linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* e1000_82575
  29 * e1000_82576
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/types.h>
  35#include <linux/if_ether.h>
  36
  37#include "e1000_mac.h"
  38#include "e1000_82575.h"
  39#include "e1000_i210.h"
  40
  41static s32  igb_get_invariants_82575(struct e1000_hw *);
  42static s32  igb_acquire_phy_82575(struct e1000_hw *);
  43static void igb_release_phy_82575(struct e1000_hw *);
  44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  45static void igb_release_nvm_82575(struct e1000_hw *);
  46static s32  igb_check_for_link_82575(struct e1000_hw *);
  47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  48static s32  igb_init_hw_82575(struct e1000_hw *);
  49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  53static s32  igb_reset_hw_82575(struct e1000_hw *);
  54static s32  igb_reset_hw_82580(struct e1000_hw *);
  55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  64                                                 u16 *);
  65static s32  igb_get_phy_id_82575(struct e1000_hw *);
  66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  67static bool igb_sgmii_active_82575(struct e1000_hw *);
  68static s32  igb_reset_init_script_82575(struct e1000_hw *);
  69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  76static const u16 e1000_82580_rxpbs_table[] =
  77        { 36, 72, 144, 1, 2, 4, 8, 16,
  78          35, 70, 140 };
  79#define E1000_82580_RXPBS_TABLE_SIZE \
  80        (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
  81
  82/**
  83 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  84 *  @hw: pointer to the HW structure
  85 *
  86 *  Called to determine if the I2C pins are being used for I2C or as an
  87 *  external MDIO interface since the two options are mutually exclusive.
  88 **/
  89static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  90{
  91        u32 reg = 0;
  92        bool ext_mdio = false;
  93
  94        switch (hw->mac.type) {
  95        case e1000_82575:
  96        case e1000_82576:
  97                reg = rd32(E1000_MDIC);
  98                ext_mdio = !!(reg & E1000_MDIC_DEST);
  99                break;
 100        case e1000_82580:
 101        case e1000_i350:
 102        case e1000_i210:
 103        case e1000_i211:
 104                reg = rd32(E1000_MDICNFG);
 105                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106                break;
 107        default:
 108                break;
 109        }
 110        return ext_mdio;
 111}
 112
 113static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 114{
 115        struct e1000_phy_info *phy = &hw->phy;
 116        struct e1000_nvm_info *nvm = &hw->nvm;
 117        struct e1000_mac_info *mac = &hw->mac;
 118        struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
 119        u32 eecd;
 120        s32 ret_val;
 121        u16 size;
 122        u32 ctrl_ext = 0;
 123
 124        switch (hw->device_id) {
 125        case E1000_DEV_ID_82575EB_COPPER:
 126        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 127        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 128                mac->type = e1000_82575;
 129                break;
 130        case E1000_DEV_ID_82576:
 131        case E1000_DEV_ID_82576_NS:
 132        case E1000_DEV_ID_82576_NS_SERDES:
 133        case E1000_DEV_ID_82576_FIBER:
 134        case E1000_DEV_ID_82576_SERDES:
 135        case E1000_DEV_ID_82576_QUAD_COPPER:
 136        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 137        case E1000_DEV_ID_82576_SERDES_QUAD:
 138                mac->type = e1000_82576;
 139                break;
 140        case E1000_DEV_ID_82580_COPPER:
 141        case E1000_DEV_ID_82580_FIBER:
 142        case E1000_DEV_ID_82580_QUAD_FIBER:
 143        case E1000_DEV_ID_82580_SERDES:
 144        case E1000_DEV_ID_82580_SGMII:
 145        case E1000_DEV_ID_82580_COPPER_DUAL:
 146        case E1000_DEV_ID_DH89XXCC_SGMII:
 147        case E1000_DEV_ID_DH89XXCC_SERDES:
 148        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 149        case E1000_DEV_ID_DH89XXCC_SFP:
 150                mac->type = e1000_82580;
 151                break;
 152        case E1000_DEV_ID_I350_COPPER:
 153        case E1000_DEV_ID_I350_FIBER:
 154        case E1000_DEV_ID_I350_SERDES:
 155        case E1000_DEV_ID_I350_SGMII:
 156                mac->type = e1000_i350;
 157                break;
 158        case E1000_DEV_ID_I210_COPPER:
 159        case E1000_DEV_ID_I210_COPPER_OEM1:
 160        case E1000_DEV_ID_I210_COPPER_IT:
 161        case E1000_DEV_ID_I210_FIBER:
 162        case E1000_DEV_ID_I210_SERDES:
 163        case E1000_DEV_ID_I210_SGMII:
 164                mac->type = e1000_i210;
 165                break;
 166        case E1000_DEV_ID_I211_COPPER:
 167                mac->type = e1000_i211;
 168                break;
 169        default:
 170                return -E1000_ERR_MAC_INIT;
 171                break;
 172        }
 173
 174        /* Set media type */
 175        /*
 176         * The 82575 uses bits 22:23 for link mode. The mode can be changed
 177         * based on the EEPROM. We cannot rely upon device ID. There
 178         * is no distinguishable difference between fiber and internal
 179         * SerDes mode on the 82575. There can be an external PHY attached
 180         * on the SGMII interface. For this, we'll set sgmii_active to true.
 181         */
 182        phy->media_type = e1000_media_type_copper;
 183        dev_spec->sgmii_active = false;
 184
 185        ctrl_ext = rd32(E1000_CTRL_EXT);
 186        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
 187        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 188                dev_spec->sgmii_active = true;
 189                break;
 190        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 191        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 192                hw->phy.media_type = e1000_media_type_internal_serdes;
 193                break;
 194        default:
 195                break;
 196        }
 197
 198        /* Set mta register count */
 199        mac->mta_reg_count = 128;
 200        /* Set rar entry count */
 201        switch (mac->type) {
 202        case e1000_82576:
 203                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 204                break;
 205        case e1000_82580:
 206                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 207                break;
 208        case e1000_i350:
 209                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 210                break;
 211        default:
 212                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 213                break;
 214        }
 215        /* reset */
 216        if (mac->type >= e1000_82580)
 217                mac->ops.reset_hw = igb_reset_hw_82580;
 218        else
 219                mac->ops.reset_hw = igb_reset_hw_82575;
 220
 221        if (mac->type >= e1000_i210) {
 222                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 223                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 224        } else {
 225                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 226                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 227        }
 228
 229        /* Set if part includes ASF firmware */
 230        mac->asf_firmware_present = true;
 231        /* Set if manageability features are enabled. */
 232        mac->arc_subsystem_valid =
 233                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 234                        ? true : false;
 235        /* enable EEE on i350 parts and later parts */
 236        if (mac->type >= e1000_i350)
 237                dev_spec->eee_disable = false;
 238        else
 239                dev_spec->eee_disable = true;
 240        /* physical interface link setup */
 241        mac->ops.setup_physical_interface =
 242                (hw->phy.media_type == e1000_media_type_copper)
 243                        ? igb_setup_copper_link_82575
 244                        : igb_setup_serdes_link_82575;
 245
 246        /* NVM initialization */
 247        eecd = rd32(E1000_EECD);
 248        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 249                     E1000_EECD_SIZE_EX_SHIFT);
 250
 251        /*
 252         * Added to a constant, "size" becomes the left-shift value
 253         * for setting word_size.
