linux/drivers/staging/et131x/et131x.c
<<
>>
Prefs
   1/*
   2 * Agere Systems Inc.
   3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   4 *
   5 * Copyright © 2005 Agere Systems Inc.
   6 * All rights reserved.
   7 *   http://www.agere.com
   8 *
   9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
  10 *
  11 *------------------------------------------------------------------------------
  12 *
  13 * SOFTWARE LICENSE
  14 *
  15 * This software is provided subject to the following terms and conditions,
  16 * which you should read carefully before using the software.  Using this
  17 * software indicates your acceptance of these terms and conditions.  If you do
  18 * not agree with these terms and conditions, do not use the software.
  19 *
  20 * Copyright © 2005 Agere Systems Inc.
  21 * All rights reserved.
  22 *
  23 * Redistribution and use in source or binary forms, with or without
  24 * modifications, are permitted provided that the following conditions are met:
  25 *
  26 * . Redistributions of source code must retain the above copyright notice, this
  27 *    list of conditions and the following Disclaimer as comments in the code as
  28 *    well as in the documentation and/or other materials provided with the
  29 *    distribution.
  30 *
  31 * . Redistributions in binary form must reproduce the above copyright notice,
  32 *    this list of conditions and the following Disclaimer in the documentation
  33 *    and/or other materials provided with the distribution.
  34 *
  35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  36 *    may be used to endorse or promote products derived from this software
  37 *    without specific prior written permission.
  38 *
  39 * Disclaimer
  40 *
  41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  52 * DAMAGE.
  53 *
  54 */
  55
  56#include <linux/pci.h>
  57#include <linux/init.h>
  58#include <linux/module.h>
  59#include <linux/types.h>
  60#include <linux/kernel.h>
  61
  62#include <linux/sched.h>
  63#include <linux/ptrace.h>
  64#include <linux/slab.h>
  65#include <linux/ctype.h>
  66#include <linux/string.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/in.h>
  70#include <linux/delay.h>
  71#include <linux/bitops.h>
  72#include <linux/io.h>
  73
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_arp.h>
  78#include <linux/ioport.h>
  79#include <linux/crc32.h>
  80#include <linux/random.h>
  81#include <linux/phy.h>
  82
  83#include "et131x.h"
  84
  85MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  86MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  87MODULE_LICENSE("Dual BSD/GPL");
  88MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
  89                   "for the ET1310 by Agere Systems");
  90
  91/* EEPROM defines */
  92#define MAX_NUM_REGISTER_POLLS          1000
  93#define MAX_NUM_WRITE_RETRIES           2
  94
  95/* MAC defines */
  96#define COUNTER_WRAP_16_BIT 0x10000
  97#define COUNTER_WRAP_12_BIT 0x1000
  98
  99/* PCI defines */
 100#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
 101#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 102
 103/* ISR defines */
 104/*
 105 * For interrupts, normal running is:
 106 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 107 *       watchdog_interrupt & txdma_xfer_done
 108 *
 109 * In both cases, when flow control is enabled for either Tx or bi-direction,
 110 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 111 * buffer rings are running low.
 112 */
 113#define INT_MASK_DISABLE            0xffffffff
 114
 115/* NOTE: Masking out MAC_STAT Interrupt for now...
 116 * #define INT_MASK_ENABLE             0xfff6bf17
 117 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 118 */
 119#define INT_MASK_ENABLE             0xfffebf17
 120#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 121
 122/* General defines */
 123/* Packet and header sizes */
 124#define NIC_MIN_PACKET_SIZE     60
 125
 126/* Multicast list size */
 127#define NIC_MAX_MCAST_LIST      128
 128
 129/* Supported Filters */
 130#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 131#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 132#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 133#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 134#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 135
 136/* Tx Timeout */
 137#define ET131X_TX_TIMEOUT       (1 * HZ)
 138#define NIC_SEND_HANG_THRESHOLD 0
 139
 140/* MP_TCB flags */
 141#define fMP_DEST_MULTI                  0x00000001
 142#define fMP_DEST_BROAD                  0x00000002
 143
 144/* MP_ADAPTER flags */
 145#define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
 146#define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 147
 148/* MP_SHARED flags */
 149#define fMP_ADAPTER_LOWER_POWER         0x00200000
 150
 151#define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 152#define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
 153
 154#define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 155
 156/* Some offsets in PCI config space that are actually used. */
 157#define ET1310_PCI_MAC_ADDRESS          0xA4
 158#define ET1310_PCI_EEPROM_STATUS        0xB2
 159#define ET1310_PCI_ACK_NACK             0xC0
 160#define ET1310_PCI_REPLAY               0xC2
 161#define ET1310_PCI_L0L1LATENCY          0xCF
 162
 163/* PCI Product IDs */
 164#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 165#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 166
 167/* Define order of magnitude converter */
 168#define NANO_IN_A_MICRO 1000
 169
 170#define PARM_RX_NUM_BUFS_DEF    4
 171#define PARM_RX_TIME_INT_DEF    10
 172#define PARM_RX_MEM_END_DEF     0x2bc
 173#define PARM_TX_TIME_INT_DEF    40
 174#define PARM_TX_NUM_BUFS_DEF    4
 175#define PARM_DMA_CACHE_DEF      0
 176
 177/* RX defines */
 178#define USE_FBR0 1
 179#define FBR_CHUNKS 32
 180#define MAX_DESC_PER_RING_RX         1024
 181
 182/* number of RFDs - default and min */
 183#ifdef USE_FBR0
 184#define RFD_LOW_WATER_MARK      40
 185#define NIC_DEFAULT_NUM_RFD     1024
 186#define NUM_FBRS                2
 187#else
 188#define RFD_LOW_WATER_MARK      20
 189#define NIC_DEFAULT_NUM_RFD     256
 190#define NUM_FBRS                1
 191#endif
 192
 193#define NIC_MIN_NUM_RFD         64
 194#define NUM_PACKETS_HANDLED     256
 195
 196#define ALCATEL_MULTICAST_PKT   0x01000000
 197#define ALCATEL_BROADCAST_PKT   0x02000000
 198
 199/* typedefs for Free Buffer Descriptors */
 200struct fbr_desc {
 201        u32 addr_lo;
 202        u32 addr_hi;
 203        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 204};
 205
 206/* Packet Status Ring Descriptors
 207 *
 208 * Word 0:
 209 *
 210 * top 16 bits are from the Alcatel Status Word as enumerated in
 211 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 212 *
 213 * 0: hp                        hash pass
 214 * 1: ipa                       IP checksum assist
 215 * 2: ipp                       IP checksum pass
 216 * 3: tcpa                      TCP checksum assist
 217 * 4: tcpp                      TCP checksum pass
 218 * 5: wol                       WOL Event
 219 * 6: rxmac_error               RXMAC Error Indicator
 220 * 7: drop                      Drop packet
 221 * 8: ft                        Frame Truncated
 222 * 9: jp                        Jumbo Packet
 223 * 10: vp                       VLAN Packet
 224 * 11-15: unused
 225 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 226 * 17: asw_RX_DV_event          short receive event detected
 227 * 18: asw_false_carrier_event  bad carrier since last good packet
 228 * 19: asw_code_err             one or more nibbles signalled as errors
 229 * 20: asw_CRC_err              CRC error
 230 * 21: asw_len_chk_err          frame length field incorrect
 231 * 22: asw_too_long             frame length > 1518 bytes
 232 * 23: asw_OK                   valid CRC + no code error
 233 * 24: asw_multicast            has a multicast address
 234 * 25: asw_broadcast            has a broadcast address
 235 * 26: asw_dribble_nibble       spurious bits after EOP
 236 * 27: asw_control_frame        is a control frame
 237 * 28: asw_pause_frame          is a pause frame
 238 * 29: asw_unsupported_op       unsupported OP code
 239 * 30: asw_VLAN_tag             VLAN tag detected
 240 * 31: asw_long_evt             Rx long event
 241 *
 242 * Word 1:
 243 * 0-15: length                 length in bytes
 244 * 16-25: bi                    Buffer Index
 245 * 26-27: ri                    Ring Index
 246 * 28-31: reserved
 247 */
 248
 249struct pkt_stat_desc {
 250        u32 word0;
 251        u32 word1;
 252};
 253
 254/* Typedefs for the RX DMA status word */
 255
 256/*
 257 * rx status word 0 holds part of the status bits of the Rx DMA engine
 258 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 259 * which contains the Free Buffer ring 0 and 1 available offset.
 260 *
 261 * bit 0-9 FBR1 offset
 262 * bit 10 Wrap flag for FBR1
 263 * bit 16-25 FBR0 offset
 264 * bit 26 Wrap flag for FBR0
 265 */
 266
 267/*
 268 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 269 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 270 * which contains the Packet Status Ring available offset.
 271 *
 272 * bit 0-15 reserved
 273 * bit 16-27 PSRoffset
 274 * bit 28 PSRwrap
 275 * bit 29-31 unused
 276 */
 277
 278/*
 279 * struct rx_status_block is a structure representing the status of the Rx
 280 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 281 */
 282struct rx_status_block {
 283        u32 word0;
 284        u32 word1;
 285};
 286
 287/*
 288 * Structure for look-up table holding free buffer ring pointers, addresses
 289 * and state.
 290 */
 291struct fbr_lookup {
 292        void            *virt[MAX_DESC_PER_RING_RX];
 293        void            *buffer1[MAX_DESC_PER_RING_RX];
 294        void            *buffer2[MAX_DESC_PER_RING_RX];
 295        u32              bus_high[MAX_DESC_PER_RING_RX];
 296        u32              bus_low[MAX_DESC_PER_RING_RX];
 297        void            *ring_virtaddr;
 298        dma_addr_t       ring_physaddr;
 299        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 300        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 301        u64              real_physaddr;
 302        u64              offset;
 303        u32              local_full;
 304        u32              num_entries;
 305        u32              buffsize;
 306};
 307
 308/*
 309 * struct rx_ring is the sructure representing the adaptor's local
 310 * reference(s) to the rings
 311 *
 312 ******************************************************************************
 313 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
 314 *                      and index 1 to refer to FRB0
 315 ******************************************************************************
 316 */
 317struct rx_ring {
 318        struct fbr_lookup *fbr[NUM_FBRS];
 319        void *ps_ring_virtaddr;
 320        dma_addr_t ps_ring_physaddr;
 321        u32 local_psr_full;
 322        u32 psr_num_entries;
 323
 324        struct rx_status_block *rx_status_block;
 325        dma_addr_t rx_status_bus;
 326
 327        /* RECV */
 328        struct list_head recv_list;
 329        u32 num_ready_recv;
 330
 331        u32 num_rfd;
 332
 333        bool unfinished_receives;
 334
 335        /* lookaside lists */
 336        struct kmem_cache *recv_lookaside;
 337};
 338
 339/* TX defines */
 340/*
 341 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 342 *
 343 * 0-15: length of packet
 344 * 16-27: VLAN tag
 345 * 28: VLAN CFI
 346 * 29-31: VLAN priority
 347 *
 348 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 349 *
 350 * 0: last packet in the sequence
 351 * 1: first packet in the sequence
 352 * 2: interrupt the processor when this pkt sent
 353 * 3: Control word - no packet data
 354 * 4: Issue half-duplex backpressure : XON/XOFF
 355 * 5: send pause frame
 356 * 6: Tx frame has error
 357 * 7: append CRC
 358 * 8: MAC override
 359 * 9: pad packet
 360 * 10: Packet is a Huge packet
 361 * 11: append VLAN tag
 362 * 12: IP checksum assist
 363 * 13: TCP checksum assist
 364 * 14: UDP checksum assist
 365 */
 366
 367/* struct tx_desc represents each descriptor on the ring */
 368struct tx_desc {
 369        u32 addr_hi;
 370        u32 addr_lo;
 371        u32 len_vlan;   /* control words how to xmit the */
 372        u32 flags;      /* data (detailed above) */
 373};
 374
 375/*
 376 * The status of the Tx DMA engine it sits in free memory, and is pointed to
 377 * by 0x101c / 0x1020. This is a DMA10 type
 378 */
 379
 380/* TCB (Transmit Control Block: Host Side) */
 381struct tcb {
 382        struct tcb *next;       /* Next entry in ring */
 383        u32 flags;              /* Our flags for the packet */
 384        u32 count;              /* Used to spot stuck/lost packets */
 385        u32 stale;              /* Used to spot stuck/lost packets */
 386        struct sk_buff *skb;    /* Network skb we are tied to */
 387        u32 index;              /* Ring indexes */
 388        u32 index_start;
 389};
 390
 391/* Structure representing our local reference(s) to the ring */
 392struct tx_ring {
 393        /* TCB (Transmit Control Block) memory and lists */
 394        struct tcb *tcb_ring;
 395
 396        /* List of TCBs that are ready to be used */
 397        struct tcb *tcb_qhead;
 398        struct tcb *tcb_qtail;
 399
 400        /* list of TCBs that are currently being sent.  NOTE that access to all
 401         * three of these (including used) are controlled via the
 402         * TCBSendQLock.  This lock should be secured prior to incementing /
 403         * decrementing used, or any queue manipulation on send_head /
 404         * tail
 405         */
 406        struct tcb *send_head;
 407        struct tcb *send_tail;
 408        int used;
 409
 410        /* The actual descriptor ring */
 411        struct tx_desc *tx_desc_ring;
 412        dma_addr_t tx_desc_ring_pa;
 413
 414        /* send_idx indicates where we last wrote to in the descriptor ring. */
 415        u32 send_idx;
 416
 417        /* The location of the write-back status block */
 418        u32 *tx_status;
 419        dma_addr_t tx_status_pa;
 420
 421        /* Packets since the last IRQ: used for interrupt coalescing */
 422        int since_irq;
 423};
 424
 425/*
 426 * Do not change these values: if changed, then change also in respective
 427 * TXdma and Rxdma engines
 428 */
 429#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 430#define NUM_TCB                      64
 431
 432/*
 433 * These values are all superseded by registry entries to facilitate tuning.
 434 * Once the desired performance has been achieved, the optimal registry values
 435 * should be re-populated to these #defines:
 436 */
 437#define TX_ERROR_PERIOD             1000
 438
 439#define LO_MARK_PERCENT_FOR_PSR     15
 440#define LO_MARK_PERCENT_FOR_RX      15
 441
 442/* RFD (Receive Frame Descriptor) */
 443struct rfd {
 444        struct list_head list_node;
 445        struct sk_buff *skb;
 446        u32 len;        /* total size of receive frame */
 447        u16 bufferindex;
 448        u8 ringindex;
 449};
 450
 451/* Flow Control */
 452#define FLOW_BOTH       0
 453#define FLOW_TXONLY     1
 454#define FLOW_RXONLY     2
 455#define FLOW_NONE       3
 456
 457/* Struct to define some device statistics */
 458struct ce_stats {
 459        /* MIB II variables
 460         *
 461         * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
 462         * MUST have 32, then we'll need another way to perform atomic
 463         * operations
 464         */
 465        u32             unicast_pkts_rcvd;
 466        atomic_t        unicast_pkts_xmtd;
 467        u32             multicast_pkts_rcvd;
 468        atomic_t        multicast_pkts_xmtd;
 469        u32             broadcast_pkts_rcvd;
 470        atomic_t        broadcast_pkts_xmtd;
 471        u32             rcvd_pkts_dropped;
 472
 473        /* Tx Statistics. */
 474        u32             tx_underflows;
 475
 476        u32             tx_collisions;
 477        u32             tx_excessive_collisions;
 478        u32             tx_first_collisions;
 479        u32             tx_late_collisions;
 480        u32             tx_max_pkt_errs;
 481        u32             tx_deferred;
 482
 483        /* Rx Statistics. */
 484        u32             rx_overflows;
 485
 486        u32             rx_length_errs;
 487        u32             rx_align_errs;
 488        u32             rx_crc_errs;
 489        u32             rx_code_violations;
 490        u32             rx_other_errs;
 491
 492        u32             synchronous_iterations;
 493        u32             interrupt_status;
 494};
 495
 496/* The private adapter structure */
 497struct et131x_adapter {
 498        struct net_device *netdev;
 499        struct pci_dev *pdev;
 500        struct mii_bus *mii_bus;
 501        struct phy_device *phydev;
 502        struct work_struct task;
 503
 504        /* Flags that indicate current state of the adapter */
 505        u32 flags;
 506
 507        /* local link state, to determine if a state change has occurred */
 508        int link;
 509
 510        /* Configuration  */
 511        u8 rom_addr[ETH_ALEN];
 512        u8 addr[ETH_ALEN];
 513        bool has_eeprom;
 514        u8 eeprom_data[2];
 515
 516        /* Spinlocks */
 517        spinlock_t lock;
 518
 519        spinlock_t tcb_send_qlock;
 520        spinlock_t tcb_ready_qlock;
 521        spinlock_t send_hw_lock;
 522
 523        spinlock_t rcv_lock;
 524        spinlock_t rcv_pend_lock;
 525        spinlock_t fbr_lock;
 526
 527        spinlock_t phy_lock;
 528
 529        /* Packet Filter and look ahead size */
 530        u32 packet_filter;
 531
 532        /* multicast list */
 533        u32 multicast_addr_count;
 534        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 535
 536        /* Pointer to the device's PCI register space */
 537        struct address_map __iomem *regs;
 538
 539        /* Registry parameters */
 540        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 541        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 542
 543        /* Derived from the registry: */
 544        u8 flowcontrol;         /* flow control validated by the far-end */
 545
 546        /* Minimize init-time */
 547        struct timer_list error_timer;
 548
 549        /* variable putting the phy into coma mode when boot up with no cable
 550         * plugged in after 5 seconds
 551         */
 552        u8 boot_coma;
 553
 554        /* Next two used to save power information at power down. This
 555         * information will be used during power up to set up parts of Power
 556         * Management in JAGCore
 557         */
 558        u16 pdown_speed;
 559        u8 pdown_duplex;
 560
 561        /* Tx Memory Variables */
 562        struct tx_ring tx_ring;
 563
 564        /* Rx Memory Variables */
 565        struct rx_ring rx_ring;
 566
 567        /* Stats */
 568        struct ce_stats stats;
 569
 570        struct net_device_stats net_stats;
 571};
 572
 573static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 574{
 575        u32 reg;
 576        int i;
 577
 578        /*
 579         * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 580         *    bits 7,1:0 both equal to 1, at least once after reset.
 581         *    Subsequent operations need only to check that bits 1:0 are equal
 582         *    to 1 prior to starting a single byte read/write
 583         */
 584
 585        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 586                /* Read registers grouped in DWORD1 */
 587                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 588                        return -EIO;
 589
 590                /* I2C idle and Phy Queue Avail both true */
 591                if ((reg & 0x3000) == 0x3000) {
 592                        if (status)
 593                                *status = reg;
 594                        return reg & 0xFF;
 595                }
 596        }
 597        return -ETIMEDOUT;
 598}
 599
 600
 601/**
 602 * eeprom_write - Write a byte to the ET1310's EEPROM
 603 * @adapter: pointer to our private adapter structure
 604 * @addr: the address to write
 605 * @data: the value to write
 606 *
 607 * Returns 1 for a successful write.
 608 */
 609static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 610{
 611        struct pci_dev *pdev = adapter->pdev;
 612        int index = 0;
 613        int retries;
 614        int err = 0;
 615        int i2c_wack = 0;
 616        int writeok = 0;
 617        u32 status;
 618        u32 val = 0;
 619
 620        /*
 621         * For an EEPROM, an I2C single byte write is defined as a START
 622         * condition followed by the device address, EEPROM address, one byte
 623         * of data and a STOP condition.  The STOP condition will trigger the
 624         * EEPROM's internally timed write cycle to the nonvolatile memory.
 625         * All inputs are disabled during this write cycle and the EEPROM will
 626         * not respond to any access until the internal write is complete.
 627         */
 628
 629        err = eeprom_wait_ready(pdev, NULL);
 630        if (err)
 631                return err;
 632
 633         /*
 634         * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 635         *    and bits 1:0 both =0.  Bit 5 should be set according to the
 636         *    type of EEPROM being accessed (1=two byte addressing, 0=one
 637         *    byte addressing).
 638         */
 639        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 640                        LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
 641                return -EIO;
 642
 643        i2c_wack = 1;
 644
 645        /* Prepare EEPROM address for Step 3 */
 646
 647        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 648                /* Write the address to the LBCIF Address Register */
 649                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 650                        break;
 651                /*
 652                 * Write the data to the LBCIF Data Register (the I2C write
 653                 * will begin).
 654                 */
 655                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 656                        break;
 657                /*
 658                 * Monitor bit 1:0 of the LBCIF Status Register.  When bits
 659                 * 1:0 are both equal to 1, the I2C write has completed and the
 660                 * internal write cycle of the EEPROM is about to start.
 661                 * (bits 1:0 = 01 is a legal state while waiting from both
 662                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 663                 * something is broken).
 664                 */
 665                err = eeprom_wait_ready(pdev, &status);
 666                if (err < 0)
 667                        return 0;
 668
 669                /*
 670                 * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 671                 * an error has occurred.Don't break here if we are revision
 672                 * 1, this is so we do a blind write for load bug.
 673                 */
 674                if ((status & LBCIF_STATUS_GENERAL_ERROR)
 675                        && adapter->pdev->revision == 0)
 676                        break;
 677
 678                /*
 679                 * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 680                 * ACK error has occurred on the address phase of the write.
 681                 * This could be due to an actual hardware failure or the
 682                 * EEPROM may still be in its internal write cycle from a
 683                 * previous write. This write operation was ignored and must be
 684                  *repeated later.
 685                 */
 686                if (status & LBCIF_STATUS_ACK_ERROR) {
 687                        /*
 688                         * This could be due to an actual hardware failure
 689                         * or the EEPROM may still be in its internal write
 690                         * cycle from a previous write. This write operation
 691                         * was ignored and must be repeated later.
