @hw: Struct containing variables accessed by shared code
4440 * @offset: Offset in VLAN filer table to write
4441 * @value: Value to write into VLAN filter table
4442 */
4443void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4444{
4445        u32 temp;
4446
4447        if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4448                temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4449                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4450                E1000_WRITE_FLUSH();
4451                E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4452                E1000_WRITE_FLUSH();
4453        } else {
4454                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4455                E1000_WRITE_FLUSH();
4456        }
4457}
4458
4459/**
4460 * e1000_clear_vfta - Clears the VLAN filer table
4461 * @hw: Struct containing variables accessed by shared code
4462 */
4463static void e1000_clear_vfta(struct e1000_hw *hw)
4464{
4465        u32 offset;
4466        u32 vfta_value = 0;
4467        u32 vfta_offset = 0;
4468        u32 vfta_bit_in_reg = 0;
4469
4470        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4471                /* If the offset we want to clear is the same offset of the
4472                 * manageability VLAN ID, then clear all bits except that of the
4473                 * manageability unit */
4474                vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4475                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4476                E1000_WRITE_FLUSH();
4477        }
4478}
4479
4480static s32 e1000_id_led_init(struct e1000_hw *hw)
4481{
4482        u32 ledctl;
4483        const u32 ledctl_mask = 0x000000FF;
4484        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4485        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4486        u16 eeprom_data, i, temp;
4487        const u16 led_mask = 0x0F;
4488
4489        e_dbg("e1000_id_led_init");
4490
4491        if (hw->mac_type < e1000_82540) {
4492                /* Nothing to do */
4493                return E1000_SUCCESS;
4494        }
4495
4496        ledctl = er32(LEDCTL);
4497        hw->ledctl_default = ledctl;
4498        hw->ledctl_mode1 = hw->ledctl_default;
4499        hw->ledctl_mode2 = hw->ledctl_default;
4500
4501        if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4502                e_dbg("EEPROM Read Error\n");
4503                return -E1000_ERR_EEPROM;
4504        }
4505
4506        if ((eeprom_data == ID_LED_RESERVED_0000) ||
4507            (eeprom_data == ID_LED_RESERVED_FFFF)) {
4508                eeprom_data = ID_LED_DEFAULT;
4509        }
4510
4511        for (i = 0; i < 4; i++) {
4512                temp = (eeprom_data >> (i << 2)) & led_mask;
4513                switch (temp) {
4514                case ID_LED_ON1_DEF2:
4515                case ID_LED_ON1_ON2:
4516                case ID_LED_ON1_OFF2:
4517                        hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518                        hw->ledctl_mode1 |= ledctl_on << (i << 3);
4519                        break;
4520                case ID_LED_OFF1_DEF2:
4521                case ID_LED_OFF1_ON2:
4522                case ID_LED_OFF1_OFF2:
4523                        hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4524                        hw->ledctl_mode1 |= ledctl_off << (i << 3);
4525                        break;
4526                default:
4527                        /* Do nothing */
4528                        break;
4529                }
4530                switch (temp) {
4531                case ID_LED_DEF1_ON2:
4532                case ID_LED_ON1_ON2:
4533                case ID_LED_OFF1_ON2:
4534                        hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535                        hw->ledctl_mode2 |= ledctl_on << (i << 3);
4536                        break;
4537                case ID_LED_DEF1_OFF2:
4538                case ID_LED_ON1_OFF2:
4539                case ID_LED_OFF1_OFF2:
4540                        hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4541                        hw->ledctl_mode2 |= ledctl_off << (i << 3);
4542                        break;
4543                default:
4544                        /* Do nothing */
4545                        break;
4546                }
4547        }
4548        return E1000_SUCCESS;
4549}
4550
4551/**
4552 * e1000_setup_led
4553 * @hw: Struct containing variables accessed by shared code
4554 *
4555 * Prepares SW controlable LED for use and saves the current state of the LED.
