linux/drivers/net/ethernet/intel/igb/e1000_nvm.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_nvm.h"
  33
  34/**
  35 *  igb_raise_eec_clk - Raise EEPROM clock
  36 *  @hw: pointer to the HW structure
  37 *  @eecd: pointer to the EEPROM
  38 *
  39 *  Enable/Raise the EEPROM clock bit.
  40 **/
  41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  42{
  43        *eecd = *eecd | E1000_EECD_SK;
  44        wr32(E1000_EECD, *eecd);
  45        wrfl();
  46        udelay(hw->nvm.delay_usec);
  47}
  48
  49/**
  50 *  igb_lower_eec_clk - Lower EEPROM clock
  51 *  @hw: pointer to the HW structure
  52 *  @eecd: pointer to the EEPROM
  53 *
  54 *  Clear/Lower the EEPROM clock bit.
  55 **/
  56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  57{
  58        *eecd = *eecd & ~E1000_EECD_SK;
  59        wr32(E1000_EECD, *eecd);
  60        wrfl();
  61        udelay(hw->nvm.delay_usec);
  62}
  63
  64/**
  65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
  66 *  @hw: pointer to the HW structure
  67 *  @data: data to send to the EEPROM
  68 *  @count: number of bits to shift out
  69 *
  70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  72 *  In order to do this, "data" must be broken down into bits.
  73 **/
  74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  75{
  76        struct e1000_nvm_info *nvm = &hw->nvm;
  77        u32 eecd = rd32(E1000_EECD);
  78        u32 mask;
  79
  80        mask = 0x01 << (count - 1);
  81        if (nvm->type == e1000_nvm_eeprom_spi)
  82                eecd |= E1000_EECD_DO;
  83
  84        do {
  85                eecd &= ~E1000_EECD_DI;
  86
  87                if (data & mask)
  88                        eecd |= E1000_EECD_DI;
  89
  90                wr32(E1000_EECD, eecd);
  91                wrfl();
  92
  93                udelay(nvm->delay_usec);
  94
  95                igb_raise_eec_clk(hw, &eecd);
  96                igb_lower_eec_clk(hw, &eecd);
  97
  98                mask >>= 1;
  99        } while (mask);
 100
 101        eecd &= ~E1000_EECD_DI;
 102        wr32(E1000_EECD, eecd);
 103}
 104
 105/**
 106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
 107 *  @hw: pointer to the HW structure
 108 *  @count: number of bits to shift in
 109 *
 110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 114 *  always be clear.
 115 **/
 116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 117{
 118        u32 eecd;
 119        u32 i;
 120        u16 data;
 121
 122        eecd = rd32(E1000_EECD);
 123
 124        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 125        data = 0;
 126
 127        for (i = 0; i < count; i++) {
 128                data <<= 1;
 129                igb_raise_eec_clk(hw, &eecd);
 130
 131                eecd = rd32(E1000_EECD);
 132
 133                eecd &= ~E1000_EECD_DI;
 134                if (eecd & E1000_EECD_DO)
 135                        data |= 1;
 136
 137                igb_lower_eec_clk(hw, &eecd);
 138        }
 139
 140        return data;
 141}
 142
 143/**
 144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 145 *  @hw: pointer to the HW structure
 146 *  @ee_reg: EEPROM flag for polling
 147 *
 148 *  Polls the EEPROM status bit for either read or write completion based
 149 *  upon the value of 'ee_reg'.
 150 **/
 151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 152{
 153        u32 attempts = 100000;
 154        u32 i, reg = 0;
 155        s32 ret_val = -E1000_ERR_NVM;
 156
 157        for (i = 0; i < attempts; i++) {
 158                if (ee_reg == E1000_NVM_POLL_READ)
 159                        reg = rd32(E1000_EERD);
 160                else
 161                        reg = rd32(E1000_EEWR);
 162
 163                if (reg & E1000_NVM_RW_REG_DONE) {
 164                        ret_val = 0;
 165                        break;
 166                }
 167
 168                udelay(5);
 169        }
 170
 171        return ret_val;
 172}
 173
 174/**
 175 *  igb_acquire_nvm - Generic request for access to EEPROM
 176 *  @hw: pointer to the HW structure
 177 *
 178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 179 *  Return successful if access grant bit set, else clear the request for
 180 *  EEPROM access and return -E1000_ERR_NVM (-1).