 692                         */
 693                        udelay(10);
 694                        continue;
 695                }
 696
 697                writeok = 1;
 698                break;
 699        }
 700
 701        /*
 702         * Set bit 6 of the LBCIF Control Register = 0.
 703         */
 704        udelay(10);
 705
 706        while (i2c_wack) {
 707                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 708                        LBCIF_CONTROL_LBCIF_ENABLE))
 709                        writeok = 0;
 710
 711                /* Do read until internal ACK_ERROR goes away meaning write
 712                 * completed
 713                 */
 714                do {
 715                        pci_write_config_dword(pdev,
 716                                               LBCIF_ADDRESS_REGISTER,
 717                                               addr);
 718                        do {
 719                                pci_read_config_dword(pdev,
 720                                        LBCIF_DATA_REGISTER, &val);
 721                        } while ((val & 0x00010000) == 0);
 722                } while (val & 0x00040000);
 723
 724                if ((val & 0xFF00) != 0xC000 || index == 10000)
 725                        break;
 726                index++;
 727        }
 728        return writeok ? 0 : -EIO;
 729}
 730
 731/**
 732 * eeprom_read - Read a byte from the ET1310's EEPROM
 733 * @adapter: pointer to our private adapter structure
 734 * @addr: the address from which to read
 735 * @pdata: a pointer to a byte in which to store the value of the read
 736 * @eeprom_id: the ID of the EEPROM
 737 * @addrmode: how the EEPROM is to be accessed
 738 *
 739 * Returns 1 for a successful read
 740 */
 741static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 742{
 743        struct pci_dev *pdev = adapter->pdev;
 744        int err;
 745        u32 status;
 746
 747        /*
 748         * A single byte read is similar to the single byte write, with the
 749         * exception of the data flow:
 750         */
 751
 752        err = eeprom_wait_ready(pdev, NULL);
 753        if (err)
 754                return err;
 755        /*
 756         * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 757         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 758         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 759         * addressing).
 760         */
 761        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 762                                  LBCIF_CONTROL_LBCIF_ENABLE))
 763                return -EIO;
 764        /*
 765         * Write the address to the LBCIF Address Register (I2C read will
 766         * begin).
 767         */
 768        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 769                return -EIO;
 770        /*
 771         * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 772         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 773         * has occurred).
 774         */
 775        err = eeprom_wait_ready(pdev, &status);
 776        if (err < 0)
 777                return err;
 778        /*
 779         * Regardless of error status, read data byte from LBCIF Data
 780         * Register.
 781         */
 782        *pdata = err;
 783        /*
 784         * Check bit 2 of the LBCIF Status Register.  If = 1,
 785         * then an error has occurred.
 786         */
 787        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 788}
 789
 790static int et131x_init_eeprom(struct et131x_adapter *adapter)
 791{
 792        struct pci_dev *pdev = adapter->pdev;
 793        u8 eestatus;
 794
 795        /* We first need to check the EEPROM Status code located at offset
 796         * 0xB2 of config space
 797         */
 798        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
 799                                      &eestatus);
 800
 801        /* THIS IS A WORKAROUND:
 802         * I need to call this function twice to get my card in a
 803         * LG M1 Express Dual running. I tried also a msleep before this
 804         * function, because I thought there could be some time condidions
 805         * but it didn't work. Call the whole function twice also work.
 806         */
 807        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 808                dev_err(&pdev->dev,
 809                       "Could not read PCI config space for EEPROM Status\n");
 810                return -EIO;
 811        }
 812
 813        /* Determine if the error(s) we care about are present. If they are
 814         * present we need to fail.
 815         */
 816        if (eestatus & 0x4C) {
 817                int write_failed = 0;
 818                if (pdev->revision == 0x01) {
 819                        int     i;
 820                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 821
 822                        /* Re-write the first 4 bytes if we have an eeprom
 823                         * present and the revision id is 1, this fixes the
 824                         * corruption seen with 1310 B Silicon
 825                         */
 826                        for (i = 0; i < 3; i++)
 827                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 828                                        write_failed = 1;
 829                }
 830                if (pdev->revision  != 0x01 || write_failed) {
 831                        dev_err(&pdev->dev,
 832                            "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
 833
 834                        /* This error could mean that there was an error
 835                         * reading the eeprom or that the eeprom doesn't exist.
 836                         * We will treat each case the same and not try to
 837                         * gather additional information that normally would
 838                         * come from the eeprom, like MAC Address
 839                         */
 840                        adapter->has_eeprom = 0;
 841                        return -EIO;
 842                }
 843        }
 844        adapter->has_eeprom = 1;
 845
 846        /* Read the EEPROM for information regarding LED behavior. Refer to
 847         * ET1310_phy.c, et131x_xcvr_init(), for its use.
 848         */
 849        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 850        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 851
 852        if (adapter->eeprom_data[0] != 0xcd)
 853                /* Disable all optional features */
 854                adapter->eeprom_data[1] = 0x00;
 855
 856        return 0;
 857}
 858
 859/**
 860 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
 861 * @adapter: pointer to our adapter structure
 862 */
 863static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 864{
 865        /* Setup the receive dma configuration register for normal operation */
 866        u32 csr =  0x2000;      /* FBR1 enable */
 867
 868        if (adapter->rx_ring.fbr[0]->buffsize == 4096)
 869                csr |= 0x0800;
 870        else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
 871                csr |= 0x1000;
 872        else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
 873                csr |= 0x1800;
 874#ifdef USE_FBR0
 875        csr |= 0x0400;          /* FBR0 enable */
 876        if (adapter->rx_ring.fbr[1]->buffsize == 256)
 877                csr |= 0x0100;
 878        else if (adapter->rx_ring.fbr[1]->buffsize == 512)
 879                csr |= 0x0200;
 880        else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
 881                csr |= 0x0300;
 882#endif
 883        writel(csr, &adapter->regs->rxdma.csr);
 884
 885        csr = readl(&adapter->regs->rxdma.csr);
 886        if ((csr & 0x00020000) != 0) {
 887                udelay(5);
 888                csr = readl(&adapter->regs->rxdma.csr);
 889                if ((csr & 0x00020000) != 0) {
 890                        dev_err(&adapter->pdev->dev,
 891                            "RX Dma failed to exit halt state.  CSR 0x%08x\n",
 892                                csr);
 893                }
 894        }
 895}
 896
 897/**
 898 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
 899 * @adapter: pointer to our adapter structure
 900 */
 901static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 902{
 903        u32 csr;
 904        /* Setup the receive dma configuration register */
 905        writel(0x00002001, &adapter->regs->rxdma.csr);
 906        csr = readl(&adapter->regs->rxdma.csr);
 907        if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
 908                udelay(5);
 909                csr = readl(&adapter->regs->rxdma.csr);
 910                if ((csr & 0x00020000) == 0)
 911                        dev_err(&adapter->pdev->dev,
 912                        "RX Dma failed to enter halt state. CSR 0x%08x\n",
 913                                csr);
 914        }
 915}
 916
 917/**
 918 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
 919 * @adapter: pointer to our adapter structure
 920 *
 921 * Mainly used after a return to the D0 (full-power) state from a lower state.
 922 */
 923static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 924{
 925        /* Setup the transmit dma configuration register for normal
 926         * operation
 927         */
 928        writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 929                                        &adapter->regs->txdma.csr);
 930}
 931
 932static inline void add_10bit(u32 *v, int n)
 933{
 934        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 935}
 936
 937static inline void add_12bit(u32 *v, int n)
 938{
 939        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 940}
 941
 942/**
 943 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
 944 * @adapter: pointer to our adapter structure
 945 */
 946static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 947{
 948        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 949        u32 station1;
 950        u32 station2;
 951        u32 ipg;
 952
 953        /* First we need to reset everything.  Write to MAC configuration
 954         * register 1 to perform reset.
 955         */
 956        writel(0xC00F0000, &macregs->cfg1);
 957
 958        /* Next lets configure the MAC Inter-packet gap register */
 959        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 960        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 961        writel(ipg, &macregs->ipg);
 962
 963        /* Next lets configure the MAC Half Duplex register */
 964        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 965        writel(0x00A1F037, &macregs->hfdp);
 966
 967        /* Next lets configure the MAC Interface Control register */
 968        writel(0, &macregs->if_ctrl);
 969
 970        /* Let's move on to setting up the mii management configuration */
 971        writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
 972
 973        /* Next lets configure the MAC Station Address register.  These
 974         * values are read from the EEPROM during initialization and stored
 975         * in the adapter structure.  We write what is stored in the adapter
 976         * structure to the MAC Station Address registers high and low.  This
 977         * station address is used for generating and checking pause control
 978         * packets.
 979         */
 980        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 981                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 982        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 983                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 984                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 985                    adapter->addr[2];
 986        writel(station1, &macregs->station_addr_1);
 987        writel(station2, &macregs->station_addr_2);
 988
 989        /* Max ethernet packet in bytes that will be passed by the mac without
 990         * being truncated.  Allow the MAC to pass 4 more than our max packet
 991         * size.  This is 4 for the Ethernet CRC.
 992         *
 993         * Packets larger than (registry_jumbo_packet) that do not contain a
 994         * VLAN ID will be dropped by the Rx function.
 995         */
 996        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 997
 998        /* clear out MAC config reset */
 999        writel(0, &macregs->cfg1);
1000}
1001
1002/**
1003 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004 * @adapter: pointer to our adapter structure
1005 */
1006static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1007{
1008        int32_t delay = 0;
1009        struct mac_regs __iomem *mac = &adapter->regs->mac;
1010        struct phy_device *phydev = adapter->phydev;
1011        u32 cfg1;
1012        u32 cfg2;
1013        u32 ifctrl;
1014        u32 ctl;
1015
1016        ctl = readl(&adapter->regs->txmac.ctl);
1017        cfg1 = readl(&mac->cfg1);
1018        cfg2 = readl(&mac->cfg2);
1019        ifctrl = readl(&mac->if_ctrl);
1020
1021        /* Set up the if mode bits */
1022        cfg2 &= ~0x300;
1023        if (phydev && phydev->speed == SPEED_1000) {
1024                cfg2 |= 0x200;
1025                /* Phy mode bit */
1026                ifctrl &= ~(1 << 24);
1027        } else {
1028                cfg2 |= 0x100;
1029                ifctrl |= (1 << 24);
1030        }
1031
1032        /* We need to enable Rx/Tx */
1033        cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034        /* Initialize loop back to off */
1035        cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036        if (adapter->flowcontrol == FLOW_RXONLY ||
1037                                adapter->flowcontrol == FLOW_BOTH)
1038                cfg1 |= CFG1_RX_FLOW;
1039        writel(cfg1, &mac->cfg1);
1040
1041        /* Now we need to initialize the MAC Configuration 2 register */
1042        /* preamble 7, check length, huge frame off, pad crc, crc enable
1043           full duplex off */
1044        cfg2 |= 0x7016;
1045        cfg2 &= ~0x0021;
1046
1047        /* Turn on duplex if needed */
1048        if (phydev && phydev->duplex == DUPLEX_FULL)
1049                cfg2 |= 0x01;
1050
1051        ifctrl &= ~(1 << 26);
1052        if (phydev && phydev->duplex == DUPLEX_HALF)
1053                ifctrl |= (1<<26);      /* Enable ghd */
1054
1055        writel(ifctrl, &mac->if_ctrl);
1056        writel(cfg2, &mac->cfg2);
1057
1058        do {
1059                udelay(10);
1060                delay++;
1061                cfg1 = readl(&mac->cfg1);
1062        } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1063
1064        if (delay == 100) {
1065                dev_warn(&adapter->pdev->dev,
1066                    "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067                        cfg1);
1068        }
1069
1070        /* Enable txmac */
1071        ctl |= 0x09;    /* TX mac enable, FC disable */
1072        writel(ctl, &adapter->regs->txmac.ctl);
1073
1074        /* Ready to start the RXDMA/TXDMA engine */
1075        if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076                et131x_rx_dma_enable(adapter);
1077                et131x_tx_dma_enable(adapter);
1078        }
1079}
1080
1081/**
1082 * et1310_in_phy_coma - check if the device is in phy coma
1083 * @adapter: pointer to our adapter structure
1084 *
1085 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1086 */
1087static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1088{
1089        u32 pmcsr;
1090
1091        pmcsr = readl(&adapter->regs->global.pm_csr);
1092
1093        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1094}
1095
1096static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1097{
1098        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099        u32 hash1 = 0;
1100        u32 hash2 = 0;
1101        u32 hash3 = 0;
1102        u32 hash4 = 0;
1103        u32 pm_csr;
1104
1105        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1107         * specified) then we should pass NO multi-cast addresses to the
1108         * driver.
1109         */
1110        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111                int i;
1112
1113                /* Loop through our multicast array and set up the device */
1114                for (i = 0; i < adapter->multicast_addr_count; i++) {
1115                        u32 result;
1116
1117                        result = ether_crc(6, adapter->multicast_list[i]);
1118
1119                        result = (result & 0x3F800000) >> 23;
1120
1121                        if (result < 32) {
1122                                hash1 |= (1 << result);
1123                        } else if ((31 < result) && (result < 64)) {
1124                                result -= 32;
1125                                hash2 |= (1 << result);
1126                        } else if ((63 < result) && (result < 96)) {
1127                                result -= 64;
1128                                hash3 |= (1 << result);
1129                        } else {
1130                                result -= 96;
1131                                hash4 |= (1 << result);
1132                        }
1133                }
1134        }
1135
1136        /* Write out the new hash to the device */
1137        pm_csr = readl(&adapter->regs->global.pm_csr);
1138        if (!et1310_in_phy_coma(adapter)) {
1139                writel(hash1, &rxmac->multi_hash1);
1140                writel(hash2, &rxmac->multi_hash2);
1141                writel(hash3, &rxmac->multi_hash3);
1142                writel(hash4, &rxmac->multi_hash4);
1143        }
1144}
1145
1146static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1147{
1148        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149        u32 uni_pf1;
1150        u32 uni_pf2;
1151        u32 uni_pf3;
1152        u32 pm_csr;
1153
1154        /* Set up unicast packet filter reg 3 to be the first two octets of
1155         * the MAC address for both address
1156         *
1157         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158         * MAC address for second address
1159         *
1160         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161         * MAC address for first address
1162         */
1163        uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164                  (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165                  (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166                   adapter->addr[1];
1167
1168        uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169                  (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170                  (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171                   adapter->addr[5];
1172
1173        uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174                  (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175                  (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176                   adapter->addr[5];
1177
1178        pm_csr = readl(&adapter->regs->global.pm_csr);
1179        if (!et1310_in_phy_coma(adapter)) {
1180                writel(uni_pf1, &rxmac->uni_pf_addr1);
1181                writel(uni_pf2, &rxmac->uni_pf_addr2);
1182                writel(uni_pf3, &rxmac->uni_pf_addr3);
1183        }
1184}
1185
1186static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1187{
1188        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189        struct phy_device *phydev = adapter->phydev;
1190        u32 sa_lo;
1191        u32 sa_hi = 0;
1192        u32 pf_ctrl = 0;
1193
1194        /* Disable the MAC while it is being configured (also disable WOL) */
1195        writel(0x8, &rxmac->ctrl);
1196
1197        /* Initialize WOL to disabled. */
1198        writel(0, &rxmac->crc0);
1199        writel(0, &rxmac->crc12);
1200        writel(0, &rxmac->crc34);
1201
1202        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1203         * its default Values of 0x00000000 because there are not WOL masks
1204         * as of this time.
1205         */
1206        writel(0, &rxmac->mask0_word0);
1207        writel(0, &rxmac->mask0_word1);
1208        writel(0, &rxmac->mask0_word2);
1209        writel(0, &rxmac->mask0_word3);
1210
1211        writel(0, &rxmac->mask1_word0);
1212        writel(0, &rxmac->mask1_word1);
1213        writel(0, &rxmac->mask1_word2);
1214        writel(0, &rxmac->mask1_word3);
1215
1216        writel(0, &rxmac->mask2_word0);
1217        writel(0, &rxmac->mask2_word1);
1218        writel(0, &rxmac->mask2_word2);
1219        writel(0, &rxmac->mask2_word3);
1220
1221        writel(0, &rxmac->mask3_word0);
1222        writel(0, &rxmac->mask3_word1);
1223        writel(0, &rxmac->mask3_word2);
1224        writel(0, &rxmac->mask3_word3);
1225
1226        writel(0, &rxmac->mask4_word0);
1227        writel(0, &rxmac->mask4_word1);
1228        writel(0, &rxmac->mask4_word2);
1229        writel(0, &rxmac->mask4_word3);
1230
1231        /* Lets setup the WOL Source Address */
1232        sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233                (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234                (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235                 adapter->addr[5];
1236        writel(sa_lo, &rxmac->sa_lo);
1237
1238        sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239                       adapter->addr[1];
1240        writel(sa_hi, &rxmac->sa_hi);
1241
1242        /* Disable all Packet Filtering */
1243        writel(0, &rxmac->pf_ctrl);
1244
1245        /* Let's initialize the Unicast Packet filtering address */
1246        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247                et1310_setup_device_for_unicast(adapter);
1248                pf_ctrl |= 4;   /* Unicast filter */
1249        } else {
1250                writel(0, &rxmac->uni_pf_addr1);
1251                writel(0, &rxmac->uni_pf_addr2);
1252                writel(0, &rxmac->uni_pf_addr3);
1253        }
1254
1255        /* Let's initialize the Multicast hash */
1256        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257                pf_ctrl |= 2;   /* Multicast filter */
1258                et1310_setup_device_for_multicast(adapter);
1259        }
1260
1261        /* Runt packet filtering.  Didn't work in version A silicon. */
1262        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263        pf_ctrl |= 8;   /* Fragment filter */
1264
1265        if (adapter->registry_jumbo_packet > 8192)
1266                /* In order to transmit jumbo packets greater than 8k, the
1267                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1268                 * to (16k - Jumbo packet size).  In order to implement this,
1269                 * we must use "cut through" mode in the RxMAC, which chops
1270                 * packets down into segments which are (max_size * 16).  In
1271                 * this case we selected 256 bytes, since this is the size of
1272                 * the PCI-Express TLP's that the 1310 uses.
1273                 *
1274                 * seg_en on, fc_en off, size 0x10
1275                 */
1276                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277        else
1278                writel(0, &rxmac->mcif_ctrl_max_seg);
1279
1280        /* Initialize the MCIF water marks */
1281        writel(0, &rxmac->mcif_water_mark);
1282
1283        /*  Initialize the MIF control */
1284        writel(0, &rxmac->mif_ctrl);
1285
1286        /* Initialize the Space Available Register */
1287        writel(0, &rxmac->space_avail);
1288
1289        /* Initialize the the mif_ctrl register
1290         * bit 3:  Receive code error. One or more nibbles were signaled as
1291         *         errors  during the reception of the packet.  Clear this
1292         *         bit in Gigabit, set it in 100Mbit.  This was derived
1293         *         experimentally at UNH.
1294         * bit 4:  Receive CRC error. The packet's CRC did not match the
1295         *         internally generated CRC.
1296         * bit 5:  Receive length check error. Indicates that frame length
1297         *         field value in the packet does not match the actual data
1298         *         byte length and is not a type field.
1299         * bit 16: Receive frame truncated.
1300         * bit 17: Drop packet enable
1301         */
1302        if (phydev && phydev->speed == SPEED_100)
1303                writel(0x30038, &rxmac->mif_ctrl);
1304        else
1305                writel(0x30030, &rxmac->mif_ctrl);
1306
1307        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1308         * filter is always enabled since it is where the runt packets are
1309         * supposed to be dropped.  For version A silicon, runt packet
1310         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311         * but we still leave the packet filter on.
1312         */
1313        writel(pf_ctrl, &rxmac->pf_ctrl);
1314        writel(0x9, &rxmac->ctrl);
1315}
1316
1317static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1318{
1319        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1320
1321        /* We need to update the Control Frame Parameters
1322         * cfpt - control frame pause timer set to 64 (0x40)
1323         * cfep - control frame extended pause timer set to 0x0
1324         */
1325        if (adapter->flowcontrol == FLOW_NONE)
1326                writel(0, &txmac->cf_param);
1327        else
1328                writel(0x40, &txmac->cf_param);
1329}
1330
1331static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1332{
1333        struct macstat_regs __iomem *macstat =
1334                &adapter->regs->macstat;
1335
1336        /* Next we need to initialize all the macstat registers to zero on
1337         * the device.
1338         */
1339        writel(0, &macstat->txrx_0_64_byte_frames);
1340        writel(0, &macstat->txrx_65_127_byte_frames);
1341        writel(0, &macstat->txrx_128_255_byte_frames);
1342        writel(0, &macstat->txrx_256_511_byte_frames);
1343        writel(0, &macstat->txrx_512_1023_byte_frames);
1344        writel(0, &macstat->txrx_1024_1518_byte_frames);
1345        writel(0, &macstat->txrx_1519_1522_gvln_frames);
1346
1347        writel(0, &macstat->rx_bytes);
1348        writel(0, &macstat->rx_packets);
1349        writel(0, &macstat->rx_fcs_errs);
1350        writel(0, &macstat->rx_multicast_packets);
1351        writel(0, &macstat->rx_broadcast_packets);
1352        writel(0, &macstat->rx_control_frames);
1353        writel(0, &macstat->rx_pause_frames);
1354        writel(0, &macstat->rx_unknown_opcodes);
1355        writel(0, &macstat->rx_align_errs);
1356        writel(0, &macstat->rx_frame_len_errs);
1357        writel(0, &macstat->rx_code_errs);
1358        writel(0, &macstat->rx_carrier_sense_errs);
1359        writel(0, &macstat->rx_undersize_packets);
1360        writel(0, &macstat->rx_oversize_packets);
1361        writel(0, &macstat->rx_fragment_packets);
1362        writel(0, &macstat->rx_jabbers);
1363        writel(0, &macstat->rx_drops);
1364
1365        writel(0, &macstat->tx_bytes);
1366        writel(0, &macstat->tx_packets);
1367        writel(0, &macstat->tx_multicast_packets);
1368        writel(0, &macstat->tx_broadcast_packets);
1369        writel(0, &macstat->tx_pause_frames);
1370        writel(0, &macstat->tx_deferred);
1371        writel(0, &macstat->tx_excessive_deferred);
1372        writel(0, &macstat->tx_single_collisions);
1373        writel(0, &macstat->tx_multiple_collisions);
1374        writel(0, &macstat->tx_late_collisions);
1375        writel(0, &macstat->tx_excessive_collisions);
1376        writel(0, &macstat->tx_total_collisions);
1377        writel(0, &macstat->tx_pause_honored_frames);
1378        writel(0, &macstat->tx_drops);
1379        writel(0, &macstat->tx_jabbers);
1380        writel(0, &macstat->tx_fcs_errs);
1381        writel(0, &macstat->tx_control_frames);
1382        writel(0, &macstat->tx_oversize_frames);
1383        writel(0, &macstat->tx_undersize_frames);
1384        writel(0, &macstat->tx_fragments);
1385        writel(0, &macstat->carry_reg1);
1386        writel(0, &macstat->carry_reg2);
1387
1388        /* Unmask any counters that we want to track the overflow of.