4556 */
4557s32 e1000_setup_led(struct e1000_hw *hw)
4558{
4559        u32 ledctl;
4560        s32 ret_val = E1000_SUCCESS;
4561
4562        e_dbg("e1000_setup_led");
4563
4564        switch (hw->mac_type) {
4565        case e1000_82542_rev2_0:
4566        case e1000_82542_rev2_1:
4567        case e1000_82543:
4568        case e1000_82544:
4569                /* No setup necessary */
4570                break;
4571        case e1000_82541:
4572        case e1000_82547:
4573        case e1000_82541_rev_2:
4574        case e1000_82547_rev_2:
4575                /* Turn off PHY Smart Power Down (if enabled) */
4576                ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4577                                             &hw->phy_spd_default);
4578                if (ret_val)
4579                        return ret_val;
4580                ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4581                                              (u16) (hw->phy_spd_default &
4582                                                     ~IGP01E1000_GMII_SPD));
4583                if (ret_val)
4584                        return ret_val;
4585                /* Fall Through */
4586        default:
4587                if (hw->media_type == e1000_media_type_fiber) {
4588                        ledctl = er32(LEDCTL);
4589                        /* Save current LEDCTL settings */
4590                        hw->ledctl_default = ledctl;
4591                        /* Turn off LED0 */
4592                        ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4593                                    E1000_LEDCTL_LED0_BLINK |
4594                                    E1000_LEDCTL_LED0_MODE_MASK);
4595                        ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4596                                   E1000_LEDCTL_LED0_MODE_SHIFT);
4597                        ew32(LEDCTL, ledctl);
4598                } else if (hw->media_type == e1000_media_type_copper)
4599                        ew32(LEDCTL, hw->ledctl_mode1);
4600                break;
4601        }
4602
4603        return E1000_SUCCESS;
4604}
4605
4606/**
4607 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4608 * @hw: Struct containing variables accessed by shared code
4609 */
4610s32 e1000_cleanup_led(struct e1000_hw *hw)
4611{
4612        s32 ret_val = E1000_SUCCESS;
4613
4614        e_dbg("e1000_cleanup_led");
4615
4616        switch (hw->mac_type) {
4617        case e1000_82542_rev2_0:
4618        case e1000_82542_rev2_1:
4619        case e1000_82543:
4620        case e1000_82544:
4621                /* No cleanup necessary */
4622                break;
4623        case e1000_82541:
4624        case e1000_82547:
4625        case e1000_82541_rev_2:
4626        case e1000_82547_rev_2:
4627                /* Turn on PHY Smart Power Down (if previously enabled) */
4628                ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4629                                              hw->phy_spd_default);
4630                if (ret_val)
4631                        return ret_val;
4632                /* Fall Through */
4633        default:
4634                /* Restore LEDCTL settings */
4635                ew32(LEDCTL, hw->ledctl_default);
4636                break;
4637        }
4638
4639        return E1000_SUCCESS;
4640}
4641
4642/**
4643 * e1000_led_on - Turns on the software controllable LED
4644 * @hw: Struct containing variables accessed by shared code
4645 */
4646s32 e1000_led_on(struct e1000_hw *hw)
4647{
4648        u32 ctrl = er32(CTRL);
4649
4650        e_dbg("e1000_led_on");
4651
4652        switch (hw->mac_type) {
4653        case e1000_82542_rev2_0:
4654        case e1000_82542_rev2_1:
4655        case e1000_82543:
4656                /* Set SW Defineable Pin 0 to turn on the LED */
4657                ctrl |= E1000_CTRL_SWDPIN0;
4658                ctrl |= E1000_CTRL_SWDPIO0;
4659                break;
4660        case e1000_82544:
4661                if (hw->media_type == e1000_media_type_fiber) {
4662                        /* Set SW Defineable Pin 0 to turn on the LED */
4663                        ctrl |= E1000_CTRL_SWDPIN0;
4664                        ctrl |= E1000_CTRL_SWDPIO0;
4665                } else {
4666                        /* Clear SW Defineable Pin 0 to turn on the LED */
4667                        ctrl &= ~E1000_CTRL_SWDPIN0;
4668                        ctrl |= E1000_CTRL_SWDPIO0;
4669                }
4670                break;
4671        default:
4672                if (hw->media_type == e1000_media_type_fiber) {
4673                        /* Clear SW Defineable Pin 0 to turn on the LED */
4674                        ctrl &= ~E1000_CTRL_SWDPIN0;
4675                        ctrl |= E1000_CTRL_SWDPIO0;
4676                } else if (hw->media_type == e1000_media_type_copper) {
4677                        ew32(LEDCTL, hw->ledctl_mode2);
4678                        return E1000_SUCCESS;
4679                }
4680                break;
4681        }
4682
4683        ew32(CTRL, ctrl);
4684
4685        return E1000_SUCCESS;
4686}
4687
4688/**
4689 * e1000_led_off - Turns off the software controllable LED
4690 * @hw: Struct containing variables accessed by shared code
4691 */
4692s32 e1000_led_off(struct e1000_hw *hw)
4693{
4694        u32 ctrl = er32(CTRL);
4695
4696        e_dbg("e1000_led_off");
4697
4698        switch (hw->mac_type) {
4699        case e1000_82542_rev2_0:
4700        case e1000_82542_rev2_1:
4701        case e1000_82543:
4702                /* Clear SW Defineable Pin 0 to turn off the LED */
4703                ctrl &= ~E1000_CTRL_SWDPIN0;
4704                ctrl |= E1000_CTRL_SWDPIO0;
4705                break;
4706        case e1000_82544:
4707                if (hw->media_type == e1000_media_type_fiber) {
4708                        /* Clear SW Defineable Pin 0 to turn off the LED */
4709                        ctrl &= ~E1000_CTRL_SWDPIN0;
4710                        ctrl |= E1000_CTRL_SWDPIO0;
4711                } else {
4712                        /* Set SW Defineable Pin 0 to turn off the LED */
4713                        ctrl |= E1000_CTRL_SWDPIN0;
4714                        ctrl |= E1000_CTRL_SWDPIO0;
4715                }
4716                break;
4717        default:
4718                if (hw->media_type == e1000_media_type_fiber) {
4719                        /* Set SW Defineable Pin 0 to turn off the LED */
4720                        ctrl |= E1000_CTRL_SWDPIN0;
4721                        ctrl |= E1000_CTRL_SWDPIO0;
4722                } else if (hw->media_type == e1000_media_type_copper) {
4723                        ew32(LEDCTL, hw->ledctl_mode1);
4724                        return E1000_SUCCESS;