 254         */
 255        size += NVM_WORD_SIZE_BASE_SHIFT;
 256
 257        nvm->word_size = 1 << size;
 258        if (hw->mac.type < e1000_i210) {
 259                nvm->opcode_bits        = 8;
 260                nvm->delay_usec         = 1;
 261                switch (nvm->override) {
 262                case e1000_nvm_override_spi_large:
 263                        nvm->page_size    = 32;
 264                        nvm->address_bits = 16;
 265                        break;
 266                case e1000_nvm_override_spi_small:
 267                        nvm->page_size    = 8;
 268                        nvm->address_bits = 8;
 269                        break;
 270                default:
 271                        nvm->page_size    = eecd
 272                                & E1000_EECD_ADDR_BITS ? 32 : 8;
 273                        nvm->address_bits = eecd
 274                                & E1000_EECD_ADDR_BITS ? 16 : 8;
 275                        break;
 276                }
 277                if (nvm->word_size == (1 << 15))
 278                        nvm->page_size = 128;
 279
 280                nvm->type = e1000_nvm_eeprom_spi;
 281        } else
 282                nvm->type = e1000_nvm_flash_hw;
 283
 284        /*
 285         * Check for invalid size
 286         */
 287        if ((hw->mac.type == e1000_82576) && (size > 15)) {
 288                pr_notice("The NVM size is not valid, defaulting to 32K\n");
 289                size = 15;
 290        }
 291
 292        /* NVM Function Pointers */
 293        switch (hw->mac.type) {
 294        case e1000_82580:
 295                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 296                nvm->ops.update = igb_update_nvm_checksum_82580;
 297                nvm->ops.acquire = igb_acquire_nvm_82575;
 298                nvm->ops.release = igb_release_nvm_82575;
 299                if (nvm->word_size < (1 << 15))
 300                        nvm->ops.read = igb_read_nvm_eerd;
 301                else
 302                        nvm->ops.read = igb_read_nvm_spi;
 303                nvm->ops.write = igb_write_nvm_spi;
 304                break;
 305        case e1000_i350:
 306                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 307                nvm->ops.update = igb_update_nvm_checksum_i350;
 308                nvm->ops.acquire = igb_acquire_nvm_82575;
 309                nvm->ops.release = igb_release_nvm_82575;
 310                if (nvm->word_size < (1 << 15))
 311                        nvm->ops.read = igb_read_nvm_eerd;
 312                else
 313                        nvm->ops.read = igb_read_nvm_spi;
 314                nvm->ops.write = igb_write_nvm_spi;
 315                break;
 316        case e1000_i210:
 317                nvm->ops.validate = igb_validate_nvm_checksum_i210;
 318                nvm->ops.update   = igb_update_nvm_checksum_i210;
 319                nvm->ops.acquire = igb_acquire_nvm_i210;
 320                nvm->ops.release = igb_release_nvm_i210;
 321                nvm->ops.read    = igb_read_nvm_srrd_i210;
 322                nvm->ops.valid_led_default = igb_valid_led_default_i210;
 323                break;
 324        case e1000_i211:
 325                nvm->ops.acquire  = igb_acquire_nvm_i210;
 326                nvm->ops.release  = igb_release_nvm_i210;
 327                nvm->ops.read     = igb_read_nvm_i211;
 328                nvm->ops.valid_led_default = igb_valid_led_default_i210;
 329                nvm->ops.validate = NULL;
 330                nvm->ops.update   = NULL;
 331                nvm->ops.write    = NULL;
 332                break;
 333        default:
 334                nvm->ops.validate = igb_validate_nvm_checksum;
 335                nvm->ops.update = igb_update_nvm_checksum;
 336                nvm->ops.acquire = igb_acquire_nvm_82575;
 337                nvm->ops.release = igb_release_nvm_82575;
 338                if (nvm->word_size < (1 << 15))
 339                        nvm->ops.read = igb_read_nvm_eerd;
 340                else
 341                        nvm->ops.read = igb_read_nvm_spi;
 342                nvm->ops.write = igb_write_nvm_spi;
 343                break;
 344        }
 345
 346        /* if part supports SR-IOV then initialize mailbox parameters */
 347        switch (mac->type) {
 348        case e1000_82576:
 349        case e1000_i350:
 350                igb_init_mbx_params_pf(hw);
 351                break;
 352        default:
 353                break;
 354        }
 355
 356        /* setup PHY parameters */
 357        if (phy->media_type != e1000_media_type_copper) {
 358                phy->type = e1000_phy_none;
 359                return 0;
 360        }
 361
 362        phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 363        phy->reset_delay_us      = 100;
 364
 365        ctrl_ext = rd32(E1000_CTRL_EXT);
 366
 367        /* PHY function pointers */
 368        if (igb_sgmii_active_82575(hw)) {
 369                phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
 370                ctrl_ext |= E1000_CTRL_I2C_ENA;
 371        } else {
 372                phy->ops.reset      = igb_phy_hw_reset;
 373                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 374        }
 375
 376        wr32(E1000_CTRL_EXT, ctrl_ext);
 377        igb_reset_mdicnfg_82580(hw);
 378
 379        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 380                phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
 381                phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
 382        } else if ((hw->mac.type == e1000_82580)
 383                || (hw->mac.type == e1000_i350)) {
 384                phy->ops.read_reg   = igb_read_phy_reg_82580;
 385                phy->ops.write_reg  = igb_write_phy_reg_82580;
 386        } else if (hw->phy.type >= e1000_phy_i210) {
 387                phy->ops.read_reg   = igb_read_phy_reg_gs40g;
 388                phy->ops.write_reg  = igb_write_phy_reg_gs40g;
 389        } else {
 390                phy->ops.read_reg   = igb_read_phy_reg_igp;
 391                phy->ops.write_reg  = igb_write_phy_reg_igp;
 392        }
 393
 394        /* set lan id */
 395        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 396                       E1000_STATUS_FUNC_SHIFT;
 397
 398        /* Set phy->phy_addr and phy->id. */
 399        ret_val = igb_get_phy_id_82575(hw);
 400        if (ret_val)
 401                return ret_val;
 402
 403        /* Verify phy id and set remaining function pointers */
 404        switch (phy->id) {
 405        case I347AT4_E_PHY_ID:
 406        case M88E1112_E_PHY_ID:
 407        case M88E1111_I_PHY_ID:
 408                phy->type                   = e1000_phy_m88;
 409                phy->ops.get_phy_info       = igb_get_phy_info_m88;
 410
 411                if (phy->id == I347AT4_E_PHY_ID ||
 412                    phy->id == M88E1112_E_PHY_ID)
 413                        phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 414                else
 415                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 416
 417                if (phy->id == I210_I_PHY_ID) {
 418                        phy->ops.get_cable_length =
 419                                         igb_get_cable_length_m88_gen2;
 420                        phy->ops.set_d0_lplu_state =
 421                                        igb_set_d0_lplu_state_82580;
 422                        phy->ops.set_d3_lplu_state =
 423                                        igb_set_d3_lplu_state_82580;
 424                }
 425                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 426                break;
 427        case IGP03E1000_E_PHY_ID:
 428                phy->type                   = e1000_phy_igp_3;
 429                phy->ops.get_phy_info       = igb_get_phy_info_igp;
 430                phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
 431                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 432                phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
 433                phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
 434                break;
 435        case I82580_I_PHY_ID:
 436        case I350_I_PHY_ID:
 437                phy->type                   = e1000_phy_82580;
 438                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
 439                phy->ops.get_cable_length   = igb_get_cable_length_82580;
 440                phy->ops.get_phy_info       = igb_get_phy_info_82580;
 441                phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
 442                phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
 443                break;
 444        case I210_I_PHY_ID:
 445                phy->type                   = e1000_phy_i210;
 446                phy->ops.get_phy_info       = igb_get_phy_info_m88;
 447                phy->ops.check_polarity     = igb_check_polarity_m88;
 448                phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
 449                phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
 450                phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
 451                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 452                break;
 453        default:
 454                return -E1000_ERR_PHY;
 455        }
 456
 457        return 0;
 458}
 459
 460/**
 461 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 462 *  @hw: pointer to the HW structure
 463 *
 464 *  Acquire access rights to the correct PHY.  This is a
 465 *  function pointer entry point called by the api module.
 466 **/
 467static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 468{
 469        u16 mask = E1000_SWFW_PHY0_SM;
 470
 471        if (hw->bus.func == E1000_FUNC_1)
 472                mask = E1000_SWFW_PHY1_SM;
 473        else if (hw->bus.func == E1000_FUNC_2)
 474                mask = E1000_SWFW_PHY2_SM;
 475        else if (hw->bus.func == E1000_FUNC_3)
 476                mask = E1000_SWFW_PHY3_SM;
 477
 478        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 479}
 480
 481/**
 482 *  igb_release_phy_82575 - Release rights to access PHY
 483 *  @hw: pointer to the HW structure
 484 *
 485 *  A wrapper to release access rights to the correct PHY.  This is a
 486 *  function pointer entry point called by the api module.
 487 **/
 488static void igb_release_phy_82575(struct e1000_hw *hw)
 489{
 490        u16 mask = E1000_SWFW_PHY0_SM;
 491
 492        if (hw->bus.func == E1000_FUNC_1)
 493                mask = E1000_SWFW_PHY1_SM;
 494        else if (hw->bus.func == E1000_FUNC_2)
 495                mask = E1000_SWFW_PHY2_SM;
 496        else if (hw->bus.func == E1000_FUNC_3)
 497                mask = E1000_SWFW_PHY3_SM;
 498
 499        hw->mac.ops.release_swfw_sync(hw, mask);
 500}
 501
 502/**
 503 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 504 *  @hw: pointer to the HW structure
 505 *  @offset: register offset to be read
 506 *  @data: pointer to the read data
 507 *
 508 *  Reads the PHY register at offset using the serial gigabit media independent
 509 *  interface and stores the retrieved information in data.
