linux/drivers/net/wan/ixp4xx_hss.c
<<
>>
Prefs
   1/*
   2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
   3 *
   4 * Copyright (C) 2007-2008 Krzysztof Hałasa <khc@pm.waw.pl>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/bitops.h>
  14#include <linux/cdev.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/fs.h>
  18#include <linux/hdlc.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/platform_device.h>
  22#include <linux/poll.h>
  23#include <linux/slab.h>
  24#include <mach/npe.h>
  25#include <mach/qmgr.h>
  26
  27#define DEBUG_DESC              0
  28#define DEBUG_RX                0
  29#define DEBUG_TX                0
  30#define DEBUG_PKT_BYTES         0
  31#define DEBUG_CLOSE             0
  32
  33#define DRV_NAME                "ixp4xx_hss"
  34
  35#define PKT_EXTRA_FLAGS         0 /* orig 1 */
  36#define PKT_NUM_PIPES           1 /* 1, 2 or 4 */
  37#define PKT_PIPE_FIFO_SIZEW     4 /* total 4 dwords per HSS */
  38
  39#define RX_DESCS                16 /* also length of all RX queues */
  40#define TX_DESCS                16 /* also length of all TX queues */
  41
  42#define POOL_ALLOC_SIZE         (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  43#define RX_SIZE                 (HDLC_MAX_MRU + 4) /* NPE needs more space */
  44#define MAX_CLOSE_WAIT          1000 /* microseconds */
  45#define HSS_COUNT               2
  46#define FRAME_SIZE              256 /* doesn't matter at this point */
  47#define FRAME_OFFSET            0
  48#define MAX_CHANNELS            (FRAME_SIZE / 8)
  49
  50#define NAPI_WEIGHT             16
  51
  52/* Queue IDs */
  53#define HSS0_CHL_RXTRIG_QUEUE   12      /* orig size = 32 dwords */
  54#define HSS0_PKT_RX_QUEUE       13      /* orig size = 32 dwords */
  55#define HSS0_PKT_TX0_QUEUE      14      /* orig size = 16 dwords */
  56#define HSS0_PKT_TX1_QUEUE      15
  57#define HSS0_PKT_TX2_QUEUE      16
  58#define HSS0_PKT_TX3_QUEUE      17
  59#define HSS0_PKT_RXFREE0_QUEUE  18      /* orig size = 16 dwords */
  60#define HSS0_PKT_RXFREE1_QUEUE  19
  61#define HSS0_PKT_RXFREE2_QUEUE  20
  62#define HSS0_PKT_RXFREE3_QUEUE  21
  63#define HSS0_PKT_TXDONE_QUEUE   22      /* orig size = 64 dwords */
  64
  65#define HSS1_CHL_RXTRIG_QUEUE   10
  66#define HSS1_PKT_RX_QUEUE       0
  67#define HSS1_PKT_TX0_QUEUE      5
  68#define HSS1_PKT_TX1_QUEUE      6
  69#define HSS1_PKT_TX2_QUEUE      7
  70#define HSS1_PKT_TX3_QUEUE      8
  71#define HSS1_PKT_RXFREE0_QUEUE  1
  72#define HSS1_PKT_RXFREE1_QUEUE  2
  73#define HSS1_PKT_RXFREE2_QUEUE  3
  74#define HSS1_PKT_RXFREE3_QUEUE  4
  75#define HSS1_PKT_TXDONE_QUEUE   9
  76
  77#define NPE_PKT_MODE_HDLC               0
  78#define NPE_PKT_MODE_RAW                1
  79#define NPE_PKT_MODE_56KMODE            2
  80#define NPE_PKT_MODE_56KENDIAN_MSB      4
  81
  82/* PKT_PIPE_HDLC_CFG_WRITE flags */
  83#define PKT_HDLC_IDLE_ONES              0x1 /* default = flags */
  84#define PKT_HDLC_CRC_32                 0x2 /* default = CRC-16 */
  85#define PKT_HDLC_MSB_ENDIAN             0x4 /* default = LE */
  86
  87
  88/* hss_config, PCRs */
  89/* Frame sync sampling, default = active low */
  90#define PCR_FRM_SYNC_ACTIVE_HIGH        0x40000000
  91#define PCR_FRM_SYNC_FALLINGEDGE        0x80000000
  92#define PCR_FRM_SYNC_RISINGEDGE         0xC0000000
  93
  94/* Frame sync pin: input (default) or output generated off a given clk edge */
  95#define PCR_FRM_SYNC_OUTPUT_FALLING     0x20000000
  96#define PCR_FRM_SYNC_OUTPUT_RISING      0x30000000
  97
  98/* Frame and data clock sampling on edge, default = falling */
  99#define PCR_FCLK_EDGE_RISING            0x08000000
 100#define PCR_DCLK_EDGE_RISING            0x04000000
 101
 102/* Clock direction, default = input */
 103#define PCR_SYNC_CLK_DIR_OUTPUT         0x02000000
 104
 105/* Generate/Receive frame pulses, default = enabled */
 106#define PCR_FRM_PULSE_DISABLED          0x01000000
 107
 108 /* Data rate is full (default) or half the configured clk speed */
 109#define PCR_HALF_CLK_RATE               0x00200000
 110
 111/* Invert data between NPE and HSS FIFOs? (default = no) */
 112#define PCR_DATA_POLARITY_INVERT        0x00100000
 113
 114/* TX/RX endianness, default = LSB */
 115#define PCR_MSB_ENDIAN                  0x00080000
 116
 117/* Normal (default) / open drain mode (TX only) */
 118#define PCR_TX_PINS_OPEN_DRAIN          0x00040000
 119
 120/* No framing bit transmitted and expected on RX? (default = framing bit) */
 121#define PCR_SOF_NO_FBIT                 0x00020000
 122
 123/* Drive data pins? */
 124#define PCR_TX_DATA_ENABLE              0x00010000
 125
 126/* Voice 56k type: drive the data pins low (default), high, high Z */
 127#define PCR_TX_V56K_HIGH                0x00002000
 128#define PCR_TX_V56K_HIGH_IMP            0x00004000
 129
 130/* Unassigned type: drive the data pins low (default), high, high Z */
 131#define PCR_TX_UNASS_HIGH               0x00000800
 132#define PCR_TX_UNASS_HIGH_IMP           0x00001000
 133
 134/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
 135#define PCR_TX_FB_HIGH_IMP              0x00000400
 136
 137/* 56k data endiannes - which bit unused: high (default) or low */
 138#define PCR_TX_56KE_BIT_0_UNUSED        0x00000200
 139
 140/* 56k data transmission type: 32/8 bit data (default) or 56K data */
 141#define PCR_TX_56KS_56K_DATA            0x00000100
 142
 143/* hss_config, cCR */
 144/* Number of packetized clients, default = 1 */
 145#define CCR_NPE_HFIFO_2_HDLC            0x04000000
 146#define CCR_NPE_HFIFO_3_OR_4HDLC        0x08000000
 147
 148/* default = no loopback */
 149#define CCR_LOOPBACK                    0x02000000
 150
 151/* HSS number, default = 0 (first) */
 152#define CCR_SECOND_HSS                  0x01000000
 153
 154
 155/* hss_config, clkCR: main:10, num:10, denom:12 */
 156#define CLK42X_SPEED_EXP        ((0x3FF << 22) | (  2 << 12) |   15) /*65 KHz*/
 157
 158#define CLK42X_SPEED_512KHZ     ((  130 << 22) | (  2 << 12) |   15)
 159#define CLK42X_SPEED_1536KHZ    ((   43 << 22) | ( 18 << 12) |   47)
 160#define CLK42X_SPEED_1544KHZ    ((   43 << 22) | ( 33 << 12) |  192)
 161#define CLK42X_SPEED_2048KHZ    ((   32 << 22) | ( 34 << 12) |   63)
 162#define CLK42X_SPEED_4096KHZ    ((   16 << 22) | ( 34 << 12) |  127)
 163#define CLK42X_SPEED_8192KHZ    ((    8 << 22) | ( 34 << 12) |  255)
 164
 165#define CLK46X_SPEED_512KHZ     ((  130 << 22) | ( 24 << 12) |  127)
 166#define CLK46X_SPEED_1536KHZ    ((   43 << 22) | (152 << 12) |  383)
 167#define CLK46X_SPEED_1544KHZ    ((   43 << 22) | ( 66 << 12) |  385)
 168#define CLK46X_SPEED_2048KHZ    ((   32 << 22) | (280 << 12) |  511)