1389         * Initially this will be all counters.  It may become clear later
1390         * that we do not need to track all counters.
1391         */
1392        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1394}
1395
1396/**
1397 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398 * @adapter: pointer to our private adapter structure
1399 * @addr: the address of the transceiver
1400 * @reg: the register to read
1401 * @value: pointer to a 16-bit value in which the value will be stored
1402 *
1403 * Returns 0 on success, errno on failure (as defined in errno.h)
1404 */
1405static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406              u8 reg, u16 *value)
1407{
1408        struct mac_regs __iomem *mac = &adapter->regs->mac;
1409        int status = 0;
1410        u32 delay = 0;
1411        u32 mii_addr;
1412        u32 mii_cmd;
1413        u32 mii_indicator;
1414
1415        /* Save a local copy of the registers we are dealing with so we can
1416         * set them back
1417         */
1418        mii_addr = readl(&mac->mii_mgmt_addr);
1419        mii_cmd = readl(&mac->mii_mgmt_cmd);
1420
1421        /* Stop the current operation */
1422        writel(0, &mac->mii_mgmt_cmd);
1423
1424        /* Set up the register we need to read from on the correct PHY */
1425        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1426
1427        writel(0x1, &mac->mii_mgmt_cmd);
1428
1429        do {
1430                udelay(50);
1431                delay++;
1432                mii_indicator = readl(&mac->mii_mgmt_indicator);
1433        } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1434
1435        /* If we hit the max delay, we could not read the register */
1436        if (delay == 50) {
1437                dev_warn(&adapter->pdev->dev,
1438                            "reg 0x%08x could not be read\n", reg);
1439                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1440                            mii_indicator);
1441
1442                status = -EIO;
1443        }
1444
1445        /* If we hit here we were able to read the register and we need to
1446         * return the value to the caller */
1447        *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1448
1449        /* Stop the read operation */
1450        writel(0, &mac->mii_mgmt_cmd);
1451
1452        /* set the registers we touched back to the state at which we entered
1453         * this function
1454         */
1455        writel(mii_addr, &mac->mii_mgmt_addr);
1456        writel(mii_cmd, &mac->mii_mgmt_cmd);
1457
1458        return status;
1459}
1460
1461static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1462{
1463        struct phy_device *phydev = adapter->phydev;
1464
1465        if (!phydev)
1466                return -EIO;
1467
1468        return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1469}
1470
1471/**
1472 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473 * @adapter: pointer to our private adapter structure
1474 * @reg: the register to read
1475 * @value: 16-bit value to write
1476 *
1477 * FIXME: one caller in netdev still
1478 *
1479 * Return 0 on success, errno on failure (as defined in errno.h)
1480 */
1481static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1482{
1483        struct mac_regs __iomem *mac = &adapter->regs->mac;
1484        struct phy_device *phydev = adapter->phydev;
1485        int status = 0;
1486        u8 addr;
1487        u32 delay = 0;
1488        u32 mii_addr;
1489        u32 mii_cmd;
1490        u32 mii_indicator;
1491
1492        if (!phydev)
1493                return -EIO;
1494
1495        addr = phydev->addr;
1496
1497        /* Save a local copy of the registers we are dealing with so we can
1498         * set them back
1499         */
1500        mii_addr = readl(&mac->mii_mgmt_addr);
1501        mii_cmd = readl(&mac->mii_mgmt_cmd);
1502
1503        /* Stop the current operation */
1504        writel(0, &mac->mii_mgmt_cmd);
1505
1506        /* Set up the register we need to write to on the correct PHY */
1507        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1508
1509        /* Add the value to write to the registers to the mac */
1510        writel(value, &mac->mii_mgmt_ctrl);
1511
1512        do {
1513                udelay(50);
1514                delay++;
1515                mii_indicator = readl(&mac->mii_mgmt_indicator);
1516        } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1517
1518        /* If we hit the max delay, we could not write the register */
1519        if (delay == 100) {
1520                u16 tmp;
1521
1522                dev_warn(&adapter->pdev->dev,
1523                    "reg 0x%08x could not be written", reg);
1524                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1525                            mii_indicator);
1526                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1527                            readl(&mac->mii_mgmt_cmd));
1528
1529                et131x_mii_read(adapter, reg, &tmp);
1530
1531                status = -EIO;
1532        }
1533        /* Stop the write operation */
1534        writel(0, &mac->mii_mgmt_cmd);
1535
1536        /*
1537         * set the registers we touched back to the state at which we entered
1538         * this function
1539         */
1540        writel(mii_addr, &mac->mii_mgmt_addr);
1541        writel(mii_cmd, &mac->mii_mgmt_cmd);
1542
1543        return status;
1544}
1545
1546/* Still used from _mac for BIT_READ */
1547static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548                                      u16 action, u16 regnum, u16 bitnum,
1549                                      u8 *value)
1550{
1551        u16 reg;
1552        u16 mask = 0x0001 << bitnum;
1553
1554        /* Read the requested register */
1555        et131x_mii_read(adapter, regnum, &reg);
1556
1557        switch (action) {
1558        case TRUEPHY_BIT_READ:
1559                *value = (reg & mask) >> bitnum;
1560                break;
1561
1562        case TRUEPHY_BIT_SET:
1563                et131x_mii_write(adapter, regnum, reg | mask);
1564                break;
1565
1566        case TRUEPHY_BIT_CLEAR:
1567                et131x_mii_write(adapter, regnum, reg & ~mask);
1568                break;
1569
1570        default:
1571                break;
1572        }
1573}
1574
1575static void et1310_config_flow_control(struct et131x_adapter *adapter)
1576{
1577        struct phy_device *phydev = adapter->phydev;
1578
1579        if (phydev->duplex == DUPLEX_HALF) {
1580                adapter->flowcontrol = FLOW_NONE;
1581        } else {
1582                char remote_pause, remote_async_pause;
1583
1584                et1310_phy_access_mii_bit(adapter,
1585                                TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586                et1310_phy_access_mii_bit(adapter,
1587                                TRUEPHY_BIT_READ, 5, 11,
1588                                &remote_async_pause);
1589
1590                if ((remote_pause == TRUEPHY_BIT_SET) &&
1591                    (remote_async_pause == TRUEPHY_BIT_SET)) {
1592                        adapter->flowcontrol = adapter->wanted_flow;
1593                } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595                        if (adapter->wanted_flow == FLOW_BOTH)
1596                                adapter->flowcontrol = FLOW_BOTH;
1597                        else
1598                                adapter->flowcontrol = FLOW_NONE;
1599                } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601                        adapter->flowcontrol = FLOW_NONE;
1602                } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603                               remote_async_pause == TRUEPHY_SET_BIT) */
1604                        if (adapter->wanted_flow == FLOW_BOTH)
1605                                adapter->flowcontrol = FLOW_RXONLY;
1606                        else
1607                                adapter->flowcontrol = FLOW_NONE;
1608                }
1609        }
1610}
1611
1612/**
1613 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614 * @adapter: pointer to the adapter structure
1615 */
1616static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1617{
1618        struct ce_stats *stats = &adapter->stats;
1619        struct macstat_regs __iomem *macstat =
1620                &adapter->regs->macstat;
1621
1622        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1623        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1624        stats->tx_deferred             += readl(&macstat->tx_deferred);
1625        stats->tx_excessive_collisions +=
1626                                readl(&macstat->tx_multiple_collisions);
1627        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1628        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1629        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1630
1631        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1632        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1633        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1634        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1635        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1636        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1637        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1638}
1639
1640/**
1641 * et1310_handle_macstat_interrupt
1642 * @adapter: pointer to the adapter structure
1643 *
1644 * One of the MACSTAT counters has wrapped.  Update the local copy of
1645 * the statistics held in the adapter structure, checking the "wrap"
1646 * bit for each counter.
1647 */
1648static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1649{
1650        u32 carry_reg1;
1651        u32 carry_reg2;
1652
1653        /* Read the interrupt bits from the register(s).  These are Clear On
1654         * Write.
1655         */
1656        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1658
1659        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1661
1662        /* We need to do update the host copy of all the MAC_STAT counters.
1663         * For each counter, check it's overflow bit.  If the overflow bit is
1664         * set, then increment the host version of the count by one complete
1665         * revolution of the counter.  This routine is called when the counter
1666         * block indicates that one of the counters has wrapped.
1667         */
1668        if (carry_reg1 & (1 << 14))
1669                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1670        if (carry_reg1 & (1 << 8))
1671                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1672        if (carry_reg1 & (1 << 7))
1673                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1674        if (carry_reg1 & (1 << 2))
1675                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1676        if (carry_reg1 & (1 << 6))
1677                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1678        if (carry_reg1 & (1 << 3))
1679                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1680        if (carry_reg1 & (1 << 0))
1681                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1682        if (carry_reg2 & (1 << 16))
1683                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1684        if (carry_reg2 & (1 << 15))
1685                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1686        if (carry_reg2 & (1 << 6))
1687                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688        if (carry_reg2 & (1 << 8))
1689                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1690        if (carry_reg2 & (1 << 5))
1691                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692        if (carry_reg2 & (1 << 4))
1693                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1694        if (carry_reg2 & (1 << 2))
1695                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1696}
1697
1698static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1699{
1700        struct net_device *netdev = bus->priv;
1701        struct et131x_adapter *adapter = netdev_priv(netdev);
1702        u16 value;
1703        int ret;
1704
1705        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1706
1707        if (ret < 0)
1708                return ret;
1709        else
1710                return value;
1711}
1712
1713static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1714                             int reg, u16 value)
1715{
1716        struct net_device *netdev = bus->priv;
1717        struct et131x_adapter *adapter = netdev_priv(netdev);
1718
1719        return et131x_mii_write(adapter, reg, value);
1720}
1721
1722static int et131x_mdio_reset(struct mii_bus *bus)
1723{
1724        struct net_device *netdev = bus->priv;
1725        struct et131x_adapter *adapter = netdev_priv(netdev);
1726
1727        et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1728
1729        return 0;
1730}
1731
1732/**
1733 *      et1310_phy_power_down   -       PHY power control
1734 *      @adapter: device to control
1735 *      @down: true for off/false for back on
1736 *
1737 *      one hundred, ten, one thousand megs
1738 *      How would you like to have your LAN accessed
1739 *      Can't you see that this code processed
1740 *      Phy power, phy power..
1741 */
1742static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1743{
1744        u16 data;
1745
1746        et131x_mii_read(adapter, MII_BMCR, &data);
1747        data &= ~BMCR_PDOWN;
1748        if (down)
1749                data |= BMCR_PDOWN;
1750        et131x_mii_write(adapter, MII_BMCR, data);
1751}
1752
1753/**
1754 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1755 * @adapter: pointer to our private adapter structure
1756 *
1757 */
1758static void et131x_xcvr_init(struct et131x_adapter *adapter)
1759{
1760        u16 imr;
1761        u16 isr;
1762        u16 lcr2;
1763
1764        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1765        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1766
1767        /* Set the link status interrupt only.  Bad behavior when link status
1768         * and auto neg are set, we run into a nested interrupt problem
1769         */
1770        imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1771                ET_PHY_INT_MASK_LINKSTAT &
1772                ET_PHY_INT_MASK_ENABLE);
1773
1774        et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1775
1776        /* Set the LED behavior such that LED 1 indicates speed (off =
1777         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1778         * link and activity (on for link, blink off for activity).
1779         *
1780         * NOTE: Some customizations have been added here for specific
1781         * vendors; The LED behavior is now determined by vendor data in the
1782         * EEPROM. However, the above description is the default.
1783         */
1784        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1785                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1786
1787                lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1788                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1789
1790                if ((adapter->eeprom_data[1] & 0x8) == 0)
1791                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1792                else
1793                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1794
1795                et131x_mii_write(adapter, PHY_LED_2, lcr2);
1796        }
1797}
1798
1799/**
1800 * et131x_configure_global_regs -       configure JAGCore global regs
1801 * @adapter: pointer to our adapter structure
1802 *
1803 * Used to configure the global registers on the JAGCore
1804 */
1805static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1806{
1807        struct global_regs __iomem *regs = &adapter->regs->global;
1808
1809        writel(0, &regs->rxq_start_addr);
1810        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1811
1812        if (adapter->registry_jumbo_packet < 2048) {
1813                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1814                 * block of RAM that the driver can split between Tx
1815                 * and Rx as it desires.  Our default is to split it
1816                 * 50/50:
1817                 */
1818                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1819                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1820        } else if (adapter->registry_jumbo_packet < 8192) {
1821                /* For jumbo packets > 2k but < 8k, split 50-50. */
1822                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1823                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1824        } else {
1825                /* 9216 is the only packet size greater than 8k that
1826                 * is available. The Tx buffer has to be big enough
1827                 * for one whole packet on the Tx side. We'll make
1828                 * the Tx 9408, and give the rest to Rx
1829                 */
1830                writel(0x01b3, &regs->rxq_end_addr);
1831                writel(0x01b4, &regs->txq_start_addr);
1832        }
1833
1834        /* Initialize the loopback register. Disable all loopbacks. */
1835        writel(0, &regs->loopback);
1836
1837        /* MSI Register */
1838        writel(0, &regs->msi_config);
1839
1840        /* By default, disable the watchdog timer.  It will be enabled when
1841         * a packet is queued.
1842         */
1843        writel(0, &regs->watchdog_timer);
1844}
1845
1846/**
1847 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1848 * @adapter: pointer to our adapter structure
1849 */
1850static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1851{
1852        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1853        struct rx_ring *rx_local = &adapter->rx_ring;
1854        struct fbr_desc *fbr_entry;
1855        u32 entry;
1856        u32 psr_num_des;
1857        unsigned long flags;
1858
1859        /* Halt RXDMA to perform the reconfigure.  */
1860        et131x_rx_dma_disable(adapter);
1861
1862        /* Load the completion writeback physical address
1863         *
1864         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1865         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1866         * are ever returned, make sure the high part is retrieved here
1867         * before storing the adjusted address.
1868         */
1869        writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1870               &rx_dma->dma_wb_base_hi);
1871        writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1872
1873        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1874
1875        /* Set the address and parameters of the packet status ring into the
1876         * 1310's registers
1877         */
1878        writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1879               &rx_dma->psr_base_hi);
1880        writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1881        writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1882        writel(0, &rx_dma->psr_full_offset);
1883
1884        psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1885        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1886               &rx_dma->psr_min_des);
1887
1888        spin_lock_irqsave(&adapter->rcv_lock, flags);
1889
1890        /* These local variables track the PSR in the adapter structure */
1891        rx_local->local_psr_full = 0;
1892
1893        /* Now's the best time to initialize FBR1 contents */
1894        fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1895        for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1896                fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1897                fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1898                fbr_entry->word2 = entry;
1899                fbr_entry++;
1900        }
1901
1902        /* Set the address and parameters of Free buffer ring 1 (and 0 if
1903         * required) into the 1310's registers
1904         */
1905        writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1906               &rx_dma->fbr1_base_hi);
1907        writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1908        writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1909        writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1910
1911        /* This variable tracks the free buffer ring 1 full position, so it
1912         * has to match the above.
1913         */
1914        rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1915        writel(
1916           ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1917           &rx_dma->fbr1_min_des);
1918
1919#ifdef USE_FBR0
1920        /* Now's the best time to initialize FBR0 contents */
1921        fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1922        for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1923                fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1924                fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1925                fbr_entry->word2 = entry;
1926                fbr_entry++;
1927        }
1928
1929        writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1930               &rx_dma->fbr0_base_hi);
1931        writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1932        writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1933        writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1934
1935        /* This variable tracks the free buffer ring 0 full position, so it
1936         * has to match the above.
1937         */
1938        rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1939        writel(
1940           ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1941           &rx_dma->fbr0_min_des);
1942#endif
1943
1944        /* Program the number of packets we will receive before generating an
1945         * interrupt.
1946         * For version B silicon, this value gets updated once autoneg is
1947         *complete.
1948         */
1949        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1950
1951        /* The "time_done" is not working correctly to coalesce interrupts
1952         * after a given time period, but rather is giving us an interrupt
1953         * regardless of whether we have received packets.
1954         * This value gets updated once autoneg is complete.
1955         */
1956        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1957
1958        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1959}
1960
1961/**
1962 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1963 * @adapter: pointer to our private adapter structure
1964 *
1965 * Configure the transmit engine with the ring buffers we have created
1966 * and prepare it for use.
1967 */
1968static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1969{
1970        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1971
1972        /* Load the hardware with the start of the transmit descriptor ring. */
1973        writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1974               &txdma->pr_base_hi);
1975        writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1976               &txdma->pr_base_lo);
1977
1978        /* Initialise the transmit DMA engine */
1979        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1980
1981        /* Load the completion writeback physical address */
1982        writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1983                                                &txdma->dma_wb_base_hi);
1984        writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1985
1986        *adapter->tx_ring.tx_status = 0;
1987
1988        writel(0, &txdma->service_request);
1989        adapter->tx_ring.send_idx = 0;
1990}
1991
1992/**
1993 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1994 * @adapter: pointer to our private adapter structure
1995 *
1996 * Returns 0 on success, errno on failure (as defined in errno.h)
1997 */
1998static void et131x_adapter_setup(struct et131x_adapter *adapter)
1999{
2000        /* Configure the JAGCore */
2001        et131x_configure_global_regs(adapter);
2002
2003        et1310_config_mac_regs1(adapter);
2004
2005        /* Configure the MMC registers */
2006        /* All we need to do is initialize the Memory Control Register */
2007        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2008
2009        et1310_config_rxmac_regs(adapter);
2010        et1310_config_txmac_regs(adapter);
2011
2012        et131x_config_rx_dma_regs(adapter);
2013        et131x_config_tx_dma_regs(adapter);
2014
2015        et1310_config_macstat_regs(adapter);
2016
2017        et1310_phy_power_down(adapter, 0);
2018        et131x_xcvr_init(adapter);
2019}
2020
2021/**
2022 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2023 * @adapter: pointer to our private adapter structure
2024 */
2025static void et131x_soft_reset(struct et131x_adapter *adapter)
2026{
2027        /* Disable MAC Core */
2028        writel(0xc00f0000, &adapter->regs->mac.cfg1);
2029
2030        /* Set everything to a reset value */
2031        writel(0x7F, &adapter->regs->global.sw_reset);
2032        writel(0x000f0000, &adapter->regs->mac.cfg1);
2033        writel(0x00000000, &adapter->regs->mac.cfg1);
2034}
2035
2036/**
2037 *      et131x_enable_interrupts        -       enable interrupt
2038 *      @adapter: et131x device
2039 *
2040 *      Enable the appropriate interrupts on the ET131x according to our
2041 *      configuration
2042 */
2043static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2044{
2045        u32 mask;
2046
2047        /* Enable all global interrupts */
2048        if (adapter->flowcontrol == FLOW_TXONLY ||
2049                            adapter->flowcontrol == FLOW_BOTH)
2050                mask = INT_MASK_ENABLE;
2051        else
2052                mask = INT_MASK_ENABLE_NO_FLOW;
2053
2054        writel(mask, &adapter->regs->global.int_mask);
2055}
2056
2057/**
2058 *      et131x_disable_interrupts       -       interrupt disable
2059 *      @adapter: et131x device
2060 *
2061 *      Block all interrupts from the et131x device at the device itself
2062 */
2063static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2064{
2065        /* Disable all global interrupts */
2066        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2067}
2068
2069/**
2070 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2071 * @adapter: pointer to our adapter structure
2072 */
2073static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2074{
2075        /* Setup the tramsmit dma configuration register */
2076        writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2077                                        &adapter->regs->txdma.csr);
2078}
2079
2080/**
2081 * et131x_enable_txrx - Enable tx/rx queues
2082 * @netdev: device to be enabled
2083 */
2084static void et131x_enable_txrx(struct net_device *netdev)
2085{
2086        struct et131x_adapter *adapter = netdev_priv(netdev);
2087
2088        /* Enable the Tx and Rx DMA engines (if not already enabled) */
2089        et131x_rx_dma_enable(adapter);
2090        et131x_tx_dma_enable(adapter);
2091
2092        /* Enable device interrupts */
2093        if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2094                et131x_enable_interrupts(adapter);
2095
2096        /* We're ready to move some data, so start the queue */
2097        netif_start_queue(netdev);
2098}
2099
2100/**
2101 * et131x_disable_txrx - Disable tx/rx queues
2102 * @netdev: device to be disabled
2103 */
2104static void et131x_disable_txrx(struct net_device *netdev)
2105{
2106        struct et131x_adapter *adapter = netdev_priv(netdev);
2107
2108        /* First thing is to stop the queue */
2109        netif_stop_queue(netdev);
2110
2111        /* Stop the Tx and Rx DMA engines */
2112        et131x_rx_dma_disable(adapter);
2113        et131x_tx_dma_disable(adapter);
2114
2115        /* Disable device interrupts */
2116        et131x_disable_interrupts(adapter);
2117}
2118
2119/**
2120 * et131x_init_send - Initialize send data structures
2121 * @adapter: pointer to our private adapter structure
2122 */
2123static void et131x_init_send(struct et131x_adapter *adapter)
2124{
2125        struct tcb *tcb;
2126        u32 ct;
2127        struct tx_ring *tx_ring;
2128
2129        /* Setup some convenience pointers */
2130        tx_ring = &adapter->tx_ring;
2131        tcb = adapter->tx_ring.tcb_ring;
2132
2133        tx_ring->tcb_qhead = tcb;
2134
2135        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2136
2137        /* Go through and set up each TCB */
2138        for (ct = 0; ct++ < NUM_TCB; tcb++)
2139                /* Set the link pointer in HW TCB to the next TCB in the
2140                 * chain
2141                 */
2142                tcb->next = tcb + 1;
2143
2144        /* Set the  tail pointer */
2145        tcb--;
2146        tx_ring->tcb_qtail = tcb;
2147        tcb->next = NULL;
2148        /* Curr send queue should now be empty */
2149        tx_ring->send_head = NULL;
2150        tx_ring->send_tail = NULL;
2151}
2152
2153/**
2154 * et1310_enable_phy_coma - called when network cable is unplugged
2155 * @adapter: pointer to our adapter structure
2156 *
2157 * driver receive an phy status change interrupt while in D0 and check that
2158 * phy_status is down.