4725                }
4726                break;
4727        }
4728
4729        ew32(CTRL, ctrl);
4730
4731        return E1000_SUCCESS;
4732}
4733
4734/**
4735 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4736 * @hw: Struct containing variables accessed by shared code
4737 */
4738static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4739{
4740        volatile u32 temp;
4741
4742        temp = er32(CRCERRS);
4743        temp = er32(SYMERRS);
4744        temp = er32(MPC);
4745        temp = er32(SCC);
4746        temp = er32(ECOL);
4747        temp = er32(MCC);
4748        temp = er32(LATECOL);
4749        temp = er32(COLC);
4750        temp = er32(DC);
4751        temp = er32(SEC);
4752        temp = er32(RLEC);
4753        temp = er32(XONRXC);
4754        temp = er32(XONTXC);
4755        temp = er32(XOFFRXC);
4756        temp = er32(XOFFTXC);
4757        temp = er32(FCRUC);
4758
4759        temp = er32(PRC64);
4760        temp = er32(PRC127);
4761        temp = er32(PRC255);
4762        temp = er32(PRC511);
4763        temp = er32(PRC1023);
4764        temp = er32(PRC1522);
4765
4766        temp = er32(GPRC);
4767        temp = er32(BPRC);
4768        temp = er32(MPRC);
4769        temp = er32(GPTC);
4770        temp = er32(GORCL);
4771        temp = er32(GORCH);
4772        temp = er32(GOTCL);
4773        temp = er32(GOTCH);
4774        temp = er32(RNBC);
4775        temp = er32(RUC);
4776        temp = er32(RFC);
4777        temp = er32(ROC);
4778        temp = er32(RJC);
4779        temp = er32(TORL);
4780        temp = er32(TORH);
4781        temp = er32(TOTL);
4782        temp = er32(TOTH);
4783        temp = er32(TPR);
4784        temp = er32(TPT);
4785
4786        temp = er32(PTC64);
4787        temp = er32(PTC127);
4788        temp = er32(PTC255);
4789        temp = er32(PTC511);
4790        temp = er32(PTC1023);
4791        temp = er32(PTC1522);
4792
4793        temp = er32(MPTC);
4794        temp = er32(BPTC);
4795
4796        if (hw->mac_type < e1000_82543)
4797                return;
4798
4799        temp = er32(ALGNERRC);
4800        temp = er32(RXERRC);
4801        temp = er32(TNCRS);
4802        temp = er32(CEXTERR);
4803        temp = er32(TSCTC);
4804        temp = er32(TSCTFC);
4805
4806        if (hw->mac_type <= e1000_82544)
4807                return;
4808
4809        temp = er32(MGTPRC);
4810        temp = er32(MGTPDC);
4811        temp = er32(MGTPTC);
4812}
4813
4814/**
4815 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4816 * @hw: Struct containing variables accessed by shared code
4817 *
4818 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4819 * hw->ifs_params_forced to true. However, you must initialize hw->
4820 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4821 * before calling this function.
4822 */
4823void e1000_reset_adaptive(struct e1000_hw *hw)
4824{
4825        e_dbg("e1000_reset_adaptive");
4826
4827        if (hw->adaptive_ifs) {
4828                if (!hw->ifs_params_forced) {
4829                        hw->current_ifs_val = 0;
4830                        hw->ifs_min_val = IFS_MIN;
4831                        hw->ifs_max_val = IFS_MAX;
4832                        hw->ifs_step_size = IFS_STEP;
4833                        hw->ifs_ratio = IFS_RATIO;
4834                }
4835                hw->in_ifs_mode = false;
4836                ew32(AIT, 0);
4837        } else {
4838                e_dbg("Not in Adaptive IFS mode!\n");
4839        }
4840}
4841
4842/**
4843 * e1000_update_adaptive - update adaptive IFS
4844 * @hw: Struct containing variables accessed by shared code
4845 * @tx_packets: Number of transmits since last callback
4846 * @total_collisions: Number of collisions since last callback
4847 *
4848 * Called during the callback/watchdog routine to update IFS value based on
4849 * the ratio of transmits to collisions.
4850 */
4851void e1000_update_adaptive(struct e1000_hw *hw)
4852{
4853        e_dbg("e1000_update_adaptive");
4854
4855        if (hw->adaptive_ifs) {
4856                if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4857                        if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4858                                hw->in_ifs_mode = true;
4859                                if (hw->current_ifs_val < hw->ifs_max_val) {
4860                                        if (hw->current_ifs_val == 0)
4861                                                hw->current_ifs_val =
4862                                                    hw->ifs_min_val;
4863                                        else
4864                                                hw->current_ifs_val +=
4865                                                    hw->ifs_step_size;
4866                                        ew32(AIT, hw->current_ifs_val);
4867                                }
4868                        }
4869                } else {
4870                        if (hw->in_ifs_mode
4871                            && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4872                                hw->current_ifs_val = 0;
4873                                hw->in_ifs_mode = false;
4874                                ew32(AIT, 0);
4875                        }
4876                }
4877        } else {
4878                e_dbg("Not in Adaptive IFS mode!\n");
4879        }
4880}
4881
4882/**
4883 * e1000_tbi_adjust_stats
4884 * @hw: Struct containing variables accessed by shared code
4885 * @frame_len: The length of the frame in question
4886 * @mac_addr: The Ethernet destination address of the frame in question
4887 *
4888 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4889 */
4890void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4891                            u32 frame_len, u8 *mac_addr)
4892{
4893        u64 carry_bit;
4894
4895        /* First adjust the frame length. */
4896        frame_len--;
4897        /* We need to adjust the statistics counters, since the hardware
4898         * counters overcount this packet as a CRC error and undercount
4899         * the packet as a good packet
4900         */
4901        /* This packet should not be counted as a CRC error.    */
4902        stats->crcerrs--;
4903        /* This packet does count as a Good Packet Received.    */
4904        stats->gprc++;
4905
4906        /* Adjust the Good Octets received counters             */
4907        carry_bit = 0x80000000 & stats->gorcl;
4908        stats->gorcl += frame_len;
4909        /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4910         * Received Count) was one before the addition,
4911         * AND it is zero after, then we lost the carry out,
4912         * need to add one to Gorch (Good Octets Received Count High).