 169#define CLK46X_SPEED_4096KHZ    ((   16 << 22) | (280 << 12) | 1023)
 170#define CLK46X_SPEED_8192KHZ    ((    8 << 22) | (280 << 12) | 2047)
 171
 172/*
 173 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
 174 *     A (10 bits), B (10 bits) and C (12 bits).
 175 * IXP42x HSS clock generator operation (verified with an oscilloscope):
 176 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
 177 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
 178 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
 179 * (A + 1) bits wide.
 180 *
 181 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
 182 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
 183 * minimum freq = 66.666 MHz / (A + 1)
 184 * maximum freq = 66.666 MHz / A
 185 *
 186 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
 187 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
 188 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
 189 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
 190 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
 191 * The sequence consists of 4 complete clock periods, thus the average
 192 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
 193 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
 194 */
 195
 196/* hss_config, LUT entries */
 197#define TDMMAP_UNASSIGNED       0
 198#define TDMMAP_HDLC             1       /* HDLC - packetized */
 199#define TDMMAP_VOICE56K         2       /* Voice56K - 7-bit channelized */
 200#define TDMMAP_VOICE64K         3       /* Voice64K - 8-bit channelized */
 201
 202/* offsets into HSS config */
 203#define HSS_CONFIG_TX_PCR       0x00 /* port configuration registers */
 204#define HSS_CONFIG_RX_PCR       0x04
 205#define HSS_CONFIG_CORE_CR      0x08 /* loopback control, HSS# */
 206#define HSS_CONFIG_CLOCK_CR     0x0C /* clock generator control */
 207#define HSS_CONFIG_TX_FCR       0x10 /* frame configuration registers */
 208#define HSS_CONFIG_RX_FCR       0x14
 209#define HSS_CONFIG_TX_LUT       0x18 /* channel look-up tables */
 210#define HSS_CONFIG_RX_LUT       0x38
 211
 212
 213/* NPE command codes */
 214/* writes the ConfigWord value to the location specified by offset */
 215#define PORT_CONFIG_WRITE               0x40
 216
 217/* triggers the NPE to load the contents of the configuration table */
 218#define PORT_CONFIG_LOAD                0x41
 219
 220/* triggers the NPE to return an HssErrorReadResponse message */
 221#define PORT_ERROR_READ                 0x42
 222
 223/* triggers the NPE to reset internal status and enable the HssPacketized
 224   operation for the flow specified by pPipe */
 225#define PKT_PIPE_FLOW_ENABLE            0x50
 226#define PKT_PIPE_FLOW_DISABLE           0x51
 227#define PKT_NUM_PIPES_WRITE             0x52
 228#define PKT_PIPE_FIFO_SIZEW_WRITE       0x53
 229#define PKT_PIPE_HDLC_CFG_WRITE         0x54
 230#define PKT_PIPE_IDLE_PATTERN_WRITE     0x55
 231#define PKT_PIPE_RX_SIZE_WRITE          0x56
 232#define PKT_PIPE_MODE_WRITE             0x57
 233
 234/* HDLC packet status values - desc->status */
 235#define ERR_SHUTDOWN            1 /* stop or shutdown occurrence */
 236#define ERR_HDLC_ALIGN          2 /* HDLC alignment error */
 237#define ERR_HDLC_FCS            3 /* HDLC Frame Check Sum error */
 238#define ERR_RXFREE_Q_EMPTY      4 /* RX-free queue became empty while receiving
 239                                     this packet (if buf_len < pkt_len) */
 240#define ERR_HDLC_TOO_LONG       5 /* HDLC frame size too long */
 241#define ERR_HDLC_ABORT          6 /* abort sequence received */
 242#define ERR_DISCONNECTING       7 /* disconnect is in progress */
 243
 244
 245#ifdef __ARMEB__
 246typedef struct sk_buff buffer_t;
 247#define free_buffer dev_kfree_skb
 248#define free_buffer_irq dev_kfree_skb_irq
 249#else
 250typedef void buffer_t;
 251#define free_buffer kfree
 252#define free_buffer_irq kfree
 253#endif
 254
 255struct port {
 256        struct device *dev;
 257        struct npe *npe;
 258        struct net_device *netdev;
 259        struct napi_struct napi;
 260        struct hss_plat_info *plat;
 261        buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
 262        struct desc *desc_tab;  /* coherent */
 263        u32 desc_tab_phys;
 264        unsigned int id;
 265        unsigned int clock_type, clock_rate, loopback;
 266        unsigned int initialized, carrier;
 267        u8 hdlc_cfg;
 268        u32 clock_reg;
 269};
 270
 271/* NPE message structure */
 272struct msg {
 273#ifdef __ARMEB__
 274        u8 cmd, unused, hss_port, index;
 275        union {
 276                struct { u8 data8a, data8b, data8c, data8d; };
 277                struct { u16 data16a, data16b; };
 278                struct { u32 data32; };
 279        };
 280#else
 281        u8 index, hss_port, unused, cmd;
 282        union {
 283                struct { u8 data8d, data8c, data8b, data8a; };
 284                struct { u16 data16b, data16a; };
 285                struct { u32 data32; };
 286        };
 287#endif
 288};
 289
 290/* HDLC packet descriptor */
 291struct desc {
 292        u32 next;               /* pointer to next buffer, unused */
 293
 294#ifdef __ARMEB__
 295        u16 buf_len;            /* buffer length */
 296        u16 pkt_len;            /* packet length */
 297        u32 data;               /* pointer to data buffer in RAM */
 298        u8 status;
 299        u8 error_count;
 300        u16 __reserved;
 301#else
 302        u16 pkt_len;            /* packet length */
 303        u16 buf_len;            /* buffer length */
 304        u32 data;               /* pointer to data buffer in RAM */
 305        u16 __reserved;
 306        u8 error_count;
 307        u8 status;
 308#endif
 309        u32 __reserved1[4];
 310};
 311
 312
 313#define rx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
 314                                 (n) * sizeof(struct desc))
 315#define rx_desc_ptr(port, n)    (&(port)->desc_tab[n])
 316
 317#define tx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
 318                                 ((n) + RX_DESCS) * sizeof(struct desc))
 319#define tx_desc_ptr(port, n)    (&(port)->desc_tab[(n) + RX_DESCS])
 320
 321/*****************************************************************************
 322 * global variables
 323 ****************************************************************************/
 324
 325static int ports_open;
 326static struct dma_pool *dma_pool;
 327static spinlock_t npe_lock;
 328
 329static const struct {
 330        int tx, txdone, rx, rxfree;
