linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
  15#include "extent_io.h"
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24
  25static struct kmem_cache *extent_state_cache;
  26static struct kmem_cache *extent_buffer_cache;
  27
  28static LIST_HEAD(buffers);
  29static LIST_HEAD(states);
  30
  31#define LEAK_DEBUG 0
  32#if LEAK_DEBUG
  33static DEFINE_SPINLOCK(leak_lock);
  34#endif
  35
  36#define BUFFER_LRU_MAX 64
  37
  38struct tree_entry {
  39        u64 start;
  40        u64 end;
  41        struct rb_node rb_node;
  42};
  43
  44struct extent_page_data {
  45        struct bio *bio;
  46        struct extent_io_tree *tree;
  47        get_extent_t *get_extent;
  48
  49        /* tells writepage not to lock the state bits for this range
  50         * it still does the unlocking
  51         */
  52        unsigned int extent_locked:1;
  53
  54        /* tells the submit_bio code to use a WRITE_SYNC */
  55        unsigned int sync_io:1;
  56};
  57
  58static noinline void flush_write_bio(void *data);
  59static inline struct btrfs_fs_info *
  60tree_fs_info(struct extent_io_tree *tree)
  61{
  62        return btrfs_sb(tree->mapping->host->i_sb);
  63}
  64
  65int __init extent_io_init(void)
  66{
  67        extent_state_cache = kmem_cache_create("extent_state",
  68                        sizeof(struct extent_state), 0,
  69                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  70        if (!extent_state_cache)
  71                return -ENOMEM;
  72
  73        extent_buffer_cache = kmem_cache_create("extent_buffers",
  74                        sizeof(struct extent_buffer), 0,
  75                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  76        if (!extent_buffer_cache)
  77                goto free_state_cache;
  78        return 0;
  79
  80free_state_cache:
  81        kmem_cache_destroy(extent_state_cache);
  82        return -ENOMEM;
  83}
  84
  85void extent_io_exit(void)
  86{
  87        struct extent_state *state;
  88        struct extent_buffer *eb;
  89
  90        while (!list_empty(&states)) {
  91                state = list_entry(states.next, struct extent_state, leak_list);
  92                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  93                       "state %lu in tree %p refs %d\n",
  94                       (unsigned long long)state->start,
  95                       (unsigned long long)state->end,
  96                       state->state, state->tree, atomic_read(&state->refs));
  97                list_del(&state->leak_list);
  98                kmem_cache_free(extent_state_cache, state);
  99
 100        }
 101
 102        while (!list_empty(&buffers)) {
 103                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 104                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 105                       "refs %d\n", (unsigned long long)eb->start,
 106                       eb->len, atomic_read(&eb->refs));
 107                list_del(&eb->leak_list);
 108                kmem_cache_free(extent_buffer_cache, eb);
 109        }
 110        if (extent_state_cache)
 111                kmem_cache_destroy(extent_state_cache);
 112        if (extent_buffer_cache)
 113                kmem_cache_destroy(extent_buffer_cache);
 114}
 115
 116void extent_io_tree_init(struct extent_io_tree *tree,
 117                         struct address_space *mapping)
 118{
 119        tree->state = RB_ROOT;
 120        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 121        tree->ops = NULL;
 122        tree->dirty_bytes = 0;
 123        spin_lock_init(&tree->lock);
 124        spin_lock_init(&tree->buffer_lock);
 125        tree->mapping = mapping;
 126}
 127
 128static struct extent_state *alloc_extent_state(gfp_t mask)
 129{
 130        struct extent_state *state;
 131#if LEAK_DEBUG
 132        unsigned long flags;
 133#endif
 134
 135        state = kmem_cache_alloc(extent_state_cache, mask);
 136        if (!state)
 137                return state;
 138        state->state = 0;
 139        state->private = 0;
 140        state->tree = NULL;
 141#if LEAK_DEBUG
 142        spin_lock_irqsave(&leak_lock, flags);
 143        list_add(&state->leak_list, &states);
 144        spin_unlock_irqrestore(&leak_lock, flags);
 145#endif
 146        atomic_set(&state->refs, 1);
 147        init_waitqueue_head(&state->wq);
 148        trace_alloc_extent_state(state, mask, _RET_IP_);
 149        return state;
 150}
 151
 152void free_extent_state(struct extent_state *state)
 153{
 154        if (!state)
 155                return;
 156        if (atomic_dec_and_test(&state->refs)) {
 157#if LEAK_DEBUG
 158                unsigned long flags;
 159#endif
 160                WARN_ON(state->tree);
 161#if LEAK_DEBUG
 162                spin_lock_irqsave(&leak_lock, flags);
 163                list_del(&state->leak_list);
 164                spin_unlock_irqrestore(&leak_lock, flags);
 165#endif
 166                trace_free_extent_state(state, _RET_IP_);
 167                kmem_cache_free(extent_state_cache, state);
 168        }
 169}
 170
 171static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 172                                   struct rb_node *node)
 173{
 174        struct rb_node **p = &root->rb_node;
 175        struct rb_node *parent = NULL;
 176        struct tree_entry *entry;
 177
 178        while (*p) {
 179                parent = *p;
 180                entry = rb_entry(parent, struct tree_entry, rb_node);
 181
 182                if (offset < entry->start)
 183                        p = &(*p)->rb_left;
 184                else if (offset > entry->end)
 185                        p = &(*p)->rb_right;
 186                else
 187                        return parent;
 188        }
 189
 190        rb_link_node(node, parent, p);
 191        rb_insert_color(node, root);
 192        return NULL;
 193}
 194
 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 196                                     struct rb_node **prev_ret,
 197                                     struct rb_node **next_ret)
 198{
 199        struct rb_root *root = &tree->state;
 200        struct rb_node *n = root->rb_node;
 201        struct rb_node *prev = NULL;
 202        struct rb_node *orig_prev = NULL;
 203        struct tree_entry *entry;
 204        struct tree_entry *prev_entry = NULL;
 205
 206        while (n) {
 207                entry = rb_entry(n, struct tree_entry, rb_node);
 208                prev = n;
 209                prev_entry = entry;
 210
 211                if (offset < entry->start)
 212                        n = n->rb_left;
 213                else if (offset > entry->end)
 214                        n = n->rb_right;
 215                else
 216                        return n;
 217        }
 218
 219        if (prev_ret) {
 220                orig_prev = prev;
 221                while (prev && offset > prev_entry->end) {
 222                        prev = rb_next(prev);
 223                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 224                }
 225                *prev_ret = prev;
 226                prev = orig_prev;
 227        }
 228
 229        if (next_ret) {
 230                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 231                while (prev && offset < prev_entry->start) {
 232                        prev = rb_prev(prev);
 233                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 234                }
 235                *next_ret = prev;
 236        }
 237        return NULL;
 238}
 239
 240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 241                                          u64 offset)
 242{
 243        struct rb_node *prev = NULL;
 244        struct rb_node *ret;
 245
 246        ret = __etree_search(tree, offset, &prev, NULL);
 247        if (!ret)
 248                return prev;
 249        return ret;
 250}
 251
 252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 253                     struct extent_state *other)
 254{
 255        if (tree->ops && tree->ops->merge_extent_hook)
 256                tree->ops->merge_extent_hook(tree->mapping->host, new,
 257                                             other);
 258}
 259
 260/*
 261 * utility function to look for merge candidates inside a given range.