 181 **/
 182s32 igb_acquire_nvm(struct e1000_hw *hw)
 183{
 184        u32 eecd = rd32(E1000_EECD);
 185        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 186        s32 ret_val = 0;
 187
 188
 189        wr32(E1000_EECD, eecd | E1000_EECD_REQ);
 190        eecd = rd32(E1000_EECD);
 191
 192        while (timeout) {
 193                if (eecd & E1000_EECD_GNT)
 194                        break;
 195                udelay(5);
 196                eecd = rd32(E1000_EECD);
 197                timeout--;
 198        }
 199
 200        if (!timeout) {
 201                eecd &= ~E1000_EECD_REQ;
 202                wr32(E1000_EECD, eecd);
 203                hw_dbg("Could not acquire NVM grant\n");
 204                ret_val = -E1000_ERR_NVM;
 205        }
 206
 207        return ret_val;
 208}
 209
 210/**
 211 *  igb_standby_nvm - Return EEPROM to standby state
 212 *  @hw: pointer to the HW structure
 213 *
 214 *  Return the EEPROM to a standby state.
 215 **/
 216static void igb_standby_nvm(struct e1000_hw *hw)
 217{
 218        struct e1000_nvm_info *nvm = &hw->nvm;
 219        u32 eecd = rd32(E1000_EECD);
 220
 221        if (nvm->type == e1000_nvm_eeprom_spi) {
 222                /* Toggle CS to flush commands */
 223                eecd |= E1000_EECD_CS;
 224                wr32(E1000_EECD, eecd);
 225                wrfl();
 226                udelay(nvm->delay_usec);
 227                eecd &= ~E1000_EECD_CS;
 228                wr32(E1000_EECD, eecd);
 229                wrfl();
 230                udelay(nvm->delay_usec);
 231        }
 232}
 233
 234/**
 235 *  e1000_stop_nvm - Terminate EEPROM command
 236 *  @hw: pointer to the HW structure
 237 *
 238 *  Terminates the current command by inverting the EEPROM's chip select pin.
 239 **/
 240static void e1000_stop_nvm(struct e1000_hw *hw)
 241{
 242        u32 eecd;
 243
 244        eecd = rd32(E1000_EECD);
 245        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 246                /* Pull CS high */
 247                eecd |= E1000_EECD_CS;
 248                igb_lower_eec_clk(hw, &eecd);
 249        }
 250}
 251
 252/**
 253 *  igb_release_nvm - Release exclusive access to EEPROM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 257 **/
 258void igb_release_nvm(struct e1000_hw *hw)
 259{
 260        u32 eecd;
 261
 262        e1000_stop_nvm(hw);
 263
 264        eecd = rd32(E1000_EECD);
 265        eecd &= ~E1000_EECD_REQ;
 266        wr32(E1000_EECD, eecd);
 267}
 268
 269/**
 270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
 271 *  @hw: pointer to the HW structure
 272 *
 273 *  Setups the EEPROM for reading and writing.
 274 **/
 275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
 276{
 277        struct e1000_nvm_info *nvm = &hw->nvm;
 278        u32 eecd = rd32(E1000_EECD);
 279        s32 ret_val = 0;
 280        u16 timeout = 0;
 281        u8 spi_stat_reg;
 282
 283
 284        if (nvm->type == e1000_nvm_eeprom_spi) {
 285                /* Clear SK and CS */
 286                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 287                wr32(E1000_EECD, eecd);
 288                wrfl();
 289                udelay(1);
 290                timeout = NVM_MAX_RETRY_SPI;
 291
 292                /*
 293                 * Read "Status Register" repeatedly until the LSB is cleared.
 294                 * The EEPROM will signal that the command has been completed
 295                 * by clearing bit 0 of the internal status register.  If it's
 296                 * not cleared within 'timeout', then error out.
