linux/drivers/xen/swiotlb-xen.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2010
   3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
   4 *
   5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License v2.0 as published by
   9 * the Free Software Foundation
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * PV guests under Xen are running in an non-contiguous memory architecture.
  17 *
  18 * When PCI pass-through is utilized, this necessitates an IOMMU for
  19 * translating bus (DMA) to virtual and vice-versa and also providing a
  20 * mechanism to have contiguous pages for device drivers operations (say DMA
  21 * operations).
  22 *
  23 * Specifically, under Xen the Linux idea of pages is an illusion. It
  24 * assumes that pages start at zero and go up to the available memory. To
  25 * help with that, the Linux Xen MMU provides a lookup mechanism to
  26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28 * memory is not contiguous. Xen hypervisor stitches memory for guests
  29 * from different pools, which means there is no guarantee that PFN==MFN
  30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31 * allocated in descending order (high to low), meaning the guest might
  32 * never get any MFN's under the 4GB mark.
  33 *
  34 */
  35
  36#include <linux/bootmem.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/export.h>
  39#include <xen/swiotlb-xen.h>
  40#include <xen/page.h>
  41#include <xen/xen-ops.h>
  42#include <xen/hvc-console.h>
  43/*
  44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  46 * API.
  47 */
  48
  49static char *xen_io_tlb_start, *xen_io_tlb_end;
  50static unsigned long xen_io_tlb_nslabs;
  51/*
  52 * Quick lookup value of the bus address of the IOTLB.
  53 */
  54
  55u64 start_dma_addr;
  56
  57static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  58{
  59        return phys_to_machine(XPADDR(paddr)).maddr;
  60}
  61
  62static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  63{
  64        return machine_to_phys(XMADDR(baddr)).paddr;
  65}
  66
  67static dma_addr_t xen_virt_to_bus(void *address)
  68{
  69        return xen_phys_to_bus(virt_to_phys(address));
  70}
  71
  72static int check_pages_physically_contiguous(unsigned long pfn,
  73                                             unsigned int offset,
  74                                             size_t length)
  75{
  76        unsigned long next_mfn;
  77        int i;
  78        int nr_pages;
  79
  80        next_mfn = pfn_to_mfn(pfn);
  81        nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  82
  83        for (i = 1; i < nr_pages; i++) {
  84                if (pfn_to_mfn(++pfn) != ++next_mfn)
  85                        return 0;
  86        }
  87        return 1;
  88}
  89
  90static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  91{
  92        unsigned long pfn = PFN_DOWN(p);
  93        unsigned int offset = p & ~PAGE_MASK;
  94
  95        if (offset + size <= PAGE_SIZE)
  96                return 0;
  97        if (check_pages_physically_contiguous(pfn, offset, size))
  98                return 0;
  99        return 1;
 100}
 101
 102static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 103{
 104        unsigned long mfn = PFN_DOWN(dma_addr);
 105        unsigned long pfn = mfn_to_local_pfn(mfn);
 106        phys_addr_t paddr;
 107
 108        /* If the address is outside our domain, it CAN
 109         * have the same virtual address as another address
 110         * in our domain. Therefore _only_ check address within our domain.
 111         */
 112        if (pfn_valid(pfn)) {
 113                paddr = PFN_PHYS(pfn);
 114                return paddr >= virt_to_phys(xen_io_tlb_start) &&
 115                       paddr < virt_to_phys(xen_io_tlb_end);
 116        }
 117        return 0;
 118}
 119
 120static int max_dma_bits = 32;
 121
 122static int
 123xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 124{
 125        int i, rc;
 126        int dma_bits;
 127
 128        dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 129
 130        i = 0;
 131        do {
 132                int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 133
 134                do {
 135                        rc = xen_create_contiguous_region(
 136                                (unsigned long)buf + (i << IO_TLB_SHIFT),
 137                                get_order(slabs << IO_TLB_SHIFT),
 138                                dma_bits);
 139                } while (rc && dma_bits++ < max_dma_bits);
 140                if (rc)
 141                        return rc;
 142
 143                i += slabs;
 144        } while (i < nslabs);
 145        return 0;
 146}
 147
 148void __init xen_swiotlb_init(int verbose)
 149{
 150        unsigned long bytes;
 151        int rc = -ENOMEM;
 152        unsigned long nr_tbl;
 153        char *m = NULL;
 154        unsigned int repeat = 3;
 155
 156        nr_tbl = swiotlb_nr_tbl();
 157        if (nr_tbl)
 158                xen_io_tlb_nslabs = nr_tbl;
 159        else {
 160                xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 161                xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 162        }
 163retry:
 164        bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 165
 166        /*
 167         * Get IO TLB memory from any location.