4913         * This could be simplified if all environments supported
4914         * 64-bit integers.
4915         */
4916        if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4917                stats->gorch++;
4918        /* Is this a broadcast or multicast?  Check broadcast first,
4919         * since the test for a multicast frame will test positive on
4920         * a broadcast frame.
4921         */
4922        if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4923                /* Broadcast packet */
4924                stats->bprc++;
4925        else if (*mac_addr & 0x01)
4926                /* Multicast packet */
4927                stats->mprc++;
4928
4929        if (frame_len == hw->max_frame_size) {
4930                /* In this case, the hardware has overcounted the number of
4931                 * oversize frames.
4932                 */
4933                if (stats->roc > 0)
4934                        stats->roc--;
4935        }
4936
4937        /* Adjust the bin counters when the extra byte put the frame in the
4938         * wrong bin. Remember that the frame_len was adjusted above.
4939         */
4940        if (frame_len == 64) {
4941                stats->prc64++;
4942                stats->prc127--;
4943        } else if (frame_len == 127) {
4944                stats->prc127++;
4945                stats->prc255--;
4946        } else if (frame_len == 255) {
4947                stats->prc255++;
4948                stats->prc511--;
4949        } else if (frame_len == 511) {
4950                stats->prc511++;
4951                stats->prc1023--;
4952        } else if (frame_len == 1023) {
4953                stats->prc1023++;
4954                stats->prc1522--;
4955        } else if (frame_len == 1522) {
4956                stats->prc1522++;
4957        }
4958}
4959
4960/**
4961 * e1000_get_bus_info
4962 * @hw: Struct containing variables accessed by shared code
4963 *
4964 * Gets the current PCI bus type, speed, and width of the hardware
4965 */
4966void e1000_get_bus_info(struct e1000_hw *hw)
4967{
4968        u32 status;
4969
4970        switch (hw->mac_type) {
4971        case e1000_82542_rev2_0:
4972        case e1000_82542_rev2_1:
4973                hw->bus_type = e1000_bus_type_pci;
4974                hw->bus_speed = e1000_bus_speed_unknown;
4975                hw->bus_width = e1000_bus_width_unknown;
4976                break;
4977        default:
4978                status = er32(STATUS);
4979                hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4980                    e1000_bus_type_pcix : e1000_bus_type_pci;
4981
4982                if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4983                        hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4984                            e1000_bus_speed_66 : e1000_bus_speed_120;
4985                } else if (hw->bus_type == e1000_bus_type_pci) {
4986                        hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4987                            e1000_bus_speed_66 : e1000_bus_speed_33;
4988                } else {
4989                        switch (status & E1000_STATUS_PCIX_SPEED) {
4990                        case E1000_STATUS_PCIX_SPEED_66:
4991                                hw->bus_speed = e1000_bus_speed_66;
4992                                break;
4993                        case E1000_STATUS_PCIX_SPEED_100:
4994                                hw->bus_speed = e1000_bus_speed_100;
4995                                break;
4996                        case E1000_STATUS_PCIX_SPEED_133:
4997                                hw->bus_speed = e1000_bus_speed_133;
4998                                break;
4999                        default:
5000                                hw->bus_speed = e1000_bus_speed_reserved;
5001                                break;
5002                        }
5003                }
5004                hw->bus_width = (status & E1000_STATUS_BUS64) ?
5005                    e1000_bus_width_64 : e1000_bus_width_32;
5006                break;
5007        }
5008}
5009
5010/**
5011 * e1000_write_reg_io
5012 * @hw: Struct containing variables accessed by shared code
5013 * @offset: offset to write to
5014 * @value: value to write
5015 *
5016 * Writes a value to one of the devices registers using port I/O (as opposed to
5017 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5018 */
5019static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5020{
5021        unsigned long io_addr = hw->io_base;
5022        unsigned long io_data = hw->io_base + 4;
5023
5024        e1000_io_write(hw, io_addr, offset);
5025        e1000_io_write(hw, io_data, value);
5026}
5027
5028/**
5029 * e1000_get_cable_length - Estimates the cable length.
5030 * @hw: Struct containing variables accessed by shared code
5031 * @min_length: The estimated minimum length
5032 * @max_length: The estimated maximum length
5033 *
5034 * returns: - E1000_ERR_XXX
5035 *            E1000_SUCCESS
5036 *
5037 * This function always returns a ranged length (minimum & maximum).
5038 * So for M88 phy's, this function interprets the one value returned from the
5039 * register to the minimum and maximum range.
5040 * For IGP phy's, the function calculates the range by the AGC registers.