 331}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
 332                  HSS0_PKT_RXFREE0_QUEUE},
 333                 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
 334                  HSS1_PKT_RXFREE0_QUEUE},
 335};
 336
 337/*****************************************************************************
 338 * utility functions
 339 ****************************************************************************/
 340
 341static inline struct port* dev_to_port(struct net_device *dev)
 342{
 343        return dev_to_hdlc(dev)->priv;
 344}
 345
 346#ifndef __ARMEB__
 347static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
 348{
 349        int i;
 350        for (i = 0; i < cnt; i++)
 351                dest[i] = swab32(src[i]);
 352}
 353#endif
 354
 355/*****************************************************************************
 356 * HSS access
 357 ****************************************************************************/
 358
 359static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
 360{
 361        u32 *val = (u32*)msg;
 362        if (npe_send_message(port->npe, msg, what)) {
 363                pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
 364                        port->id, val[0], val[1], npe_name(port->npe));
 365                BUG();
 366        }
 367}
 368
 369static void hss_config_set_lut(struct port *port)
 370{
 371        struct msg msg;
 372        int ch;
 373
 374        memset(&msg, 0, sizeof(msg));
 375        msg.cmd = PORT_CONFIG_WRITE;
 376        msg.hss_port = port->id;
 377
 378        for (ch = 0; ch < MAX_CHANNELS; ch++) {
 379                msg.data32 >>= 2;
 380                msg.data32 |= TDMMAP_HDLC << 30;
 381
 382                if (ch % 16 == 15) {
 383                        msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
 384                        hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
 385
 386                        msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
 387                        hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
 388                }
 389        }
 390}
 391
 392static void hss_config(struct port *port)
 393{
 394        struct msg msg;
 395
 396        memset(&msg, 0, sizeof(msg));
 397        msg.cmd = PORT_CONFIG_WRITE;
 398        msg.hss_port = port->id;
 399        msg.index = HSS_CONFIG_TX_PCR;
 400        msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
 401                PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
 402        if (port->clock_type == CLOCK_INT)
 403                msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
 404        hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
 405
 406        msg.index = HSS_CONFIG_RX_PCR;
 407        msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
 408        hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
 409
 410        memset(&msg, 0, sizeof(msg));
 411        msg.cmd = PORT_CONFIG_WRITE;
 412        msg.hss_port = port->id;
 413        msg.index = HSS_CONFIG_CORE_CR;
 414        msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
 415                (port->id ? CCR_SECOND_HSS : 0);
 416        hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
 417
 418        memset(&msg, 0, sizeof(msg));
 419        msg.cmd = PORT_CONFIG_WRITE;
 420        msg.hss_port = port->id;
 421        msg.index = HSS_CONFIG_CLOCK_CR;
 422        msg.data32 = port->clock_reg;
 423        hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
 424
 425        memset(&msg, 0, sizeof(msg));
 426        msg.cmd = PORT_CONFIG_WRITE;
 427        msg.hss_port = port->id;
 428        msg.index = HSS_CONFIG_TX_FCR;
 429        msg.data16a = FRAME_OFFSET;
 430        msg.data16b = FRAME_SIZE - 1;
 431        hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
 432
 433        memset(&msg, 0, sizeof(msg));
 434        msg.cmd = PORT_CONFIG_WRITE;
 435        msg.hss_port = port->id;
 436        msg.index = HSS_CONFIG_RX_FCR;
 437        msg.data16a = FRAME_OFFSET;
 438        msg.data16b = FRAME_SIZE - 1;
 439        hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
 440
 441        hss_config_set_lut(port);
 442
 443        memset(&msg, 0, sizeof(msg));
 444        msg.cmd = PORT_CONFIG_LOAD;
 445        msg.hss_port = port->id;
 446        hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
 447
 448        if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
 449            /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
 450            msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
 451                pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
 452                BUG();
 453        }
 454
 455        /* HDLC may stop working without this - check FIXME */
 456        npe_recv_message(port->npe, &msg, "FLUSH_IT");
 457}
 458
 459static void hss_set_hdlc_cfg(struct port *port)
 460{
 461        struct msg msg;
 462
 463        memset(&msg, 0, sizeof(msg));
 464        msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
 465        msg.hss_port = port->id;
 466        msg.data8a = port->hdlc_cfg; /* rx_cfg */
 467        msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
 468        hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
 469}
 470
 471static u32 hss_get_status(struct port *port)
 472{
 473        struct msg msg;
 474
 475        memset(&msg, 0, sizeof(msg));
 476        msg.cmd = PORT_ERROR_READ;
 477        msg.hss_port = port->id;
 478        hss_npe_send(port, &msg, "PORT_ERROR_READ");
 479        if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
 480                pr_crit("HSS-%i: unable to read HSS status\n", port->id);
 481                BUG();
 482        }
 483
 484        return msg.data32;
 485}
 486
 487static void hss_start_hdlc(struct port *port)
 488{
 489        struct msg msg;
 490
 491        memset(&msg, 0, sizeof(msg));
 492        msg.cmd = PKT_PIPE_FLOW_ENABLE;
 493        msg.hss_port = port->id;
 494        msg.data32 = 0;
 495        hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
 496}
 497
 498static void hss_stop_hdlc(struct port *port)
 499{
 500        struct msg msg;
 501
 502        memset(&msg, 0, sizeof(msg));
 503        msg.cmd = PKT_PIPE_FLOW_DISABLE;
 504        msg.hss_port = port->id;
 505        hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
 506        hss_get_status(port); /* make sure it's halted */
 507}
 508
 509static int hss_load_firmware(struct port *port)
 510{
 511        struct msg msg;
 512        int err;
 513
 514        if (port->initialized)
 515                return 0;
 516