 168         */
 169        xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
 170        if (!xen_io_tlb_start) {
 171                m = "Cannot allocate Xen-SWIOTLB buffer!\n";
 172                goto error;
 173        }
 174        xen_io_tlb_end = xen_io_tlb_start + bytes;
 175        /*
 176         * And replace that memory with pages under 4GB.
 177         */
 178        rc = xen_swiotlb_fixup(xen_io_tlb_start,
 179                               bytes,
 180                               xen_io_tlb_nslabs);
 181        if (rc) {
 182                free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
 183                m = "Failed to get contiguous memory for DMA from Xen!\n"\
 184                    "You either: don't have the permissions, do not have"\
 185                    " enough free memory under 4GB, or the hypervisor memory"\
 186                    "is too fragmented!";
 187                goto error;
 188        }
 189        start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 190        swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
 191
 192        return;
 193error:
 194        if (repeat--) {
 195                xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 196                                        (xen_io_tlb_nslabs >> 1));
 197                printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
 198                      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 199                goto retry;
 200        }
 201        xen_raw_printk("%s (rc:%d)", m, rc);
 202        panic("%s (rc:%d)", m, rc);
 203}
 204
 205void *
 206xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 207                           dma_addr_t *dma_handle, gfp_t flags,
 208                           struct dma_attrs *attrs)
 209{
 210        void *ret;
 211        int order = get_order(size);
 212        u64 dma_mask = DMA_BIT_MASK(32);
 213        unsigned long vstart;
 214        phys_addr_t phys;
 215        dma_addr_t dev_addr;
 216
 217        /*
 218        * Ignore region specifiers - the kernel's ideas of
 219        * pseudo-phys memory layout has nothing to do with the
 220        * machine physical layout.  We can't allocate highmem
 221        * because we can't return a pointer to it.
 222        */
 223        flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 224
 225        if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
 226                return ret;
 227
 228        vstart = __get_free_pages(flags, order);
 229        ret = (void *)vstart;
 230
 231        if (!ret)
 232                return ret;
 233
 234        if (hwdev && hwdev->coherent_dma_mask)
 235                dma_mask = hwdev->coherent_dma_mask;
 236
 237        phys = virt_to_phys(ret);
 238        dev_addr = xen_phys_to_bus(phys);
 239        if (((dev_addr + size - 1 <= dma_mask)) &&
 240            !range_straddles_page_boundary(phys, size))
 241                *dma_handle = dev_addr;
 242        else {
 243                if (xen_create_contiguous_region(vstart, order,
 244                                                 fls64(dma_mask)) != 0) {
 245                        free_pages(vstart, order);
 246                        return NULL;
 247                }
 248                *dma_handle = virt_to_machine(ret).maddr;
 249        }
 250        memset(ret, 0, size);
 251        return ret;
 252}
 253EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
 254
 255void
 256xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 257                          dma_addr_t dev_addr, struct dma_attrs *attrs)
 258{
 259        int order = get_order(size);
 260        phys_addr_t phys;
 261        u64 dma_mask = DMA_BIT_MASK(32);
 262
 263        if (dma_release_from_coherent(hwdev, order, vaddr))
 264                return;
 265
 266        if (hwdev && hwdev->coherent_dma_mask)
 267                dma_mask = hwdev->coherent_dma_mask;
 268
 269        phys = virt_to_phys(vaddr);
 270
 271        if (((dev_addr + size - 1 > dma_mask)) ||
 272            range_straddles_page_boundary(phys, size))
 273                xen_destroy_contiguous_region((unsigned long)vaddr, order);
 274
 275        free_pages((unsigned long)vaddr, order);
 276}
 277EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
 278
 279
 280/*
 281 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 282 * physical address to use is returned.