 262 * Any extents with matching state are merged together into a single
 263 * extent in the tree.  Extents with EXTENT_IO in their state field
 264 * are not merged because the end_io handlers need to be able to do
 265 * operations on them without sleeping (or doing allocations/splits).
 266 *
 267 * This should be called with the tree lock held.
 268 */
 269static void merge_state(struct extent_io_tree *tree,
 270                        struct extent_state *state)
 271{
 272        struct extent_state *other;
 273        struct rb_node *other_node;
 274
 275        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 276                return;
 277
 278        other_node = rb_prev(&state->rb_node);
 279        if (other_node) {
 280                other = rb_entry(other_node, struct extent_state, rb_node);
 281                if (other->end == state->start - 1 &&
 282                    other->state == state->state) {
 283                        merge_cb(tree, state, other);
 284                        state->start = other->start;
 285                        other->tree = NULL;
 286                        rb_erase(&other->rb_node, &tree->state);
 287                        free_extent_state(other);
 288                }
 289        }
 290        other_node = rb_next(&state->rb_node);
 291        if (other_node) {
 292                other = rb_entry(other_node, struct extent_state, rb_node);
 293                if (other->start == state->end + 1 &&
 294                    other->state == state->state) {
 295                        merge_cb(tree, state, other);
 296                        state->end = other->end;
 297                        other->tree = NULL;
 298                        rb_erase(&other->rb_node, &tree->state);
 299                        free_extent_state(other);
 300                }
 301        }
 302}
 303
 304static void set_state_cb(struct extent_io_tree *tree,
 305                         struct extent_state *state, int *bits)
 306{
 307        if (tree->ops && tree->ops->set_bit_hook)
 308                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 309}
 310
 311static void clear_state_cb(struct extent_io_tree *tree,
 312                           struct extent_state *state, int *bits)
 313{
 314        if (tree->ops && tree->ops->clear_bit_hook)
 315                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 316}
 317
 318static void set_state_bits(struct extent_io_tree *tree,
 319                           struct extent_state *state, int *bits);
 320
 321/*
 322 * insert an extent_state struct into the tree.  'bits' are set on the
 323 * struct before it is inserted.
 324 *
 325 * This may return -EEXIST if the extent is already there, in which case the
 326 * state struct is freed.
 327 *
 328 * The tree lock is not taken internally.  This is a utility function and
 329 * probably isn't what you want to call (see set/clear_extent_bit).
 330 */
 331static int insert_state(struct extent_io_tree *tree,
 332                        struct extent_state *state, u64 start, u64 end,
 333                        int *bits)
 334{
 335        struct rb_node *node;
 336
 337        if (end < start) {
 338                printk(KERN_ERR "btrfs end < start %llu %llu\n",
 339                       (unsigned long long)end,
 340                       (unsigned long long)start);
 341                WARN_ON(1);
 342        }
 343        state->start = start;
 344        state->end = end;
 345
 346        set_state_bits(tree, state, bits);
 347
 348        node = tree_insert(&tree->state, end, &state->rb_node);
 349        if (node) {
 350                struct extent_state *found;
 351                found = rb_entry(node, struct extent_state, rb_node);
 352                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 353                       "%llu %llu\n", (unsigned long long)found->start,
 354                       (unsigned long long)found->end,
 355                       (unsigned long long)start, (unsigned long long)end);
 356                return -EEXIST;
 357        }
 358        state->tree = tree;
 359        merge_state(tree, state);
 360        return 0;
 361}
 362
 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 364                     u64 split)
 365{
 366        if (tree->ops && tree->ops->split_extent_hook)
 367                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 368}
 369
 370/*
 371 * split a given extent state struct in two, inserting the preallocated
 372 * struct 'prealloc' as the newly created second half.  'split' indicates an
 373 * offset inside 'orig' where it should be split.
 374 *
 375 * Before calling,
 376 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 377 * are two extent state structs in the tree:
 378 * prealloc: [orig->start, split - 1]
 379 * orig: [ split, orig->end ]
 380 *
 381 * The tree locks are not taken by this function. They need to be held
 382 * by the caller.
 383 */
 384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 385                       struct extent_state *prealloc, u64 split)
 386{
 387        struct rb_node *node;
 388
 389        split_cb(tree, orig, split);
 390
 391        prealloc->start = orig->start;
 392        prealloc->end = split - 1;
 393        prealloc->state = orig->state;
 394        orig->start = split;
 395
 396        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 397        if (node) {
 398                free_extent_state(prealloc);
 399                return -EEXIST;
 400        }
 401        prealloc->tree = tree;
 402        return 0;
 403}
 404
 405static struct extent_state *next_state(struct extent_state *state)
 406{
 407        struct rb_node *next = rb_next(&state->rb_node);
 408        if (next)
 409                return rb_entry(next, struct extent_state, rb_node);
 410        else
 411                return NULL;
 412}
 413
 414/*
 415 * utility function to clear some bits in an extent state struct.
 416 * it will optionally wake up any one waiting on this state (wake == 1).
 417 *
 418 * If no bits are set on the state struct after clearing things, the
 419 * struct is freed and removed from the tree
 420 */
 421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 422                                            struct extent_state *state,
 423                                            int *bits, int wake)
 424{
 425        struct extent_state *next;
 426        int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 427
 428        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 429                u64 range = state->end - state->start + 1;
 430                WARN_ON(range > tree->dirty_bytes);
 431                tree->dirty_bytes -= range;
 432        }
 433        clear_state_cb(tree, state, bits);
 434        state->state &= ~bits_to_clear;
 435        if (wake)
 436                wake_up(&state->wq);
 437        if (state->state == 0) {
 438                next = next_state(state);
 439                if (state->tree) {
 440                        rb_erase(&state->rb_node, &tree->state);
 441                        state->tree = NULL;
 442                        free_extent_state(state);
 443                } else {
 444                        WARN_ON(1);
 445                }
 446        } else {
 447                merge_state(tree, state);
 448                next = next_state(state);
 449        }
 450        return next;
 451}
 452
 453static struct extent_state *
 454alloc_extent_state_atomic(struct extent_state *prealloc)
 455{
 456        if (!prealloc)
 457                prealloc = alloc_extent_state(GFP_ATOMIC);
 458
 459        return prealloc;
 460}
 461
 462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 463{
 464        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 465                    "Extent tree was modified by another "
 466                    "thread while locked.");
 467}
 468
 469/*
 470 * clear some bits on a range in the tree.  This may require splitting
 471 * or inserting elements in the tree, so the gfp mask is used to
 472 * indicate which allocations or sleeping are allowed.
 473 *
 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 475 * the given range from the tree regardless of state (ie for truncate).
 476 *
 477 * the range [start, end] is inclusive.