2159 *
2160 *          -- gate off JAGCore;
2161 *          -- set gigE PHY in Coma mode
2162 *          -- wake on phy_interrupt; Perform software reset JAGCore,
2163 *             re-initialize jagcore and gigE PHY
2164 *
2165 *      Add D0-ASPM-PhyLinkDown Support:
2166 *          -- while in D0, when there is a phy_interrupt indicating phy link
2167 *             down status, call the MPSetPhyComa routine to enter this active
2168 *             state power saving mode
2169 *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2170 *       indicating linkup status, call the MPDisablePhyComa routine to
2171 *             restore JAGCore and gigE PHY
2172 */
2173static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2174{
2175        unsigned long flags;
2176        u32 pmcsr;
2177
2178        pmcsr = readl(&adapter->regs->global.pm_csr);
2179
2180        /* Save the GbE PHY speed and duplex modes. Need to restore this
2181         * when cable is plugged back in
2182         */
2183        /*
2184         * TODO - when PM is re-enabled, check if we need to
2185         * perform a similar task as this -
2186         * adapter->pdown_speed = adapter->ai_force_speed;
2187         * adapter->pdown_duplex = adapter->ai_force_duplex;
2188         */
2189
2190        /* Stop sending packets. */
2191        spin_lock_irqsave(&adapter->send_hw_lock, flags);
2192        adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2193        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2194
2195        /* Wait for outstanding Receive packets */
2196
2197        et131x_disable_txrx(adapter->netdev);
2198
2199        /* Gate off JAGCore 3 clock domains */
2200        pmcsr &= ~ET_PMCSR_INIT;
2201        writel(pmcsr, &adapter->regs->global.pm_csr);
2202
2203        /* Program gigE PHY in to Coma mode */
2204        pmcsr |= ET_PM_PHY_SW_COMA;
2205        writel(pmcsr, &adapter->regs->global.pm_csr);
2206}
2207
2208/**
2209 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2210 * @adapter: pointer to our adapter structure
2211 */
2212static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2213{
2214        u32 pmcsr;
2215
2216        pmcsr = readl(&adapter->regs->global.pm_csr);
2217
2218        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2219        pmcsr |= ET_PMCSR_INIT;
2220        pmcsr &= ~ET_PM_PHY_SW_COMA;
2221        writel(pmcsr, &adapter->regs->global.pm_csr);
2222
2223        /* Restore the GbE PHY speed and duplex modes;
2224         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2225         */
2226        /* TODO - when PM is re-enabled, check if we need to
2227         * perform a similar task as this -
2228         * adapter->ai_force_speed = adapter->pdown_speed;
2229         * adapter->ai_force_duplex = adapter->pdown_duplex;
2230         */
2231
2232        /* Re-initialize the send structures */
2233        et131x_init_send(adapter);
2234
2235        /* Bring the device back to the state it was during init prior to
2236         * autonegotiation being complete.  This way, when we get the auto-neg
2237         * complete interrupt, we can complete init by calling ConfigMacREGS2.
2238         */
2239        et131x_soft_reset(adapter);
2240
2241        /* setup et1310 as per the documentation ?? */
2242        et131x_adapter_setup(adapter);
2243
2244        /* Allow Tx to restart */
2245        adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2246
2247        et131x_enable_txrx(adapter->netdev);
2248}
2249
2250static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2251{
2252        u32 tmp_free_buff_ring = *free_buff_ring;
2253        tmp_free_buff_ring++;
2254        /* This works for all cases where limit < 1024. The 1023 case
2255           works because 1023++ is 1024 which means the if condition is not
2256           taken but the carry of the bit into the wrap bit toggles the wrap
2257           value correctly */
2258        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2259                tmp_free_buff_ring &= ~ET_DMA10_MASK;
2260                tmp_free_buff_ring ^= ET_DMA10_WRAP;
2261        }
2262        /* For the 1023 case */
2263        tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2264        *free_buff_ring = tmp_free_buff_ring;
2265        return tmp_free_buff_ring;
2266}
2267
2268/**
2269 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2270 * @adapter: pointer to our adapter structure
2271 * @phys_addr: pointer to Physical address
2272 * @offset: pointer to the offset variable
2273 * @mask: correct mask
2274 */
2275static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2276                                          u64 *phys_addr, u64 *offset,
2277                                          u64 mask)
2278{
2279        u64 new_addr = *phys_addr & ~mask;
2280
2281        *offset = 0;
2282
2283        if (new_addr != *phys_addr) {
2284                /* Move to next aligned block */
2285                new_addr += mask + 1;
2286                /* Return offset for adjusting virt addr */
2287                *offset = new_addr - *phys_addr;
2288                /* Return new physical address */
2289                *phys_addr = new_addr;
2290        }
2291}
2292
2293/**
2294 * et131x_rx_dma_memory_alloc
2295 * @adapter: pointer to our private adapter structure
2296 *
2297 * Returns 0 on success and errno on failure (as defined in errno.h)
2298 *
2299 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2300 * and the Packet Status Ring.
2301 */
2302static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2303{
2304        u32 i, j;
2305        u32 bufsize;
2306        u32 pktstat_ringsize, fbr_chunksize;
2307        struct rx_ring *rx_ring;
2308
2309        /* Setup some convenience pointers */
2310        rx_ring = &adapter->rx_ring;
2311
2312        /* Alloc memory for the lookup table */
2313#ifdef USE_FBR0
2314        rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2315#endif
2316        rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2317
2318        /* The first thing we will do is configure the sizes of the buffer
2319         * rings. These will change based on jumbo packet support.  Larger
2320         * jumbo packets increases the size of each entry in FBR0, and the
2321         * number of entries in FBR0, while at the same time decreasing the
2322         * number of entries in FBR1.
2323         *
2324         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2325         * entries are huge in order to accommodate a "jumbo" frame, then it
2326         * will have less entries.  Conversely, FBR1 will now be relied upon
2327         * to carry more "normal" frames, thus it's entry size also increases
2328         * and the number of entries goes up too (since it now carries
2329         * "small" + "regular" packets.
2330         *
2331         * In this scheme, we try to maintain 512 entries between the two
2332         * rings. Also, FBR1 remains a constant size - when it's size doubles
2333         * the number of entries halves.  FBR0 increases in size, however.
2334         */
2335
2336        if (adapter->registry_jumbo_packet < 2048) {
2337#ifdef USE_FBR0
2338                rx_ring->fbr[1]->buffsize = 256;
2339                rx_ring->fbr[1]->num_entries = 512;
2340#endif
2341                rx_ring->fbr[0]->buffsize = 2048;
2342                rx_ring->fbr[0]->num_entries = 512;
2343        } else if (adapter->registry_jumbo_packet < 4096) {
2344#ifdef USE_FBR0
2345                rx_ring->fbr[1]->buffsize = 512;
2346                rx_ring->fbr[1]->num_entries = 1024;
2347#endif
2348                rx_ring->fbr[0]->buffsize = 4096;
2349                rx_ring->fbr[0]->num_entries = 512;
2350        } else {
2351#ifdef USE_FBR0
2352                rx_ring->fbr[1]->buffsize = 1024;
2353                rx_ring->fbr[1]->num_entries = 768;
2354#endif
2355                rx_ring->fbr[0]->buffsize = 16384;
2356                rx_ring->fbr[0]->num_entries = 128;
2357        }
2358
2359#ifdef USE_FBR0
2360        adapter->rx_ring.psr_num_entries =
2361                                adapter->rx_ring.fbr[1]->num_entries +
2362                                adapter->rx_ring.fbr[0]->num_entries;
2363#else
2364        adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2365#endif
2366
2367        /* Allocate an area of memory for Free Buffer Ring 1 */
2368        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2369                                                                        0xfff;
2370        rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2371                                        bufsize,
2372                                        &rx_ring->fbr[0]->ring_physaddr,
2373                                        GFP_KERNEL);
2374        if (!rx_ring->fbr[0]->ring_virtaddr) {
2375                dev_err(&adapter->pdev->dev,
2376                          "Cannot alloc memory for Free Buffer Ring 1\n");
2377                return -ENOMEM;
2378        }
2379
2380        /* Save physical address
2381         *
2382         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2383         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2384         * are ever returned, make sure the high part is retrieved here
2385         * before storing the adjusted address.
2386         */
2387        rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2388
2389        /* Align Free Buffer Ring 1 on a 4K boundary */
2390        et131x_align_allocated_memory(adapter,
2391                                      &rx_ring->fbr[0]->real_physaddr,
2392                                      &rx_ring->fbr[0]->offset, 0x0FFF);
2393
2394        rx_ring->fbr[0]->ring_virtaddr =
2395                        (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2396                        rx_ring->fbr[0]->offset);
2397
2398#ifdef USE_FBR0
2399        /* Allocate an area of memory for Free Buffer Ring 0 */
2400        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2401                                                                        0xfff;
2402        rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2403                                                bufsize,
2404                                                &rx_ring->fbr[1]->ring_physaddr,
2405                                                GFP_KERNEL);
2406        if (!rx_ring->fbr[1]->ring_virtaddr) {
2407                dev_err(&adapter->pdev->dev,
2408                          "Cannot alloc memory for Free Buffer Ring 0\n");
2409                return -ENOMEM;
2410        }
2411
2412        /* Save physical address
2413         *
2414         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2415         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2416         * are ever returned, make sure the high part is retrieved here before
2417         * storing the adjusted address.
2418         */
2419        rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2420
2421        /* Align Free Buffer Ring 0 on a 4K boundary */
2422        et131x_align_allocated_memory(adapter,
2423                                      &rx_ring->fbr[1]->real_physaddr,
2424                                      &rx_ring->fbr[1]->offset, 0x0FFF);
2425
2426        rx_ring->fbr[1]->ring_virtaddr =
2427                        (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2428                        rx_ring->fbr[1]->offset);
2429#endif
2430        for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2431                u64 fbr1_tmp_physaddr;
2432                u64 fbr1_offset;
2433                u32 fbr1_align;
2434
2435                /* This code allocates an area of memory big enough for N
2436                 * free buffers + (buffer_size - 1) so that the buffers can
2437                 * be aligned on 4k boundaries.  If each buffer were aligned
2438                 * to a buffer_size boundary, the effect would be to double
2439                 * the size of FBR0.  By allocating N buffers at once, we
2440                 * reduce this overhead.
2441                 */
2442                if (rx_ring->fbr[0]->buffsize > 4096)
2443                        fbr1_align = 4096;
2444                else
2445                        fbr1_align = rx_ring->fbr[0]->buffsize;
2446
2447                fbr_chunksize =
2448                    (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2449                rx_ring->fbr[0]->mem_virtaddrs[i] =
2450                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2451                                       &rx_ring->fbr[0]->mem_physaddrs[i],
2452                                       GFP_KERNEL);
2453
2454                if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2455                        dev_err(&adapter->pdev->dev,
2456                                "Could not alloc memory\n");
2457                        return -ENOMEM;
2458                }
2459
2460                /* See NOTE in "Save Physical Address" comment above */
2461                fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2462
2463                et131x_align_allocated_memory(adapter,
2464                                              &fbr1_tmp_physaddr,
2465                                              &fbr1_offset, (fbr1_align - 1));
2466
2467                for (j = 0; j < FBR_CHUNKS; j++) {
2468                        u32 index = (i * FBR_CHUNKS) + j;
2469
2470                        /* Save the Virtual address of this index for quick
2471                         * access later
2472                         */
2473                        rx_ring->fbr[0]->virt[index] =
2474                            (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2475                            (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2476
2477                        /* now store the physical address in the descriptor
2478                         * so the device can access it
2479                         */
2480                        rx_ring->fbr[0]->bus_high[index] =
2481                            (u32) (fbr1_tmp_physaddr >> 32);
2482                        rx_ring->fbr[0]->bus_low[index] =
2483                            (u32) fbr1_tmp_physaddr;
2484
2485                        fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2486
2487                        rx_ring->fbr[0]->buffer1[index] =
2488                            rx_ring->fbr[0]->virt[index];
2489                        rx_ring->fbr[0]->buffer2[index] =
2490                            rx_ring->fbr[0]->virt[index] - 4;
2491                }
2492        }
2493
2494#ifdef USE_FBR0
2495        /* Same for FBR0 (if in use) */
2496        for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2497                u64 fbr0_tmp_physaddr;
2498                u64 fbr0_offset;
2499
2500                fbr_chunksize =
2501                    ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2502                rx_ring->fbr[1]->mem_virtaddrs[i] =
2503                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2504                                       &rx_ring->fbr[1]->mem_physaddrs[i],
2505                                       GFP_KERNEL);
2506
2507                if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2508                        dev_err(&adapter->pdev->dev,
2509                                "Could not alloc memory\n");
2510                        return -ENOMEM;
2511                }
2512
2513                /* See NOTE in "Save Physical Address" comment above */
2514                fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2515
2516                et131x_align_allocated_memory(adapter,
2517                                              &fbr0_tmp_physaddr,
2518                                              &fbr0_offset,
2519                                              rx_ring->fbr[1]->buffsize - 1);
2520
2521                for (j = 0; j < FBR_CHUNKS; j++) {
2522                        u32 index = (i * FBR_CHUNKS) + j;
2523
2524                        rx_ring->fbr[1]->virt[index] =
2525                            (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2526                            (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2527
2528                        rx_ring->fbr[1]->bus_high[index] =
2529                            (u32) (fbr0_tmp_physaddr >> 32);
2530                        rx_ring->fbr[1]->bus_low[index] =
2531                            (u32) fbr0_tmp_physaddr;
2532
2533                        fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2534
2535                        rx_ring->fbr[1]->buffer1[index] =
2536                            rx_ring->fbr[1]->virt[index];
2537                        rx_ring->fbr[1]->buffer2[index] =
2538                            rx_ring->fbr[1]->virt[index] - 4;
2539                }
2540        }
2541#endif
2542
2543        /* Allocate an area of memory for FIFO of Packet Status ring entries */
2544        pktstat_ringsize =
2545            sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2546
2547        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2548                                                  pktstat_ringsize,
2549                                                  &rx_ring->ps_ring_physaddr,
2550                                                  GFP_KERNEL);
2551
2552        if (!rx_ring->ps_ring_virtaddr) {
2553                dev_err(&adapter->pdev->dev,
2554                          "Cannot alloc memory for Packet Status Ring\n");
2555                return -ENOMEM;
2556        }
2557        printk(KERN_INFO "Packet Status Ring %lx\n",
2558            (unsigned long) rx_ring->ps_ring_physaddr);
2559
2560        /*
2561         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2562         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2563         * are ever returned, make sure the high part is retrieved here before
2564         * storing the adjusted address.
2565         */
2566
2567        /* Allocate an area of memory for writeback of status information */
2568        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2569                                            sizeof(struct rx_status_block),
2570                                            &rx_ring->rx_status_bus,
2571                                            GFP_KERNEL);
2572        if (!rx_ring->rx_status_block) {
2573                dev_err(&adapter->pdev->dev,
2574                          "Cannot alloc memory for Status Block\n");
2575                return -ENOMEM;
2576        }
2577        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2578        printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2579
2580        /* Recv
2581         * kmem_cache_create initializes a lookaside list. After successful
2582         * creation, nonpaged fixed-size blocks can be allocated from and
2583         * freed to the lookaside list.
2584         * RFDs will be allocated from this pool.
2585         */
2586        rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2587                                                   sizeof(struct rfd),
2588                                                   0,
2589                                                   SLAB_CACHE_DMA |
2590                                                   SLAB_HWCACHE_ALIGN,
2591                                                   NULL);
2592
2593        adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2594
2595        /* The RFDs are going to be put on lists later on, so initialize the
2596         * lists now.
2597         */
2598        INIT_LIST_HEAD(&rx_ring->recv_list);
2599        return 0;
2600}
2601
2602/**
2603 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2604 * @adapter: pointer to our private adapter structure
2605 */
2606static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2607{
2608        u32 index;
2609        u32 bufsize;
2610        u32 pktstat_ringsize;
2611        struct rfd *rfd;
2612        struct rx_ring *rx_ring;
2613
2614        /* Setup some convenience pointers */
2615        rx_ring = &adapter->rx_ring;
2616
2617        /* Free RFDs and associated packet descriptors */
2618        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2619
2620        while (!list_empty(&rx_ring->recv_list)) {
2621                rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2622                                struct rfd, list_node);
2623
2624                list_del(&rfd->list_node);
2625                rfd->skb = NULL;
2626                kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2627        }
2628
2629        /* Free Free Buffer Ring 1 */
2630        if (rx_ring->fbr[0]->ring_virtaddr) {
2631                /* First the packet memory */
2632                for (index = 0; index <
2633                     (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2634                        if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2635                                u32 fbr1_align;
2636
2637                                if (rx_ring->fbr[0]->buffsize > 4096)
2638                                        fbr1_align = 4096;
2639                                else
2640                                        fbr1_align = rx_ring->fbr[0]->buffsize;
2641
2642                                bufsize =
2643                                    (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2644                                    fbr1_align - 1;
2645
2646                                dma_free_coherent(&adapter->pdev->dev,
2647                                        bufsize,
2648                                        rx_ring->fbr[0]->mem_virtaddrs[index],
2649                                        rx_ring->fbr[0]->mem_physaddrs[index]);
2650
2651                                rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2652                        }
2653                }
2654
2655                /* Now the FIFO itself */
2656                rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2657                    rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2658
2659                bufsize =
2660                    (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2661                                                                        0xfff;
2662
2663                dma_free_coherent(&adapter->pdev->dev, bufsize,
2664                                    rx_ring->fbr[0]->ring_virtaddr,
2665                                    rx_ring->fbr[0]->ring_physaddr);
2666
2667                rx_ring->fbr[0]->ring_virtaddr = NULL;
2668        }
2669
2670#ifdef USE_FBR0
2671        /* Now the same for Free Buffer Ring 0 */
2672        if (rx_ring->fbr[1]->ring_virtaddr) {
2673                /* First the packet memory */
2674                for (index = 0; index <
2675                     (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2676                        if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2677                                bufsize =
2678                                    (rx_ring->fbr[1]->buffsize *
2679                                     (FBR_CHUNKS + 1)) - 1;
2680
2681                                dma_free_coherent(&adapter->pdev->dev,
2682                                        bufsize,
2683                                        rx_ring->fbr[1]->mem_virtaddrs[index],
2684                                        rx_ring->fbr[1]->mem_physaddrs[index]);
2685
2686                                rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2687                        }
2688                }
2689
2690                /* Now the FIFO itself */
2691                rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2692                    rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2693
2694                bufsize =
2695                    (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2696                                                                        0xfff;
2697
2698                dma_free_coherent(&adapter->pdev->dev,
2699                                  bufsize,
2700                                  rx_ring->fbr[1]->ring_virtaddr,
2701                                  rx_ring->fbr[1]->ring_physaddr);
2702
2703                rx_ring->fbr[1]->ring_virtaddr = NULL;
2704        }
2705#endif
2706
2707        /* Free Packet Status Ring */
2708        if (rx_ring->ps_ring_virtaddr) {
2709                pktstat_ringsize =
2710                    sizeof(struct pkt_stat_desc) *
2711                    adapter->rx_ring.psr_num_entries;
2712
2713                dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2714                                    rx_ring->ps_ring_virtaddr,
2715                                    rx_ring->ps_ring_physaddr);
2716
2717                rx_ring->ps_ring_virtaddr = NULL;
2718        }
2719
2720        /* Free area of memory for the writeback of status information */
2721        if (rx_ring->rx_status_block) {
2722                dma_free_coherent(&adapter->pdev->dev,
2723                        sizeof(struct rx_status_block),
2724                        rx_ring->rx_status_block, rx_ring->rx_status_bus);
2725                rx_ring->rx_status_block = NULL;
2726        }
2727
2728        /* Destroy the lookaside (RFD) pool */
2729        if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2730                kmem_cache_destroy(rx_ring->recv_lookaside);
2731                adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2732        }
2733
2734        /* Free the FBR Lookup Table */
2735#ifdef USE_FBR0
2736        kfree(rx_ring->fbr[1]);
2737#endif
2738
2739        kfree(rx_ring->fbr[0]);
2740
2741        /* Reset Counters */
2742        rx_ring->num_ready_recv = 0;
2743}
2744
2745/**
2746 * et131x_init_recv - Initialize receive data structures.