 297                 */
 298                while (timeout) {
 299                        igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 300                                                 hw->nvm.opcode_bits);
 301                        spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
 302                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 303                                break;
 304
 305                        udelay(5);
 306                        igb_standby_nvm(hw);
 307                        timeout--;
 308                }
 309
 310                if (!timeout) {
 311                        hw_dbg("SPI NVM Status error\n");
 312                        ret_val = -E1000_ERR_NVM;
 313                        goto out;
 314                }
 315        }
 316
 317out:
 318        return ret_val;
 319}
 320
 321/**
 322 *  igb_read_nvm_spi - Read EEPROM's using SPI
 323 *  @hw: pointer to the HW structure
 324 *  @offset: offset of word in the EEPROM to read
 325 *  @words: number of words to read
 326 *  @data: word read from the EEPROM
 327 *
 328 *  Reads a 16 bit word from the EEPROM.
 329 **/
 330s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 331{
 332        struct e1000_nvm_info *nvm = &hw->nvm;
 333        u32 i = 0;
 334        s32 ret_val;
 335        u16 word_in;
 336        u8 read_opcode = NVM_READ_OPCODE_SPI;
 337
 338        /*
 339         * A check for invalid values:  offset too large, too many words,
 340         * and not enough words.
 341         */
 342        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 343            (words == 0)) {
 344                hw_dbg("nvm parameter(s) out of bounds\n");
 345                ret_val = -E1000_ERR_NVM;
 346                goto out;
 347        }
 348
 349        ret_val = nvm->ops.acquire(hw);
 350        if (ret_val)
 351                goto out;
 352
 353        ret_val = igb_ready_nvm_eeprom(hw);
 354        if (ret_val)
 355                goto release;
 356
 357        igb_standby_nvm(hw);
 358
 359        if ((nvm->address_bits == 8) && (offset >= 128))
 360                read_opcode |= NVM_A8_OPCODE_SPI;
 361
 362        /* Send the READ command (opcode + addr) */
 363        igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
 364        igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
 365
 366        /*
 367         * Read the data.  SPI NVMs increment the address with each byte
 368         * read and will roll over if reading beyond the end.  This allows
 369         * us to read the whole NVM from any offset
 370         */
 371        for (i = 0; i < words; i++) {
 372                word_in = igb_shift_in_eec_bits(hw, 16);
 373                data[i] = (word_in >> 8) | (word_in << 8);
 374        }
 375
 376release:
 377        nvm->ops.release(hw);
 378
 379out:
 380        return ret_val;
 381}
 382
 383/**
 384 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
 385 *  @hw: pointer to the HW structure
 386 *  @offset: offset of word in the EEPROM to read
 387 *  @words: number of words to read
 388 *  @data: word read from the EEPROM
 389 *
 390 *  Reads a 16 bit word from the EEPROM using the EERD register.
 391 **/
 392s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 393{
 394        struct e1000_nvm_info *nvm = &hw->nvm;
 395        u32 i, eerd = 0;
 396        s32 ret_val = 0;
 397
 398        /*
 399         * A check for invalid values:  offset too large, too many words,
 400         * and not enough words.
 401         */
 402        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 403            (words == 0)) {
 404                hw_dbg("nvm parameter(s) out of bounds\n");
 405                ret_val = -E1000_ERR_NVM;
 406                goto out;
 407        }
 408
 409        for (i = 0; i < words; i++) {
 410                eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
 411                       E1000_NVM_RW_REG_START;
 412
 413                wr32(E1000_EERD, eerd);
 414                ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 415                if (ret_val)
 416                        break;
 417
 418                data[i] = (rd32(E1000_EERD) >>
 419                        E1000_NVM_RW_REG_DATA);
 420        }
 421
 422out:
 423        return ret_val;
 424}
 425
 426/**
 427 *  igb_write_nvm_spi - Write to EEPROM using SPI
 428 *  @hw: pointer to the HW structure
 429 *  @offset: offset within the EEPROM to be written to
 430 *  @words: number of words to write
 431 *  @data: 16 bit word(s) to be written to the EEPROM
 432 *
 433 *  Writes data to EEPROM at offset using SPI interface.
 434 *
 435 *  If e1000_update_nvm_checksum is not called after this function , the
 436 *  EEPROM will most likley contain an invalid checksum.