 478 *
 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
 480 */
 481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 482                     int bits, int wake, int delete,
 483                     struct extent_state **cached_state,
 484                     gfp_t mask)
 485{
 486        struct extent_state *state;
 487        struct extent_state *cached;
 488        struct extent_state *prealloc = NULL;
 489        struct rb_node *node;
 490        u64 last_end;
 491        int err;
 492        int clear = 0;
 493
 494        if (delete)
 495                bits |= ~EXTENT_CTLBITS;
 496        bits |= EXTENT_FIRST_DELALLOC;
 497
 498        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 499                clear = 1;
 500again:
 501        if (!prealloc && (mask & __GFP_WAIT)) {
 502                prealloc = alloc_extent_state(mask);
 503                if (!prealloc)
 504                        return -ENOMEM;
 505        }
 506
 507        spin_lock(&tree->lock);
 508        if (cached_state) {
 509                cached = *cached_state;
 510
 511                if (clear) {
 512                        *cached_state = NULL;
 513                        cached_state = NULL;
 514                }
 515
 516                if (cached && cached->tree && cached->start <= start &&
 517                    cached->end > start) {
 518                        if (clear)
 519                                atomic_dec(&cached->refs);
 520                        state = cached;
 521                        goto hit_next;
 522                }
 523                if (clear)
 524                        free_extent_state(cached);
 525        }
 526        /*
 527         * this search will find the extents that end after
 528         * our range starts
 529         */
 530        node = tree_search(tree, start);
 531        if (!node)
 532                goto out;
 533        state = rb_entry(node, struct extent_state, rb_node);
 534hit_next:
 535        if (state->start > end)
 536                goto out;
 537        WARN_ON(state->end < start);
 538        last_end = state->end;
 539
 540        /* the state doesn't have the wanted bits, go ahead */
 541        if (!(state->state & bits)) {
 542                state = next_state(state);
 543                goto next;
 544        }
 545
 546        /*
 547         *     | ---- desired range ---- |
 548         *  | state | or
 549         *  | ------------- state -------------- |
 550         *
 551         * We need to split the extent we found, and may flip
 552         * bits on second half.
 553         *
 554         * If the extent we found extends past our range, we
 555         * just split and search again.  It'll get split again
 556         * the next time though.
 557         *
 558         * If the extent we found is inside our range, we clear
 559         * the desired bit on it.
 560         */
 561
 562        if (state->start < start) {
 563                prealloc = alloc_extent_state_atomic(prealloc);
 564                BUG_ON(!prealloc);
 565                err = split_state(tree, state, prealloc, start);
 566                if (err)
 567                        extent_io_tree_panic(tree, err);
 568
 569                prealloc = NULL;
 570                if (err)
 571                        goto out;
 572                if (state->end <= end) {
 573                        state = clear_state_bit(tree, state, &bits, wake);
 574                        goto next;
 575                }
 576                goto search_again;
 577        }
 578        /*
 579         * | ---- desired range ---- |
 580         *                        | state |
 581         * We need to split the extent, and clear the bit
 582         * on the first half
 583         */
 584        if (state->start <= end && state->end > end) {
 585                prealloc = alloc_extent_state_atomic(prealloc);
 586                BUG_ON(!prealloc);
 587                err = split_state(tree, state, prealloc, end + 1);
 588                if (err)
 589                        extent_io_tree_panic(tree, err);
 590
 591                if (wake)
 592                        wake_up(&state->wq);
 593
 594                clear_state_bit(tree, prealloc, &bits, wake);
 595
 596                prealloc = NULL;
 597                goto out;
 598        }
 599
 600        state = clear_state_bit(tree, state, &bits, wake);
 601next:
 602        if (last_end == (u64)-1)
 603                goto out;
 604        start = last_end + 1;
 605        if (start <= end && state && !need_resched())
 606                goto hit_next;
 607        goto search_again;
 608
 609out:
 610        spin_unlock(&tree->lock);
 611        if (prealloc)
 612                free_extent_state(prealloc);
 613
 614        return 0;
 615
 616search_again:
 617        if (start > end)
 618                goto out;
 619        spin_unlock(&tree->lock);
 620        if (mask & __GFP_WAIT)
 621                cond_resched();
 622        goto again;
 623}
 624
 625static void wait_on_state(struct extent_io_tree *tree,
 626                          struct extent_state *state)
 627                __releases(tree->lock)
 628                __acquires(tree->lock)
 629{
 630        DEFINE_WAIT(wait);
 631        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 632        spin_unlock(&tree->lock);
 633        schedule();
 634        spin_lock(&tree->lock);
 635        finish_wait(&state->wq, &wait);
 636}
 637
 638/*
 639 * waits for one or more bits to clear on a range in the state tree.
 640 * The range [start, end] is inclusive.
 641 * The tree lock is taken by this function
 642 */
 643void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 644{
 645        struct extent_state *state;
 646        struct rb_node *node;
 647
 648        spin_lock(&tree->lock);
 649again:
 650        while (1) {
 651                /*
 652                 * this search will find all the extents that end after
 653                 * our range starts
 654                 */
 655                node = tree_search(tree, start);
 656                if (!node)
 657                        break;
 658
 659                state = rb_entry(node, struct extent_state, rb_node);
 660
 661                if (state->start > end)
 662                        goto out;
 663
 664                if (state->state & bits) {
 665                        start = state->start;
 666                        atomic_inc(&state->refs);
 667                        wait_on_state(tree, state);
 668                        free_extent_state(state);
 669                        goto again;
 670                }
 671                start = state->end + 1;
 672
 673                if (start > end)
 674                        break;
 675
 676                cond_resched_lock(&tree->lock);
 677        }
 678out:
 679        spin_unlock(&tree->lock);
 680}
 681
 682static void set_state_bits(struct extent_io_tree *tree,
 683                           struct extent_state *state,
 684                           int *bits)
 685{
 686        int bits_to_set = *bits & ~EXTENT_CTLBITS;
 687
 688        set_state_cb(tree, state, bits);
 689        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 690                u64 range = state->end - state->start + 1;
 691                tree->dirty_bytes += range;
 692        }
 693        state->state |= bits_to_set;
 694}
 695
 696static void cache_state(struct extent_state *state,
 697                        struct extent_state **cached_ptr)
 698{
 699        if (cached_ptr && !(*cached_ptr)) {
 700                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 701                        *cached_ptr = state;
 702                        atomic_inc(&state->refs);
 703                }
 704        }
 705}
 706
 707static void uncache_state(struct extent_state **cached_ptr)
 708{
 709        if (cached_ptr && (*cached_ptr)) {
 710                struct extent_state *state = *cached_ptr;
 711                *cached_ptr = NULL;
 712                free_extent_state(state);
 713        }
 714}
 715
 716/*
 717 * set some bits on a range in the tree.  This may require allocations or
 718 * sleeping, so the gfp mask is used to indicate what is allowed.
 719 *
 720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 721 * part of the range already has the desired bits set.  The start of the
 722 * existing range is returned in failed_start in this case.
 723 *
 724 * [start, end] is inclusive This takes the tree lock.