 517        if (!npe_running(port->npe) &&
 518            (err = npe_load_firmware(port->npe, npe_name(port->npe),
 519                                     port->dev)))
 520                return err;
 521
 522        /* HDLC mode configuration */
 523        memset(&msg, 0, sizeof(msg));
 524        msg.cmd = PKT_NUM_PIPES_WRITE;
 525        msg.hss_port = port->id;
 526        msg.data8a = PKT_NUM_PIPES;
 527        hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
 528
 529        msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
 530        msg.data8a = PKT_PIPE_FIFO_SIZEW;
 531        hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
 532
 533        msg.cmd = PKT_PIPE_MODE_WRITE;
 534        msg.data8a = NPE_PKT_MODE_HDLC;
 535        /* msg.data8b = inv_mask */
 536        /* msg.data8c = or_mask */
 537        hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
 538
 539        msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
 540        msg.data16a = HDLC_MAX_MRU; /* including CRC */
 541        hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
 542
 543        msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
 544        msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
 545        hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
 546
 547        port->initialized = 1;
 548        return 0;
 549}
 550
 551/*****************************************************************************
 552 * packetized (HDLC) operation
 553 ****************************************************************************/
 554
 555static inline void debug_pkt(struct net_device *dev, const char *func,
 556                             u8 *data, int len)
 557{
 558#if DEBUG_PKT_BYTES
 559        int i;
 560
 561        printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
 562        for (i = 0; i < len; i++) {
 563                if (i >= DEBUG_PKT_BYTES)
 564                        break;
 565                printk("%s%02X", !(i % 4) ? " " : "", data[i]);
 566        }
 567        printk("\n");
 568#endif
 569}
 570
 571
 572static inline void debug_desc(u32 phys, struct desc *desc)
 573{
 574#if DEBUG_DESC
 575        printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
 576               phys, desc->next, desc->buf_len, desc->pkt_len,
 577               desc->data, desc->status, desc->error_count);
 578#endif
 579}
 580
 581static inline int queue_get_desc(unsigned int queue, struct port *port,
 582                                 int is_tx)
 583{
 584        u32 phys, tab_phys, n_desc;
 585        struct desc *tab;
 586
 587        if (!(phys = qmgr_get_entry(queue)))
 588                return -1;
 589
 590        BUG_ON(phys & 0x1F);
 591        tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
 592        tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
 593        n_desc = (phys - tab_phys) / sizeof(struct desc);
 594        BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
 595        debug_desc(phys, &tab[n_desc]);
 596        BUG_ON(tab[n_desc].next);
 597        return n_desc;
 598}
 599
 600static inline void queue_put_desc(unsigned int queue, u32 phys,
 601                                  struct desc *desc)
 602{
 603        debug_desc(phys, desc);
 604        BUG_ON(phys & 0x1F);
 605        qmgr_put_entry(queue, phys);
 606        /* Don't check for queue overflow here, we've allocated sufficient
 607           length and queues >= 32 don't support this check anyway. */
 608}
 609
 610
 611static inline void dma_unmap_tx(struct port *port, struct desc *desc)
 612{
 613#ifdef __ARMEB__
 614        dma_unmap_single(&port->netdev->dev, desc->data,
 615                         desc->buf_len, DMA_TO_DEVICE);
 616#else
 617        dma_unmap_single(&port->netdev->dev, desc->data & ~3,
 618                         ALIGN((desc->data & 3) + desc->buf_len, 4),
 619                         DMA_TO_DEVICE);
 620#endif
 621}
 622
 623
 624static void hss_hdlc_set_carrier(void *pdev, int carrier)
 625{
 626        struct net_device *netdev = pdev;
 627        struct port *port = dev_to_port(netdev);
 628        unsigned long flags;
 629
 630        spin_lock_irqsave(&npe_lock, flags);
 631        port->carrier = carrier;
 632        if (!port->loopback) {
 633                if (carrier)
 634                        netif_carrier_on(netdev);
 635                else
 636                        netif_carrier_off(netdev);
 637        }
 638        spin_unlock_irqrestore(&npe_lock, flags);
 639}
 640
 641static void hss_hdlc_rx_irq(void *pdev)
 642{
 643        struct net_device *dev = pdev;
 644        struct port *port = dev_to_port(dev);
 645
 646#if DEBUG_RX
 647        printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
 648#endif
 649        qmgr_disable_irq(queue_ids[port->id].rx);
 650        napi_schedule(&port->napi);
 651}
 652
 653static int hss_hdlc_poll(struct napi_struct *napi, int budget)
 654{
 655        struct port *port = container_of(napi, struct port, napi);
 656        struct net_device *dev = port->netdev;
 657        unsigned int rxq = queue_ids[port->id].rx;
 658        unsigned int rxfreeq = queue_ids[port->id].rxfree;
 659        int received = 0;
 660
 661#if DEBUG_RX
 662        printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
 663#endif
 664
 665        while (received < budget) {
 666                struct sk_buff *skb;
 667                struct desc *desc;
 668                int n;
 669#ifdef __ARMEB__
 670                struct sk_buff *temp;
 671                u32 phys;
 672#endif
 673
 674                if ((n = queue_get_desc(rxq, port, 0)) < 0) {
 675#if DEBUG_RX
 676                        printk(KERN_DEBUG "%s: hss_hdlc_poll"
 677                               " napi_complete\n", dev->name);
 678#endif
 679                        napi_complete(napi);
 680                        qmgr_enable_irq(rxq);
 681                        if (!qmgr_stat_empty(rxq) &&
 682                            napi_reschedule(napi)) {
 683#if DEBUG_RX
 684                                printk(KERN_DEBUG "%s: hss_hdlc_poll"
 685                                       " napi_reschedule succeeded\n",
 686                                       dev->name);
 687#endif
 688                                qmgr_disable_irq(rxq);
 689                                continue;
 690                        }
 691#if DEBUG_RX
 692                        printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
 693                               dev->name);
 694#endif
 695                        return received; /* all work done */
 696                }