 437 **/
 438s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 439{
 440        struct e1000_nvm_info *nvm = &hw->nvm;
 441        s32 ret_val;
 442        u16 widx = 0;
 443
 444        /*
 445         * A check for invalid values:  offset too large, too many words,
 446         * and not enough words.
 447         */
 448        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 449            (words == 0)) {
 450                hw_dbg("nvm parameter(s) out of bounds\n");
 451                ret_val = -E1000_ERR_NVM;
 452                goto out;
 453        }
 454
 455        ret_val = hw->nvm.ops.acquire(hw);
 456        if (ret_val)
 457                goto out;
 458
 459        msleep(10);
 460
 461        while (widx < words) {
 462                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 463
 464                ret_val = igb_ready_nvm_eeprom(hw);
 465                if (ret_val)
 466                        goto release;
 467
 468                igb_standby_nvm(hw);
 469
 470                /* Send the WRITE ENABLE command (8 bit opcode) */
 471                igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 472                                         nvm->opcode_bits);
 473
 474                igb_standby_nvm(hw);
 475
 476                /*
 477                 * Some SPI eeproms use the 8th address bit embedded in the
 478                 * opcode
 479                 */
 480                if ((nvm->address_bits == 8) && (offset >= 128))
 481                        write_opcode |= NVM_A8_OPCODE_SPI;
 482
 483                /* Send the Write command (8-bit opcode + addr) */
 484                igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 485                igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 486                                         nvm->address_bits);
 487
 488                /* Loop to allow for up to whole page write of eeprom */
 489                while (widx < words) {
 490                        u16 word_out = data[widx];
 491                        word_out = (word_out >> 8) | (word_out << 8);
 492                        igb_shift_out_eec_bits(hw, word_out, 16);
 493                        widx++;
 494
 495                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 496                                igb_standby_nvm(hw);
 497                                break;
 498                        }
 499                }
 500        }
 501
 502        msleep(10);
 503release:
 504        hw->nvm.ops.release(hw);
 505
 506out:
 507        return ret_val;
 508}
 509
 510/**
 511 *  igb_read_part_string - Read device part number
 512 *  @hw: pointer to the HW structure
 513 *  @part_num: pointer to device part number
 514 *  @part_num_size: size of part number buffer
 515 *
 516 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 517 *  the value in part_num.
 518 **/
 519s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
 520{
 521        s32 ret_val;
 522        u16 nvm_data;
 523        u16 pointer;
 524        u16 offset;
 525        u16 length;
 526
 527        if (part_num == NULL) {
 528                hw_dbg("PBA string buffer was null\n");
 529                ret_val = E1000_ERR_INVALID_ARGUMENT;
 530                goto out;
 531        }
 532
 533        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 534        if (ret_val) {
 535                hw_dbg("NVM Read Error\n");
 536                goto out;
 537        }
 538
 539        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
 540        if (ret_val) {
 541                hw_dbg("NVM Read Error\n");
 542                goto out;
 543        }
 544
 545        /*
 546         * if nvm_data is not ptr guard the PBA must be in legacy format which
 547         * means pointer is actually our second data word for the PBA number
 548         * and we can decode it into an ascii string
 549         */
 550        if (nvm_data != NVM_PBA_PTR_GUARD) {
 551                hw_dbg("NVM PBA number is not stored as string\n");
 552
 553                /* we will need 11 characters to store the PBA */
 554                if (part_num_size < 11) {
 555                        hw_dbg("PBA string buffer too small\n");
 556                        return E1000_ERR_NO_SPACE;
 557                }
 558
 559                /* extract hex string from data and pointer */
 560                part_num[0] = (nvm_data >> 12) & 0xF;
 561                part_num[1] = (nvm_data >> 8) & 0xF;
 562                part_num[2] = (nvm_data >> 4) & 0xF;
 563                part_num[3] = nvm_data & 0xF;
 564                part_num[4] = (pointer >> 12) & 0xF;
 565                part_num[5] = (pointer >> 8) & 0xF;
 566                part_num[6] = '-';
 567                part_num[7] = 0;
 568                part_num[8] = (pointer >> 4) & 0xF;
 569                part_num[9] = pointer & 0xF;