 725 */
 726
 727static int __must_check
 728__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 729                 int bits, int exclusive_bits, u64 *failed_start,
 730                 struct extent_state **cached_state, gfp_t mask)
 731{
 732        struct extent_state *state;
 733        struct extent_state *prealloc = NULL;
 734        struct rb_node *node;
 735        int err = 0;
 736        u64 last_start;
 737        u64 last_end;
 738
 739        bits |= EXTENT_FIRST_DELALLOC;
 740again:
 741        if (!prealloc && (mask & __GFP_WAIT)) {
 742                prealloc = alloc_extent_state(mask);
 743                BUG_ON(!prealloc);
 744        }
 745
 746        spin_lock(&tree->lock);
 747        if (cached_state && *cached_state) {
 748                state = *cached_state;
 749                if (state->start <= start && state->end > start &&
 750                    state->tree) {
 751                        node = &state->rb_node;
 752                        goto hit_next;
 753                }
 754        }
 755        /*
 756         * this search will find all the extents that end after
 757         * our range starts.
 758         */
 759        node = tree_search(tree, start);
 760        if (!node) {
 761                prealloc = alloc_extent_state_atomic(prealloc);
 762                BUG_ON(!prealloc);
 763                err = insert_state(tree, prealloc, start, end, &bits);
 764                if (err)
 765                        extent_io_tree_panic(tree, err);
 766
 767                prealloc = NULL;
 768                goto out;
 769        }
 770        state = rb_entry(node, struct extent_state, rb_node);
 771hit_next:
 772        last_start = state->start;
 773        last_end = state->end;
 774
 775        /*
 776         * | ---- desired range ---- |
 777         * | state |
 778         *
 779         * Just lock what we found and keep going
 780         */
 781        if (state->start == start && state->end <= end) {
 782                if (state->state & exclusive_bits) {
 783                        *failed_start = state->start;
 784                        err = -EEXIST;
 785                        goto out;
 786                }
 787
 788                set_state_bits(tree, state, &bits);
 789                cache_state(state, cached_state);
 790                merge_state(tree, state);
 791                if (last_end == (u64)-1)
 792                        goto out;
 793                start = last_end + 1;
 794                state = next_state(state);
 795                if (start < end && state && state->start == start &&
 796                    !need_resched())
 797                        goto hit_next;
 798                goto search_again;
 799        }
 800
 801        /*
 802         *     | ---- desired range ---- |
 803         * | state |
 804         *   or
 805         * | ------------- state -------------- |
 806         *
 807         * We need to split the extent we found, and may flip bits on
 808         * second half.
 809         *
 810         * If the extent we found extends past our
 811         * range, we just split and search again.  It'll get split
 812         * again the next time though.
 813         *
 814         * If the extent we found is inside our range, we set the
 815         * desired bit on it.
 816         */
 817        if (state->start < start) {
 818                if (state->state & exclusive_bits) {
 819                        *failed_start = start;
 820                        err = -EEXIST;
 821                        goto out;
 822                }
 823
 824                prealloc = alloc_extent_state_atomic(prealloc);
 825                BUG_ON(!prealloc);
 826                err = split_state(tree, state, prealloc, start);
 827                if (err)
 828                        extent_io_tree_panic(tree, err);
 829
 830                prealloc = NULL;
 831                if (err)
 832                        goto out;
 833                if (state->end <= end) {
 834                        set_state_bits(tree, state, &bits);
 835                        cache_state(state, cached_state);
 836                        merge_state(tree, state);
 837                        if (last_end == (u64)-1)
 838                                goto out;
 839                        start = last_end + 1;
 840                        state = next_state(state);
 841                        if (start < end && state && state->start == start &&
 842                            !need_resched())
 843                                goto hit_next;
 844                }
 845                goto search_again;
 846        }
 847        /*
 848         * | ---- desired range ---- |
 849         *     | state | or               | state |
 850         *
 851         * There's a hole, we need to insert something in it and
 852         * ignore the extent we found.
 853         */
 854        if (state->start > start) {
 855                u64 this_end;
 856                if (end < last_start)
 857                        this_end = end;
 858                else
 859                        this_end = last_start - 1;
 860
 861                prealloc = alloc_extent_state_atomic(prealloc);
 862                BUG_ON(!prealloc);
 863
 864                /*
 865                 * Avoid to free 'prealloc' if it can be merged with
 866                 * the later extent.
 867                 */
 868                err = insert_state(tree, prealloc, start, this_end,
 869                                   &bits);
 870                if (err)
 871                        extent_io_tree_panic(tree, err);
 872
 873                cache_state(prealloc, cached_state);
 874                prealloc = NULL;
 875                start = this_end + 1;
 876                goto search_again;
 877        }
 878        /*
 879         * | ---- desired range ---- |
 880         *                        | state |
 881         * We need to split the extent, and set the bit
 882         * on the first half
 883         */
 884        if (state->start <= end && state->end > end) {
 885                if (state->state & exclusive_bits) {
 886                        *failed_start = start;
 887                        err = -EEXIST;
 888                        goto out;
 889                }
 890
 891                prealloc = alloc_extent_state_atomic(prealloc);
 892                BUG_ON(!prealloc);
 893                err = split_state(tree, state, prealloc, end + 1);
 894                if (err)
 895                        extent_io_tree_panic(tree, err);
 896
 897                set_state_bits(tree, prealloc, &bits);
 898                cache_state(prealloc, cached_state);
 899                merge_state(tree, prealloc);
 900                prealloc = NULL;
 901                goto out;
 902        }
 903
 904        goto search_again;
 905
 906out:
 907        spin_unlock(&tree->lock);
 908        if (prealloc)
 909                free_extent_state(prealloc);
 910
 911        return err;
 912
 913search_again:
 914        if (start > end)
 915                goto out;
 916        spin_unlock(&tree->lock);
 917        if (mask & __GFP_WAIT)
 918                cond_resched();
 919        goto again;
 920}
 921
 922int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
 923                   u64 *failed_start, struct extent_state **cached_state,
 924                   gfp_t mask)
 925{
 926        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 927                                cached_state, mask);
 928}
 929
 930
 931/**
 932 * convert_extent - convert all bits in a given range from one bit to another
 933 * @tree:       the io tree to search
 934 * @start:      the start offset in bytes
 935 * @end:        the end offset in bytes (inclusive)
 936 * @bits:       the bits to set in this range
 937 * @clear_bits: the bits to clear in this range
 938 * @mask:       the allocation mask
 939 *
 940 * This will go through and set bits for the given range.  If any states exist
 941 * already in this range they are set with the given bit and cleared of the
 942 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 943 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 944 * boundary bits like LOCK.
 945 */
 946int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 947                       int bits, int clear_bits, gfp_t mask)
 948{
 949        struct extent_state *state;
 950        struct extent_state *prealloc = NULL;
 951        struct rb_node *node;
 952        int err = 0;
 953        u64 last_start;
 954        u64 last_end;
 955
 956again:
 957        if (!prealloc && (mask & __GFP_WAIT)) {
 958                prealloc = alloc_extent_state(mask);
 959                if (!prealloc)
 960                        return -ENOMEM;
 961        }
 962
 963        spin_lock(&tree->lock);
 964        /*
 965         * this search will find all the extents that end after
 966         * our range starts.