 697
 698                desc = rx_desc_ptr(port, n);
 699#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
 700                if (desc->error_count)
 701                        printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
 702                               " errors %u\n", dev->name, desc->status,
 703                               desc->error_count);
 704#endif
 705                skb = NULL;
 706                switch (desc->status) {
 707                case 0:
 708#ifdef __ARMEB__
 709                        if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
 710                                phys = dma_map_single(&dev->dev, skb->data,
 711                                                      RX_SIZE,
 712                                                      DMA_FROM_DEVICE);
 713                                if (dma_mapping_error(&dev->dev, phys)) {
 714                                        dev_kfree_skb(skb);
 715                                        skb = NULL;
 716                                }
 717                        }
 718#else
 719                        skb = netdev_alloc_skb(dev, desc->pkt_len);
 720#endif
 721                        if (!skb)
 722                                dev->stats.rx_dropped++;
 723                        break;
 724                case ERR_HDLC_ALIGN:
 725                case ERR_HDLC_ABORT:
 726                        dev->stats.rx_frame_errors++;
 727                        dev->stats.rx_errors++;
 728                        break;
 729                case ERR_HDLC_FCS:
 730                        dev->stats.rx_crc_errors++;
 731                        dev->stats.rx_errors++;
 732                        break;
 733                case ERR_HDLC_TOO_LONG:
 734                        dev->stats.rx_length_errors++;
 735                        dev->stats.rx_errors++;
 736                        break;
 737                default:        /* FIXME - remove printk */
 738                        netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
 739                                   desc->status, desc->error_count);
 740                        dev->stats.rx_errors++;
 741                }
 742
 743                if (!skb) {
 744                        /* put the desc back on RX-ready queue */
 745                        desc->buf_len = RX_SIZE;
 746                        desc->pkt_len = desc->status = 0;
 747                        queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 748                        continue;
 749                }
 750
 751                /* process received frame */
 752#ifdef __ARMEB__
 753                temp = skb;
 754                skb = port->rx_buff_tab[n];
 755                dma_unmap_single(&dev->dev, desc->data,
 756                                 RX_SIZE, DMA_FROM_DEVICE);
 757#else
 758                dma_sync_single_for_cpu(&dev->dev, desc->data,
 759                                        RX_SIZE, DMA_FROM_DEVICE);
 760                memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
 761                              ALIGN(desc->pkt_len, 4) / 4);
 762#endif
 763                skb_put(skb, desc->pkt_len);
 764
 765                debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
 766
 767                skb->protocol = hdlc_type_trans(skb, dev);
 768                dev->stats.rx_packets++;
 769                dev->stats.rx_bytes += skb->len;
 770                netif_receive_skb(skb);
 771
 772                /* put the new buffer on RX-free queue */
 773#ifdef __ARMEB__
 774                port->rx_buff_tab[n] = temp;
 775                desc->data = phys;
 776#endif
 777                desc->buf_len = RX_SIZE;
 778                desc->pkt_len = 0;
 779                queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
 780                received++;
 781        }
 782#if DEBUG_RX
 783        printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
 784#endif
 785        return received;        /* not all work done */
 786}
 787
 788
 789static void hss_hdlc_txdone_irq(void *pdev)
 790{
 791        struct net_device *dev = pdev;
 792        struct port *port = dev_to_port(dev);
 793        int n_desc;
 794
 795#if DEBUG_TX
 796        printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
 797#endif
 798        while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
 799                                        port, 1)) >= 0) {
 800                struct desc *desc;
 801                int start;
 802
 803                desc = tx_desc_ptr(port, n_desc);
 804
 805                dev->stats.tx_packets++;
 806                dev->stats.tx_bytes += desc->pkt_len;
 807
 808                dma_unmap_tx(port, desc);
 809#if DEBUG_TX
 810                printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
 811                       dev->name, port->tx_buff_tab[n_desc]);
 812#endif
 813                free_buffer_irq(port->tx_buff_tab[n_desc]);
 814                port->tx_buff_tab[n_desc] = NULL;
 815
 816                start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
 817                queue_put_desc(port->plat->txreadyq,
 818                               tx_desc_phys(port, n_desc), desc);
 819                if (start) { /* TX-ready queue was empty */
 820#if DEBUG_TX
 821                        printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
 822                               " ready\n", dev->name);
 823#endif
 824                        netif_wake_queue(dev);
 825                }
 826        }
 827}
 828
 829static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
 830{
 831        struct port *port = dev_to_port(dev);
 832        unsigned int txreadyq = port->plat->txreadyq;
 833        int len, offset, bytes, n;
 834        void *mem;
 835        u32 phys;
 836        struct desc *desc;
 837
 838#if DEBUG_TX
 839        printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
 840#endif
 841
 842        if (unlikely(skb->len > HDLC_MAX_MRU)) {
 843                dev_kfree_skb(skb);
 844                dev->stats.tx_errors++;
 845                return NETDEV_TX_OK;
 846        }
 847
 848        debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
 849
 850        len = skb->len;
 851#ifdef __ARMEB__
 852        offset = 0; /* no need to keep alignment */
 853        bytes = len;
 854        mem = skb->data;
 855#else
 856        offset = (int)skb->data & 3; /* keep 32-bit alignment */
 857        bytes = ALIGN(offset + len, 4);
 858        if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
 859                dev_kfree_skb(skb);