2747 * @adapter: pointer to our private adapter structure
2748 *
2749 * Returns 0 on success and errno on failure (as defined in errno.h)
2750 */
2751static int et131x_init_recv(struct et131x_adapter *adapter)
2752{
2753        int status = -ENOMEM;
2754        struct rfd *rfd = NULL;
2755        u32 rfdct;
2756        u32 numrfd = 0;
2757        struct rx_ring *rx_ring;
2758
2759        /* Setup some convenience pointers */
2760        rx_ring = &adapter->rx_ring;
2761
2762        /* Setup each RFD */
2763        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2764                rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2765                                                     GFP_ATOMIC | GFP_DMA);
2766
2767                if (!rfd) {
2768                        dev_err(&adapter->pdev->dev,
2769                                  "Couldn't alloc RFD out of kmem_cache\n");
2770                        status = -ENOMEM;
2771                        continue;
2772                }
2773
2774                rfd->skb = NULL;
2775
2776                /* Add this RFD to the recv_list */
2777                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2778
2779                /* Increment both the available RFD's, and the total RFD's. */
2780                rx_ring->num_ready_recv++;
2781                numrfd++;
2782        }
2783
2784        if (numrfd > NIC_MIN_NUM_RFD)
2785                status = 0;
2786
2787        rx_ring->num_rfd = numrfd;
2788
2789        if (status != 0) {
2790                kmem_cache_free(rx_ring->recv_lookaside, rfd);
2791                dev_err(&adapter->pdev->dev,
2792                          "Allocation problems in et131x_init_recv\n");
2793        }
2794        return status;
2795}
2796
2797/**
2798 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2799 * @adapter: pointer to our adapter structure
2800 */
2801static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2802{
2803        struct phy_device *phydev = adapter->phydev;
2804
2805        if (!phydev)
2806                return;
2807
2808        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2809         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2810         */
2811        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2812                writel(0, &adapter->regs->rxdma.max_pkt_time);
2813                writel(1, &adapter->regs->rxdma.num_pkt_done);
2814        }
2815}
2816
2817/**
2818 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2819 * @adapter: pointer to our adapter
2820 * @rfd: pointer to the RFD
2821 */
2822static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2823{
2824        struct rx_ring *rx_local = &adapter->rx_ring;
2825        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2826        u16 buff_index = rfd->bufferindex;
2827        u8 ring_index = rfd->ringindex;
2828        unsigned long flags;
2829
2830        /* We don't use any of the OOB data besides status. Otherwise, we
2831         * need to clean up OOB data
2832         */
2833        if (
2834#ifdef USE_FBR0
2835            (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2836#endif
2837            (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2838                spin_lock_irqsave(&adapter->fbr_lock, flags);
2839
2840                if (ring_index == 1) {
2841                        struct fbr_desc *next = (struct fbr_desc *)
2842                                        (rx_local->fbr[0]->ring_virtaddr) +
2843                                        INDEX10(rx_local->fbr[0]->local_full);
2844
2845                        /* Handle the Free Buffer Ring advancement here. Write
2846                         * the PA / Buffer Index for the returned buffer into
2847                         * the oldest (next to be freed)FBR entry
2848                         */
2849                        next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2850                        next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2851                        next->word2 = buff_index;
2852
2853                        writel(bump_free_buff_ring(
2854                                        &rx_local->fbr[0]->local_full,
2855                                        rx_local->fbr[0]->num_entries - 1),
2856                                        &rx_dma->fbr1_full_offset);
2857                }
2858#ifdef USE_FBR0
2859                else {
2860                        struct fbr_desc *next = (struct fbr_desc *)
2861                                rx_local->fbr[1]->ring_virtaddr +
2862                                    INDEX10(rx_local->fbr[1]->local_full);
2863
2864                        /* Handle the Free Buffer Ring advancement here. Write
2865                         * the PA / Buffer Index for the returned buffer into
2866                         * the oldest (next to be freed) FBR entry
2867                         */
2868                        next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2869                        next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2870                        next->word2 = buff_index;
2871
2872                        writel(bump_free_buff_ring(
2873                                        &rx_local->fbr[1]->local_full,
2874                                        rx_local->fbr[1]->num_entries - 1),
2875                               &rx_dma->fbr0_full_offset);
2876                }
2877#endif
2878                spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2879        } else {
2880                dev_err(&adapter->pdev->dev,
2881                          "%s illegal Buffer Index returned\n", __func__);
2882        }
2883
2884        /* The processing on this RFD is done, so put it back on the tail of
2885         * our list
2886         */
2887        spin_lock_irqsave(&adapter->rcv_lock, flags);
2888        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2889        rx_local->num_ready_recv++;
2890        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2891
2892        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2893}
2894
2895/**
2896 * nic_rx_pkts - Checks the hardware for available packets
2897 * @adapter: pointer to our adapter
2898 *
2899 * Returns rfd, a pointer to our MPRFD.
2900 *
2901 * Checks the hardware for available packets, using completion ring
2902 * If packets are available, it gets an RFD from the recv_list, attaches
2903 * the packet to it, puts the RFD in the RecvPendList, and also returns
2904 * the pointer to the RFD.
2905 */
2906static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2907{
2908        struct rx_ring *rx_local = &adapter->rx_ring;
2909        struct rx_status_block *status;
2910        struct pkt_stat_desc *psr;
2911        struct rfd *rfd;
2912        u32 i;
2913        u8 *buf;
2914        unsigned long flags;
2915        struct list_head *element;
2916        u8 ring_index;
2917        u16 buff_index;
2918        u32 len;
2919        u32 word0;
2920        u32 word1;
2921
2922        /* RX Status block is written by the DMA engine prior to every
2923         * interrupt. It contains the next to be used entry in the Packet
2924         * Status Ring, and also the two Free Buffer rings.
2925         */
2926        status = rx_local->rx_status_block;
2927        word1 = status->word1 >> 16;    /* Get the useful bits */
2928
2929        /* Check the PSR and wrap bits do not match */
2930        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2931                /* Looks like this ring is not updated yet */
2932                return NULL;
2933
2934        /* The packet status ring indicates that data is available. */
2935        psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2936                        (rx_local->local_psr_full & 0xFFF);
2937
2938        /* Grab any information that is required once the PSR is
2939         * advanced, since we can no longer rely on the memory being
2940         * accurate
2941         */
2942        len = psr->word1 & 0xFFFF;
2943        ring_index = (psr->word1 >> 26) & 0x03;
2944        buff_index = (psr->word1 >> 16) & 0x3FF;
2945        word0 = psr->word0;
2946
2947        /* Indicate that we have used this PSR entry. */
2948        /* FIXME wrap 12 */
2949        add_12bit(&rx_local->local_psr_full, 1);
2950        if (
2951          (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2952                /* Clear psr full and toggle the wrap bit */
2953                rx_local->local_psr_full &=  ~0xFFF;
2954                rx_local->local_psr_full ^= 0x1000;
2955        }
2956
2957        writel(rx_local->local_psr_full,
2958               &adapter->regs->rxdma.psr_full_offset);
2959
2960#ifndef USE_FBR0
2961        if (ring_index != 1)
2962                return NULL;
2963#endif
2964
2965#ifdef USE_FBR0
2966        if (ring_index > 1 ||
2967                (ring_index == 0 &&
2968                buff_index > rx_local->fbr[1]->num_entries - 1) ||
2969                (ring_index == 1 &&
2970                buff_index > rx_local->fbr[0]->num_entries - 1))
2971#else
2972        if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2973#endif
2974        {
2975                /* Illegal buffer or ring index cannot be used by S/W*/
2976                dev_err(&adapter->pdev->dev,
2977                          "NICRxPkts PSR Entry %d indicates "
2978                          "length of %d and/or bad bi(%d)\n",
2979                          rx_local->local_psr_full & 0xFFF,
2980                          len, buff_index);
2981                return NULL;
2982        }
2983
2984        /* Get and fill the RFD. */
2985        spin_lock_irqsave(&adapter->rcv_lock, flags);
2986
2987        rfd = NULL;
2988        element = rx_local->recv_list.next;
2989        rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990
2991        if (rfd == NULL) {
2992                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2993                return NULL;
2994        }
2995
2996        list_del(&rfd->list_node);
2997        rx_local->num_ready_recv--;
2998
2999        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000
3001        rfd->bufferindex = buff_index;
3002        rfd->ringindex = ring_index;
3003
3004        /* In V1 silicon, there is a bug which screws up filtering of
3005         * runt packets.  Therefore runt packet filtering is disabled
3006         * in the MAC and the packets are dropped here.  They are
3007         * also counted here.
3008         */
3009        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3010                adapter->stats.rx_other_errs++;
3011                len = 0;
3012        }
3013
3014        if (len) {
3015                /* Determine if this is a multicast packet coming in */
3016                if ((word0 & ALCATEL_MULTICAST_PKT) &&
3017                    !(word0 & ALCATEL_BROADCAST_PKT)) {
3018                        /* Promiscuous mode and Multicast mode are
3019                         * not mutually exclusive as was first
3020                         * thought.  I guess Promiscuous is just
3021                         * considered a super-set of the other
3022                         * filters. Generally filter is 0x2b when in
3023                         * promiscuous mode.
3024                         */
3025                        if ((adapter->packet_filter &
3026                                        ET131X_PACKET_TYPE_MULTICAST)
3027                            && !(adapter->packet_filter &
3028                                        ET131X_PACKET_TYPE_PROMISCUOUS)
3029                            && !(adapter->packet_filter &
3030                                        ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031                                /*
3032                                 * Note - ring_index for fbr[] array is reversed
3033                                 * 1 for FBR0 etc
3034                                 */
3035                                buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3036                                                virt[buff_index];
3037
3038                                /* Loop through our list to see if the
3039                                 * destination address of this packet
3040                                 * matches one in our list.
3041                                 */
3042                                for (i = 0; i < adapter->multicast_addr_count;
3043                                     i++) {
3044                                        if (buf[0] ==
3045                                                adapter->multicast_list[i][0]
3046                                            && buf[1] ==
3047                                                adapter->multicast_list[i][1]
3048                                            && buf[2] ==
3049                                                adapter->multicast_list[i][2]
3050                                            && buf[3] ==
3051                                                adapter->multicast_list[i][3]
3052                                            && buf[4] ==
3053                                                adapter->multicast_list[i][4]
3054                                            && buf[5] ==
3055                                                adapter->multicast_list[i][5]) {
3056                                                break;
3057                                        }
3058                                }
3059
3060                                /* If our index is equal to the number
3061                                 * of Multicast address we have, then
3062                                 * this means we did not find this
3063                                 * packet's matching address in our
3064                                 * list.  Set the len to zero,
3065                                 * so we free our RFD when we return
3066                                 * from this function.
3067                                 */
3068                                if (i == adapter->multicast_addr_count)
3069                                        len = 0;
3070                        }
3071
3072                        if (len > 0)
3073                                adapter->stats.multicast_pkts_rcvd++;
3074                } else if (word0 & ALCATEL_BROADCAST_PKT)
3075                        adapter->stats.broadcast_pkts_rcvd++;
3076                else
3077                        /* Not sure what this counter measures in
3078                         * promiscuous mode. Perhaps we should check
3079                         * the MAC address to see if it is directed
3080                         * to us in promiscuous mode.
3081                         */
3082                        adapter->stats.unicast_pkts_rcvd++;
3083        }
3084
3085        if (len > 0) {
3086                struct sk_buff *skb = NULL;
3087
3088                /*rfd->len = len - 4; */
3089                rfd->len = len;
3090
3091                skb = dev_alloc_skb(rfd->len + 2);
3092                if (!skb) {
3093                        dev_err(&adapter->pdev->dev,
3094                                  "Couldn't alloc an SKB for Rx\n");
3095                        return NULL;
3096                }
3097
3098                adapter->net_stats.rx_bytes += rfd->len;
3099
3100                /*
3101                 * Note - ring_index for fbr[] array is reversed,
3102                 * 1 for FBR0 etc
3103                 */
3104                memcpy(skb_put(skb, rfd->len),
3105                    rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3106                    rfd->len);
3107
3108                skb->dev = adapter->netdev;
3109                skb->protocol = eth_type_trans(skb, adapter->netdev);
3110                skb->ip_summed = CHECKSUM_NONE;
3111
3112                netif_rx_ni(skb);
3113        } else {
3114                rfd->len = 0;
3115        }
3116
3117        nic_return_rfd(adapter, rfd);
3118        return rfd;
3119}
3120
3121/**
3122 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123 * @adapter: pointer to our adapter
3124 *
3125 * Assumption, Rcv spinlock has been acquired.
3126 */
3127static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128{
3129        struct rfd *rfd = NULL;
3130        u32 count = 0;
3131        bool done = true;
3132
3133        /* Process up to available RFD's */
3134        while (count < NUM_PACKETS_HANDLED) {
3135                if (list_empty(&adapter->rx_ring.recv_list)) {
3136                        WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3137                        done = false;
3138                        break;
3139                }
3140
3141                rfd = nic_rx_pkts(adapter);
3142
3143                if (rfd == NULL)
3144                        break;
3145
3146                /* Do not receive any packets until a filter has been set.
3147                 * Do not receive any packets until we have link.
3148                 * If length is zero, return the RFD in order to advance the
3149                 * Free buffer ring.
3150                 */
3151                if (!adapter->packet_filter ||
3152                    !netif_carrier_ok(adapter->netdev) ||
3153                    rfd->len == 0)
3154                        continue;
3155
3156                /* Increment the number of packets we received */
3157                adapter->net_stats.rx_packets++;
3158
3159                /* Set the status on the packet, either resources or success */
3160                if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3161                        dev_warn(&adapter->pdev->dev,
3162                                    "RFD's are running out\n");
3163                }
3164                count++;
3165        }
3166
3167        if (count == NUM_PACKETS_HANDLED || !done) {
3168                adapter->rx_ring.unfinished_receives = true;
3169                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3170                       &adapter->regs->global.watchdog_timer);
3171        } else
3172                /* Watchdog timer will disable itself if appropriate. */
3173                adapter->rx_ring.unfinished_receives = false;
3174}
3175
3176/**
3177 * et131x_tx_dma_memory_alloc
3178 * @adapter: pointer to our private adapter structure
3179 *
3180 * Returns 0 on success and errno on failure (as defined in errno.h).
3181 *
3182 * Allocates memory that will be visible both to the device and to the CPU.
3183 * The OS will pass us packets, pointers to which we will insert in the Tx
3184 * Descriptor queue. The device will read this queue to find the packets in
3185 * memory. The device will update the "status" in memory each time it xmits a
3186 * packet.
3187 */
3188static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189{
3190        int desc_size = 0;
3191        struct tx_ring *tx_ring = &adapter->tx_ring;
3192
3193        /* Allocate memory for the TCB's (Transmit Control Block) */
3194        adapter->tx_ring.tcb_ring =
3195                kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3196        if (!adapter->tx_ring.tcb_ring) {
3197                dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3198                return -ENOMEM;
3199        }
3200
3201        /* Allocate enough memory for the Tx descriptor ring, and allocate
3202         * some extra so that the ring can be aligned on a 4k boundary.
3203         */
3204        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3205        tx_ring->tx_desc_ring =
3206            (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3207                                                  desc_size,
3208                                                  &tx_ring->tx_desc_ring_pa,
3209                                                  GFP_KERNEL);
3210        if (!adapter->tx_ring.tx_desc_ring) {
3211                dev_err(&adapter->pdev->dev,
3212                        "Cannot alloc memory for Tx Ring\n");
3213                return -ENOMEM;
3214        }
3215
3216        /* Save physical address
3217         *
3218         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220         * are ever returned, make sure the high part is retrieved here before
3221         * storing the adjusted address.
3222         */
3223        /* Allocate memory for the Tx status block */
3224        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3225                                                    sizeof(u32),
3226                                                    &tx_ring->tx_status_pa,
3227                                                    GFP_KERNEL);
3228        if (!adapter->tx_ring.tx_status_pa) {
3229                dev_err(&adapter->pdev->dev,
3230                                  "Cannot alloc memory for Tx status block\n");
3231                return -ENOMEM;
3232        }
3233        return 0;
3234}
3235
3236/**
3237 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238 * @adapter: pointer to our private adapter structure
3239 *
3240 * Returns 0 on success and errno on failure (as defined in errno.h).
3241 */
3242static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243{
3244        int desc_size = 0;
3245
3246        if (adapter->tx_ring.tx_desc_ring) {
3247                /* Free memory relating to Tx rings here */
3248                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3249                                                                + 4096 - 1;
3250                dma_free_coherent(&adapter->pdev->dev,
3251                                    desc_size,
3252                                    adapter->tx_ring.tx_desc_ring,
3253                                    adapter->tx_ring.tx_desc_ring_pa);
3254                adapter->tx_ring.tx_desc_ring = NULL;
3255        }
3256
3257        /* Free memory for the Tx status block */
3258        if (adapter->tx_ring.tx_status) {
3259                dma_free_coherent(&adapter->pdev->dev,
3260                                    sizeof(u32),
3261                                    adapter->tx_ring.tx_status,
3262                                    adapter->tx_ring.tx_status_pa);
3263
3264                adapter->tx_ring.tx_status = NULL;
3265        }
3266        /* Free the memory for the tcb structures */
3267        kfree(adapter->tx_ring.tcb_ring);
3268}
3269
3270/**
3271 * nic_send_packet - NIC specific send handler for version B silicon.
3272 * @adapter: pointer to our adapter
3273 * @tcb: pointer to struct tcb
3274 *
3275 * Returns 0 or errno.
3276 */
3277static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278{
3279        u32 i;
3280        struct tx_desc desc[24];        /* 24 x 16 byte */
3281        u32 frag = 0;
3282        u32 thiscopy, remainder;
3283        struct sk_buff *skb = tcb->skb;
3284        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3285        struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3286        unsigned long flags;
3287        struct phy_device *phydev = adapter->phydev;
3288
3289        /* Part of the optimizations of this send routine restrict us to
3290         * sending 24 fragments at a pass.  In practice we should never see
3291         * more than 5 fragments.
3292         *
3293         * NOTE: The older version of this function (below) can handle any
3294         * number of fragments. If needed, we can call this function,
3295         * although it is less efficient.
3296         */
3297        if (nr_frags > 23)
3298                return -EIO;
3299
3300        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301
3302        for (i = 0; i < nr_frags; i++) {
3303                /* If there is something in this element, lets get a
3304                 * descriptor from the ring and get the necessary data
3305                 */
3306                if (i == 0) {
3307                        /* If the fragments are smaller than a standard MTU,
3308                         * then map them to a single descriptor in the Tx
3309                         * Desc ring. However, if they're larger, as is
3310                         * possible with support for jumbo packets, then
3311                         * split them each across 2 descriptors.
3312                         *
3313                         * This will work until we determine why the hardware
3314                         * doesn't seem to like large fragments.
3315                         */
3316                        if ((skb->len - skb->data_len) <= 1514) {
3317                                desc[frag].addr_hi = 0;
3318                                /* Low 16bits are length, high is vlan and
3319                                   unused currently so zero */
3320                                desc[frag].len_vlan =
3321                                        skb->len - skb->data_len;
3322
3323                                /* NOTE: Here, the dma_addr_t returned from
3324                                 * dma_map_single() is implicitly cast as a
3325                                 * u32. Although dma_addr_t can be
3326                                 * 64-bit, the address returned by
3327                                 * dma_map_single() is always 32-bit
3328                                 * addressable (as defined by the pci/dma
3329                                 * subsystem)
3330                                 */
3331                                desc[frag++].addr_lo =
3332                                    dma_map_single(&adapter->pdev->dev,
3333                                                   skb->data,
3334                                                   skb->len -
3335                                                   skb->data_len,
3336                                                   DMA_TO_DEVICE);
3337                        } else {
3338                                desc[frag].addr_hi = 0;
3339                                desc[frag].len_vlan =
3340                                    (skb->len - skb->data_len) / 2;
3341
3342                                /* NOTE: Here, the dma_addr_t returned from
3343                                 * dma_map_single() is implicitly cast as a
3344                                 * u32. Although dma_addr_t can be
3345                                 * 64-bit, the address returned by
3346                                 * dma_map_single() is always 32-bit
3347                                 * addressable (as defined by the pci/dma
3348                                 * subsystem)
3349                                 */
3350                                desc[frag++].addr_lo =
3351                                    dma_map_single(&adapter->pdev->dev,
3352                                                   skb->data,
3353                                                   ((skb->len -
3354                                                     skb->data_len) / 2),
3355                                                   DMA_TO_DEVICE);
3356                                desc[frag].addr_hi = 0;
3357
3358                                desc[frag].len_vlan =
3359                                    (skb->len - skb->data_len) / 2;
3360
3361                                /* NOTE: Here, the dma_addr_t returned from
3362                                 * dma_map_single() is implicitly cast as a
3363                                 * u32. Although dma_addr_t can be
3364                                 * 64-bit, the address returned by
3365                                 * dma_map_single() is always 32-bit
3366                                 * addressable (as defined by the pci/dma
3367                                 * subsystem)
3368                                 */
3369                                desc[frag++].addr_lo =
3370                                    dma_map_single(&adapter->pdev->dev,
3371                                                   skb->data +
3372                                                   ((skb->len -
3373                                                     skb->data_len) / 2),
3374                                                   ((skb->len -
3375                                                     skb->data_len) / 2),
3376                                                   DMA_TO_DEVICE);
3377                        }
3378                } else {
3379                        desc[frag].addr_hi = 0;
3380                        desc[frag].len_vlan =
3381                                        frags[i - 1].size;
3382
3383                        /* NOTE: Here, the dma_addr_t returned from
3384                         * dma_map_page() is implicitly cast as a u32.