 967         */
 968        node = tree_search(tree, start);
 969        if (!node) {
 970                prealloc = alloc_extent_state_atomic(prealloc);
 971                if (!prealloc) {
 972                        err = -ENOMEM;
 973                        goto out;
 974                }
 975                err = insert_state(tree, prealloc, start, end, &bits);
 976                prealloc = NULL;
 977                if (err)
 978                        extent_io_tree_panic(tree, err);
 979                goto out;
 980        }
 981        state = rb_entry(node, struct extent_state, rb_node);
 982hit_next:
 983        last_start = state->start;
 984        last_end = state->end;
 985
 986        /*
 987         * | ---- desired range ---- |
 988         * | state |
 989         *
 990         * Just lock what we found and keep going
 991         */
 992        if (state->start == start && state->end <= end) {
 993                set_state_bits(tree, state, &bits);
 994                state = clear_state_bit(tree, state, &clear_bits, 0);
 995                if (last_end == (u64)-1)
 996                        goto out;
 997                start = last_end + 1;
 998                if (start < end && state && state->start == start &&
 999                    !need_resched())
1000                        goto hit_next;
1001                goto search_again;
1002        }
1003
1004        /*
1005         *     | ---- desired range ---- |
1006         * | state |
1007         *   or
1008         * | ------------- state -------------- |
1009         *
1010         * We need to split the extent we found, and may flip bits on
1011         * second half.
1012         *
1013         * If the extent we found extends past our
1014         * range, we just split and search again.  It'll get split
1015         * again the next time though.
1016         *
1017         * If the extent we found is inside our range, we set the
1018         * desired bit on it.
1019         */
1020        if (state->start < start) {
1021                prealloc = alloc_extent_state_atomic(prealloc);
1022                if (!prealloc) {
1023                        err = -ENOMEM;
1024                        goto out;
1025                }
1026                err = split_state(tree, state, prealloc, start);
1027                if (err)
1028                        extent_io_tree_panic(tree, err);
1029                prealloc = NULL;
1030                if (err)
1031                        goto out;
1032                if (state->end <= end) {
1033                        set_state_bits(tree, state, &bits);
1034                        state = clear_state_bit(tree, state, &clear_bits, 0);
1035                        if (last_end == (u64)-1)
1036                                goto out;
1037                        start = last_end + 1;
1038                        if (start < end && state && state->start == start &&
1039                            !need_resched())
1040                                goto hit_next;
1041                }
1042                goto search_again;
1043        }
1044        /*
1045         * | ---- desired range ---- |
1046         *     | state | or               | state |
1047         *
1048         * There's a hole, we need to insert something in it and
1049         * ignore the extent we found.
1050         */
1051        if (state->start > start) {
1052                u64 this_end;
1053                if (end < last_start)
1054                        this_end = end;
1055                else
1056                        this_end = last_start - 1;
1057
1058                prealloc = alloc_extent_state_atomic(prealloc);
1059                if (!prealloc) {
1060                        err = -ENOMEM;
1061                        goto out;
1062                }
1063
1064                /*
1065                 * Avoid to free 'prealloc' if it can be merged with
1066                 * the later extent.
1067                 */
1068                err = insert_state(tree, prealloc, start, this_end,
1069                                   &bits);
1070                if (err)
1071                        extent_io_tree_panic(tree, err);
1072                prealloc = NULL;
1073                start = this_end + 1;
1074                goto search_again;
1075        }
1076        /*
1077         * | ---- desired range ---- |
1078         *                        | state |
1079         * We need to split the extent, and set the bit
1080         * on the first half
1081         */
1082        if (state->start <= end && state->end > end) {
1083                prealloc = alloc_extent_state_atomic(prealloc);
1084                if (!prealloc) {
1085                        err = -ENOMEM;
1086                        goto out;
1087                }
1088
1089                err = split_state(tree, state, prealloc, end + 1);
1090                if (err)
1091                        extent_io_tree_panic(tree, err);
1092
1093                set_state_bits(tree, prealloc, &bits);
1094                clear_state_bit(tree, prealloc, &clear_bits, 0);
1095                prealloc = NULL;
1096                goto out;
1097        }
1098
1099        goto search_again;
1100
1101out:
1102        spin_unlock(&tree->lock);
1103        if (prealloc)
1104                free_extent_state(prealloc);
1105
1106        return err;
1107
1108search_again:
1109        if (start > end)
1110                goto out;
1111        spin_unlock(&tree->lock);
1112        if (mask & __GFP_WAIT)
1113                cond_resched();
1114        goto again;
1115}
1116
1117/* wrappers around set/clear extent bit */
1118int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1119                     gfp_t mask)
1120{
1121        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1122                              NULL, mask);
1123}
1124
1125int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126                    int bits, gfp_t mask)
1127{
1128        return set_extent_bit(tree, start, end, bits, NULL,
1129                              NULL, mask);
1130}
1131
1132int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133                      int bits, gfp_t mask)
1134{
1135        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1136}
1137
1138int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139                        struct extent_state **cached_state, gfp_t mask)
1140{
1141        return set_extent_bit(tree, start, end,
1142                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1143                              NULL, cached_state, mask);
1144}
1145
1146int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1147                       gfp_t mask)
1148{
1149        return clear_extent_bit(tree, start, end,
1150                                EXTENT_DIRTY | EXTENT_DELALLOC |
1151                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1152}
1153
1154int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1155                     gfp_t mask)
1156{
1157        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1158                              NULL, mask);
1159}
1160
1161int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162                        struct extent_state **cached_state, gfp_t mask)
1163{
1164        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165                              cached_state, mask);
1166}
1167
1168int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169                          struct extent_state **cached_state, gfp_t mask)
1170{
1171        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172                                cached_state, mask);
1173}
1174
1175/*
1176 * either insert or lock state struct between start and end use mask to tell
1177 * us if waiting is desired.
1178 */
1179int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180                     int bits, struct extent_state **cached_state)
1181{
1182        int err;
1183        u64 failed_start;
1184        while (1) {
1185                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186                                       EXTENT_LOCKED, &failed_start,
1187                                       cached_state, GFP_NOFS);
1188                if (err == -EEXIST) {
1189                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190                        start = failed_start;
1191                } else
1192                        break;
1193                WARN_ON(start > end);
1194        }
1195        return err;
1196}
1197
1198int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1199{
1200        return lock_extent_bits(tree, start, end, 0, NULL);
1201}
1202
1203int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1204{
1205        int err;
1206        u64 failed_start;
1207
1208        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209                               &failed_start, NULL, GFP_NOFS);
1210        if (err == -EEXIST) {
1211                if (failed_start > start)
1212                        clear_extent_bit(tree, start, failed_start - 1,
1213                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1214                return 0;
1215        }
1216        return 1;
1217}
1218
1219int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220                         struct extent_state **cached, gfp_t mask)
1221{
1222        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1223                                mask);
1224}
1225
1226int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227{
1228        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1229                                GFP_NOFS);
1230}
1231
1232/*
1233 * helper function to set both pages and extents in the tree writeback
1234 */
1235static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1236{
1237        unsigned long index = start >> PAGE_CACHE_SHIFT;
1238        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1239        struct page *page;
1240
1241        while (index <= end_index) {
1242                page = find_get_page(tree->mapping, index);
1243                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244                set_page_writeback(page);
1245                page_cache_release(page);
1246                index++;
1247        }
1248        return 0;
1249}
1250
1251/* find the first state struct with 'bits' set after 'start', and
1252 * return it.  tree->lock must be held.  NULL will returned if
1253 * nothing was found after 'start'
1254 */
1255struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256                                                 u64 start, int bits)
1257{
1258        struct rb_node *node;
1259        struct extent_state *state;
1260
1261        /*
1262         * this search will find all the extents that end after
1263         * our range starts.