5041 */
5042static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5043                                  u16 *max_length)
5044{
5045        s32 ret_val;
5046        u16 agc_value = 0;
5047        u16 i, phy_data;
5048        u16 cable_length;
5049
5050        e_dbg("e1000_get_cable_length");
5051
5052        *min_length = *max_length = 0;
5053
5054        /* Use old method for Phy older than IGP */
5055        if (hw->phy_type == e1000_phy_m88) {
5056
5057                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5058                                             &phy_data);
5059                if (ret_val)
5060                        return ret_val;
5061                cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5062                    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5063
5064                /* Convert the enum value to ranged values */
5065                switch (cable_length) {
5066                case e1000_cable_length_50:
5067                        *min_length = 0;
5068                        *max_length = e1000_igp_cable_length_50;
5069                        break;
5070                case e1000_cable_length_50_80:
5071                        *min_length = e1000_igp_cable_length_50;
5072                        *max_length = e1000_igp_cable_length_80;
5073                        break;
5074                case e1000_cable_length_80_110:
5075                        *min_length = e1000_igp_cable_length_80;
5076                        *max_length = e1000_igp_cable_length_110;
5077                        break;
5078                case e1000_cable_length_110_140:
5079                        *min_length = e1000_igp_cable_length_110;
5080                        *max_length = e1000_igp_cable_length_140;
5081                        break;
5082                case e1000_cable_length_140:
5083                        *min_length = e1000_igp_cable_length_140;
5084                        *max_length = e1000_igp_cable_length_170;
5085                        break;
5086                default:
5087                        return -E1000_ERR_PHY;
5088                        break;
5089                }
5090        } else if (hw->phy_type == e1000_phy_igp) {     /* For IGP PHY */
5091                u16 cur_agc_value;
5092                u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5093                static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5094                       IGP01E1000_PHY_AGC_A,
5095                       IGP01E1000_PHY_AGC_B,
5096                       IGP01E1000_PHY_AGC_C,
5097                       IGP01E1000_PHY_AGC_D
5098                };
5099                /* Read the AGC registers for all channels */
5100                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5101
5102                        ret_val =
5103                            e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5104                        if (ret_val)
5105                                return ret_val;
5106
5107                        cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5108
5109                        /* Value bound check. */
5110                        if ((cur_agc_value >=
5111                             IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5112                            || (cur_agc_value == 0))
5113                                return -E1000_ERR_PHY;
5114
5115                        agc_value += cur_agc_value;
5116
5117                        /* Update minimal AGC value. */
5118                        if (min_agc_value > cur_agc_value)
5119                                min_agc_value = cur_agc_value;
5120                }
5121
5122                /* Remove the minimal AGC result for length < 50m */
5123                if (agc_value <
5124                    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5125                        agc_value -= min_agc_value;
5126
5127                        /* Get the average length of the remaining 3 channels */
5128                        agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5129                } else {
5130                        /* Get the average length of all the 4 channels. */
5131                        agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5132                }
5133
5134                /* Set the range of the calculated length. */
5135                *min_length = ((e1000_igp_cable_length_table[agc_value] -
5136                                IGP01E1000_AGC_RANGE) > 0) ?
5137                    (e1000_igp_cable_length_table[agc_value] -
5138                     IGP01E1000_AGC_RANGE) : 0;
5139                *max_length = e1000_igp_cable_length_table[agc_value] +
5140                    IGP01E1000_AGC_RANGE;
5141        }
5142
5143        return E1000_SUCCESS;
5144}
5145
5146/**
5147 * e1000_check_polarity - Check the cable polarity
5148 * @hw: Struct containing variables accessed by shared code
5149 * @polarity: output parameter : 0 - Polarity is not reversed
5150 *                               1 - Polarity is reversed.
5151 *
5152 * returns: - E1000_ERR_XXX
5153 *            E1000_SUCCESS
5154 *
5155 * For phy's older than IGP, this function simply reads the polarity bit in the
5156 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5157 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5158 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5159 * IGP01E1000_PHY_PCS_INIT_REG.
5160 */
5161static s32 e1000_check_polarity(struct e1000_hw *hw,
5162                                e1000_rev_polarity *polarity)
5163{
5164        s32 ret_val;
5165        u16 phy_data;
5166
5167        e_dbg("e1000_check_polarity");
5168
5169        if (hw->phy_type == e1000_phy_m88) {
5170                /* return the Polarity bit in the Status register. */
5171                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5172                                             &phy_data);
5173                if (ret_val)
5174                        return ret_val;
5175                *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5176                             M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5177                    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5178
5179        } else if (hw->phy_type == e1000_phy_igp) {
5180                /* Read the Status register to check the speed */
5181                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5182                                             &phy_data);
5183                if (ret_val)
5184                        return ret_val;
5185
5186                /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5187                 * find the polarity status */
5188                if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5189                    IGP01E1000_PSSR_SPEED_1000MBPS) {
5190
5191                        /* Read the GIG initialization PCS register (0x00B4) */
5192                        ret_val =
5193                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5194                                               &phy_data);
5195                        if (ret_val)
5196                                return ret_val;
5197
5198                        /* Check the polarity bits */
5199                        *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5200                            e1000_rev_polarity_reversed :
5201                            e1000_rev_polarity_normal;
5202                } else {
5203                        /* For 10 Mbps, read the polarity bit in the status register. (for
5204                         * 100 Mbps this bit is always 0) */
5205                        *polarity =
5206                            (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5207                            e1000_rev_polarity_reversed :
5208                            e1000_rev_polarity_normal;
5209                }
5210        }
5211        return E1000_SUCCESS;
5212}
5213
5214/**
5215 * e1000_check_downshift - Check if Downshift occurred
5216 * @hw: Struct containing variables accessed by shared code
5217 * @downshift: output parameter : 0 - No Downshift occurred.