 860                dev->stats.tx_dropped++;
 861                return NETDEV_TX_OK;
 862        }
 863        memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
 864        dev_kfree_skb(skb);
 865#endif
 866
 867        phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
 868        if (dma_mapping_error(&dev->dev, phys)) {
 869#ifdef __ARMEB__
 870                dev_kfree_skb(skb);
 871#else
 872                kfree(mem);
 873#endif
 874                dev->stats.tx_dropped++;
 875                return NETDEV_TX_OK;
 876        }
 877
 878        n = queue_get_desc(txreadyq, port, 1);
 879        BUG_ON(n < 0);
 880        desc = tx_desc_ptr(port, n);
 881
 882#ifdef __ARMEB__
 883        port->tx_buff_tab[n] = skb;
 884#else
 885        port->tx_buff_tab[n] = mem;
 886#endif
 887        desc->data = phys + offset;
 888        desc->buf_len = desc->pkt_len = len;
 889
 890        wmb();
 891        queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
 892
 893        if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
 894#if DEBUG_TX
 895                printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
 896#endif
 897                netif_stop_queue(dev);
 898                /* we could miss TX ready interrupt */
 899                if (!qmgr_stat_below_low_watermark(txreadyq)) {
 900#if DEBUG_TX
 901                        printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
 902                               dev->name);
 903#endif
 904                        netif_wake_queue(dev);
 905                }
 906        }
 907
 908#if DEBUG_TX
 909        printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
 910#endif
 911        return NETDEV_TX_OK;
 912}
 913
 914
 915static int request_hdlc_queues(struct port *port)
 916{
 917        int err;
 918
 919        err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
 920                                 "%s:RX-free", port->netdev->name);
 921        if (err)
 922                return err;
 923
 924        err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
 925                                 "%s:RX", port->netdev->name);
 926        if (err)
 927                goto rel_rxfree;
 928
 929        err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
 930                                 "%s:TX", port->netdev->name);
 931        if (err)
 932                goto rel_rx;
 933
 934        err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
 935                                 "%s:TX-ready", port->netdev->name);
 936        if (err)
 937                goto rel_tx;
 938
 939        err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
 940                                 "%s:TX-done", port->netdev->name);
 941        if (err)
 942                goto rel_txready;
 943        return 0;
 944
 945rel_txready:
 946        qmgr_release_queue(port->plat->txreadyq);
 947rel_tx:
 948        qmgr_release_queue(queue_ids[port->id].tx);
 949rel_rx:
 950        qmgr_release_queue(queue_ids[port->id].rx);
 951rel_rxfree:
 952        qmgr_release_queue(queue_ids[port->id].rxfree);
 953        printk(KERN_DEBUG "%s: unable to request hardware queues\n",
 954               port->netdev->name);
 955        return err;
 956}
 957
 958static void release_hdlc_queues(struct port *port)
 959{
 960        qmgr_release_queue(queue_ids[port->id].rxfree);
 961        qmgr_release_queue(queue_ids[port->id].rx);
 962        qmgr_release_queue(queue_ids[port->id].txdone);
 963        qmgr_release_queue(queue_ids[port->id].tx);
 964        qmgr_release_queue(port->plat->txreadyq);
 965}
 966
 967static int init_hdlc_queues(struct port *port)
 968{
 969        int i;
 970
 971        if (!ports_open)
 972                if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
 973                                                 POOL_ALLOC_SIZE, 32, 0)))
 974                        return -ENOMEM;
 975
 976        if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
 977                                              &port->desc_tab_phys)))
 978                return -ENOMEM;
 979        memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
 980        memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
 981        memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
 982
 983        /* Setup RX buffers */
 984        for (i = 0; i < RX_DESCS; i++) {
 985                struct desc *desc = rx_desc_ptr(port, i);
 986                buffer_t *buff;
 987                void *data;
 988#ifdef __ARMEB__
 989                if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
 990                        return -ENOMEM;
 991                data = buff->data;
 992#else
 993                if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
 994                        return -ENOMEM;
 995                data = buff;
 996#endif
 997                desc->buf_len = RX_SIZE;
 998                desc->data = dma_map_single(&port->netdev->dev, data,
 999                                            RX_SIZE, DMA_FROM_DEVICE);
1000                if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1001                        free_buffer(buff);
1002                        return -EIO;
1003                }
1004                port->rx_buff_tab[i] = buff;
1005        }
1006
1007        return 0;
1008}
1009
1010static void destroy_hdlc_queues(struct port *port)
1011{
1012        int i;
1013
1014        if (port->desc_tab) {
1015                for (i = 0; i < RX_DESCS; i++) {
1016                        struct desc *desc = rx_desc_ptr(port, i);
1017                        buffer_t *buff = port->rx_buff_tab[i];
1018                        if (buff) {
1019                                dma_unmap_single(&port->netdev->dev,
1020                                                 desc->data, RX_SIZE,
1021                                                 DMA_FROM_DEVICE);
1022                                free_buffer(buff);
1023                        }
1024                }
1025                for (i = 0; i < TX_DESCS; i++) {
1026                        struct desc *desc = tx_desc_ptr(port, i);
1027                        buffer_t *buff = port->tx_buff_tab[i];
1028                        if (buff) {
1029                                dma_unmap_tx(port, desc);
1030                                free_buffer(buff);
1031                        }
1032                }
1033                dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1034                port->desc_tab = NULL;
1035        }
1036
1037        if (!ports_open && dma_pool) {