1264         */
1265        node = tree_search(tree, start);
1266        if (!node)
1267                goto out;
1268
1269        while (1) {
1270                state = rb_entry(node, struct extent_state, rb_node);
1271                if (state->end >= start && (state->state & bits))
1272                        return state;
1273
1274                node = rb_next(node);
1275                if (!node)
1276                        break;
1277        }
1278out:
1279        return NULL;
1280}
1281
1282/*
1283 * find the first offset in the io tree with 'bits' set. zero is
1284 * returned if we find something, and *start_ret and *end_ret are
1285 * set to reflect the state struct that was found.
1286 *
1287 * If nothing was found, 1 is returned. If found something, return 0.
1288 */
1289int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290                          u64 *start_ret, u64 *end_ret, int bits)
1291{
1292        struct extent_state *state;
1293        int ret = 1;
1294
1295        spin_lock(&tree->lock);
1296        state = find_first_extent_bit_state(tree, start, bits);
1297        if (state) {
1298                *start_ret = state->start;
1299                *end_ret = state->end;
1300                ret = 0;
1301        }
1302        spin_unlock(&tree->lock);
1303        return ret;
1304}
1305
1306/*
1307 * find a contiguous range of bytes in the file marked as delalloc, not
1308 * more than 'max_bytes'.  start and end are used to return the range,
1309 *
1310 * 1 is returned if we find something, 0 if nothing was in the tree
1311 */
1312static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313                                        u64 *start, u64 *end, u64 max_bytes,
1314                                        struct extent_state **cached_state)
1315{
1316        struct rb_node *node;
1317        struct extent_state *state;
1318        u64 cur_start = *start;
1319        u64 found = 0;
1320        u64 total_bytes = 0;
1321
1322        spin_lock(&tree->lock);
1323
1324        /*
1325         * this search will find all the extents that end after
1326         * our range starts.
1327         */
1328        node = tree_search(tree, cur_start);
1329        if (!node) {
1330                if (!found)
1331                        *end = (u64)-1;
1332                goto out;
1333        }
1334
1335        while (1) {
1336                state = rb_entry(node, struct extent_state, rb_node);
1337                if (found && (state->start != cur_start ||
1338                              (state->state & EXTENT_BOUNDARY))) {
1339                        goto out;
1340                }
1341                if (!(state->state & EXTENT_DELALLOC)) {
1342                        if (!found)
1343                                *end = state->end;
1344                        goto out;
1345                }
1346                if (!found) {
1347                        *start = state->start;
1348                        *cached_state = state;
1349                        atomic_inc(&state->refs);
1350                }
1351                found++;
1352                *end = state->end;
1353                cur_start = state->end + 1;
1354                node = rb_next(node);
1355                if (!node)
1356                        break;
1357                total_bytes += state->end - state->start + 1;
1358                if (total_bytes >= max_bytes)
1359                        break;
1360        }
1361out:
1362        spin_unlock(&tree->lock);
1363        return found;
1364}
1365
1366static noinline void __unlock_for_delalloc(struct inode *inode,
1367                                           struct page *locked_page,
1368                                           u64 start, u64 end)
1369{
1370        int ret;
1371        struct page *pages[16];
1372        unsigned long index = start >> PAGE_CACHE_SHIFT;
1373        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374        unsigned long nr_pages = end_index - index + 1;
1375        int i;
1376
1377        if (index == locked_page->index && end_index == index)
1378                return;
1379
1380        while (nr_pages > 0) {
1381                ret = find_get_pages_contig(inode->i_mapping, index,
1382                                     min_t(unsigned long, nr_pages,
1383                                     ARRAY_SIZE(pages)), pages);
1384                for (i = 0; i < ret; i++) {
1385                        if (pages[i] != locked_page)
1386                                unlock_page(pages[i]);
1387                        page_cache_release(pages[i]);
1388                }
1389                nr_pages -= ret;
1390                index += ret;
1391                cond_resched();
1392        }
1393}
1394
1395static noinline int lock_delalloc_pages(struct inode *inode,
1396                                        struct page *locked_page,
1397                                        u64 delalloc_start,
1398                                        u64 delalloc_end)
1399{
1400        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401        unsigned long start_index = index;
1402        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403        unsigned long pages_locked = 0;
1404        struct page *pages[16];
1405        unsigned long nrpages;
1406        int ret;
1407        int i;
1408
1409        /* the caller is responsible for locking the start index */
1410        if (index == locked_page->index && index == end_index)
1411                return 0;
1412
1413        /* skip the page at the start index */
1414        nrpages = end_index - index + 1;
1415        while (nrpages > 0) {
1416                ret = find_get_pages_contig(inode->i_mapping, index,
1417                                     min_t(unsigned long,
1418                                     nrpages, ARRAY_SIZE(pages)), pages);
1419                if (ret == 0) {
1420                        ret = -EAGAIN;
1421                        goto done;
1422                }
1423                /* now we have an array of pages, lock them all */
1424                for (i = 0; i < ret; i++) {
1425                        /*
1426                         * the caller is taking responsibility for
1427                         * locked_page
1428                         */
1429                        if (pages[i] != locked_page) {
1430                                lock_page(pages[i]);
1431                                if (!PageDirty(pages[i]) ||
1432                                    pages[i]->mapping != inode->i_mapping) {
1433                                        ret = -EAGAIN;
1434                                        unlock_page(pages[i]);
1435                                        page_cache_release(pages[i]);
1436                                        goto done;
1437                                }
1438                        }
1439                        page_cache_release(pages[i]);
1440                        pages_locked++;
1441                }
1442                nrpages -= ret;
1443                index += ret;
1444                cond_resched();
1445        }
1446        ret = 0;
1447done:
1448        if (ret && pages_locked) {
1449                __unlock_for_delalloc(inode, locked_page,
1450                              delalloc_start,
1451                              ((u64)(start_index + pages_locked - 1)) <<
1452                              PAGE_CACHE_SHIFT);
1453        }
1454        return ret;
1455}
1456
1457/*
1458 * find a contiguous range of bytes in the file marked as delalloc, not
1459 * more than 'max_bytes'.  start and end are used to return the range,
1460 *
1461 * 1 is returned if we find something, 0 if nothing was in the tree
1462 */
1463static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464                                             struct extent_io_tree *tree,
1465                                             struct page *locked_page,
1466                                             u64 *start, u64 *end,
1467                                             u64 max_bytes)
1468{
1469        u64 delalloc_start;
1470        u64 delalloc_end;
1471        u64 found;
1472        struct extent_state *cached_state = NULL;
1473        int ret;
1474        int loops = 0;
1475
1476again:
1477        /* step one, find a bunch of delalloc bytes starting at start */
1478        delalloc_start = *start;
1479        delalloc_end = 0;
1480        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481                                    max_bytes, &cached_state);
1482        if (!found || delalloc_end <= *start) {
1483                *start = delalloc_start;
1484                *end = delalloc_end;
1485                free_extent_state(cached_state);
1486                return found;
1487        }
1488
1489        /*
1490         * start comes from the offset of locked_page.  We have to lock
1491         * pages in order, so we can't process delalloc bytes before
1492         * locked_page
1493         */
1494        if (delalloc_start < *start)
1495                delalloc_start = *start;
1496
1497        /*
1498         * make sure to limit the number of pages we try to lock down
1499         * if we're looping.