3385                         * Although dma_addr_t can be 64-bit, the address
3386                         * returned by dma_map_page() is always 32-bit
3387                         * addressable (as defined by the pci/dma subsystem)
3388                         */
3389                        desc[frag++].addr_lo = skb_frag_dma_map(
3390                                                        &adapter->pdev->dev,
3391                                                        &frags[i - 1],
3392                                                        0,
3393                                                        frags[i - 1].size,
3394                                                        DMA_TO_DEVICE);
3395                }
3396        }
3397
3398        if (phydev && phydev->speed == SPEED_1000) {
3399                if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3400                        /* Last element & Interrupt flag */
3401                        desc[frag - 1].flags = 0x5;
3402                        adapter->tx_ring.since_irq = 0;
3403                } else { /* Last element */
3404                        desc[frag - 1].flags = 0x1;
3405                }
3406        } else
3407                desc[frag - 1].flags = 0x5;
3408
3409        desc[0].flags |= 2;     /* First element flag */
3410
3411        tcb->index_start = adapter->tx_ring.send_idx;
3412        tcb->stale = 0;
3413
3414        spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415
3416        thiscopy = NUM_DESC_PER_RING_TX -
3417                                INDEX10(adapter->tx_ring.send_idx);
3418
3419        if (thiscopy >= frag) {
3420                remainder = 0;
3421                thiscopy = frag;
3422        } else {
3423                remainder = frag - thiscopy;
3424        }
3425
3426        memcpy(adapter->tx_ring.tx_desc_ring +
3427               INDEX10(adapter->tx_ring.send_idx), desc,
3428               sizeof(struct tx_desc) * thiscopy);
3429
3430        add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431
3432        if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3433                  INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3434                adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3435                adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3436        }
3437
3438        if (remainder) {
3439                memcpy(adapter->tx_ring.tx_desc_ring,
3440                       desc + thiscopy,
3441                       sizeof(struct tx_desc) * remainder);
3442
3443                add_10bit(&adapter->tx_ring.send_idx, remainder);
3444        }
3445
3446        if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3447                if (adapter->tx_ring.send_idx)
3448                        tcb->index = NUM_DESC_PER_RING_TX - 1;
3449                else
3450                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3451        } else
3452                tcb->index = adapter->tx_ring.send_idx - 1;
3453
3454        spin_lock(&adapter->tcb_send_qlock);
3455
3456        if (adapter->tx_ring.send_tail)
3457                adapter->tx_ring.send_tail->next = tcb;
3458        else
3459                adapter->tx_ring.send_head = tcb;
3460
3461        adapter->tx_ring.send_tail = tcb;
3462
3463        WARN_ON(tcb->next != NULL);
3464
3465        adapter->tx_ring.used++;
3466
3467        spin_unlock(&adapter->tcb_send_qlock);
3468
3469        /* Write the new write pointer back to the device. */
3470        writel(adapter->tx_ring.send_idx,
3471               &adapter->regs->txdma.service_request);
3472
3473        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3474         * timer to wake us up if this packet isn't followed by N more.
3475         */
3476        if (phydev && phydev->speed == SPEED_1000) {
3477                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3478                       &adapter->regs->global.watchdog_timer);
3479        }
3480        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481
3482        return 0;
3483}
3484
3485/**
3486 * send_packet - Do the work to send a packet
3487 * @skb: the packet(s) to send
3488 * @adapter: a pointer to the device's private adapter structure
3489 *
3490 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491 *
3492 * Assumption: Send spinlock has been acquired
3493 */
3494static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495{
3496        int status;
3497        struct tcb *tcb = NULL;
3498        u16 *shbufva;
3499        unsigned long flags;
3500
3501        /* All packets must have at least a MAC address and a protocol type */
3502        if (skb->len < ETH_HLEN)
3503                return -EIO;
3504
3505        /* Get a TCB for this packet */
3506        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507
3508        tcb = adapter->tx_ring.tcb_qhead;
3509
3510        if (tcb == NULL) {
3511                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3512                return -ENOMEM;
3513        }
3514
3515        adapter->tx_ring.tcb_qhead = tcb->next;
3516
3517        if (adapter->tx_ring.tcb_qhead == NULL)
3518                adapter->tx_ring.tcb_qtail = NULL;
3519
3520        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521
3522        tcb->skb = skb;
3523
3524        if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3525                shbufva = (u16 *) skb->data;
3526
3527                if ((shbufva[0] == 0xffff) &&
3528                    (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3529                        tcb->flags |= fMP_DEST_BROAD;
3530                } else if ((shbufva[0] & 0x3) == 0x0001) {
3531                        tcb->flags |=  fMP_DEST_MULTI;
3532                }
3533        }
3534
3535        tcb->next = NULL;
3536
3537        /* Call the NIC specific send handler. */
3538        status = nic_send_packet(adapter, tcb);
3539
3540        if (status != 0) {
3541                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542
3543                if (adapter->tx_ring.tcb_qtail)
3544                        adapter->tx_ring.tcb_qtail->next = tcb;
3545                else
3546                        /* Apparently ready Q is empty. */
3547                        adapter->tx_ring.tcb_qhead = tcb;
3548
3549                adapter->tx_ring.tcb_qtail = tcb;
3550                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3551                return status;
3552        }
3553        WARN_ON(adapter->tx_ring.used > NUM_TCB);
3554        return 0;
3555}
3556
3557/**
3558 * et131x_send_packets - This function is called by the OS to send packets
3559 * @skb: the packet(s) to send
3560 * @netdev:device on which to TX the above packet(s)
3561 *
3562 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563 */
3564static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565{
3566        int status = 0;
3567        struct et131x_adapter *adapter = netdev_priv(netdev);
3568
3569        /* Send these packets
3570         *
3571         * NOTE: The Linux Tx entry point is only given one packet at a time
3572         * to Tx, so the PacketCount and it's array used makes no sense here
3573         */
3574
3575        /* TCB is not available */
3576        if (adapter->tx_ring.used >= NUM_TCB) {
3577                /* NOTE: If there's an error on send, no need to queue the
3578                 * packet under Linux; if we just send an error up to the
3579                 * netif layer, it will resend the skb to us.
3580                 */
3581                status = -ENOMEM;
3582        } else {
3583                /* We need to see if the link is up; if it's not, make the
3584                 * netif layer think we're good and drop the packet
3585                 */
3586                if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3587                                        !netif_carrier_ok(netdev)) {
3588                        dev_kfree_skb_any(skb);
3589                        skb = NULL;
3590
3591                        adapter->net_stats.tx_dropped++;
3592                } else {
3593                        status = send_packet(skb, adapter);
3594                        if (status != 0 && status != -ENOMEM) {
3595                                /* On any other error, make netif think we're
3596                                 * OK and drop the packet
3597                                 */
3598                                dev_kfree_skb_any(skb);
3599                                skb = NULL;
3600                                adapter->net_stats.tx_dropped++;
3601                        }
3602                }
3603        }
3604        return status;
3605}
3606
3607/**
3608 * free_send_packet - Recycle a struct tcb
3609 * @adapter: pointer to our adapter
3610 * @tcb: pointer to struct tcb
3611 *
3612 * Complete the packet if necessary
3613 * Assumption - Send spinlock has been acquired
3614 */
3615static inline void free_send_packet(struct et131x_adapter *adapter,
3616                                                struct tcb *tcb)
3617{
3618        unsigned long flags;
3619        struct tx_desc *desc = NULL;
3620        struct net_device_stats *stats = &adapter->net_stats;
3621
3622        if (tcb->flags & fMP_DEST_BROAD)
3623                atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3624        else if (tcb->flags & fMP_DEST_MULTI)
3625                atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3626        else
3627                atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628
3629        if (tcb->skb) {
3630                stats->tx_bytes += tcb->skb->len;
3631
3632                /* Iterate through the TX descriptors on the ring
3633                 * corresponding to this packet and umap the fragments
3634                 * they point to
3635                 */
3636                do {
3637                        desc = (struct tx_desc *)
3638                                    (adapter->tx_ring.tx_desc_ring +
3639                                                INDEX10(tcb->index_start));
3640
3641                        dma_unmap_single(&adapter->pdev->dev,
3642                                         desc->addr_lo,
3643                                         desc->len_vlan, DMA_TO_DEVICE);
3644
3645                        add_10bit(&tcb->index_start, 1);
3646                        if (INDEX10(tcb->index_start) >=
3647                                                        NUM_DESC_PER_RING_TX) {
3648                                tcb->index_start &= ~ET_DMA10_MASK;
3649                                tcb->index_start ^= ET_DMA10_WRAP;
3650                        }
3651                } while (desc != (adapter->tx_ring.tx_desc_ring +
3652                                INDEX10(tcb->index)));
3653
3654                dev_kfree_skb_any(tcb->skb);
3655        }
3656
3657        memset(tcb, 0, sizeof(struct tcb));
3658
3659        /* Add the TCB to the Ready Q */
3660        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661
3662        adapter->net_stats.tx_packets++;
3663
3664        if (adapter->tx_ring.tcb_qtail)
3665                adapter->tx_ring.tcb_qtail->next = tcb;
3666        else
3667                /* Apparently ready Q is empty. */
3668                adapter->tx_ring.tcb_qhead = tcb;
3669
3670        adapter->tx_ring.tcb_qtail = tcb;
3671
3672        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3673        WARN_ON(adapter->tx_ring.used < 0);
3674}
3675
3676/**
3677 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678 * @adapter: pointer to our adapter
3679 *
3680 * Assumption - Send spinlock has been acquired
3681 */
3682static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683{
3684        struct tcb *tcb;
3685        unsigned long flags;
3686        u32 freed = 0;
3687
3688        /* Any packets being sent? Check the first TCB on the send list */
3689        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690
3691        tcb = adapter->tx_ring.send_head;
3692
3693        while (tcb != NULL && freed < NUM_TCB) {
3694                struct tcb *next = tcb->next;
3695
3696                adapter->tx_ring.send_head = next;
3697
3698                if (next == NULL)
3699                        adapter->tx_ring.send_tail = NULL;
3700
3701                adapter->tx_ring.used--;
3702
3703                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704
3705                freed++;
3706                free_send_packet(adapter, tcb);
3707
3708                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709
3710                tcb = adapter->tx_ring.send_head;
3711        }
3712
3713        WARN_ON(freed == NUM_TCB);
3714
3715        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716
3717        adapter->tx_ring.used = 0;
3718}
3719
3720/**
3721 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722 * @adapter: pointer to our adapter
3723 *
3724 * Re-claim the send resources, complete sends and get more to send from
3725 * the send wait queue.
3726 *
3727 * Assumption - Send spinlock has been acquired
3728 */
3729static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730{
3731        unsigned long flags;
3732        u32 serviced;
3733        struct tcb *tcb;
3734        u32 index;
3735
3736        serviced = readl(&adapter->regs->txdma.new_service_complete);
3737        index = INDEX10(serviced);
3738
3739        /* Has the ring wrapped?  Process any descriptors that do not have
3740         * the same "wrap" indicator as the current completion indicator
3741         */
3742        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743
3744        tcb = adapter->tx_ring.send_head;
3745
3746        while (tcb &&
3747               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3748               index < INDEX10(tcb->index)) {
3749                adapter->tx_ring.used--;
3750                adapter->tx_ring.send_head = tcb->next;
3751                if (tcb->next == NULL)
3752                        adapter->tx_ring.send_tail = NULL;
3753
3754                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3755                free_send_packet(adapter, tcb);
3756                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757
3758                /* Goto the next packet */
3759                tcb = adapter->tx_ring.send_head;
3760        }
3761        while (tcb &&
3762               !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3763               && index > (tcb->index & ET_DMA10_MASK)) {
3764                adapter->tx_ring.used--;
3765                adapter->tx_ring.send_head = tcb->next;
3766                if (tcb->next == NULL)
3767                        adapter->tx_ring.send_tail = NULL;
3768
3769                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3770                free_send_packet(adapter, tcb);
3771                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772
3773                /* Goto the next packet */
3774                tcb = adapter->tx_ring.send_head;
3775        }
3776
3777        /* Wake up the queue when we hit a low-water mark */
3778        if (adapter->tx_ring.used <= NUM_TCB / 3)
3779                netif_wake_queue(adapter->netdev);
3780
3781        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3782}
3783
3784static int et131x_get_settings(struct net_device *netdev,
3785                               struct ethtool_cmd *cmd)
3786{
3787        struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789        return phy_ethtool_gset(adapter->phydev, cmd);
3790}
3791
3792static int et131x_set_settings(struct net_device *netdev,
3793                               struct ethtool_cmd *cmd)
3794{
3795        struct et131x_adapter *adapter = netdev_priv(netdev);
3796
3797        return phy_ethtool_sset(adapter->phydev, cmd);
3798}
3799
3800static int et131x_get_regs_len(struct net_device *netdev)
3801{
3802#define ET131X_REGS_LEN 256
3803        return ET131X_REGS_LEN * sizeof(u32);
3804}
3805
3806static void et131x_get_regs(struct net_device *netdev,
3807                            struct ethtool_regs *regs, void *regs_data)
3808{
3809        struct et131x_adapter *adapter = netdev_priv(netdev);
3810        struct address_map __iomem *aregs = adapter->regs;
3811        u32 *regs_buff = regs_data;
3812        u32 num = 0;
3813
3814        memset(regs_data, 0, et131x_get_regs_len(netdev));
3815
3816        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3817                        adapter->pdev->device;
3818
3819        /* PHY regs */
3820        et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3821        et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3822        et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3823        et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3824        et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3825        et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3826        et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3827        /* Autoneg next page transmit reg */
3828        et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3829        /* Link partner next page reg */
3830        et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3831        et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3832        et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3833        et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3834        et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3835        et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3836        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3837                        (u16 *)&regs_buff[num++]);
3838        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3839                        (u16 *)&regs_buff[num++]);
3840        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3841                        (u16 *)&regs_buff[num++]);
3842        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3843                        (u16 *)&regs_buff[num++]);
3844        et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3845        et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3846        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3847        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3848                        (u16 *)&regs_buff[num++]);
3849        et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3850        et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3851        et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852
3853        /* Global regs */
3854        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3855        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3856        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3857        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3858        regs_buff[num++] = readl(&aregs->global.pm_csr);
3859        regs_buff[num++] = adapter->stats.interrupt_status;
3860        regs_buff[num++] = readl(&aregs->global.int_mask);
3861        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3862        regs_buff[num++] = readl(&aregs->global.int_status_alias);
3863        regs_buff[num++] = readl(&aregs->global.sw_reset);
3864        regs_buff[num++] = readl(&aregs->global.slv_timer);
3865        regs_buff[num++] = readl(&aregs->global.msi_config);
3866        regs_buff[num++] = readl(&aregs->global.loopback);
3867        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868
3869        /* TXDMA regs */
3870        regs_buff[num++] = readl(&aregs->txdma.csr);
3871        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3872        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3873        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3874        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3875        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3876        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3877        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3878        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3879        regs_buff[num++] = readl(&aregs->txdma.service_request);
3880        regs_buff[num++] = readl(&aregs->txdma.service_complete);
3881        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3882        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3883        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3884        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3885        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3886        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3887        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3888        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3889        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3890        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3891        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3892        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3893        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3894        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3895        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896
3897        /* RXDMA regs */
3898        regs_buff[num++] = readl(&aregs->rxdma.csr);
3899        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3900        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3901        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3902        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3903        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3904        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3905        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3906        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3907        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3908        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3909        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3910        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3911        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3912        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3913        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3914        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3915        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3916        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3917        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3918        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3919        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3920        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3921        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3922        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3923        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3924        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3925        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3926        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3927}
3928
3929#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930static void et131x_get_drvinfo(struct net_device *netdev,
3931                               struct ethtool_drvinfo *info)
3932{
3933        struct et131x_adapter *adapter = netdev_priv(netdev);
3934
3935        strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3936        strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3937        strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3938}
3939
3940static struct ethtool_ops et131x_ethtool_ops = {
3941        .get_settings   = et131x_get_settings,
3942        .set_settings   = et131x_set_settings,
3943        .get_drvinfo    = et131x_get_drvinfo,
3944        .get_regs_len   = et131x_get_regs_len,
3945        .get_regs       = et131x_get_regs,
3946        .get_link = ethtool_op_get_link,
3947};
3948
3949static void et131x_set_ethtool_ops(struct net_device *netdev)
3950{
3951        SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3952}
3953
3954/**
3955 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3956 * @adapter: pointer to our private adapter structure
3957 */
3958static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3959{
3960        /* If have our default mac from init and no mac address from
3961         * EEPROM then we need to generate the last octet and set it on the
3962         * device
3963         */
3964        if (adapter->rom_addr[0] == 0x00 &&
3965            adapter->rom_addr[1] == 0x00 &&
3966            adapter->rom_addr[2] == 0x00 &&
3967            adapter->rom_addr[3] == 0x00 &&
3968            adapter->rom_addr[4] == 0x00 &&
3969            adapter->rom_addr[5] == 0x00) {
3970                /*
3971                 * We need to randomly generate the last octet so we
3972                 * decrease our chances of setting the mac address to
3973                 * same as another one of our cards in the system
3974                 */
3975                get_random_bytes(&adapter->addr[5], 1);
3976                /*
3977                 * We have the default value in the register we are
3978                 * working with so we need to copy the current
3979                 * address into the permanent address
3980                 */
3981                memcpy(adapter->rom_addr,
3982                        adapter->addr, ETH_ALEN);
3983        } else {
3984                /* We do not have an override address, so set the
3985                 * current address to the permanent address and add
3986                 * it to the device
3987                 */
3988                memcpy(adapter->addr,
3989                       adapter->rom_addr, ETH_ALEN);
3990        }
3991}
3992
3993/**
3994 * et131x_pci_init       - initial PCI setup
3995 * @adapter: pointer to our private adapter structure
3996 * @pdev: our PCI device
3997 *
3998 * Perform the initial setup of PCI registers and if possible initialise
3999 * the MAC address. At this point the I/O registers have yet to be mapped
4000 */
4001static int et131x_pci_init(struct et131x_adapter *adapter,
4002                                                struct pci_dev *pdev)
4003{
4004        int cap = pci_pcie_cap(pdev);
4005        u16 max_payload;
4006        u16 ctl;
4007        int i, rc;
4008
4009        rc = et131x_init_eeprom(adapter);
4010        if (rc < 0)
4011                goto out;
4012
4013        if (!cap) {
4014                dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4015                goto err_out;
4016        }
4017
4018        /* Let's set up the PORT LOGIC Register.  First we need to know what
4019         * the max_payload_size is
4020         */
4021        if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4022                dev_err(&pdev->dev,
4023                    "Could not read PCI config space for Max Payload Size\n");
4024                goto err_out;
4025        }
4026
4027        /* Program the Ack/Nak latency and replay timers */
4028        max_payload &= 0x07;
4029
4030        if (max_payload < 2) {
4031                static const u16 acknak[2] = { 0x76, 0xD0 };
4032                static const u16 replay[2] = { 0x1E0, 0x2ED };
4033
4034                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4035                                               acknak[max_payload])) {
4036                        dev_err(&pdev->dev,
4037                          "Could not write PCI config space for ACK/NAK\n");
4038                        goto err_out;
4039                }
4040                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4041                                               replay[max_payload])) {
4042                        dev_err(&pdev->dev,
4043                          "Could not write PCI config space for Replay Timer\n");
4044                        goto err_out;
4045                }
4046        }
4047
4048        /* l0s and l1 latency timers.  We are using default values.
4049         * Representing 001 for L0s and 010 for L1
4050         */
4051        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4052                dev_err(&pdev->dev,
4053                  "Could not write PCI config space for Latency Timers\n");
4054                goto err_out;
4055        }
4056
4057        /* Change the max read size to 2k */
4058        if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4059                dev_err(&pdev->dev,
4060                        "Could not read PCI config space for Max read size\n");
4061                goto err_out;
4062        }
4063
4064        ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | (0x04 << 12);
4065
4066        if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4067                dev_err(&pdev->dev,
4068                      "Could not write PCI config space for Max read size\n");
4069                goto err_out;
4070        }
4071
4072        /* Get MAC address from config space if an eeprom exists, otherwise
4073         * the MAC address there will not be valid
4074         */
4075        if (!adapter->has_eeprom) {
4076                et131x_hwaddr_init(adapter);
4077                return 0;
4078        }
4079
4080        for (i = 0; i < ETH_ALEN; i++) {
4081                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4082                                        adapter->rom_addr + i)) {
4083                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4084                        goto err_out;
4085                }
4086        }
4087        memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4088out:
4089        return rc;
4090err_out:
4091        rc = -EIO;
4092        goto out;
4093}
4094
4095/**
4096 * et131x_error_timer_handler
4097 * @data: timer-specific variable; here a pointer to our adapter structure
4098 *
4099 * The routine called when the error timer expires, to track the number of
4100 * recurring errors.
4101 */
4102static void et131x_error_timer_handler(unsigned long data)
4103{
4104        struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4105        struct phy_device *phydev = adapter->phydev;
4106
4107        if (et1310_in_phy_coma(adapter)) {
4108                /* Bring the device immediately out of coma, to
4109                 * prevent it from sleeping indefinitely, this
4110                 * mechanism could be improved! */
4111                et1310_disable_phy_coma(adapter);
4112                adapter->boot_coma = 20;
4113        } else {
4114                et1310_update_macstat_host_counters(adapter);
4115        }
4116
4117        if (!phydev->link && adapter->boot_coma < 11)
4118                adapter->boot_coma++;
4119
4120        if (adapter->boot_coma == 10) {
4121                if (!phydev->link) {
4122                        if (!et1310_in_phy_coma(adapter)) {
4123                                /* NOTE - This was originally a 'sync with
4124                                 *  interrupt'. How to do that under Linux?
4125                                 */
4126                                et131x_enable_interrupts(adapter);
4127                                et1310_enable_phy_coma(adapter);
4128                        }
4129                }
4130        }
4131
4132        /* This is a periodic timer, so reschedule */
4133        mod_timer(&adapter->error_timer, jiffies +
4134                                          TX_ERROR_PERIOD * HZ / 1000);
4135}
4136
4137/**
4138 * et131x_adapter_memory_alloc
4139 * @adapter: pointer to our private adapter structure
4140 *
4141 * Returns 0 on success, errno on failure (as defined in errno.h).
4142 *
4143 * Allocate all the memory blocks for send, receive and others.