 510 **/
 511static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 512                                          u16 *data)
 513{
 514        s32 ret_val = -E1000_ERR_PARAM;
 515
 516        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 517                hw_dbg("PHY Address %u is out of range\n", offset);
 518                goto out;
 519        }
 520
 521        ret_val = hw->phy.ops.acquire(hw);
 522        if (ret_val)
 523                goto out;
 524
 525        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 526
 527        hw->phy.ops.release(hw);
 528
 529out:
 530        return ret_val;
 531}
 532
 533/**
 534 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 535 *  @hw: pointer to the HW structure
 536 *  @offset: register offset to write to
 537 *  @data: data to write at register offset
 538 *
 539 *  Writes the data to PHY register at the offset using the serial gigabit
 540 *  media independent interface.
 541 **/
 542static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 543                                           u16 data)
 544{
 545        s32 ret_val = -E1000_ERR_PARAM;
 546
 547
 548        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 549                hw_dbg("PHY Address %d is out of range\n", offset);
 550                goto out;
 551        }
 552
 553        ret_val = hw->phy.ops.acquire(hw);
 554        if (ret_val)
 555                goto out;
 556
 557        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 558
 559        hw->phy.ops.release(hw);
 560
 561out:
 562        return ret_val;
 563}
 564
 565/**
 566 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 567 *  @hw: pointer to the HW structure
 568 *
 569 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 570 *  sgmi interface.
 571 **/
 572static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 573{
 574        struct e1000_phy_info *phy = &hw->phy;
 575        s32  ret_val = 0;
 576        u16 phy_id;
 577        u32 ctrl_ext;
 578        u32 mdic;
 579
 580        /*
 581         * For SGMII PHYs, we try the list of possible addresses until
 582         * we find one that works.  For non-SGMII PHYs
 583         * (e.g. integrated copper PHYs), an address of 1 should
 584         * work.  The result of this function should mean phy->phy_addr
 585         * and phy->id are set correctly.
 586         */
 587        if (!(igb_sgmii_active_82575(hw))) {
 588                phy->addr = 1;
 589                ret_val = igb_get_phy_id(hw);
 590                goto out;
 591        }
 592
 593        if (igb_sgmii_uses_mdio_82575(hw)) {
 594                switch (hw->mac.type) {
 595                case e1000_82575:
 596                case e1000_82576:
 597                        mdic = rd32(E1000_MDIC);
 598                        mdic &= E1000_MDIC_PHY_MASK;
 599                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 600                        break;
 601                case e1000_82580:
 602                case e1000_i350:
 603                case e1000_i210:
 604                case e1000_i211:
 605                        mdic = rd32(E1000_MDICNFG);
 606                        mdic &= E1000_MDICNFG_PHY_MASK;
 607                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 608                        break;
 609                default:
 610                        ret_val = -E1000_ERR_PHY;
 611                        goto out;
 612                        break;
 613                }
 614                ret_val = igb_get_phy_id(hw);
 615                goto out;
 616        }
 617
 618        /* Power on sgmii phy if it is disabled */
 619        ctrl_ext = rd32(E1000_CTRL_EXT);
 620        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 621        wrfl();
 622        msleep(300);
 623
 624        /*
 625         * The address field in the I2CCMD register is 3 bits and 0 is invalid.
 626         * Therefore, we need to test 1-7
 627         */
 628        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 629                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 630                if (ret_val == 0) {
 631                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 632                               phy_id, phy->addr);
 633                        /*
 634                         * At the time of this writing, The M88 part is
 635                         * the only supported SGMII PHY product.
 636                         */
 637                        if (phy_id == M88_VENDOR)
 638                                break;
 639                } else {
 640                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 641                }
 642        }
 643
 644        /* A valid PHY type couldn't be found. */
 645        if (phy->addr == 8) {
 646                phy->addr = 0;
 647                ret_val = -E1000_ERR_PHY;
 648                goto out;
 649        } else {
 650                ret_val = igb_get_phy_id(hw);
 651        }
 652
 653        /* restore previous sfp cage power state */
 654        wr32(E1000_CTRL_EXT, ctrl_ext);
 655
 656out:
 657        return ret_val;
 658}
 659
 660/**
 661 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 662 *  @hw: pointer to the HW structure
 663 *
 664 *  Resets the PHY using the serial gigabit media independent interface.
 665 **/
 666static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 667{
 668        s32 ret_val;
 669
 670        /*
 671         * This isn't a true "hard" reset, but is the only reset
 672         * available to us at this time.
 673         */
 674
 675        hw_dbg("Soft resetting SGMII attached PHY...\n");
 676
 677        /*
 678         * SFP documentation requires the following to configure the SPF module
 679         * to work on SGMII.  No further documentation is given.
 680         */
 681        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 682        if (ret_val)
 683                goto out;
 684
 685        ret_val = igb_phy_sw_reset(hw);
 686
 687out:
 688        return ret_val;
 689}
 690
 691/**
 692 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 693 *  @hw: pointer to the HW structure
 694 *  @active: true to enable LPLU, false to disable
 695 *
 696 *  Sets the LPLU D0 state according to the active flag.  When
 697 *  activating LPLU this function also disables smart speed
 698 *  and vice versa.  LPLU will not be activated unless the
 699 *  device autonegotiation advertisement meets standards of
 700 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 701 *  This is a function pointer entry point only called by
 702 *  PHY setup routines.
 703 **/
 704static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 705{
 706        struct e1000_phy_info *phy = &hw->phy;
 707        s32 ret_val;
 708        u16 data;
 709
 710        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 711        if (ret_val)
 712                goto out;
 713
 714        if (active) {
 715                data |= IGP02E1000_PM_D0_LPLU;
 716                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 717                                                 data);
 718                if (ret_val)
 719                        goto out;
 720
 721                /* When LPLU is enabled, we should disable SmartSpeed */
 722                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 723                                                &data);
 724                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 725                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 726                                                 data);
 727                if (ret_val)
 728                        goto out;
 729        } else {
 730                data &= ~IGP02E1000_PM_D0_LPLU;
 731                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 732                                                 data);
 733                /*
 734                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 735                 * during Dx states where the power conservation is most
 736                 * important.  During driver activity we should enable
 737                 * SmartSpeed, so performance is maintained.
 738                 */
 739                if (phy->smart_speed == e1000_smart_speed_on) {
 740                        ret_val = phy->ops.read_reg(hw,
 741                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 742                        if (ret_val)
 743                                goto out;
 744
 745                        data |= IGP01E1000_PSCFR_SMART_SPEED;
 746                        ret_val = phy->ops.write_reg(hw,
 747                                        IGP01E1000_PHY_PORT_CONFIG, data);
 748                        if (ret_val)
 749                                goto out;
 750                } else if (phy->smart_speed == e1000_smart_speed_off) {
 751                        ret_val = phy->ops.read_reg(hw,
 752                                        IGP01E1000_PHY_PORT_CONFIG, &data);
 753                        if (ret_val)
 754                                goto out;
 755
 756                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 757                        ret_val = phy->ops.write_reg(hw,
 758                                        IGP01E1000_PHY_PORT_CONFIG, data);
 759                        if (ret_val)
 760                                goto out;
 761                }
 762        }
 763
 764out:
 765        return ret_val;
 766}
 767
 768/**
 769 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 770 *  @hw: pointer to the HW structure
 771 *  @active: true to enable LPLU, false to disable
 772 *
 773 *  Sets the LPLU D0 state according to the active flag.  When
 774 *  activating LPLU this function also disables smart speed
 775 *  and vice versa.  LPLU will not be activated unless the
 776 *  device autonegotiation advertisement meets standards of
 777 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 778 *  This is a function pointer entry point only called by
 779 *  PHY setup routines.
 780 **/
 781static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
 782{
 783        struct e1000_phy_info *phy = &hw->phy;
 784        s32 ret_val = 0;
 785        u16 data;
 786
 787        data = rd32(E1000_82580_PHY_POWER_MGMT);
 788
 789        if (active) {
 790                data |= E1000_82580_PM_D0_LPLU;
 791
 792                /* When LPLU is enabled, we should disable SmartSpeed */
 793                data &= ~E1000_82580_PM_SPD;
 794        } else {
 795                data &= ~E1000_82580_PM_D0_LPLU;
 796
 797                /*
 798                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 799                 * during Dx states where the power conservation is most
 800                 * important.  During driver activity we should enable
 801                 * SmartSpeed, so performance is maintained.