1500         */
1501        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1503
1504        /* step two, lock all the pages after the page that has start */
1505        ret = lock_delalloc_pages(inode, locked_page,
1506                                  delalloc_start, delalloc_end);
1507        if (ret == -EAGAIN) {
1508                /* some of the pages are gone, lets avoid looping by
1509                 * shortening the size of the delalloc range we're searching
1510                 */
1511                free_extent_state(cached_state);
1512                if (!loops) {
1513                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514                        max_bytes = PAGE_CACHE_SIZE - offset;
1515                        loops = 1;
1516                        goto again;
1517                } else {
1518                        found = 0;
1519                        goto out_failed;
1520                }
1521        }
1522        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1523
1524        /* step three, lock the state bits for the whole range */
1525        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1526
1527        /* then test to make sure it is all still delalloc */
1528        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529                             EXTENT_DELALLOC, 1, cached_state);
1530        if (!ret) {
1531                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532                                     &cached_state, GFP_NOFS);
1533                __unlock_for_delalloc(inode, locked_page,
1534                              delalloc_start, delalloc_end);
1535                cond_resched();
1536                goto again;
1537        }
1538        free_extent_state(cached_state);
1539        *start = delalloc_start;
1540        *end = delalloc_end;
1541out_failed:
1542        return found;
1543}
1544
1545int extent_clear_unlock_delalloc(struct inode *inode,
1546                                struct extent_io_tree *tree,
1547                                u64 start, u64 end, struct page *locked_page,
1548                                unsigned long op)
1549{
1550        int ret;
1551        struct page *pages[16];
1552        unsigned long index = start >> PAGE_CACHE_SHIFT;
1553        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554        unsigned long nr_pages = end_index - index + 1;
1555        int i;
1556        int clear_bits = 0;
1557
1558        if (op & EXTENT_CLEAR_UNLOCK)
1559                clear_bits |= EXTENT_LOCKED;
1560        if (op & EXTENT_CLEAR_DIRTY)
1561                clear_bits |= EXTENT_DIRTY;
1562
1563        if (op & EXTENT_CLEAR_DELALLOC)
1564                clear_bits |= EXTENT_DELALLOC;
1565
1566        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569                    EXTENT_SET_PRIVATE2)))
1570                return 0;
1571
1572        while (nr_pages > 0) {
1573                ret = find_get_pages_contig(inode->i_mapping, index,
1574                                     min_t(unsigned long,
1575                                     nr_pages, ARRAY_SIZE(pages)), pages);
1576                for (i = 0; i < ret; i++) {
1577
1578                        if (op & EXTENT_SET_PRIVATE2)
1579                                SetPagePrivate2(pages[i]);
1580
1581                        if (pages[i] == locked_page) {
1582                                page_cache_release(pages[i]);
1583                                continue;
1584                        }
1585                        if (op & EXTENT_CLEAR_DIRTY)
1586                                clear_page_dirty_for_io(pages[i]);
1587                        if (op & EXTENT_SET_WRITEBACK)
1588                                set_page_writeback(pages[i]);
1589                        if (op & EXTENT_END_WRITEBACK)
1590                                end_page_writeback(pages[i]);
1591                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592                                unlock_page(pages[i]);
1593                        page_cache_release(pages[i]);
1594                }
1595                nr_pages -= ret;
1596                index += ret;
1597                cond_resched();
1598        }
1599        return 0;
1600}
1601
1602/*
1603 * count the number of bytes in the tree that have a given bit(s)
1604 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1605 * cached.  The total number found is returned.
1606 */
1607u64 count_range_bits(struct extent_io_tree *tree,
1608                     u64 *start, u64 search_end, u64 max_bytes,
1609                     unsigned long bits, int contig)
1610{
1611        struct rb_node *node;
1612        struct extent_state *state;
1613        u64 cur_start = *start;
1614        u64 total_bytes = 0;
1615        u64 last = 0;
1616        int found = 0;
1617
1618        if (search_end <= cur_start) {
1619                WARN_ON(1);
1620                return 0;
1621        }
1622
1623        spin_lock(&tree->lock);
1624        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625                total_bytes = tree->dirty_bytes;
1626                goto out;
1627        }
1628        /*
1629         * this search will find all the extents that end after
1630         * our range starts.
1631         */
1632        node = tree_search(tree, cur_start);
1633        if (!node)
1634                goto out;
1635
1636        while (1) {
1637                state = rb_entry(node, struct extent_state, rb_node);
1638                if (state->start > search_end)
1639                        break;
1640                if (contig && found && state->start > last + 1)
1641                        break;
1642                if (state->end >= cur_start && (state->state & bits) == bits) {
1643                        total_bytes += min(search_end, state->end) + 1 -
1644                                       max(cur_start, state->start);
1645                        if (total_bytes >= max_bytes)
1646                                break;
1647                        if (!found) {
1648                                *start = max(cur_start, state->start);
1649                                found = 1;
1650                        }
1651                        last = state->end;
1652                } else if (contig && found) {
1653                        break;
1654                }
1655                node = rb_next(node);
1656                if (!node)
1657                        break;
1658        }
1659out:
1660        spin_unlock(&tree->lock);
1661        return total_bytes;
1662}
1663
1664/*
1665 * set the private field for a given byte offset in the tree.  If there isn't
1666 * an extent_state there already, this does nothing.
1667 */
1668int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1669{
1670        struct rb_node *node;
1671        struct extent_state *state;
1672        int ret = 0;
1673
1674        spin_lock(&tree->lock);
1675        /*
1676         * this search will find all the extents that end after
1677         * our range starts.
1678         */
1679        node = tree_search(tree, start);
1680        if (!node) {
1681                ret = -ENOENT;
1682                goto out;
1683        }
1684        state = rb_entry(node, struct extent_state, rb_node);
1685        if (state->start != start) {
1686                ret = -ENOENT;
1687                goto out;
1688        }
1689        state->private = private;
1690out:
1691        spin_unlock(&tree->lock);
1692        return ret;
1693}
1694
1695int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1696{
1697        struct rb_node *node;
1698        struct extent_state *state;
1699        int ret = 0;
1700
1701        spin_lock(&tree->lock);
1702        /*
1703         * this search will find all the extents that end after
1704         * our range starts.