 283 *
 284 * Once the device is given the dma address, the device owns this memory until
 285 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 286 */
 287dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 288                                unsigned long offset, size_t size,
 289                                enum dma_data_direction dir,
 290                                struct dma_attrs *attrs)
 291{
 292        phys_addr_t phys = page_to_phys(page) + offset;
 293        dma_addr_t dev_addr = xen_phys_to_bus(phys);
 294        void *map;
 295
 296        BUG_ON(dir == DMA_NONE);
 297        /*
 298         * If the address happens to be in the device's DMA window,
 299         * we can safely return the device addr and not worry about bounce
 300         * buffering it.
 301         */
 302        if (dma_capable(dev, dev_addr, size) &&
 303            !range_straddles_page_boundary(phys, size) && !swiotlb_force)
 304                return dev_addr;
 305
 306        /*
 307         * Oh well, have to allocate and map a bounce buffer.
 308         */
 309        map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
 310        if (!map)
 311                return DMA_ERROR_CODE;
 312
 313        dev_addr = xen_virt_to_bus(map);
 314
 315        /*
 316         * Ensure that the address returned is DMA'ble
 317         */
 318        if (!dma_capable(dev, dev_addr, size)) {
 319                swiotlb_tbl_unmap_single(dev, map, size, dir);
 320                dev_addr = 0;
 321        }
 322        return dev_addr;
 323}
 324EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
 325
 326/*
 327 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 328 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 329 * other usages are undefined.
 330 *
 331 * After this call, reads by the cpu to the buffer are guaranteed to see
 332 * whatever the device wrote there.
 333 */
 334static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 335                             size_t size, enum dma_data_direction dir)
 336{
 337        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 338
 339        BUG_ON(dir == DMA_NONE);
 340
 341        /* NOTE: We use dev_addr here, not paddr! */
 342        if (is_xen_swiotlb_buffer(dev_addr)) {
 343                swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
 344                return;
 345        }
 346
 347        if (dir != DMA_FROM_DEVICE)
 348                return;
 349
 350        /*
 351         * phys_to_virt doesn't work with hihgmem page but we could
 352         * call dma_mark_clean() with hihgmem page here. However, we
 353         * are fine since dma_mark_clean() is null on POWERPC. We can
 354         * make dma_mark_clean() take a physical address if necessary.
 355         */
 356        dma_mark_clean(phys_to_virt(paddr), size);
 357}
 358
 359void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 360                            size_t size, enum dma_data_direction dir,
 361                            struct dma_attrs *attrs)
 362{
 363        xen_unmap_single(hwdev, dev_addr, size, dir);
 364}
 365EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
 366
 367/*
 368 * Make physical memory consistent for a single streaming mode DMA translation
 369 * after a transfer.
 370 *
 371 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 372 * using the cpu, yet do not wish to teardown the dma mapping, you must
 373 * call this function before doing so.  At the next point you give the dma
 374 * address back to the card, you must first perform a
 375 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 376 */
 377static void
 378xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 379                        size_t size, enum dma_data_direction dir,
 380                        enum dma_sync_target target)
 381{
 382        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 383
 384        BUG_ON(dir == DMA_NONE);
 385
 386        /* NOTE: We use dev_addr here, not paddr! */
 387        if (is_xen_swiotlb_buffer(dev_addr)) {
 388                swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
 389                                       target);
 390                return;
 391        }
 392
 393        if (dir != DMA_FROM_DEVICE)
 394                return;
 395
 396        dma_mark_clean(phys_to_virt(paddr), size);
 397}
 398
 399void
 400xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 401                                size_t size, enum dma_data_direction dir)
 402{
 403        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 404}
 405EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 406
 407void
 408xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 409                                   size_t size, enum dma_data_direction dir)
 410{
 411        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 412}
 413EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 414
 415/*
 416 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 417 * This is the scatter-gather version of the above xen_swiotlb_map_page
 418 * interface.  Here the scatter gather list elements are each tagged with the
 419 * appropriate dma address and length.  They are obtained via
 420 * sg_dma_{address,length}(SG).