 802                 */
 803                if (phy->smart_speed == e1000_smart_speed_on)
 804                        data |= E1000_82580_PM_SPD;
 805                else if (phy->smart_speed == e1000_smart_speed_off)
 806                        data &= ~E1000_82580_PM_SPD; }
 807
 808        wr32(E1000_82580_PHY_POWER_MGMT, data);
 809        return ret_val;
 810}
 811
 812/**
 813 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 814 *  @hw: pointer to the HW structure
 815 *  @active: boolean used to enable/disable lplu
 816 *
 817 *  Success returns 0, Failure returns 1
 818 *
 819 *  The low power link up (lplu) state is set to the power management level D3
 820 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 821 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 822 *  is used during Dx states where the power conservation is most important.
 823 *  During driver activity, SmartSpeed should be enabled so performance is
 824 *  maintained.
 825 **/
 826s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
 827{
 828        struct e1000_phy_info *phy = &hw->phy;
 829        s32 ret_val = 0;
 830        u16 data;
 831
 832        data = rd32(E1000_82580_PHY_POWER_MGMT);
 833
 834        if (!active) {
 835                data &= ~E1000_82580_PM_D3_LPLU;
 836                /*
 837                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 838                 * during Dx states where the power conservation is most
 839                 * important.  During driver activity we should enable
 840                 * SmartSpeed, so performance is maintained.
 841                 */
 842                if (phy->smart_speed == e1000_smart_speed_on)
 843                        data |= E1000_82580_PM_SPD;
 844                else if (phy->smart_speed == e1000_smart_speed_off)
 845                        data &= ~E1000_82580_PM_SPD;
 846        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 847                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
 848                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
 849                data |= E1000_82580_PM_D3_LPLU;
 850                /* When LPLU is enabled, we should disable SmartSpeed */
 851                data &= ~E1000_82580_PM_SPD;
 852        }
 853
 854        wr32(E1000_82580_PHY_POWER_MGMT, data);
 855        return ret_val;
 856}
 857
 858/**
 859 *  igb_acquire_nvm_82575 - Request for access to EEPROM
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 863 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 864 *  Return successful if access grant bit set, else clear the request for
 865 *  EEPROM access and return -E1000_ERR_NVM (-1).
 866 **/
 867static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
 868{
 869        s32 ret_val;
 870
 871        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
 872        if (ret_val)
 873                goto out;
 874
 875        ret_val = igb_acquire_nvm(hw);
 876
 877        if (ret_val)
 878                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 879
 880out:
 881        return ret_val;
 882}
 883
 884/**
 885 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
 886 *  @hw: pointer to the HW structure
 887 *
 888 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 889 *  then release the semaphores acquired.
 890 **/
 891static void igb_release_nvm_82575(struct e1000_hw *hw)
 892{
 893        igb_release_nvm(hw);
 894        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 895}
 896
 897/**
 898 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 899 *  @hw: pointer to the HW structure
 900 *  @mask: specifies which semaphore to acquire
 901 *
 902 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 903 *  will also specify which port we're acquiring the lock for.
 904 **/
 905static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 906{
 907        u32 swfw_sync;
 908        u32 swmask = mask;
 909        u32 fwmask = mask << 16;
 910        s32 ret_val = 0;
 911        s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
 912
 913        while (i < timeout) {
 914                if (igb_get_hw_semaphore(hw)) {
 915                        ret_val = -E1000_ERR_SWFW_SYNC;
 916                        goto out;
 917                }
 918
 919                swfw_sync = rd32(E1000_SW_FW_SYNC);
 920                if (!(swfw_sync & (fwmask | swmask)))
 921                        break;
 922
 923                /*
 924                 * Firmware currently using resource (fwmask)
 925                 * or other software thread using resource (swmask)
 926                 */
 927                igb_put_hw_semaphore(hw);
 928                mdelay(5);
 929                i++;
 930        }
 931
 932        if (i == timeout) {
 933                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 934                ret_val = -E1000_ERR_SWFW_SYNC;
 935                goto out;
 936        }
 937
 938        swfw_sync |= swmask;
 939        wr32(E1000_SW_FW_SYNC, swfw_sync);
 940
 941        igb_put_hw_semaphore(hw);
 942
 943out:
 944        return ret_val;
 945}
 946
 947/**
 948 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
 949 *  @hw: pointer to the HW structure
 950 *  @mask: specifies which semaphore to acquire
 951 *
 952 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 953 *  will also specify which port we're releasing the lock for.
 954 **/
 955static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 956{
 957        u32 swfw_sync;
 958
 959        while (igb_get_hw_semaphore(hw) != 0);
 960        /* Empty */
 961
 962        swfw_sync = rd32(E1000_SW_FW_SYNC);
 963        swfw_sync &= ~mask;
 964        wr32(E1000_SW_FW_SYNC, swfw_sync);
 965
 966        igb_put_hw_semaphore(hw);
 967}
 968
 969/**
 970 *  igb_get_cfg_done_82575 - Read config done bit
 971 *  @hw: pointer to the HW structure
 972 *
 973 *  Read the management control register for the config done bit for
 974 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 975 *  to read the config done bit, so an error is *ONLY* logged and returns
 976 *  0.  If we were to return with error, EEPROM-less silicon
 977 *  would not be able to be reset or change link.
 978 **/
 979static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
 980{
 981        s32 timeout = PHY_CFG_TIMEOUT;
 982        s32 ret_val = 0;
 983        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 984
 985        if (hw->bus.func == 1)
 986                mask = E1000_NVM_CFG_DONE_PORT_1;
 987        else if (hw->bus.func == E1000_FUNC_2)
 988                mask = E1000_NVM_CFG_DONE_PORT_2;
 989        else if (hw->bus.func == E1000_FUNC_3)
 990                mask = E1000_NVM_CFG_DONE_PORT_3;
 991
 992        while (timeout) {
 993                if (rd32(E1000_EEMNGCTL) & mask)
 994                        break;
 995                msleep(1);
 996                timeout--;
 997        }
 998        if (!timeout)
 999                hw_dbg("MNG configuration cycle has not completed.\n");
1000
1001        /* If EEPROM is not marked present, init the PHY manually */
1002        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003            (hw->phy.type == e1000_phy_igp_3))
1004                igb_phy_init_script_igp3(hw);
1005
1006        return ret_val;
1007}
1008
1009/**
1010 *  igb_check_for_link_82575 - Check for link
1011 *  @hw: pointer to the HW structure
1012 *
1013 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1014 *  use the generic interface for determining link.
1015 **/
1016static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017{
1018        s32 ret_val;
1019        u16 speed, duplex;
1020
1021        if (hw->phy.media_type != e1000_media_type_copper) {
1022                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023                                                             &duplex);
1024                /*
1025                 * Use this flag to determine if link needs to be checked or
1026                 * not.  If  we have link clear the flag so that we do not
1027                 * continue to check for link.
1028                 */
1029                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1030        } else {
1031                ret_val = igb_check_for_copper_link(hw);
1032        }
1033
1034        return ret_val;
1035}
1036
1037/**
1038 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039 *  @hw: pointer to the HW structure
1040 **/
1041void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042{
1043        u32 reg;
1044
1045
1046        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047            !igb_sgmii_active_82575(hw))
1048                return;
1049
1050        /* Enable PCS to turn on link */
1051        reg = rd32(E1000_PCS_CFG0);
1052        reg |= E1000_PCS_CFG_PCS_EN;
1053        wr32(E1000_PCS_CFG0, reg);
1054
1055        /* Power up the laser */
1056        reg = rd32(E1000_CTRL_EXT);
1057        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058        wr32(E1000_CTRL_EXT, reg);
1059
1060        /* flush the write to verify completion */
1061        wrfl();
1062        msleep(1);
1063}
1064
1065/**
1066 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 *  @hw: pointer to the HW structure
1068 *  @speed: stores the current speed
1069 *  @duplex: stores the current duplex
1070 *
1071 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 *  duplex, then store the values in the pointers provided.
1073 **/
1074static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075                                                u16 *duplex)
1076{
1077        struct e1000_mac_info *mac = &hw->mac;
1078        u32 pcs;
1079
1080        /* Set up defaults for the return values of this function */
1081        mac->serdes_has_link = false;
1082        *speed = 0;
1083        *duplex = 0;
1084
1085        /*
1086         * Read the PCS Status register for link state. For non-copper mode,
1087         * the status register is not accurate. The PCS status register is
1088         * used instead.