5218 *                                1 - Downshift occurred.
5219 *
5220 * returns: - E1000_ERR_XXX
5221 *            E1000_SUCCESS
5222 *
5223 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5224 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5225 * Link Health register.  In IGP this bit is latched high, so the driver must
5226 * read it immediately after link is established.
5227 */
5228static s32 e1000_check_downshift(struct e1000_hw *hw)
5229{
5230        s32 ret_val;
5231        u16 phy_data;
5232
5233        e_dbg("e1000_check_downshift");
5234
5235        if (hw->phy_type == e1000_phy_igp) {
5236                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5237                                             &phy_data);
5238                if (ret_val)
5239                        return ret_val;
5240
5241                hw->speed_downgraded =
5242                    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5243        } else if (hw->phy_type == e1000_phy_m88) {
5244                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5245                                             &phy_data);
5246                if (ret_val)
5247                        return ret_val;
5248
5249                hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5250                    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5251        }
5252
5253        return E1000_SUCCESS;
5254}
5255
5256static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5257        IGP01E1000_PHY_AGC_PARAM_A,
5258        IGP01E1000_PHY_AGC_PARAM_B,
5259        IGP01E1000_PHY_AGC_PARAM_C,
5260        IGP01E1000_PHY_AGC_PARAM_D
5261};
5262
5263static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5264{
5265        u16 min_length, max_length;
5266        u16 phy_data, i;
5267        s32 ret_val;
5268
5269        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5270        if (ret_val)
5271                return ret_val;
5272
5273        if (hw->dsp_config_state != e1000_dsp_config_enabled)
5274                return 0;
5275
5276        if (min_length >= e1000_igp_cable_length_50) {
5277                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5278                        ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5279                                                     &phy_data);
5280                        if (ret_val)
5281                                return ret_val;
5282
5283                        phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5284
5285                        ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5286                                                      phy_data);
5287                        if (ret_val)
5288                                return ret_val;
5289                }
5290                hw->dsp_config_state = e1000_dsp_config_activated;
5291        } else {
5292                u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5293                u32 idle_errs = 0;
5294
5295                /* clear previous idle error counts */
5296                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5297                if (ret_val)
5298                        return ret_val;
5299
5300                for (i = 0; i < ffe_idle_err_timeout; i++) {
5301                        udelay(1000);
5302                        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5303                                                     &phy_data);
5304                        if (ret_val)
5305                                return ret_val;
5306
5307                        idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5308                        if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5309                                hw->ffe_config_state = e1000_ffe_config_active;
5310
5311                                ret_val = e1000_write_phy_reg(hw,
5312                                              IGP01E1000_PHY_DSP_FFE,
5313                                              IGP01E1000_PHY_DSP_FFE_CM_CP);
5314                                if (ret_val)
5315                                        return ret_val;
5316                                break;
5317                        }
5318
5319                        if (idle_errs)
5320                                ffe_idle_err_timeout =
5321                                            FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5322                }
5323        }
5324
5325        return 0;
5326}
5327
5328/**
5329 * e1000_config_dsp_after_link_change
5330 * @hw: Struct containing variables accessed by shared code
5331 * @link_up: was link up at the time this was called
5332 *
5333 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5334 *            E1000_SUCCESS at any other case.
5335 *
5336 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5337 * gigabit link is achieved to improve link quality.
5338 */
5339
5340static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5341{
5342        s32 ret_val;
5343        u16 phy_data, phy_saved_data, speed, duplex, i;
5344
5345        e_dbg("e1000_config_dsp_after_link_change");
5346
5347        if (hw->phy_type != e1000_phy_igp)
5348                return E1000_SUCCESS;
5349
5350        if (link_up) {
5351                ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5352                if (ret_val) {
5353                        e_dbg("Error getting link speed and duplex\n");
5354                        return ret_val;
5355                }
5356
5357                if (speed == SPEED_1000) {
5358                        ret_val = e1000_1000Mb_check_cable_length(hw);
5359                        if (ret_val)
5360                                return ret_val;
5361                }
5362        } else {
5363                if (hw->dsp_config_state == e1000_dsp_config_activated) {
5364                        /* Save off the current value of register 0x2F5B to be restored at
5365                         * the end of the routines. */
5366                        ret_val =
5367                            e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5368
5369                        if (ret_val)
5370                                return ret_val;
5371
5372                        /* Disable the PHY transmitter */
5373                        ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5374
5375                        if (ret_val)
5376                                return ret_val;
5377
5378                        msleep(20);
5379
5380                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5381                                                      IGP01E1000_IEEE_FORCE_GIGA);
5382                        if (ret_val)
5383                                return ret_val;
5384                        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5385                                ret_val =
5386                                    e1000_read_phy_reg(hw, dsp_reg_array[i],
5387                                                       &phy_data);
5388                                if (ret_val)
5389                                        return ret_val;
5390
5391                                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5392                                phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5393
5394                                ret_val =
5395                                    e1000_write_phy_reg(hw, dsp_reg_array[i],
5396                                                        phy_data);
5397                                if (ret_val)
5398                                        return ret_val;
5399                        }
5400
5401                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5402                                                      IGP01E1000_IEEE_RESTART_AUTONEG);
5403                        if (ret_val)
5404                                return ret_val;
5405
5406                        msleep(20);