 421 *
 422 * NOTE: An implementation may be able to use a smaller number of
 423 *       DMA address/length pairs than there are SG table elements.
 424 *       (for example via virtual mapping capabilities)
 425 *       The routine returns the number of addr/length pairs actually
 426 *       used, at most nents.
 427 *
 428 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 429 * same here.
 430 */
 431int
 432xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 433                         int nelems, enum dma_data_direction dir,
 434                         struct dma_attrs *attrs)
 435{
 436        struct scatterlist *sg;
 437        int i;
 438
 439        BUG_ON(dir == DMA_NONE);
 440
 441        for_each_sg(sgl, sg, nelems, i) {
 442                phys_addr_t paddr = sg_phys(sg);
 443                dma_addr_t dev_addr = xen_phys_to_bus(paddr);
 444
 445                if (swiotlb_force ||
 446                    !dma_capable(hwdev, dev_addr, sg->length) ||
 447                    range_straddles_page_boundary(paddr, sg->length)) {
 448                        void *map = swiotlb_tbl_map_single(hwdev,
 449                                                           start_dma_addr,
 450                                                           sg_phys(sg),
 451                                                           sg->length, dir);
 452                        if (!map) {
 453                                /* Don't panic here, we expect map_sg users
 454                                   to do proper error handling. */
 455                                xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 456                                                           attrs);
 457                                sgl[0].dma_length = 0;
 458                                return DMA_ERROR_CODE;
 459                        }
 460                        sg->dma_address = xen_virt_to_bus(map);
 461                } else
 462                        sg->dma_address = dev_addr;
 463                sg->dma_length = sg->length;
 464        }
 465        return nelems;
 466}
 467EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
 468
 469int
 470xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 471                   enum dma_data_direction dir)
 472{
 473        return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 474}
 475EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
 476
 477/*
 478 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 479 * concerning calls here are the same as for swiotlb_unmap_page() above.
 480 */
 481void
 482xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 483                           int nelems, enum dma_data_direction dir,
 484                           struct dma_attrs *attrs)
 485{
 486        struct scatterlist *sg;
 487        int i;
 488
 489        BUG_ON(dir == DMA_NONE);
 490
 491        for_each_sg(sgl, sg, nelems, i)
 492                xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
 493
 494}
 495EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 496
 497void
 498xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 499                     enum dma_data_direction dir)
 500{
 501        return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 502}
 503EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
 504
 505/*
 506 * Make physical memory consistent for a set of streaming mode DMA translations
 507 * after a transfer.
 508 *
 509 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 510 * and usage.
 511 */
 512static void
 513xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 514                    int nelems, enum dma_data_direction dir,
 515                    enum dma_sync_target target)
 516{
 517        struct scatterlist *sg;
 518        int i;
 519
 520        for_each_sg(sgl, sg, nelems, i)
 521                xen_swiotlb_sync_single(hwdev, sg->dma_address,
 522                                        sg->dma_length, dir, target);
 523}
 524
 525void
 526xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 527                            int nelems, enum dma_data_direction dir)
 528{
 529        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 530}
 531EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
 532
 533void
 534xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 535                               int nelems, enum dma_data_direction dir)
 536{
 537        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 538}
 539EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
 540
 541int
 542xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 543{
 544        return !dma_addr;
 545}
 546EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
 547
 548/*
 549 * Return whether the given device DMA address mask can be supported
 550 * properly.  For example, if your device can only drive the low 24-bits
 551 * during bus mastering, then you would pass 0x00ffffff as the mask to
 552 * this function.
 553 */
 554int
 555xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 556{
 557        return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 558}
 559EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 560