1089         */
1090        pcs = rd32(E1000_PCS_LSTAT);
1091
1092        /*
1093         * The link up bit determines when link is up on autoneg. The sync ok
1094         * gets set once both sides sync up and agree upon link. Stable link
1095         * can be determined by checking for both link up and link sync ok
1096         */
1097        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098                mac->serdes_has_link = true;
1099
1100                /* Detect and store PCS speed */
1101                if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102                        *speed = SPEED_1000;
1103                } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104                        *speed = SPEED_100;
1105                } else {
1106                        *speed = SPEED_10;
1107                }
1108
1109                /* Detect and store PCS duplex */
1110                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111                        *duplex = FULL_DUPLEX;
1112                } else {
1113                        *duplex = HALF_DUPLEX;
1114                }
1115        }
1116
1117        return 0;
1118}
1119
1120/**
1121 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1125 *  when management pass thru is not enabled.
1126 **/
1127void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128{
1129        u32 reg;
1130
1131        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132            igb_sgmii_active_82575(hw))
1133                return;
1134
1135        if (!igb_enable_mng_pass_thru(hw)) {
1136                /* Disable PCS to turn off link */
1137                reg = rd32(E1000_PCS_CFG0);
1138                reg &= ~E1000_PCS_CFG_PCS_EN;
1139                wr32(E1000_PCS_CFG0, reg);
1140
1141                /* shutdown the laser */
1142                reg = rd32(E1000_CTRL_EXT);
1143                reg |= E1000_CTRL_EXT_SDP3_DATA;
1144                wr32(E1000_CTRL_EXT, reg);
1145
1146                /* flush the write to verify completion */
1147                wrfl();
1148                msleep(1);
1149        }
1150}
1151
1152/**
1153 *  igb_reset_hw_82575 - Reset hardware
1154 *  @hw: pointer to the HW structure
1155 *
1156 *  This resets the hardware into a known state.  This is a
1157 *  function pointer entry point called by the api module.
1158 **/
1159static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160{
1161        u32 ctrl, icr;
1162        s32 ret_val;
1163
1164        /*
1165         * Prevent the PCI-E bus from sticking if there is no TLP connection
1166         * on the last TLP read/write transaction when MAC is reset.
1167         */
1168        ret_val = igb_disable_pcie_master(hw);
1169        if (ret_val)
1170                hw_dbg("PCI-E Master disable polling has failed.\n");
1171
1172        /* set the completion timeout for interface */
1173        ret_val = igb_set_pcie_completion_timeout(hw);
1174        if (ret_val) {
1175                hw_dbg("PCI-E Set completion timeout has failed.\n");
1176        }
1177
1178        hw_dbg("Masking off all interrupts\n");
1179        wr32(E1000_IMC, 0xffffffff);
1180
1181        wr32(E1000_RCTL, 0);
1182        wr32(E1000_TCTL, E1000_TCTL_PSP);
1183        wrfl();
1184
1185        msleep(10);
1186
1187        ctrl = rd32(E1000_CTRL);
1188
1189        hw_dbg("Issuing a global reset to MAC\n");
1190        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191
1192        ret_val = igb_get_auto_rd_done(hw);
1193        if (ret_val) {
1194                /*
1195                 * When auto config read does not complete, do not
1196                 * return with an error. This can happen in situations
1197                 * where there is no eeprom and prevents getting link.
1198                 */
1199                hw_dbg("Auto Read Done did not complete\n");
1200        }
1201
1202        /* If EEPROM is not present, run manual init scripts */
1203        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204                igb_reset_init_script_82575(hw);
1205
1206        /* Clear any pending interrupt events. */
1207        wr32(E1000_IMC, 0xffffffff);
1208        icr = rd32(E1000_ICR);
1209
1210        /* Install any alternate MAC address into RAR0 */
1211        ret_val = igb_check_alt_mac_addr(hw);
1212
1213        return ret_val;
1214}
1215
1216/**
1217 *  igb_init_hw_82575 - Initialize hardware
1218 *  @hw: pointer to the HW structure
1219 *
1220 *  This inits the hardware readying it for operation.
1221 **/
1222static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223{
1224        struct e1000_mac_info *mac = &hw->mac;
1225        s32 ret_val;
1226        u16 i, rar_count = mac->rar_entry_count;
1227
1228        /* Initialize identification LED */
1229        ret_val = igb_id_led_init(hw);
1230        if (ret_val) {
1231                hw_dbg("Error initializing identification LED\n");
1232                /* This is not fatal and we should not stop init due to this */
1233        }
1234
1235        /* Disabling VLAN filtering */
1236        hw_dbg("Initializing the IEEE VLAN\n");
1237        if (hw->mac.type == e1000_i350)
1238                igb_clear_vfta_i350(hw);
1239        else
1240                igb_clear_vfta(hw);
1241
1242        /* Setup the receive address */
1243        igb_init_rx_addrs(hw, rar_count);
1244
1245        /* Zero out the Multicast HASH table */
1246        hw_dbg("Zeroing the MTA\n");
1247        for (i = 0; i < mac->mta_reg_count; i++)
1248                array_wr32(E1000_MTA, i, 0);
1249
1250        /* Zero out the Unicast HASH table */
1251        hw_dbg("Zeroing the UTA\n");
1252        for (i = 0; i < mac->uta_reg_count; i++)
1253                array_wr32(E1000_UTA, i, 0);
1254
1255        /* Setup link and flow control */
1256        ret_val = igb_setup_link(hw);
1257
1258        /*
1259         * Clear all of the statistics registers (clear on read).  It is
1260         * important that we do this after we have tried to establish link
1261         * because the symbol error count will increment wildly if there
1262         * is no link.
1263         */
1264        igb_clear_hw_cntrs_82575(hw);
1265        return ret_val;
1266}
1267
1268/**
1269 *  igb_setup_copper_link_82575 - Configure copper link settings
1270 *  @hw: pointer to the HW structure
1271 *
1272 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1273 *  for link, once link is established calls to configure collision distance
1274 *  and flow control are called.
1275 **/
1276static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277{
1278        u32 ctrl;
1279        s32  ret_val;
1280
1281        ctrl = rd32(E1000_CTRL);
1282        ctrl |= E1000_CTRL_SLU;
1283        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284        wr32(E1000_CTRL, ctrl);
1285
1286        ret_val = igb_setup_serdes_link_82575(hw);
1287        if (ret_val)
1288                goto out;
1289
1290        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291                /* allow time for SFP cage time to power up phy */
1292                msleep(300);
1293
1294                ret_val = hw->phy.ops.reset(hw);
1295                if (ret_val) {
1296                        hw_dbg("Error resetting the PHY.\n");
1297                        goto out;
1298                }
1299        }
1300        switch (hw->phy.type) {
1301        case e1000_phy_i210:
1302        case e1000_phy_m88:
1303                if (hw->phy.id == I347AT4_E_PHY_ID ||
1304                    hw->phy.id == M88E1112_E_PHY_ID)
1305                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1306                else
1307                        ret_val = igb_copper_link_setup_m88(hw);
1308                break;
1309        case e1000_phy_igp_3:
1310                ret_val = igb_copper_link_setup_igp(hw);
1311                break;
1312        case e1000_phy_82580:
1313                ret_val = igb_copper_link_setup_82580(hw);
1314                break;
1315        default:
1316                ret_val = -E1000_ERR_PHY;
1317                break;
1318        }
1319
1320        if (ret_val)
1321                goto out;
1322
1323        ret_val = igb_setup_copper_link(hw);
1324out:
1325        return ret_val;
1326}
1327
1328/**
1329 *  igb_setup_serdes_link_82575 - Setup link for serdes
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1333 *  used on copper connections where the serialized gigabit media independent
1334 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1335 *  for auto-negotiation or forces speed/duplex.
1336 **/
1337static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338{
1339        u32 ctrl_ext, ctrl_reg, reg;
1340        bool pcs_autoneg;
1341        s32 ret_val = E1000_SUCCESS;
1342        u16 data;
1343
1344        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345            !igb_sgmii_active_82575(hw))
1346                return ret_val;
1347
1348
1349        /*
1350         * On the 82575, SerDes loopback mode persists until it is
1351         * explicitly turned off or a power cycle is performed.  A read to
1352         * the register does not indicate its status.  Therefore, we ensure
1353         * loopback mode is disabled during initialization.