5407
5408                        /* Now enable the transmitter */
5409                        ret_val =
5410                            e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5411
5412                        if (ret_val)
5413                                return ret_val;
5414
5415                        hw->dsp_config_state = e1000_dsp_config_enabled;
5416                }
5417
5418                if (hw->ffe_config_state == e1000_ffe_config_active) {
5419                        /* Save off the current value of register 0x2F5B to be restored at
5420                         * the end of the routines. */
5421                        ret_val =
5422                            e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5423
5424                        if (ret_val)
5425                                return ret_val;
5426
5427                        /* Disable the PHY transmitter */
5428                        ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5429
5430                        if (ret_val)
5431                                return ret_val;
5432
5433                        msleep(20);
5434
5435                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5436                                                      IGP01E1000_IEEE_FORCE_GIGA);
5437                        if (ret_val)
5438                                return ret_val;
5439                        ret_val =
5440                            e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5441                                                IGP01E1000_PHY_DSP_FFE_DEFAULT);
5442                        if (ret_val)
5443                                return ret_val;
5444
5445                        ret_val = e1000_write_phy_reg(hw, 0x0000,
5446                                                      IGP01E1000_IEEE_RESTART_AUTONEG);
5447                        if (ret_val)
5448                                return ret_val;
5449
5450                        msleep(20);
5451
5452                        /* Now enable the transmitter */
5453                        ret_val =
5454                            e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5455
5456                        if (ret_val)
5457                                return ret_val;
5458
5459                        hw->ffe_config_state = e1000_ffe_config_enabled;
5460                }
5461        }
5462        return E1000_SUCCESS;
5463}
5464
5465/**
5466 * e1000_set_phy_mode - Set PHY to class A mode
5467 * @hw: Struct containing variables accessed by shared code
5468 *
5469 * Assumes the following operations will follow to enable the new class mode.
5470 *  1. Do a PHY soft reset
5471 *  2. Restart auto-negotiation or force link.
5472 */
5473static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5474{
5475        s32 ret_val;
5476        u16 eeprom_data;
5477
5478        e_dbg("e1000_set_phy_mode");
5479
5480        if ((hw->mac_type == e1000_82545_rev_3) &&
5481            (hw->media_type == e1000_media_type_copper)) {
5482                ret_val =
5483                    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5484                                      &eeprom_data);
5485                if (ret_val) {
5486                        return ret_val;
5487                }
5488
5489                if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5490                    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5491                        ret_val =
5492                            e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5493                                                0x000B);
5494                        if (ret_val)
5495                                return ret_val;
5496                        ret_val =
5497                            e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5498                                                0x8104);
5499                        if (ret_val)
5500                                return ret_val;
5501
5502                        hw->phy_reset_disable = false;
5503                }
5504        }
5505
5506        return E1000_SUCCESS;
5507}
5508
5509/**
5510 * e1000_set_d3_lplu_state - set d3 link power state
5511 * @hw: Struct containing variables accessed by shared code
5512 * @active: true to enable lplu false to disable lplu.
5513 *
5514 * This function sets the lplu state according to the active flag.  When
5515 * activating lplu this function also disables smart speed and vise versa.
5516 * lplu will not be activated unless the device autonegotiation advertisement
5517 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5518 *
5519 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5520 *            E1000_SUCCESS at any other case.
5521 */
5522static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5523{
5524        s32 ret_val;
5525        u16 phy_data;
5526        e_dbg("e1000_set_d3_lplu_state");
5527
5528        if (hw->phy_type != e1000_phy_igp)
5529                return E1000_SUCCESS;
5530
5531        /* During driver activity LPLU should not be used or it will attain link
5532         * from the lowest speeds starting from 10Mbps. The capability is used for
5533         * Dx transitions and states */
5534        if (hw->mac_type == e1000_82541_rev_2
5535            || hw->mac_type == e1000_82547_rev_2) {
5536                ret_val =
5537                    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5538                if (ret_val)
5539                        return ret_val;
5540        }
5541
5542        if (!active) {
5543                if (hw->mac_type == e1000_82541_rev_2 ||
5544                    hw->mac_type == e1000_82547_rev_2) {
5545                        phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5546                        ret_val =
5547                            e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5548                                                phy_data);
5549                        if (ret_val)
5550                                return ret_val;
5551                }
5552
5553                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
5554                 * Dx states where the power conservation is most important.  During
5555                 * driver activity we should enable SmartSpeed, so performance is
5556                 * maintained. */
5557                if (hw->smart_speed == e1000_smart_speed_on) {
5558                        ret_val =
5559                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5560                                               &phy_data);
5561                        if (ret_val)
5562                                return ret_val;
5563
5564                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5565                        ret_val =
5566                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5567                                                phy_data);
5568                        if (ret_val)
5569                                return ret_val;
5570                } else if (hw->smart_speed == e1000_smart_speed_off) {
5571                        ret_val =
5572                            e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5573                                               &phy_data);
5574                        if (ret_val)
5575                                return ret_val;
5576
5577                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5578                        ret_val =
5579                            e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5580                                                phy_data);
5581                        if (ret_val)
5582                                return ret_val;
5583                }
5584        } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5585                   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5586                   || (hw->autoneg_advertised ==