4144 */
4145static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4146{
4147        int status;
4148
4149        /* Allocate memory for the Tx Ring */
4150        status = et131x_tx_dma_memory_alloc(adapter);
4151        if (status != 0) {
4152                dev_err(&adapter->pdev->dev,
4153                          "et131x_tx_dma_memory_alloc FAILED\n");
4154                return status;
4155        }
4156        /* Receive buffer memory allocation */
4157        status = et131x_rx_dma_memory_alloc(adapter);
4158        if (status != 0) {
4159                dev_err(&adapter->pdev->dev,
4160                          "et131x_rx_dma_memory_alloc FAILED\n");
4161                et131x_tx_dma_memory_free(adapter);
4162                return status;
4163        }
4164
4165        /* Init receive data structures */
4166        status = et131x_init_recv(adapter);
4167        if (status != 0) {
4168                dev_err(&adapter->pdev->dev,
4169                        "et131x_init_recv FAILED\n");
4170                et131x_tx_dma_memory_free(adapter);
4171                et131x_rx_dma_memory_free(adapter);
4172        }
4173        return status;
4174}
4175
4176/**
4177 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4178 * @adapter: pointer to our private adapter structure
4179 */
4180static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4181{
4182        /* Free DMA memory */
4183        et131x_tx_dma_memory_free(adapter);
4184        et131x_rx_dma_memory_free(adapter);
4185}
4186
4187static void et131x_adjust_link(struct net_device *netdev)
4188{
4189        struct et131x_adapter *adapter = netdev_priv(netdev);
4190        struct  phy_device *phydev = adapter->phydev;
4191
4192        if (netif_carrier_ok(netdev)) {
4193                adapter->boot_coma = 20;
4194
4195                if (phydev && phydev->speed == SPEED_10) {
4196                        /*
4197                         * NOTE - Is there a way to query this without
4198                         * TruePHY?
4199                         * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4200                         * EMI_TRUEPHY_A13O) {
4201                         */
4202                        u16 register18;
4203
4204                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4205                                         &register18);
4206                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4207                                         register18 | 0x4);
4208                        et131x_mii_write(adapter, PHY_INDEX_REG,
4209                                         register18 | 0x8402);
4210                        et131x_mii_write(adapter, PHY_DATA_REG,
4211                                         register18 | 511);
4212                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4213                                         register18);
4214                }
4215
4216                et1310_config_flow_control(adapter);
4217
4218                if (phydev && phydev->speed == SPEED_1000 &&
4219                                adapter->registry_jumbo_packet > 2048) {
4220                        u16 reg;
4221
4222                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
4223                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4224                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4225                        et131x_mii_write(adapter, PHY_CONFIG, reg);
4226                }
4227
4228                et131x_set_rx_dma_timer(adapter);
4229                et1310_config_mac_regs2(adapter);
4230        }
4231
4232        if (phydev && phydev->link != adapter->link) {
4233                /*
4234                 * Check to see if we are in coma mode and if
4235                 * so, disable it because we will not be able
4236                 * to read PHY values until we are out.
4237                 */
4238                if (et1310_in_phy_coma(adapter))
4239                        et1310_disable_phy_coma(adapter);
4240
4241                if (phydev->link) {
4242                        adapter->boot_coma = 20;
4243                } else {
4244                        dev_warn(&adapter->pdev->dev,
4245                            "Link down - cable problem ?\n");
4246                        adapter->boot_coma = 0;
4247
4248                        if (phydev->speed == SPEED_10) {
4249                                /* NOTE - Is there a way to query this without
4250                                 * TruePHY?
4251                                 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4252                                 * EMI_TRUEPHY_A13O)
4253                                 */
4254                                u16 register18;
4255
4256                                et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4257                                                 &register18);
4258                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4259                                                 register18 | 0x4);
4260                                et131x_mii_write(adapter, PHY_INDEX_REG,
4261                                                 register18 | 0x8402);
4262                                et131x_mii_write(adapter, PHY_DATA_REG,
4263                                                 register18 | 511);
4264                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4265                                                 register18);
4266                        }
4267
4268                        /* Free the packets being actively sent & stopped */
4269                        et131x_free_busy_send_packets(adapter);
4270
4271                        /* Re-initialize the send structures */
4272                        et131x_init_send(adapter);
4273
4274                        /*
4275                         * Bring the device back to the state it was during
4276                         * init prior to autonegotiation being complete. This
4277                         * way, when we get the auto-neg complete interrupt,
4278                         * we can complete init by calling config_mac_regs2.
4279                         */
4280                        et131x_soft_reset(adapter);
4281
4282                        /* Setup ET1310 as per the documentation */
4283                        et131x_adapter_setup(adapter);
4284
4285                        /* perform reset of tx/rx */
4286                        et131x_disable_txrx(netdev);
4287                        et131x_enable_txrx(netdev);
4288                }
4289
4290                adapter->link = phydev->link;
4291
4292                phy_print_status(phydev);
4293        }
4294}
4295
4296static int et131x_mii_probe(struct net_device *netdev)
4297{
4298        struct et131x_adapter *adapter = netdev_priv(netdev);
4299        struct  phy_device *phydev = NULL;
4300
4301        phydev = phy_find_first(adapter->mii_bus);
4302        if (!phydev) {
4303                dev_err(&adapter->pdev->dev, "no PHY found\n");
4304                return -ENODEV;
4305        }
4306
4307        phydev = phy_connect(netdev, dev_name(&phydev->dev),
4308                        &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4309
4310        if (IS_ERR(phydev)) {
4311                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4312                return PTR_ERR(phydev);
4313        }
4314
4315        phydev->supported &= (SUPPORTED_10baseT_Half
4316                                | SUPPORTED_10baseT_Full
4317                                | SUPPORTED_100baseT_Half
4318                                | SUPPORTED_100baseT_Full
4319                                | SUPPORTED_Autoneg
4320                                | SUPPORTED_MII
4321                                | SUPPORTED_TP);
4322
4323        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4324                phydev->supported |= SUPPORTED_1000baseT_Full;
4325
4326        phydev->advertising = phydev->supported;
4327        adapter->phydev = phydev;
4328
4329        dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4330                 "(mii_bus:phy_addr=%s)\n",
4331                 phydev->drv->name, dev_name(&phydev->dev));
4332
4333        return 0;
4334}
4335
4336/**
4337 * et131x_adapter_init
4338 * @adapter: pointer to the private adapter struct
4339 * @pdev: pointer to the PCI device
4340 *
4341 * Initialize the data structures for the et131x_adapter object and link
4342 * them together with the platform provided device structures.
4343 */
4344static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4345                struct pci_dev *pdev)
4346{
4347        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4348
4349        struct et131x_adapter *adapter;
4350
4351        /* Allocate private adapter struct and copy in relevant information */
4352        adapter = netdev_priv(netdev);
4353        adapter->pdev = pci_dev_get(pdev);
4354        adapter->netdev = netdev;
4355
4356        /* Initialize spinlocks here */
4357        spin_lock_init(&adapter->lock);
4358        spin_lock_init(&adapter->tcb_send_qlock);
4359        spin_lock_init(&adapter->tcb_ready_qlock);
4360        spin_lock_init(&adapter->send_hw_lock);
4361        spin_lock_init(&adapter->rcv_lock);
4362        spin_lock_init(&adapter->rcv_pend_lock);
4363        spin_lock_init(&adapter->fbr_lock);
4364        spin_lock_init(&adapter->phy_lock);
4365
4366        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4367
4368        /* Set the MAC address to a default */
4369        memcpy(adapter->addr, default_mac, ETH_ALEN);
4370
4371        return adapter;
4372}
4373
4374/**
4375 * et131x_pci_remove
4376 * @pdev: a pointer to the device's pci_dev structure
4377 *
4378 * Registered in the pci_driver structure, this function is called when the
4379 * PCI subsystem detects that a PCI device which matches the information
4380 * contained in the pci_device_id table has been removed.
4381 */
4382static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4383{
4384        struct net_device *netdev = pci_get_drvdata(pdev);
4385        struct et131x_adapter *adapter = netdev_priv(netdev);
4386
4387        unregister_netdev(netdev);
4388        phy_disconnect(adapter->phydev);
4389        mdiobus_unregister(adapter->mii_bus);
4390        kfree(adapter->mii_bus->irq);
4391        mdiobus_free(adapter->mii_bus);
4392
4393        et131x_adapter_memory_free(adapter);
4394        iounmap(adapter->regs);
4395        pci_dev_put(pdev);
4396
4397        free_netdev(netdev);
4398        pci_release_regions(pdev);
4399        pci_disable_device(pdev);
4400}
4401
4402/**
4403 * et131x_up - Bring up a device for use.
4404 * @netdev: device to be opened
4405 */
4406static void et131x_up(struct net_device *netdev)
4407{
4408        struct et131x_adapter *adapter = netdev_priv(netdev);
4409
4410        et131x_enable_txrx(netdev);
4411        phy_start(adapter->phydev);
4412}
4413
4414/**
4415 * et131x_down - Bring down the device
4416 * @netdev: device to be brought down
4417 */
4418static void et131x_down(struct net_device *netdev)
4419{
4420        struct et131x_adapter *adapter = netdev_priv(netdev);
4421
4422        /* Save the timestamp for the TX watchdog, prevent a timeout */
4423        netdev->trans_start = jiffies;
4424
4425        phy_stop(adapter->phydev);
4426        et131x_disable_txrx(netdev);
4427}
4428
4429#ifdef CONFIG_PM_SLEEP
4430static int et131x_suspend(struct device *dev)
4431{
4432        struct pci_dev *pdev = to_pci_dev(dev);
4433        struct net_device *netdev = pci_get_drvdata(pdev);
4434
4435        if (netif_running(netdev)) {
4436                netif_device_detach(netdev);
4437                et131x_down(netdev);
4438                pci_save_state(pdev);
4439        }
4440
4441        return 0;
4442}
4443
4444static int et131x_resume(struct device *dev)
4445{
4446        struct pci_dev *pdev = to_pci_dev(dev);
4447        struct net_device *netdev = pci_get_drvdata(pdev);
4448
4449        if (netif_running(netdev)) {
4450                pci_restore_state(pdev);
4451                et131x_up(netdev);
4452                netif_device_attach(netdev);
4453        }
4454
4455        return 0;
4456}
4457
4458static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4459#define ET131X_PM_OPS (&et131x_pm_ops)
4460#else
4461#define ET131X_PM_OPS NULL
4462#endif
4463
4464/**
4465 * et131x_isr - The Interrupt Service Routine for the driver.
4466 * @irq: the IRQ on which the interrupt was received.
4467 * @dev_id: device-specific info (here a pointer to a net_device struct)
4468 *
4469 * Returns a value indicating if the interrupt was handled.
4470 */
4471irqreturn_t et131x_isr(int irq, void *dev_id)
4472{
4473        bool handled = true;
4474        struct net_device *netdev = (struct net_device *)dev_id;
4475        struct et131x_adapter *adapter = NULL;
4476        u32 status;
4477
4478        if (!netif_device_present(netdev)) {
4479                handled = false;
4480                goto out;
4481        }
4482
4483        adapter = netdev_priv(netdev);
4484
4485        /* If the adapter is in low power state, then it should not
4486         * recognize any interrupt
4487         */
4488
4489        /* Disable Device Interrupts */
4490        et131x_disable_interrupts(adapter);
4491
4492        /* Get a copy of the value in the interrupt status register
4493         * so we can process the interrupting section
4494         */
4495        status = readl(&adapter->regs->global.int_status);
4496
4497        if (adapter->flowcontrol == FLOW_TXONLY ||
4498            adapter->flowcontrol == FLOW_BOTH) {
4499                status &= ~INT_MASK_ENABLE;
4500        } else {
4501                status &= ~INT_MASK_ENABLE_NO_FLOW;
4502        }
4503
4504        /* Make sure this is our interrupt */
4505        if (!status) {
4506                handled = false;
4507                et131x_enable_interrupts(adapter);
4508                goto out;
4509        }
4510
4511        /* This is our interrupt, so process accordingly */
4512
4513        if (status & ET_INTR_WATCHDOG) {
4514                struct tcb *tcb = adapter->tx_ring.send_head;
4515
4516                if (tcb)
4517                        if (++tcb->stale > 1)
4518                                status |= ET_INTR_TXDMA_ISR;
4519
4520                if (adapter->rx_ring.unfinished_receives)
4521                        status |= ET_INTR_RXDMA_XFR_DONE;
4522                else if (tcb == NULL)
4523                        writel(0, &adapter->regs->global.watchdog_timer);
4524
4525                status &= ~ET_INTR_WATCHDOG;
4526        }
4527
4528        if (status == 0) {
4529                /* This interrupt has in some way been "handled" by
4530                 * the ISR. Either it was a spurious Rx interrupt, or
4531                 * it was a Tx interrupt that has been filtered by
4532                 * the ISR.
4533                 */
4534                et131x_enable_interrupts(adapter);
4535                goto out;
4536        }
4537
4538        /* We need to save the interrupt status value for use in our
4539         * DPC. We will clear the software copy of that in that
4540         * routine.
4541         */
4542        adapter->stats.interrupt_status = status;
4543
4544        /* Schedule the ISR handler as a bottom-half task in the
4545         * kernel's tq_immediate queue, and mark the queue for
4546         * execution
4547         */
4548        schedule_work(&adapter->task);
4549out:
4550        return IRQ_RETVAL(handled);
4551}
4552
4553/**
4554 * et131x_isr_handler - The ISR handler
4555 * @p_adapter, a pointer to the device's private adapter structure
4556 *
4557 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4558 * work actually gets done.
4559 */
4560static void et131x_isr_handler(struct work_struct *work)
4561{
4562        struct et131x_adapter *adapter =
4563                container_of(work, struct et131x_adapter, task);
4564        u32 status = adapter->stats.interrupt_status;
4565        struct address_map __iomem *iomem = adapter->regs;
4566
4567        /*
4568         * These first two are by far the most common.  Once handled, we clear
4569         * their two bits in the status word.  If the word is now zero, we
4570         * exit.
4571         */
4572        /* Handle all the completed Transmit interrupts */
4573        if (status & ET_INTR_TXDMA_ISR)
4574                et131x_handle_send_interrupt(adapter);
4575
4576        /* Handle all the completed Receives interrupts */
4577        if (status & ET_INTR_RXDMA_XFR_DONE)
4578                et131x_handle_recv_interrupt(adapter);
4579
4580        status &= 0xffffffd7;
4581
4582        if (status) {
4583                /* Handle the TXDMA Error interrupt */
4584                if (status & ET_INTR_TXDMA_ERR) {
4585                        u32 txdma_err;
4586
4587                        /* Following read also clears the register (COR) */
4588                        txdma_err = readl(&iomem->txdma.tx_dma_error);
4589
4590                        dev_warn(&adapter->pdev->dev,
4591                                    "TXDMA_ERR interrupt, error = %d\n",
4592                                    txdma_err);
4593                }
4594
4595                /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4596                if (status &
4597                    (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4598                        /*
4599                         * This indicates the number of unused buffers in
4600                         * RXDMA free buffer ring 0 is <= the limit you
4601                         * programmed. Free buffer resources need to be
4602                         * returned.  Free buffers are consumed as packets
4603                         * are passed from the network to the host. The host
4604                         * becomes aware of the packets from the contents of
4605                         * the packet status ring. This ring is queried when
4606                         * the packet done interrupt occurs. Packets are then
4607                         * passed to the OS. When the OS is done with the
4608                         * packets the resources can be returned to the
4609                         * ET1310 for re-use. This interrupt is one method of
4610                         * returning resources.
4611                         */
4612
4613                        /* If the user has flow control on, then we will
4614                         * send a pause packet, otherwise just exit
4615                         */
4616                        if (adapter->flowcontrol == FLOW_TXONLY ||
4617                            adapter->flowcontrol == FLOW_BOTH) {
4618                                u32 pm_csr;
4619
4620                                /* Tell the device to send a pause packet via
4621                                 * the back pressure register (bp req  and
4622                                 * bp xon/xoff)
4623                                 */
4624                                pm_csr = readl(&iomem->global.pm_csr);
4625                                if (!et1310_in_phy_coma(adapter))
4626                                        writel(3, &iomem->txmac.bp_ctrl);
4627                        }
4628                }
4629
4630                /* Handle Packet Status Ring Low Interrupt */
4631                if (status & ET_INTR_RXDMA_STAT_LOW) {
4632
4633                        /*
4634                         * Same idea as with the two Free Buffer Rings.
4635                         * Packets going from the network to the host each
4636                         * consume a free buffer resource and a packet status
4637                         * resource.  These resoures are passed to the OS.
4638                         * When the OS is done with the resources, they need
4639                         * to be returned to the ET1310. This is one method
4640                         * of returning the resources.
4641                         */
4642                }
4643
4644                /* Handle RXDMA Error Interrupt */
4645                if (status & ET_INTR_RXDMA_ERR) {
4646                        /*
4647                         * The rxdma_error interrupt is sent when a time-out
4648                         * on a request issued by the JAGCore has occurred or
4649                         * a completion is returned with an un-successful
4650                         * status.  In both cases the request is considered
4651                         * complete. The JAGCore will automatically re-try the
4652                         * request in question. Normally information on events
4653                         * like these are sent to the host using the "Advanced
4654                         * Error Reporting" capability. This interrupt is
4655                         * another way of getting similar information. The
4656                         * only thing required is to clear the interrupt by
4657                         * reading the ISR in the global resources. The
4658                         * JAGCore will do a re-try on the request.  Normally
4659                         * you should never see this interrupt. If you start
4660                         * to see this interrupt occurring frequently then
4661                         * something bad has occurred. A reset might be the
4662                         * thing to do.
4663                         */
4664                        /* TRAP();*/
4665
4666                        dev_warn(&adapter->pdev->dev,
4667                                    "RxDMA_ERR interrupt, error %x\n",
4668                                    readl(&iomem->txmac.tx_test));
4669                }
4670
4671                /* Handle the Wake on LAN Event */
4672                if (status & ET_INTR_WOL) {
4673                        /*
4674                         * This is a secondary interrupt for wake on LAN.
4675                         * The driver should never see this, if it does,
4676                         * something serious is wrong. We will TRAP the
4677                         * message when we are in DBG mode, otherwise we
4678                         * will ignore it.
4679                         */
4680                        dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4681                }
4682
4683                /* Let's move on to the TxMac */
4684                if (status & ET_INTR_TXMAC) {
4685                        u32 err = readl(&iomem->txmac.err);
4686
4687                        /*
4688                         * When any of the errors occur and TXMAC generates
4689                         * an interrupt to report these errors, it usually
4690                         * means that TXMAC has detected an error in the data
4691                         * stream retrieved from the on-chip Tx Q. All of
4692                         * these errors are catastrophic and TXMAC won't be
4693                         * able to recover data when these errors occur.  In
4694                         * a nutshell, the whole Tx path will have to be reset
4695                         * and re-configured afterwards.
4696                         */
4697                        dev_warn(&adapter->pdev->dev,
4698                                    "TXMAC interrupt, error 0x%08x\n",
4699                                    err);
4700
4701                        /* If we are debugging, we want to see this error,
4702                         * otherwise we just want the device to be reset and
4703                         * continue
4704                         */
4705                }
4706
4707                /* Handle RXMAC Interrupt */
4708                if (status & ET_INTR_RXMAC) {
4709                        /*
4710                         * These interrupts are catastrophic to the device,
4711                         * what we need to do is disable the interrupts and
4712                         * set the flag to cause us to reset so we can solve
4713                         * this issue.
4714                         */
4715                        /* MP_SET_FLAG( adapter,
4716                                                fMP_ADAPTER_HARDWARE_ERROR); */
4717
4718                        dev_warn(&adapter->pdev->dev,
4719                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4720                                    readl(&iomem->rxmac.err_reg));
4721
4722                        dev_warn(&adapter->pdev->dev,
4723                                    "Enable 0x%08x, Diag 0x%08x\n",
4724                                    readl(&iomem->rxmac.ctrl),
4725                                    readl(&iomem->rxmac.rxq_diag));
4726
4727                        /*
4728                         * If we are debugging, we want to see this error,
4729                         * otherwise we just want the device to be reset and
4730                         * continue
4731                         */
4732                }
4733
4734                /* Handle MAC_STAT Interrupt */
4735                if (status & ET_INTR_MAC_STAT) {
4736                        /*
4737                         * This means at least one of the un-masked counters
4738                         * in the MAC_STAT block has rolled over.  Use this
4739                         * to maintain the top, software managed bits of the
4740                         * counter(s).
4741                         */
4742                        et1310_handle_macstat_interrupt(adapter);
4743                }
4744
4745                /* Handle SLV Timeout Interrupt */
4746                if (status & ET_INTR_SLV_TIMEOUT) {
4747                        /*
4748                         * This means a timeout has occurred on a read or
4749                         * write request to one of the JAGCore registers. The
4750                         * Global Resources block has terminated the request
4751                         * and on a read request, returned a "fake" value.
4752                         * The most likely reasons are: Bad Address or the
4753                         * addressed module is in a power-down state and
4754                         * can't respond.
4755                         */
4756                }
4757        }
4758        et131x_enable_interrupts(adapter);
4759}
4760
4761/**
4762 * et131x_stats - Return the current device statistics.