1354         */
1355        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356
1357        /* power on the sfp cage if present */
1358        ctrl_ext = rd32(E1000_CTRL_EXT);
1359        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1360        wr32(E1000_CTRL_EXT, ctrl_ext);
1361
1362        ctrl_reg = rd32(E1000_CTRL);
1363        ctrl_reg |= E1000_CTRL_SLU;
1364
1365        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366                /* set both sw defined pins */
1367                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368
1369                /* Set switch control to serdes energy detect */
1370                reg = rd32(E1000_CONNSW);
1371                reg |= E1000_CONNSW_ENRGSRC;
1372                wr32(E1000_CONNSW, reg);
1373        }
1374
1375        reg = rd32(E1000_PCS_LCTL);
1376
1377        /* default pcs_autoneg to the same setting as mac autoneg */
1378        pcs_autoneg = hw->mac.autoneg;
1379
1380        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382                /* sgmii mode lets the phy handle forcing speed/duplex */
1383                pcs_autoneg = true;
1384                /* autoneg time out should be disabled for SGMII mode */
1385                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386                break;
1387        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388                /* disable PCS autoneg and support parallel detect only */
1389                pcs_autoneg = false;
1390        default:
1391                if (hw->mac.type == e1000_82575 ||
1392                    hw->mac.type == e1000_82576) {
1393                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394                        if (ret_val) {
1395                                printk(KERN_DEBUG "NVM Read Error\n\n");
1396                                return ret_val;
1397                        }
1398
1399                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400                                pcs_autoneg = false;
1401                }
1402
1403                /*
1404                 * non-SGMII modes only supports a speed of 1000/Full for the
1405                 * link so it is best to just force the MAC and let the pcs
1406                 * link either autoneg or be forced to 1000/Full
1407                 */
1408                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409                            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410
1411                /* set speed of 1000/Full if speed/duplex is forced */
1412                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413                break;
1414        }
1415
1416        wr32(E1000_CTRL, ctrl_reg);
1417
1418        /*
1419         * New SerDes mode allows for forcing speed or autonegotiating speed
1420         * at 1gb. Autoneg should be default set by most drivers. This is the
1421         * mode that will be compatible with older link partners and switches.
1422         * However, both are supported by the hardware and some drivers/tools.
1423         */
1424        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426
1427        /*
1428         * We force flow control to prevent the CTRL register values from being
1429         * overwritten by the autonegotiated flow control values
1430         */
1431        reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432
1433        if (pcs_autoneg) {
1434                /* Set PCS register for autoneg */
1435                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1437                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438        } else {
1439                /* Set PCS register for forced link */
1440                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1441
1442                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443        }
1444
1445        wr32(E1000_PCS_LCTL, reg);
1446
1447        if (!igb_sgmii_active_82575(hw))
1448                igb_force_mac_fc(hw);
1449
1450        return ret_val;
1451}
1452
1453/**
1454 *  igb_sgmii_active_82575 - Return sgmii state
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1458 *  which can be enabled for use in the embedded applications.  Simply
1459 *  return the current state of the sgmii interface.
1460 **/
1461static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462{
1463        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464        return dev_spec->sgmii_active;
1465}
1466
1467/**
1468 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469 *  @hw: pointer to the HW structure
1470 *
1471 *  Inits recommended HW defaults after a reset when there is no EEPROM
1472 *  detected. This is only for the 82575.
1473 **/
1474static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475{
1476        if (hw->mac.type == e1000_82575) {
1477                hw_dbg("Running reset init script for 82575\n");
1478                /* SerDes configuration via SERDESCTRL */
1479                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483
1484                /* CCM configuration via CCMCTL register */
1485                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487
1488                /* PCIe lanes configuration */
1489                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493
1494                /* PCIe PLL Configuration */
1495                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498        }
1499
1500        return 0;
1501}
1502
1503/**
1504 *  igb_read_mac_addr_82575 - Read device MAC address
1505 *  @hw: pointer to the HW structure
1506 **/
1507static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508{
1509        s32 ret_val = 0;
1510
1511        /*
1512         * If there's an alternate MAC address place it in RAR0
1513         * so that it will override the Si installed default perm
1514         * address.
1515         */
1516        ret_val = igb_check_alt_mac_addr(hw);
1517        if (ret_val)
1518                goto out;
1519
1520        ret_val = igb_read_mac_addr(hw);
1521
1522out:
1523        return ret_val;
1524}
1525
1526/**
1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528 * @hw: pointer to the HW structure
1529 *
1530 * In the case of a PHY power down to save power, or to turn off link during a
1531 * driver unload, or wake on lan is not enabled, remove the link.
1532 **/
1533void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534{
1535        /* If the management interface is not enabled, then power down */
1536        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537                igb_power_down_phy_copper(hw);
1538}
1539
1540/**
1541 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Clears the hardware counters by reading the counter registers.
1545 **/
1546static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547{
1548        igb_clear_hw_cntrs_base(hw);
1549
1550        rd32(E1000_PRC64);
1551        rd32(E1000_PRC127);
1552        rd32(E1000_PRC255);
1553        rd32(E1000_PRC511);
1554        rd32(E1000_PRC1023);
1555        rd32(E1000_PRC1522);
1556        rd32(E1000_PTC64);
1557        rd32(E1000_PTC127);
1558        rd32(E1000_PTC255);
1559        rd32(E1000_PTC511);
1560        rd32(E1000_PTC1023);
1561        rd32(E1000_PTC1522);
1562
1563        rd32(E1000_ALGNERRC);
1564        rd32(E1000_RXERRC);
1565        rd32(E1000_TNCRS);
1566        rd32(E1000_CEXTERR);
1567        rd32(E1000_TSCTC);
1568        rd32(E1000_TSCTFC);
1569
1570        rd32(E1000_MGTPRC);
1571        rd32(E1000_MGTPDC);
1572        rd32(E1000_MGTPTC);
1573
1574        rd32(E1000_IAC);
1575        rd32(E1000_ICRXOC);
1576
1577        rd32(E1000_ICRXPTC);
1578        rd32(E1000_ICRXATC);
1579        rd32(E1000_ICTXPTC);
1580        rd32(E1000_ICTXATC);
1581        rd32(E1000_ICTXQEC);
1582        rd32(E1000_ICTXQMTC);
1583        rd32(E1000_ICRXDMTC);
1584
1585        rd32(E1000_CBTMPC);
1586        rd32(E1000_HTDPMC);
1587        rd32(E1000_CBRMPC);
1588        rd32(E1000_RPTHC);
1589        rd32(E1000_HGPTC);
1590        rd32(E1000_HTCBDPC);
1591        rd32(E1000_HGORCL);
1592        rd32(E1000_HGORCH);
1593        rd32(E1000_HGOTCL);
1594        rd32(E1000_HGOTCH);
1595        rd32(E1000_LENERRS);
1596
1597        /* This register should not be read in copper configurations */
1598        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599            igb_sgmii_active_82575(hw))
1600                rd32(E1000_SCVPC);
1601}
1602
1603/**
1604 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605 *  @hw: pointer to the HW structure
1606 *
1607 *  After rx enable if managability is enabled then there is likely some
1608 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1609 *  function clears the fifos and flushes any packets that came in as rx was
1610 *  being enabled.
1611 **/
1612void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613{
1614        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615        int i, ms_wait;
1616
1617        if (hw->mac.type != e1000_82575 ||
1618            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619                return;
1620
1621        /* Disable all RX queues */
1622        for (i = 0; i < 4; i++) {
1623                rxdctl[i] = rd32(E1000_RXDCTL(i));
1624                wr32(E1000_RXDCTL(i),
1625                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626        }
1627        /* Poll all queues to verify they have shut down */
1628        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629                msleep(1);
1630                rx_enabled = 0;
1631                for (i = 0; i < 4; i++)
1632                        rx_enabled |= rd32(E1000_RXDCTL(i));
1633                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634                        break;
1635        }
1636
1637        if (ms_wait == 10)
1638                hw_dbg("Queue disable timed out after 10ms\n");
1639
1640        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641         * incoming packets are rejected.  Set enable and wait 2ms so that
1642         * any packet that was coming in as RCTL.EN was set is flushed
1643         */
1644        rfctl = rd32(E1000_RFCTL);
1645        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646
1647        rlpml = rd32(E1000_RLPML);
1648        wr32(E1000_RLPML, 0);
1649
1650        rctl = rd32(E1000_RCTL);
1651        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652        temp_rctl |= E1000_RCTL_LPE;
1653
1654        wr32(E1000_RCTL, temp_rctl);
1655        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656        wrfl();
1657        msleep(2);
1658
1659        /* Enable RX queues that were previously enabled and restore our
1660         * previous state
1661         */
1662        for (i = 0; i < 4; i++)
1663                wr32(E1000_RXDCTL(i), rxdctl[i]);
1664        wr32(E1000_RCTL, rctl);
1665        wrfl();
1666
1667        wr32(E1000_RLPML, rlpml);
1668        wr32(E1000_RFCTL, rfctl);
1669
1670        /* Flush receive errors generated by workaround */
1671        rd32(E1000_ROC);
1672        rd32(E1000_RNBC);
1673        rd32(E1000_MPC);
1674}
1675
1676/**
1677 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1678 *  @hw: pointer to the HW structure
1679 *
1680 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681 *  however the hardware default for these parts is 500us to 1ms which is less
1682 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1683 *  increase the value to either 10ms to 200ms for capability version 1 config,
1684 *  or 16ms to 55ms for version 2.