1038                dma_pool_destroy(dma_pool);
1039                dma_pool = NULL;
1040        }
1041}
1042
1043static int hss_hdlc_open(struct net_device *dev)
1044{
1045        struct port *port = dev_to_port(dev);
1046        unsigned long flags;
1047        int i, err = 0;
1048
1049        if ((err = hdlc_open(dev)))
1050                return err;
1051
1052        if ((err = hss_load_firmware(port)))
1053                goto err_hdlc_close;
1054
1055        if ((err = request_hdlc_queues(port)))
1056                goto err_hdlc_close;
1057
1058        if ((err = init_hdlc_queues(port)))
1059                goto err_destroy_queues;
1060
1061        spin_lock_irqsave(&npe_lock, flags);
1062        if (port->plat->open)
1063                if ((err = port->plat->open(port->id, dev,
1064                                            hss_hdlc_set_carrier)))
1065                        goto err_unlock;
1066        spin_unlock_irqrestore(&npe_lock, flags);
1067
1068        /* Populate queues with buffers, no failure after this point */
1069        for (i = 0; i < TX_DESCS; i++)
1070                queue_put_desc(port->plat->txreadyq,
1071                               tx_desc_phys(port, i), tx_desc_ptr(port, i));
1072
1073        for (i = 0; i < RX_DESCS; i++)
1074                queue_put_desc(queue_ids[port->id].rxfree,
1075                               rx_desc_phys(port, i), rx_desc_ptr(port, i));
1076
1077        napi_enable(&port->napi);
1078        netif_start_queue(dev);
1079
1080        qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1081                     hss_hdlc_rx_irq, dev);
1082
1083        qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1084                     hss_hdlc_txdone_irq, dev);
1085        qmgr_enable_irq(queue_ids[port->id].txdone);
1086
1087        ports_open++;
1088
1089        hss_set_hdlc_cfg(port);
1090        hss_config(port);
1091
1092        hss_start_hdlc(port);
1093
1094        /* we may already have RX data, enables IRQ */
1095        napi_schedule(&port->napi);
1096        return 0;
1097
1098err_unlock:
1099        spin_unlock_irqrestore(&npe_lock, flags);
1100err_destroy_queues:
1101        destroy_hdlc_queues(port);
1102        release_hdlc_queues(port);
1103err_hdlc_close:
1104        hdlc_close(dev);
1105        return err;
1106}
1107
1108static int hss_hdlc_close(struct net_device *dev)
1109{
1110        struct port *port = dev_to_port(dev);
1111        unsigned long flags;
1112        int i, buffs = RX_DESCS; /* allocated RX buffers */
1113
1114        spin_lock_irqsave(&npe_lock, flags);
1115        ports_open--;
1116        qmgr_disable_irq(queue_ids[port->id].rx);
1117        netif_stop_queue(dev);
1118        napi_disable(&port->napi);
1119
1120        hss_stop_hdlc(port);
1121
1122        while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1123                buffs--;
1124        while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1125                buffs--;
1126
1127        if (buffs)
1128                netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1129                            buffs);
1130
1131        buffs = TX_DESCS;
1132        while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1133                buffs--; /* cancel TX */
1134
1135        i = 0;
1136        do {
1137                while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1138                        buffs--;
1139                if (!buffs)
1140                        break;
1141        } while (++i < MAX_CLOSE_WAIT);
1142
1143        if (buffs)
1144                netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1145                            buffs);
1146#if DEBUG_CLOSE
1147        if (!buffs)
1148                printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1149#endif
1150        qmgr_disable_irq(queue_ids[port->id].txdone);
1151
1152        if (port->plat->close)
1153                port->plat->close(port->id, dev);
1154        spin_unlock_irqrestore(&npe_lock, flags);
1155
1156        destroy_hdlc_queues(port);
1157        release_hdlc_queues(port);
1158        hdlc_close(dev);
1159        return 0;
1160}
1161
1162
1163static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1164                           unsigned short parity)
1165{
1166        struct port *port = dev_to_port(dev);
1167
1168        if (encoding != ENCODING_NRZ)
1169                return -EINVAL;
1170
1171        switch(parity) {
1172        case PARITY_CRC16_PR1_CCITT:
1173                port->hdlc_cfg = 0;
1174                return 0;
1175
1176        case PARITY_CRC32_PR1_CCITT:
1177                port->hdlc_cfg = PKT_HDLC_CRC_32;
1178                return 0;
1179
1180        default:
1181                return -EINVAL;
1182        }
1183}
1184
1185static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
1186                       u32 *best, u32 *best_diff, u32 *reg)
1187{
1188        /* a is 10-bit, b is 10-bit, c is 12-bit */
1189        u64 new_rate;
1190        u32 new_diff;
1191
1192        new_rate = ixp4xx_timer_freq * (u64)(c + 1);
1193        do_div(new_rate, a * (c + 1) + b + 1);
1194        new_diff = abs((u32)new_rate - rate);
1195
1196        if (new_diff < *best_diff) {
1197                *best = new_rate;
1198                *best_diff = new_diff;
1199                *reg = (a << 22) | (b << 12) | c;
1200        }
1201        return new_diff;
1202}
1203
1204static void find_best_clock(u32 rate, u32 *best, u32 *reg)
1205{
1206        u32 a, b, diff = 0xFFFFFFFF;
1207
1208        a = ixp4xx_timer_freq / rate;
1209
1210        if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1211                check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
1212                return;
1213        }
1214        if (a == 0) { /* > 66.666 MHz */
1215                a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1216                rate = ixp4xx_timer_freq;
1217        }
1218
1219        if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
1220                check_clock(rate, a - 1, 1, 1, best, &diff, reg);
1221                return;
1222        }
1223
1224        for (b = 0; b < 0x400; b++) {
1225                u64 c = (b + 1) * (u64)rate;
1226                do_div(c, ixp4xx_timer_freq - rate * a);
1227                c--;
1228                if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1229                        if (b == 0 && /* also try a bit higher rate */
1230                            !check_clock(rate, a - 1, 1, 1, best, &diff, reg))
1231                                return;
1232                        check_clock(rate, a, b, 0xFFF, best, &diff, reg);