5587                       AUTONEG_ADVERTISE_10_100_ALL)) {
5588
5589                if (hw->mac_type == e1000_82541_rev_2 ||
5590                    hw->mac_type == e1000_82547_rev_2) {
5591                        phy_data |= IGP01E1000_GMII_FLEX_SPD;
5592                        ret_val =
5593                            e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5594                                                phy_data);
5595                        if (ret_val)
5596                                return ret_val;
5597                }
5598
5599                /* When LPLU is enabled we should disable SmartSpeed */
5600                ret_val =
5601                    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5602                                       &phy_data);
5603                if (ret_val)
5604                        return ret_val;
5605
5606                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5607                ret_val =
5608                    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5609                                        phy_data);
5610                if (ret_val)
5611                        return ret_val;
5612
5613        }
5614        return E1000_SUCCESS;
5615}
5616
5617/**
5618 * e1000_set_vco_speed
5619 * @hw: Struct containing variables accessed by shared code
5620 *
5621 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5622 */
5623static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5624{
5625        s32 ret_val;
5626        u16 default_page = 0;
5627        u16 phy_data;
5628
5629        e_dbg("e1000_set_vco_speed");
5630
5631        switch (hw->mac_type) {
5632        case e1000_82545_rev_3:
5633        case e1000_82546_rev_3:
5634                break;
5635        default:
5636                return E1000_SUCCESS;
5637        }
5638
5639        /* Set PHY register 30, page 5, bit 8 to 0 */
5640
5641        ret_val =
5642            e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5643        if (ret_val)
5644                return ret_val;
5645
5646        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5647        if (ret_val)
5648                return ret_val;
5649
5650        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5651        if (ret_val)
5652                return ret_val;
5653
5654        phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5655        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5656        if (ret_val)
5657                return ret_val;
5658
5659        /* Set PHY register 30, page 4, bit 11 to 1 */
5660
5661        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5662        if (ret_val)
5663                return ret_val;
5664
5665        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5666        if (ret_val)
5667                return ret_val;
5668
5669        phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5670        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5671        if (ret_val)
5672                return ret_val;
5673
5674        ret_val =
5675            e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5676        if (ret_val)
5677                return ret_val;
5678
5679        return E1000_SUCCESS;
5680}
5681
5682
5683/**
5684 * e1000_enable_mng_pass_thru - check for bmc pass through
5685 * @hw: Struct containing variables accessed by shared code
5686 *
5687 * Verifies the hardware needs to allow ARPs to be processed by the host
5688 * returns: - true/false
5689 */
5690u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5691{
5692        u32 manc;
5693
5694        if (hw->asf_firmware_present) {
5695                manc = er32(MANC);
5696
5697                if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5698                    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5699                        return false;
5700                if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5701                        return true;
5702        }
5703        return false;
5704}
5705
5706static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5707{
5708        s32 ret_val;
5709        u16 mii_status_reg;
5710        u16 i;
5711
5712        /* Polarity reversal workaround for forced 10F/10H links. */
5713
5714        /* Disable the transmitter on the PHY */
5715
5716        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5717        if (ret_val)
5718                return ret_val;
5719        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5720        if (ret_val)
5721                return ret_val;
5722
5723        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5724        if (ret_val)
5725                return ret_val;
5726
5727        /* This loop will early-out if the NO link condition has been met. */
5728        for (i = PHY_FORCE_TIME; i > 0; i--) {
5729                /* Read the MII Status Register and wait for Link Status bit
5730                 * to be clear.
5731                 */
5732
5733                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5734                if (ret_val)
5735                        return ret_val;
5736
5737                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5738                if (ret_val)
5739                        return ret_val;
5740
5741                if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5742                        break;
5743                msleep(100);
5744        }
5745
5746        /* Recommended delay time after link has been lost */
5747        msleep(1000);
5748
5749        /* Now we will re-enable th transmitter on the PHY */
5750
5751        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5752        if (ret_val)
5753                return ret_val;
5754        msleep(50);
5755        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5756        if (ret_val)
5757                return ret_val;
5758        msleep(50);
5759        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5760        if (ret_val)
5761                return ret_val;
5762        msleep(50);
5763        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5764        if (ret_val)
5765                return ret_val;
5766
5767        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5768        if (ret_val)
5769                return ret_val;
5770
5771        /* This loop will early-out if the link condition has been met. */
5772        for (i = PHY_FORCE_TIME; i > 0; i--) {
5773                /* Read the MII Status Register and wait for Link Status bit
5774                 * to be set.
5775                 */
5776
5777                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5778                if (ret_val)
5779                        return ret_val;
5780
5781                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5782                if (ret_val)
5783                        return ret_val;
5784
5785                if (mii_status_reg & MII_SR_LINK_STATUS)
5786                        break;
5787                msleep(100);
5788        }
5789        return E1000_SUCCESS;
5790}
5791
5792/**
5793 * e1000_get_auto_rd_done
5794 * @hw: Struct containing variables accessed by shared code
5795 *
5796 * Check for EEPROM Auto Read bit done.
5797 * returns: - E1000_ERR_RESET if fail to reset MAC
5798 *            E1000_SUCCESS at any other case.
5799 */
5800static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5801{
5802        e_dbg("e1000_get_auto_rd_done");
5803        msleep(5);
5804        return E1000_SUCCESS;
5805}
5806
5807/**
5808 * e1000_get_phy_cfg_done
5809 * @hw: Struct containing variables accessed by shared code
5810 *
5811 * Checks if the PHY configuration is done
5812 * returns: - E1000_ERR_RESET if fail to reset MAC
5813 *            E1000_SUCCESS at any other case.
5814 */
5815static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5816{
5817        e_dbg("e1000_get_phy_cfg_done");
5818        msleep(10);
5819        return E1000_SUCCESS;
5820}
5821