1685 **/
1686static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687{
1688        u32 gcr = rd32(E1000_GCR);
1689        s32 ret_val = 0;
1690        u16 pcie_devctl2;
1691
1692        /* only take action if timeout value is defaulted to 0 */
1693        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694                goto out;
1695
1696        /*
1697         * if capababilities version is type 1 we can write the
1698         * timeout of 10ms to 200ms through the GCR register
1699         */
1700        if (!(gcr & E1000_GCR_CAP_VER2)) {
1701                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702                goto out;
1703        }
1704
1705        /*
1706         * for version 2 capabilities we need to write the config space
1707         * directly in order to set the completion timeout value for
1708         * 16ms to 55ms
1709         */
1710        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711                                        &pcie_devctl2);
1712        if (ret_val)
1713                goto out;
1714
1715        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716
1717        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718                                         &pcie_devctl2);
1719out:
1720        /* disable completion timeout resend */
1721        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722
1723        wr32(E1000_GCR, gcr);
1724        return ret_val;
1725}
1726
1727/**
1728 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729 *  @hw: pointer to the hardware struct
1730 *  @enable: state to enter, either enabled or disabled
1731 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1732 *
1733 *  enables/disables L2 switch anti-spoofing functionality.
1734 **/
1735void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736{
1737        u32 dtxswc;
1738
1739        switch (hw->mac.type) {
1740        case e1000_82576:
1741        case e1000_i350:
1742                dtxswc = rd32(E1000_DTXSWC);
1743                if (enable) {
1744                        dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745                                   E1000_DTXSWC_VLAN_SPOOF_MASK);
1746                        /* The PF can spoof - it has to in order to
1747                         * support emulation mode NICs */
1748                        dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749                } else {
1750                        dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751                                    E1000_DTXSWC_VLAN_SPOOF_MASK);
1752                }
1753                wr32(E1000_DTXSWC, dtxswc);
1754                break;
1755        default:
1756                break;
1757        }
1758}
1759
1760/**
1761 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762 *  @hw: pointer to the hardware struct
1763 *  @enable: state to enter, either enabled or disabled
1764 *
1765 *  enables/disables L2 switch loopback functionality.
1766 **/
1767void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768{
1769        u32 dtxswc;
1770
1771        switch (hw->mac.type) {
1772        case e1000_82576:
1773                dtxswc = rd32(E1000_DTXSWC);
1774                if (enable)
1775                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776                else
1777                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778                wr32(E1000_DTXSWC, dtxswc);
1779                break;
1780        case e1000_i350:
1781                dtxswc = rd32(E1000_TXSWC);
1782                if (enable)
1783                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784                else
1785                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786                wr32(E1000_TXSWC, dtxswc);
1787                break;
1788        default:
1789                /* Currently no other hardware supports loopback */
1790                break;
1791        }
1792
1793
1794}
1795
1796/**
1797 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798 *  @hw: pointer to the hardware struct
1799 *  @enable: state to enter, either enabled or disabled
1800 *
1801 *  enables/disables replication of packets across multiple pools.
1802 **/
1803void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804{
1805        u32 vt_ctl = rd32(E1000_VT_CTL);
1806
1807        if (enable)
1808                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809        else
1810                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811
1812        wr32(E1000_VT_CTL, vt_ctl);
1813}
1814
1815/**
1816 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1817 *  @hw: pointer to the HW structure
1818 *  @offset: register offset to be read
1819 *  @data: pointer to the read data
1820 *
1821 *  Reads the MDI control register in the PHY at offset and stores the
1822 *  information read to data.
1823 **/
1824static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825{
1826        s32 ret_val;
1827
1828
1829        ret_val = hw->phy.ops.acquire(hw);
1830        if (ret_val)
1831                goto out;
1832
1833        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834
1835        hw->phy.ops.release(hw);
1836
1837out:
1838        return ret_val;
1839}
1840
1841/**
1842 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1843 *  @hw: pointer to the HW structure
1844 *  @offset: register offset to write to
1845 *  @data: data to write to register at offset
1846 *
1847 *  Writes data to MDI control register in the PHY at offset.
1848 **/
1849static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850{
1851        s32 ret_val;
1852
1853
1854        ret_val = hw->phy.ops.acquire(hw);
1855        if (ret_val)
1856                goto out;
1857
1858        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859
1860        hw->phy.ops.release(hw);
1861
1862out:
1863        return ret_val;
1864}
1865
1866/**
1867 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868 *  @hw: pointer to the HW structure
1869 *
1870 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871 *  the values found in the EEPROM.  This addresses an issue in which these
1872 *  bits are not restored from EEPROM after reset.
1873 **/
1874static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875{
1876        s32 ret_val = 0;
1877        u32 mdicnfg;
1878        u16 nvm_data = 0;
1879
1880        if (hw->mac.type != e1000_82580)
1881                goto out;
1882        if (!igb_sgmii_active_82575(hw))
1883                goto out;
1884
1885        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887                                   &nvm_data);
1888        if (ret_val) {
1889                hw_dbg("NVM Read Error\n");
1890                goto out;
1891        }
1892
1893        mdicnfg = rd32(E1000_MDICNFG);
1894        if (nvm_data & NVM_WORD24_EXT_MDIO)
1895                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896        if (nvm_data & NVM_WORD24_COM_MDIO)
1897                mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898        wr32(E1000_MDICNFG, mdicnfg);
1899out:
1900        return ret_val;
1901}
1902
1903/**
1904 *  igb_reset_hw_82580 - Reset hardware
1905 *  @hw: pointer to the HW structure
1906 *
1907 *  This resets function or entire device (all ports, etc.)
1908 *  to a known state.
1909 **/
1910static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911{
1912        s32 ret_val = 0;
1913        /* BH SW mailbox bit in SW_FW_SYNC */
1914        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915        u32 ctrl, icr;
1916        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917
1918
1919        hw->dev_spec._82575.global_device_reset = false;
1920
1921        /* Get current control state. */
1922        ctrl = rd32(E1000_CTRL);
1923
1924        /*
1925         * Prevent the PCI-E bus from sticking if there is no TLP connection
1926         * on the last TLP read/write transaction when MAC is reset.
1927         */
1928        ret_val = igb_disable_pcie_master(hw);
1929        if (ret_val)
1930                hw_dbg("PCI-E Master disable polling has failed.\n");
1931
1932        hw_dbg("Masking off all interrupts\n");
1933        wr32(E1000_IMC, 0xffffffff);
1934        wr32(E1000_RCTL, 0);
1935        wr32(E1000_TCTL, E1000_TCTL_PSP);
1936        wrfl();
1937
1938        msleep(10);
1939
1940        /* Determine whether or not a global dev reset is requested */
1941        if (global_device_reset &&
1942                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943                        global_device_reset = false;
1944
1945        if (global_device_reset &&
1946                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947                ctrl |= E1000_CTRL_DEV_RST;
1948        else
1949                ctrl |= E1000_CTRL_RST;
1950
1951        wr32(E1000_CTRL, ctrl);
1952        wrfl();
1953
1954        /* Add delay to insure DEV_RST has time to complete */
1955        if (global_device_reset)
1956                msleep(5);
1957
1958        ret_val = igb_get_auto_rd_done(hw);
1959        if (ret_val) {
1960                /*
1961                 * When auto config read does not complete, do not
1962                 * return with an error. This can happen in situations
1963                 * where there is no eeprom and prevents getting link.