4763 * @netdev: device whose stats are being queried
4764 *
4765 * Returns 0 on success, errno on failure (as defined in errno.h)
4766 */
4767static struct net_device_stats *et131x_stats(struct net_device *netdev)
4768{
4769        struct et131x_adapter *adapter = netdev_priv(netdev);
4770        struct net_device_stats *stats = &adapter->net_stats;
4771        struct ce_stats *devstat = &adapter->stats;
4772
4773        stats->rx_errors = devstat->rx_length_errs +
4774                           devstat->rx_align_errs +
4775                           devstat->rx_crc_errs +
4776                           devstat->rx_code_violations +
4777                           devstat->rx_other_errs;
4778        stats->tx_errors = devstat->tx_max_pkt_errs;
4779        stats->multicast = devstat->multicast_pkts_rcvd;
4780        stats->collisions = devstat->tx_collisions;
4781
4782        stats->rx_length_errors = devstat->rx_length_errs;
4783        stats->rx_over_errors = devstat->rx_overflows;
4784        stats->rx_crc_errors = devstat->rx_crc_errs;
4785
4786        /* NOTE: These stats don't have corresponding values in CE_STATS,
4787         * so we're going to have to update these directly from within the
4788         * TX/RX code
4789         */
4790        /* stats->rx_bytes            = 20; devstat->; */
4791        /* stats->tx_bytes            = 20;  devstat->; */
4792        /* stats->rx_dropped          = devstat->; */
4793        /* stats->tx_dropped          = devstat->; */
4794
4795        /*  NOTE: Not used, can't find analogous statistics */
4796        /* stats->rx_frame_errors     = devstat->; */
4797        /* stats->rx_fifo_errors      = devstat->; */
4798        /* stats->rx_missed_errors    = devstat->; */
4799
4800        /* stats->tx_aborted_errors   = devstat->; */
4801        /* stats->tx_carrier_errors   = devstat->; */
4802        /* stats->tx_fifo_errors      = devstat->; */
4803        /* stats->tx_heartbeat_errors = devstat->; */
4804        /* stats->tx_window_errors    = devstat->; */
4805        return stats;
4806}
4807
4808/**
4809 * et131x_open - Open the device for use.
4810 * @netdev: device to be opened
4811 *
4812 * Returns 0 on success, errno on failure (as defined in errno.h)
4813 */
4814static int et131x_open(struct net_device *netdev)
4815{
4816        struct et131x_adapter *adapter = netdev_priv(netdev);
4817        struct pci_dev *pdev = adapter->pdev;
4818        unsigned int irq = pdev->irq;
4819        int result;
4820
4821        /* Start the timer to track NIC errors */
4822        init_timer(&adapter->error_timer);
4823        adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4824        adapter->error_timer.function = et131x_error_timer_handler;
4825        adapter->error_timer.data = (unsigned long)adapter;
4826        add_timer(&adapter->error_timer);
4827
4828        result = request_irq(irq, et131x_isr,
4829                             IRQF_SHARED, netdev->name, netdev);
4830        if (result) {
4831                dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4832                return result;
4833        }
4834
4835        adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4836
4837        et131x_up(netdev);
4838
4839        return result;
4840}
4841
4842/**
4843 * et131x_close - Close the device
4844 * @netdev: device to be closed
4845 *
4846 * Returns 0 on success, errno on failure (as defined in errno.h)
4847 */
4848static int et131x_close(struct net_device *netdev)
4849{
4850        struct et131x_adapter *adapter = netdev_priv(netdev);
4851
4852        et131x_down(netdev);
4853
4854        adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4855        free_irq(adapter->pdev->irq, netdev);
4856
4857        /* Stop the error timer */
4858        return del_timer_sync(&adapter->error_timer);
4859}
4860
4861/**
4862 * et131x_ioctl - The I/O Control handler for the driver
4863 * @netdev: device on which the control request is being made
4864 * @reqbuf: a pointer to the IOCTL request buffer
4865 * @cmd: the IOCTL command code
4866 *
4867 * Returns 0 on success, errno on failure (as defined in errno.h)
4868 */
4869static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4870                        int cmd)
4871{
4872        struct et131x_adapter *adapter = netdev_priv(netdev);
4873
4874        if (!adapter->phydev)
4875                return -EINVAL;
4876
4877        return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4878}
4879
4880/**
4881 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4882 * @adapter: pointer to our private adapter structure
4883 *
4884 * FIXME: lot of dups with MAC code
4885 *
4886 * Returns 0 on success, errno on failure
4887 */
4888static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4889{
4890        int filter = adapter->packet_filter;
4891        int status = 0;
4892        u32 ctrl;
4893        u32 pf_ctrl;
4894
4895        ctrl = readl(&adapter->regs->rxmac.ctrl);
4896        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4897
4898        /* Default to disabled packet filtering.  Enable it in the individual
4899         * case statements that require the device to filter something
4900         */
4901        ctrl |= 0x04;
4902
4903        /* Set us to be in promiscuous mode so we receive everything, this
4904         * is also true when we get a packet filter of 0
4905         */
4906        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4907                pf_ctrl &= ~7;  /* Clear filter bits */
4908        else {
4909                /*
4910                 * Set us up with Multicast packet filtering.  Three cases are
4911                 * possible - (1) we have a multi-cast list, (2) we receive ALL
4912                 * multicast entries or (3) we receive none.
4913                 */
4914                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4915                        pf_ctrl &= ~2;  /* Multicast filter bit */
4916                else {
4917                        et1310_setup_device_for_multicast(adapter);
4918                        pf_ctrl |= 2;
4919                        ctrl &= ~0x04;
4920                }
4921
4922                /* Set us up with Unicast packet filtering */
4923                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4924                        et1310_setup_device_for_unicast(adapter);
4925                        pf_ctrl |= 4;
4926                        ctrl &= ~0x04;
4927                }
4928
4929                /* Set us up with Broadcast packet filtering */
4930                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4931                        pf_ctrl |= 1;   /* Broadcast filter bit */
4932                        ctrl &= ~0x04;
4933                } else
4934                        pf_ctrl &= ~1;
4935
4936                /* Setup the receive mac configuration registers - Packet
4937                 * Filter control + the enable / disable for packet filter
4938                 * in the control reg.
4939                 */
4940                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4941                writel(ctrl, &adapter->regs->rxmac.ctrl);
4942        }
4943        return status;
4944}
4945
4946/**
4947 * et131x_multicast - The handler to configure multicasting on the interface
4948 * @netdev: a pointer to a net_device struct representing the device
4949 */
4950static void et131x_multicast(struct net_device *netdev)
4951{
4952        struct et131x_adapter *adapter = netdev_priv(netdev);
4953        int packet_filter;
4954        unsigned long flags;
4955        struct netdev_hw_addr *ha;
4956        int i;
4957
4958        spin_lock_irqsave(&adapter->lock, flags);
4959
4960        /* Before we modify the platform-independent filter flags, store them
4961         * locally. This allows us to determine if anything's changed and if
4962         * we even need to bother the hardware
4963         */
4964        packet_filter = adapter->packet_filter;
4965
4966        /* Clear the 'multicast' flag locally; because we only have a single
4967         * flag to check multicast, and multiple multicast addresses can be
4968         * set, this is the easiest way to determine if more than one
4969         * multicast address is being set.
4970         */
4971        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4972
4973        /* Check the net_device flags and set the device independent flags
4974         * accordingly
4975         */
4976
4977        if (netdev->flags & IFF_PROMISC)
4978                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4979        else
4980                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4981
4982        if (netdev->flags & IFF_ALLMULTI)
4983                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4984
4985        if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4986                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4987
4988        if (netdev_mc_count(netdev) < 1) {
4989                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4990                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4991        } else
4992                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4993
4994        /* Set values in the private adapter struct */
4995        i = 0;
4996        netdev_for_each_mc_addr(ha, netdev) {
4997                if (i == NIC_MAX_MCAST_LIST)
4998                        break;
4999                memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5000        }
5001        adapter->multicast_addr_count = i;
5002
5003        /* Are the new flags different from the previous ones? If not, then no
5004         * action is required
5005         *
5006         * NOTE - This block will always update the multicast_list with the
5007         *        hardware, even if the addresses aren't the same.
5008         */
5009        if (packet_filter != adapter->packet_filter) {
5010                /* Call the device's filter function */
5011                et131x_set_packet_filter(adapter);
5012        }
5013        spin_unlock_irqrestore(&adapter->lock, flags);
5014}
5015
5016/**
5017 * et131x_tx - The handler to tx a packet on the device
5018 * @skb: data to be Tx'd
5019 * @netdev: device on which data is to be Tx'd
5020 *
5021 * Returns 0 on success, errno on failure (as defined in errno.h)
5022 */
5023static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5024{
5025        int status = 0;
5026        struct et131x_adapter *adapter = netdev_priv(netdev);
5027
5028        /* stop the queue if it's getting full */
5029        if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5030            !netif_queue_stopped(netdev))
5031                netif_stop_queue(netdev);
5032
5033        /* Save the timestamp for the TX timeout watchdog */
5034        netdev->trans_start = jiffies;
5035
5036        /* Call the device-specific data Tx routine */
5037        status = et131x_send_packets(skb, netdev);
5038
5039        /* Check status and manage the netif queue if necessary */
5040        if (status != 0) {
5041                if (status == -ENOMEM)
5042                        status = NETDEV_TX_BUSY;
5043                else
5044                        status = NETDEV_TX_OK;
5045        }
5046        return status;
5047}
5048
5049/**
5050 * et131x_tx_timeout - Timeout handler
5051 * @netdev: a pointer to a net_device struct representing the device
5052 *
5053 * The handler called when a Tx request times out. The timeout period is
5054 * specified by the 'tx_timeo" element in the net_device structure (see
5055 * et131x_alloc_device() to see how this value is set).
5056 */
5057static void et131x_tx_timeout(struct net_device *netdev)
5058{
5059        struct et131x_adapter *adapter = netdev_priv(netdev);
5060        struct tcb *tcb;
5061        unsigned long flags;
5062
5063        /* If the device is closed, ignore the timeout */
5064        if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5065                return;
5066
5067        /* Any nonrecoverable hardware error?
5068         * Checks adapter->flags for any failure in phy reading
5069         */
5070        if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5071                return;
5072
5073        /* Hardware failure? */
5074        if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5075                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5076                return;
5077        }
5078
5079        /* Is send stuck? */
5080        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5081
5082        tcb = adapter->tx_ring.send_head;
5083
5084        if (tcb != NULL) {
5085                tcb->count++;
5086
5087                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5088                        spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5089                                               flags);
5090
5091                        dev_warn(&adapter->pdev->dev,
5092                                "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5093                                tcb->index,
5094                                tcb->flags);
5095
5096                        adapter->net_stats.tx_errors++;
5097
5098                        /* perform reset of tx/rx */
5099                        et131x_disable_txrx(netdev);
5100                        et131x_enable_txrx(netdev);
5101                        return;
5102                }
5103        }
5104
5105        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5106}
5107
5108/**
5109 * et131x_change_mtu - The handler called to change the MTU for the device
5110 * @netdev: device whose MTU is to be changed
5111 * @new_mtu: the desired MTU
5112 *
5113 * Returns 0 on success, errno on failure (as defined in errno.h)
5114 */
5115static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5116{
5117        int result = 0;
5118        struct et131x_adapter *adapter = netdev_priv(netdev);
5119
5120        /* Make sure the requested MTU is valid */
5121        if (new_mtu < 64 || new_mtu > 9216)
5122                return -EINVAL;
5123
5124        et131x_disable_txrx(netdev);
5125        et131x_handle_send_interrupt(adapter);
5126        et131x_handle_recv_interrupt(adapter);
5127
5128        /* Set the new MTU */
5129        netdev->mtu = new_mtu;
5130
5131        /* Free Rx DMA memory */
5132        et131x_adapter_memory_free(adapter);
5133
5134        /* Set the config parameter for Jumbo Packet support */
5135        adapter->registry_jumbo_packet = new_mtu + 14;
5136        et131x_soft_reset(adapter);
5137
5138        /* Alloc and init Rx DMA memory */
5139        result = et131x_adapter_memory_alloc(adapter);
5140        if (result != 0) {
5141                dev_warn(&adapter->pdev->dev,
5142                        "Change MTU failed; couldn't re-alloc DMA memory\n");
5143                return result;
5144        }
5145
5146        et131x_init_send(adapter);
5147
5148        et131x_hwaddr_init(adapter);
5149        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5150
5151        /* Init the device with the new settings */
5152        et131x_adapter_setup(adapter);
5153
5154        et131x_enable_txrx(netdev);
5155
5156        return result;
5157}
5158
5159/**
5160 * et131x_set_mac_addr - handler to change the MAC address for the device
5161 * @netdev: device whose MAC is to be changed
5162 * @new_mac: the desired MAC address
5163 *
5164 * Returns 0 on success, errno on failure (as defined in errno.h)
5165 *
5166 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5167 */
5168static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5169{
5170        int result = 0;
5171        struct et131x_adapter *adapter = netdev_priv(netdev);
5172        struct sockaddr *address = new_mac;
5173
5174        /* begin blux */
5175
5176        if (adapter == NULL)
5177                return -ENODEV;
5178
5179        /* Make sure the requested MAC is valid */
5180        if (!is_valid_ether_addr(address->sa_data))
5181                return -EADDRNOTAVAIL;
5182
5183        et131x_disable_txrx(netdev);
5184        et131x_handle_send_interrupt(adapter);
5185        et131x_handle_recv_interrupt(adapter);
5186
5187        /* Set the new MAC */
5188        /* netdev->set_mac_address  = &new_mac; */
5189
5190        memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5191
5192        printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5193                        netdev->name, netdev->dev_addr);
5194
5195        /* Free Rx DMA memory */
5196        et131x_adapter_memory_free(adapter);
5197
5198        et131x_soft_reset(adapter);
5199
5200        /* Alloc and init Rx DMA memory */
5201        result = et131x_adapter_memory_alloc(adapter);
5202        if (result != 0) {
5203                dev_err(&adapter->pdev->dev,
5204                        "Change MAC failed; couldn't re-alloc DMA memory\n");
5205                return result;
5206        }
5207
5208        et131x_init_send(adapter);
5209
5210        et131x_hwaddr_init(adapter);
5211
5212        /* Init the device with the new settings */
5213        et131x_adapter_setup(adapter);
5214
5215        et131x_enable_txrx(netdev);
5216
5217        return result;
5218}
5219
5220static const struct net_device_ops et131x_netdev_ops = {
5221        .ndo_open               = et131x_open,
5222        .ndo_stop               = et131x_close,
5223        .ndo_start_xmit         = et131x_tx,
5224        .ndo_set_rx_mode        = et131x_multicast,
5225        .ndo_tx_timeout         = et131x_tx_timeout,
5226        .ndo_change_mtu         = et131x_change_mtu,
5227        .ndo_set_mac_address    = et131x_set_mac_addr,
5228        .ndo_validate_addr      = eth_validate_addr,
5229        .ndo_get_stats          = et131x_stats,
5230        .ndo_do_ioctl           = et131x_ioctl,
5231};
5232
5233/**
5234 * et131x_pci_setup - Perform device initialization
5235 * @pdev: a pointer to the device's pci_dev structure
5236 * @ent: this device's entry in the pci_device_id table
5237 *
5238 * Returns 0 on success, errno on failure (as defined in errno.h)
5239 *
5240 * Registered in the pci_driver structure, this function is called when the
5241 * PCI subsystem finds a new PCI device which matches the information
5242 * contained in the pci_device_id table. This routine is the equivalent to
5243 * a device insertion routine.
5244 */
5245static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5246                               const struct pci_device_id *ent)
5247{
5248        struct net_device *netdev;
5249        struct et131x_adapter *adapter;
5250        int rc;
5251        int ii;
5252
5253        rc = pci_enable_device(pdev);
5254        if (rc < 0) {
5255                dev_err(&pdev->dev, "pci_enable_device() failed\n");
5256                goto out;
5257        }
5258
5259        /* Perform some basic PCI checks */
5260        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5261                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5262                rc = -ENODEV;
5263                goto err_disable;
5264        }
5265
5266        rc = pci_request_regions(pdev, DRIVER_NAME);
5267        if (rc < 0) {
5268                dev_err(&pdev->dev, "Can't get PCI resources\n");
5269                goto err_disable;
5270        }
5271
5272        pci_set_master(pdev);
5273
5274        /* Check the DMA addressing support of this device */
5275        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5276                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5277                if (rc < 0) {
5278                        dev_err(&pdev->dev,
5279                          "Unable to obtain 64 bit DMA for consistent allocations\n");
5280                        goto err_release_res;
5281                }
5282        } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5283                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5284                if (rc < 0) {
5285                        dev_err(&pdev->dev,
5286                          "Unable to obtain 32 bit DMA for consistent allocations\n");
5287                        goto err_release_res;
5288                }
5289        } else {
5290                dev_err(&pdev->dev, "No usable DMA addressing method\n");
5291                rc = -EIO;
5292                goto err_release_res;
5293        }
5294
5295        /* Allocate netdev and private adapter structs */
5296        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5297        if (!netdev) {
5298                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5299                rc = -ENOMEM;
5300                goto err_release_res;
5301        }
5302
5303        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5304        netdev->netdev_ops     = &et131x_netdev_ops;
5305
5306        SET_NETDEV_DEV(netdev, &pdev->dev);
5307        et131x_set_ethtool_ops(netdev);
5308
5309        adapter = et131x_adapter_init(netdev, pdev);
5310
5311        rc = et131x_pci_init(adapter, pdev);
5312        if (rc < 0)
5313                goto err_free_dev;
5314
5315        /* Map the bus-relative registers to system virtual memory */
5316        adapter->regs = pci_ioremap_bar(pdev, 0);
5317        if (!adapter->regs) {
5318                dev_err(&pdev->dev, "Cannot map device registers\n");
5319                rc = -ENOMEM;
5320                goto err_free_dev;
5321        }
5322
5323        /* If Phy COMA mode was enabled when we went down, disable it here. */
5324        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5325
5326        /* Issue a global reset to the et1310 */
5327        et131x_soft_reset(adapter);
5328
5329        /* Disable all interrupts (paranoid) */
5330        et131x_disable_interrupts(adapter);
5331
5332        /* Allocate DMA memory */
5333        rc = et131x_adapter_memory_alloc(adapter);
5334        if (rc < 0) {
5335                dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5336                goto err_iounmap;
5337        }
5338
5339        /* Init send data structures */
5340        et131x_init_send(adapter);
5341
5342        /* Set up the task structure for the ISR's deferred handler */
5343        INIT_WORK(&adapter->task, et131x_isr_handler);
5344
5345        /* Copy address into the net_device struct */
5346        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5347
5348        /* Init variable for counting how long we do not have link status */
5349        adapter->boot_coma = 0;
5350        et1310_disable_phy_coma(adapter);
5351
5352        rc = -ENOMEM;
5353
5354        /* Setup the mii_bus struct */
5355        adapter->mii_bus = mdiobus_alloc();
5356        if (!adapter->mii_bus) {
5357                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5358                goto err_mem_free;
5359        }
5360
5361        adapter->mii_bus->name = "et131x_eth_mii";
5362        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5363                (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5364        adapter->mii_bus->priv = netdev;
5365        adapter->mii_bus->read = et131x_mdio_read;
5366        adapter->mii_bus->write = et131x_mdio_write;
5367        adapter->mii_bus->reset = et131x_mdio_reset;
5368        adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5369        if (!adapter->mii_bus->irq) {
5370                dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5371                goto err_mdio_free;
5372        }
5373
5374        for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5375                adapter->mii_bus->irq[ii] = PHY_POLL;
5376
5377        rc = mdiobus_register(adapter->mii_bus);
5378        if (rc < 0) {
5379                dev_err(&pdev->dev, "failed to register MII bus\n");
5380                goto err_mdio_free_irq;
5381        }
5382
5383        rc = et131x_mii_probe(netdev);
5384        if (rc < 0) {
5385                dev_err(&pdev->dev, "failed to probe MII bus\n");
5386                goto err_mdio_unregister;
5387        }
5388
5389        /* Setup et1310 as per the documentation */
5390        et131x_adapter_setup(adapter);
5391
5392        /* We can enable interrupts now
5393         *
5394         *  NOTE - Because registration of interrupt handler is done in the
5395         *         device's open(), defer enabling device interrupts to that
5396         *         point
5397         */
5398
5399        /* Register the net_device struct with the Linux network layer */
5400        rc = register_netdev(netdev);
5401        if (rc < 0) {
5402                dev_err(&pdev->dev, "register_netdev() failed\n");
5403                goto err_phy_disconnect;
5404        }
5405
5406        /* Register the net_device struct with the PCI subsystem. Save a copy
5407         * of the PCI config space for this device now that the device has
5408         * been initialized, just in case it needs to be quickly restored.
5409         */
5410        pci_set_drvdata(pdev, netdev);
5411out:
5412        return rc;
5413
5414err_phy_disconnect:
5415        phy_disconnect(adapter->phydev);
5416err_mdio_unregister:
5417        mdiobus_unregister(adapter->mii_bus);
5418err_mdio_free_irq:
5419        kfree(adapter->mii_bus->irq);
5420err_mdio_free:
5421        mdiobus_free(adapter->mii_bus);
5422err_mem_free:
5423        et131x_adapter_memory_free(adapter);
5424err_iounmap:
5425        iounmap(adapter->regs);
5426err_free_dev:
5427        pci_dev_put(pdev);
5428        free_netdev(netdev);
5429err_release_res:
5430        pci_release_regions(pdev);
5431err_disable:
5432        pci_disable_device(pdev);
5433        goto out;
5434}
5435
5436static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5437        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5438        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5439        {0,}
5440};
5441MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5442
5443static struct pci_driver et131x_driver = {
5444        .name           = DRIVER_NAME,
5445        .id_table       = et131x_pci_table,
5446        .probe          = et131x_pci_setup,
5447        .remove         = __devexit_p(et131x_pci_remove),
5448        .driver.pm      = ET131X_PM_OPS,
5449};
5450
5451/**
5452 * et131x_init_module - The "main" entry point called on driver initialization
5453 *
5454 * Returns 0 on success, errno on failure (as defined in errno.h)
5455 */
5456static int __init et131x_init_module(void)
5457{
5458        return pci_register_driver(&et131x_driver);
5459}
5460
5461/**
5462 * et131x_cleanup_module - The entry point called on driver cleanup
5463 */
5464static void __exit et131x_cleanup_module(void)
5465{
5466        pci_unregister_driver(&et131x_driver);
5467}
5468
5469module_init(et131x_init_module);
5470module_exit(et131x_cleanup_module);
5471
5472