1233                        return;
1234                }
1235                if (!check_clock(rate, a, b, c, best, &diff, reg))
1236                        return;
1237                if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
1238                        return;
1239        }
1240}
1241
1242static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1243{
1244        const size_t size = sizeof(sync_serial_settings);
1245        sync_serial_settings new_line;
1246        sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1247        struct port *port = dev_to_port(dev);
1248        unsigned long flags;
1249        int clk;
1250
1251        if (cmd != SIOCWANDEV)
1252                return hdlc_ioctl(dev, ifr, cmd);
1253
1254        switch(ifr->ifr_settings.type) {
1255        case IF_GET_IFACE:
1256                ifr->ifr_settings.type = IF_IFACE_V35;
1257                if (ifr->ifr_settings.size < size) {
1258                        ifr->ifr_settings.size = size; /* data size wanted */
1259                        return -ENOBUFS;
1260                }
1261                memset(&new_line, 0, sizeof(new_line));
1262                new_line.clock_type = port->clock_type;
1263                new_line.clock_rate = port->clock_rate;
1264                new_line.loopback = port->loopback;
1265                if (copy_to_user(line, &new_line, size))
1266                        return -EFAULT;
1267                return 0;
1268
1269        case IF_IFACE_SYNC_SERIAL:
1270        case IF_IFACE_V35:
1271                if(!capable(CAP_NET_ADMIN))
1272                        return -EPERM;
1273                if (copy_from_user(&new_line, line, size))
1274                        return -EFAULT;
1275
1276                clk = new_line.clock_type;
1277                if (port->plat->set_clock)
1278                        clk = port->plat->set_clock(port->id, clk);
1279
1280                if (clk != CLOCK_EXT && clk != CLOCK_INT)
1281                        return -EINVAL; /* No such clock setting */
1282
1283                if (new_line.loopback != 0 && new_line.loopback != 1)
1284                        return -EINVAL;
1285
1286                port->clock_type = clk; /* Update settings */
1287                if (clk == CLOCK_INT)
1288                        find_best_clock(new_line.clock_rate, &port->clock_rate,
1289                                        &port->clock_reg);
1290                else {
1291                        port->clock_rate = 0;
1292                        port->clock_reg = CLK42X_SPEED_2048KHZ;
1293                }
1294                port->loopback = new_line.loopback;
1295
1296                spin_lock_irqsave(&npe_lock, flags);
1297
1298                if (dev->flags & IFF_UP)
1299                        hss_config(port);
1300
1301                if (port->loopback || port->carrier)
1302                        netif_carrier_on(port->netdev);
1303                else
1304                        netif_carrier_off(port->netdev);
1305                spin_unlock_irqrestore(&npe_lock, flags);
1306
1307                return 0;
1308
1309        default:
1310                return hdlc_ioctl(dev, ifr, cmd);
1311        }
1312}
1313
1314/*****************************************************************************
1315 * initialization
1316 ****************************************************************************/
1317
1318static const struct net_device_ops hss_hdlc_ops = {
1319        .ndo_open       = hss_hdlc_open,
1320        .ndo_stop       = hss_hdlc_close,
1321        .ndo_change_mtu = hdlc_change_mtu,
1322        .ndo_start_xmit = hdlc_start_xmit,
1323        .ndo_do_ioctl   = hss_hdlc_ioctl,
1324};
1325
1326static int __devinit hss_init_one(struct platform_device *pdev)
1327{
1328        struct port *port;
1329        struct net_device *dev;
1330        hdlc_device *hdlc;
1331        int err;
1332
1333        if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1334                return -ENOMEM;
1335
1336        if ((port->npe = npe_request(0)) == NULL) {
1337                err = -ENODEV;
1338                goto err_free;
1339        }
1340
1341        if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1342                err = -ENOMEM;
1343                goto err_plat;
1344        }
1345
1346        SET_NETDEV_DEV(dev, &pdev->dev);
1347        hdlc = dev_to_hdlc(dev);
1348        hdlc->attach = hss_hdlc_attach;
1349        hdlc->xmit = hss_hdlc_xmit;
1350        dev->netdev_ops = &hss_hdlc_ops;
1351        dev->tx_queue_len = 100;
1352        port->clock_type = CLOCK_EXT;
1353        port->clock_rate = 0;
1354        port->clock_reg = CLK42X_SPEED_2048KHZ;
1355        port->id = pdev->id;
1356        port->dev = &pdev->dev;
1357        port->plat = pdev->dev.platform_data;
1358        netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1359
1360        if ((err = register_hdlc_device(dev)))
1361                goto err_free_netdev;
1362
1363        platform_set_drvdata(pdev, port);
1364
1365        netdev_info(dev, "HSS-%i\n", port->id);
1366        return 0;
1367
1368err_free_netdev:
1369        free_netdev(dev);
1370err_plat:
1371        npe_release(port->npe);
1372err_free:
1373        kfree(port);
1374        return err;
1375}
1376
1377static int __devexit hss_remove_one(struct platform_device *pdev)
1378{
1379        struct port *port = platform_get_drvdata(pdev);
1380
1381        unregister_hdlc_device(port->netdev);
1382        free_netdev(port->netdev);
1383        npe_release(port->npe);
1384        platform_set_drvdata(pdev, NULL);
1385        kfree(port);
1386        return 0;
1387}
1388
1389static struct platform_driver ixp4xx_hss_driver = {
1390        .driver.name    = DRV_NAME,
1391        .probe          = hss_init_one,
1392        .remove         = hss_remove_one,
1393};
1394
1395static int __init hss_init_module(void)
1396{
1397        if ((ixp4xx_read_feature_bits() &
1398             (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1399            (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1400                return -ENODEV;
1401
1402        spin_lock_init(&npe_lock);
1403
1404        return platform_driver_register(&ixp4xx_hss_driver);
1405}
1406
1407static void __exit hss_cleanup_module(void)
1408{
1409        platform_driver_unregister(&ixp4xx_hss_driver);
1410}
1411
1412MODULE_AUTHOR("Krzysztof Halasa");
1413MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1414MODULE_LICENSE("GPL v2");
1415MODULE_ALIAS("platform:ixp4xx_hss");
1416module_init(hss_init_module);
1417module_exit(hss_cleanup_module);
1418