1964                 */
1965                hw_dbg("Auto Read Done did not complete\n");
1966        }
1967
1968        /* If EEPROM is not present, run manual init scripts */
1969        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970                igb_reset_init_script_82575(hw);
1971
1972        /* clear global device reset status bit */
1973        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974
1975        /* Clear any pending interrupt events. */
1976        wr32(E1000_IMC, 0xffffffff);
1977        icr = rd32(E1000_ICR);
1978
1979        ret_val = igb_reset_mdicnfg_82580(hw);
1980        if (ret_val)
1981                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982
1983        /* Install any alternate MAC address into RAR0 */
1984        ret_val = igb_check_alt_mac_addr(hw);
1985
1986        /* Release semaphore */
1987        if (global_device_reset)
1988                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989
1990        return ret_val;
1991}
1992
1993/**
1994 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995 *  @data: data received by reading RXPBS register
1996 *
1997 *  The 82580 uses a table based approach for packet buffer allocation sizes.
1998 *  This function converts the retrieved value into the correct table value
1999 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000 *  0x0 36  72 144   1   2   4   8  16
2001 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2002 */
2003u16 igb_rxpbs_adjust_82580(u32 data)
2004{
2005        u16 ret_val = 0;
2006
2007        if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008                ret_val = e1000_82580_rxpbs_table[data];
2009
2010        return ret_val;
2011}
2012
2013/**
2014 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015 *  checksum
2016 *  @hw: pointer to the HW structure
2017 *  @offset: offset in words of the checksum protected region
2018 *
2019 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021 **/
2022static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023                                                 u16 offset)
2024{
2025        s32 ret_val = 0;
2026        u16 checksum = 0;
2027        u16 i, nvm_data;
2028
2029        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031                if (ret_val) {
2032                        hw_dbg("NVM Read Error\n");
2033                        goto out;
2034                }
2035                checksum += nvm_data;
2036        }
2037
2038        if (checksum != (u16) NVM_SUM) {
2039                hw_dbg("NVM Checksum Invalid\n");
2040                ret_val = -E1000_ERR_NVM;
2041                goto out;
2042        }
2043
2044out:
2045        return ret_val;
2046}
2047
2048/**
2049 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2050 *  checksum
2051 *  @hw: pointer to the HW structure
2052 *  @offset: offset in words of the checksum protected region
2053 *
2054 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2056 *  value to the EEPROM.
2057 **/
2058static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059{
2060        s32 ret_val;
2061        u16 checksum = 0;
2062        u16 i, nvm_data;
2063
2064        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066                if (ret_val) {
2067                        hw_dbg("NVM Read Error while updating checksum.\n");
2068                        goto out;
2069                }
2070                checksum += nvm_data;
2071        }
2072        checksum = (u16) NVM_SUM - checksum;
2073        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074                                &checksum);
2075        if (ret_val)
2076                hw_dbg("NVM Write Error while updating checksum.\n");
2077
2078out:
2079        return ret_val;
2080}
2081
2082/**
2083 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084 *  @hw: pointer to the HW structure
2085 *
2086 *  Calculates the EEPROM section checksum by reading/adding each word of
2087 *  the EEPROM and then verifies that the sum of the EEPROM is
2088 *  equal to 0xBABA.
2089 **/
2090static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091{
2092        s32 ret_val = 0;
2093        u16 eeprom_regions_count = 1;
2094        u16 j, nvm_data;
2095        u16 nvm_offset;
2096
2097        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098        if (ret_val) {
2099                hw_dbg("NVM Read Error\n");
2100                goto out;
2101        }
2102
2103        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104                /* if checksums compatibility bit is set validate checksums
2105                 * for all 4 ports. */
2106                eeprom_regions_count = 4;
2107        }
2108
2109        for (j = 0; j < eeprom_regions_count; j++) {
2110                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112                                                                nvm_offset);
2113                if (ret_val != 0)
2114                        goto out;
2115        }
2116
2117out:
2118        return ret_val;
2119}
2120
2121/**
2122 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123 *  @hw: pointer to the HW structure
2124 *
2125 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2126 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2127 *  checksum and writes the value to the EEPROM.
2128 **/
2129static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130{
2131        s32 ret_val;
2132        u16 j, nvm_data;
2133        u16 nvm_offset;
2134
2135        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136        if (ret_val) {
2137                hw_dbg("NVM Read Error while updating checksum"
2138                        " compatibility bit.\n");
2139                goto out;
2140        }
2141
2142        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143                /* set compatibility bit to validate checksums appropriately */
2144                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146                                        &nvm_data);
2147                if (ret_val) {
2148                        hw_dbg("NVM Write Error while updating checksum"
2149                                " compatibility bit.\n");
2150                        goto out;
2151                }
2152        }
2153
2154        for (j = 0; j < 4; j++) {
2155                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157                if (ret_val)
2158                        goto out;
2159        }
2160
2161out:
2162        return ret_val;
2163}
2164
2165/**
2166 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  Calculates the EEPROM section checksum by reading/adding each word of
2170 *  the EEPROM and then verifies that the sum of the EEPROM is
2171 *  equal to 0xBABA.
2172 **/
2173static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174{
2175        s32 ret_val = 0;
2176        u16 j;
2177        u16 nvm_offset;
2178
2179        for (j = 0; j < 4; j++) {
2180                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182                                                                nvm_offset);
2183                if (ret_val != 0)
2184                        goto out;
2185        }
2186
2187out:
2188        return ret_val;
2189}
2190
2191/**
2192 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193 *  @hw: pointer to the HW structure
2194 *
2195 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2196 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2197 *  checksum and writes the value to the EEPROM.
2198 **/
2199static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200{
2201        s32 ret_val = 0;
2202        u16 j;
2203        u16 nvm_offset;
2204
2205        for (j = 0; j < 4; j++) {
2206                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208                if (ret_val != 0)
2209                        goto out;
2210        }
2211
2212out:
2213        return ret_val;
2214}
2215
2216/**
2217 *  igb_set_eee_i350 - Enable/disable EEE support
2218 *  @hw: pointer to the HW structure
2219 *
2220 *  Enable/disable EEE based on setting in dev_spec structure.
2221 *
2222 **/
2223s32 igb_set_eee_i350(struct e1000_hw *hw)
2224{
2225        s32 ret_val = 0;
2226        u32 ipcnfg, eeer, ctrl_ext;
2227
2228        ctrl_ext = rd32(E1000_CTRL_EXT);
2229        if ((hw->mac.type != e1000_i350) ||
2230            (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2231                goto out;
2232        ipcnfg = rd32(E1000_IPCNFG);
2233        eeer = rd32(E1000_EEER);
2234
2235        /* enable or disable per user setting */
2236        if (!(hw->dev_spec._82575.eee_disable)) {
2237                ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2238                        E1000_IPCNFG_EEE_100M_AN);
2239                eeer |= (E1000_EEER_TX_LPI_EN |
2240                        E1000_EEER_RX_LPI_EN |
2241                        E1000_EEER_LPI_FC);
2242
2243        } else {
2244                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2245                        E1000_IPCNFG_EEE_100M_AN);
2246                eeer &= ~(E1000_EEER_TX_LPI_EN |
2247                        E1000_EEER_RX_LPI_EN |
2248                        E1000_EEER_LPI_FC);
2249        }
2250        wr32(E1000_IPCNFG, ipcnfg);
2251        wr32(E1000_EEER, eeer);
2252out:
2253
2254        return ret_val;
2255}
2256
2257static struct e1000_mac_operations e1000_mac_ops_82575 = {
2258        .init_hw              = igb_init_hw_82575,
2259        .check_for_link       = igb_check_for_link_82575,
2260        .rar_set              = igb_rar_set,
2261        .read_mac_addr        = igb_read_mac_addr_82575,
2262        .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2263};
2264
2265static struct e1000_phy_operations e1000_phy_ops_82575 = {
2266        .acquire              = igb_acquire_phy_82575,
2267        .get_cfg_done         = igb_get_cfg_done_82575,
2268        .release              = igb_release_phy_82575,
2269};
2270
2271static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2272        .acquire              = igb_acquire_nvm_82575,
2273        .read                 = igb_read_nvm_eerd,
2274        .release              = igb_release_nvm_82575,
2275        .write                = igb_write_nvm_spi,
2276};
2277
2278const struct e1000_info e1000_82575_info = {
2279        .get_invariants = igb_get_invariants_82575,
2280        .mac_ops = &e1000_mac_ops_82575,
2281        .phy_ops = &e1000_phy_ops_82575,
2282        .nvm_ops = &e1000_nvm_ops_82575,
2283};
2284
2285