 570
 571                /* put a null character on the end of our string */
 572                part_num[10] = '\0';
 573
 574                /* switch all the data but the '-' to hex char */
 575                for (offset = 0; offset < 10; offset++) {
 576                        if (part_num[offset] < 0xA)
 577                                part_num[offset] += '0';
 578                        else if (part_num[offset] < 0x10)
 579                                part_num[offset] += 'A' - 0xA;
 580                }
 581
 582                goto out;
 583        }
 584
 585        ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
 586        if (ret_val) {
 587                hw_dbg("NVM Read Error\n");
 588                goto out;
 589        }
 590
 591        if (length == 0xFFFF || length == 0) {
 592                hw_dbg("NVM PBA number section invalid length\n");
 593                ret_val = E1000_ERR_NVM_PBA_SECTION;
 594                goto out;
 595        }
 596        /* check if part_num buffer is big enough */
 597        if (part_num_size < (((u32)length * 2) - 1)) {
 598                hw_dbg("PBA string buffer too small\n");
 599                ret_val = E1000_ERR_NO_SPACE;
 600                goto out;
 601        }
 602
 603        /* trim pba length from start of string */
 604        pointer++;
 605        length--;
 606
 607        for (offset = 0; offset < length; offset++) {
 608                ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
 609                if (ret_val) {
 610                        hw_dbg("NVM Read Error\n");
 611                        goto out;
 612                }
 613                part_num[offset * 2] = (u8)(nvm_data >> 8);
 614                part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 615        }
 616        part_num[offset * 2] = '\0';
 617
 618out:
 619        return ret_val;
 620}
 621
 622/**
 623 *  igb_read_mac_addr - Read device MAC address
 624 *  @hw: pointer to the HW structure
 625 *
 626 *  Reads the device MAC address from the EEPROM and stores the value.
 627 *  Since devices with two ports use the same EEPROM, we increment the
 628 *  last bit in the MAC address for the second port.
 629 **/
 630s32 igb_read_mac_addr(struct e1000_hw *hw)
 631{
 632        u32 rar_high;
 633        u32 rar_low;
 634        u16 i;
 635
 636        rar_high = rd32(E1000_RAH(0));
 637        rar_low = rd32(E1000_RAL(0));
 638
 639        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 640                hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
 641
 642        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 643                hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
 644
 645        for (i = 0; i < ETH_ALEN; i++)
 646                hw->mac.addr[i] = hw->mac.perm_addr[i];
 647
 648        return 0;
 649}
 650
 651/**
 652 *  igb_validate_nvm_checksum - Validate EEPROM checksum
 653 *  @hw: pointer to the HW structure
 654 *
 655 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 656 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 657 **/
 658s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
 659{
 660        s32 ret_val = 0;
 661        u16 checksum = 0;
 662        u16 i, nvm_data;
 663
 664        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 665                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 666                if (ret_val) {
 667                        hw_dbg("NVM Read Error\n");
 668                        goto out;
 669                }
 670                checksum += nvm_data;
 671        }
 672
 673        if (checksum != (u16) NVM_SUM) {
 674                hw_dbg("NVM Checksum Invalid\n");
 675                ret_val = -E1000_ERR_NVM;
 676                goto out;
 677        }
 678
 679out:
 680        return ret_val;
 681}
 682
 683/**
 684 *  igb_update_nvm_checksum - Update EEPROM checksum
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 688 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 689 *  value to the EEPROM.
 690 **/
 691s32 igb_update_nvm_checksum(struct e1000_hw *hw)
 692{
 693        s32  ret_val;
 694        u16 checksum = 0;
 695        u16 i, nvm_data;
 696
 697        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 698                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 699                if (ret_val) {
 700                        hw_dbg("NVM Read Error while updating checksum.\n");
 701                        goto out;
 702                }
 703                checksum += nvm_data;
 704        }
 705        checksum = (u16) NVM_SUM - checksum;
 706        ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
 707        if (ret_val)
 708                hw_dbg("NVM Write Error while updating checksum.\n");
 709
 710out:
 711        return ret_val;
 712}
 713