1705         */
1706        node = tree_search(tree, start);
1707        if (!node) {
1708                ret = -ENOENT;
1709                goto out;
1710        }
1711        state = rb_entry(node, struct extent_state, rb_node);
1712        if (state->start != start) {
1713                ret = -ENOENT;
1714                goto out;
1715        }
1716        *private = state->private;
1717out:
1718        spin_unlock(&tree->lock);
1719        return ret;
1720}
1721
1722/*
1723 * searches a range in the state tree for a given mask.
1724 * If 'filled' == 1, this returns 1 only if every extent in the tree
1725 * has the bits set.  Otherwise, 1 is returned if any bit in the
1726 * range is found set.
1727 */
1728int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729                   int bits, int filled, struct extent_state *cached)
1730{
1731        struct extent_state *state = NULL;
1732        struct rb_node *node;
1733        int bitset = 0;
1734
1735        spin_lock(&tree->lock);
1736        if (cached && cached->tree && cached->start <= start &&
1737            cached->end > start)
1738                node = &cached->rb_node;
1739        else
1740                node = tree_search(tree, start);
1741        while (node && start <= end) {
1742                state = rb_entry(node, struct extent_state, rb_node);
1743
1744                if (filled && state->start > start) {
1745                        bitset = 0;
1746                        break;
1747                }
1748
1749                if (state->start > end)
1750                        break;
1751
1752                if (state->state & bits) {
1753                        bitset = 1;
1754                        if (!filled)
1755                                break;
1756                } else if (filled) {
1757                        bitset = 0;
1758                        break;
1759                }
1760
1761                if (state->end == (u64)-1)
1762                        break;
1763
1764                start = state->end + 1;
1765                if (start > end)
1766                        break;
1767                node = rb_next(node);
1768                if (!node) {
1769                        if (filled)
1770                                bitset = 0;
1771                        break;
1772                }
1773        }
1774        spin_unlock(&tree->lock);
1775        return bitset;
1776}
1777
1778/*
1779 * helper function to set a given page up to date if all the
1780 * extents in the tree for that page are up to date
1781 */
1782static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1783{
1784        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785        u64 end = start + PAGE_CACHE_SIZE - 1;
1786        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787                SetPageUptodate(page);
1788}
1789
1790/*
1791 * helper function to unlock a page if all the extents in the tree
1792 * for that page are unlocked
1793 */
1794static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1795{
1796        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797        u64 end = start + PAGE_CACHE_SIZE - 1;
1798        if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1799                unlock_page(page);
1800}
1801
1802/*
1803 * helper function to end page writeback if all the extents
1804 * in the tree for that page are done with writeback
1805 */
1806static void check_page_writeback(struct extent_io_tree *tree,
1807                                 struct page *page)
1808{
1809        end_page_writeback(page);
1810}
1811
1812/*
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data.  This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors.  If another mirror has good data, the page is set up to date
1817 * and things continue.  If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1819 */
1820struct io_failure_record {
1821        struct page *page;
1822        u64 start;
1823        u64 len;
1824        u64 logical;
1825        unsigned long bio_flags;
1826        int this_mirror;
1827        int failed_mirror;
1828        int in_validation;
1829};
1830
1831static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1832                                int did_repair)
1833{
1834        int ret;
1835        int err = 0;
1836        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1837
1838        set_state_private(failure_tree, rec->start, 0);
1839        ret = clear_extent_bits(failure_tree, rec->start,
1840                                rec->start + rec->len - 1,
1841                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1842        if (ret)
1843                err = ret;
1844
1845        if (did_repair) {
1846                ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847                                        rec->start + rec->len - 1,
1848                                        EXTENT_DAMAGED, GFP_NOFS);
1849                if (ret && !err)
1850                        err = ret;
1851        }
1852
1853        kfree(rec);
1854        return err;
1855}
1856
1857static void repair_io_failure_callback(struct bio *bio, int err)
1858{
1859        complete(bio->bi_private);
1860}
1861
1862/*
1863 * this bypasses the standard btrfs submit functions deliberately, as
1864 * the standard behavior is to write all copies in a raid setup. here we only
1865 * want to write the one bad copy. so we do the mapping for ourselves and issue
1866 * submit_bio directly.
1867 * to avoid any synchonization issues, wait for the data after writing, which
1868 * actually prevents the read that triggered the error from finishing.
1869 * currently, there can be no more than two copies of every data bit. thus,
1870 * exactly one rewrite is required.
1871 */
1872int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873                        u64 length, u64 logical, struct page *page,
1874                        int mirror_num)
1875{
1876        struct bio *bio;
1877        struct btrfs_device *dev;
1878        DECLARE_COMPLETION_ONSTACK(compl);
1879        u64 map_length = 0;
1880        u64 sector;
1881        struct btrfs_bio *bbio = NULL;
1882        int ret;
1883
1884        BUG_ON(!mirror_num);
1885
1886        bio = bio_alloc(GFP_NOFS, 1);
1887        if (!bio)
1888                return -EIO;
1889        bio->bi_private = &compl;
1890        bio->bi_end_io = repair_io_failure_callback;
1891        bio->bi_size = 0;
1892        map_length = length;
1893
1894        ret = btrfs_map_block(map_tree, WRITE, logical,
1895                              &map_length, &bbio, mirror_num);
1896        if (ret) {
1897                bio_put(bio);
1898                return -EIO;
1899        }
1900        BUG_ON(mirror_num != bbio->mirror_num);
1901        sector = bbio->stripes[mirror_num-1].physical >> 9;
1902        bio->bi_sector = sector;
1903        dev = bbio->stripes[mirror_num-1].dev;
1904        kfree(bbio);
1905        if (!dev || !dev->bdev || !dev->writeable) {
1906                bio_put(bio);
1907                return -EIO;
1908        }
1909        bio->bi_bdev = dev->bdev;
1910        bio_add_page(bio, page, length, start-page_offset(page));
1911        btrfsic_submit_bio(WRITE_SYNC, bio);
1912        wait_for_completion(&compl);
1913
1914        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915                /* try to remap that extent elsewhere? */
1916                bio_put(bio);
1917                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1918                return -EIO;
1919        }
1920
1921        printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922                      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923                      start, rcu_str_deref(dev->name), sector);
1924
1925        bio_put(bio);
1926        return 0;
1927}
1928
1929int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1930                         int mirror_num)
1931{
1932        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933        u64 start = eb->start;
1934        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1935        int ret = 0;
1936
1937        for (i = 0; i < num_pages; i++) {
1938                struct page *p = extent_buffer_page(eb, i);
1939                ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940                                        start, p, mirror_num);
1941                if (ret)
1942                        break;
1943                start += PAGE_CACHE_SIZE;
1944        }
1945
1946        return ret;
1947}
1948
1949/*
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1952 */
1953static int clean_io_failure(u64 start, struct page *page)
1954{
1955        u64 private;
1956        u64 private_failure;
1957        struct io_failure_record *failrec;
1958        struct btrfs_mapping_tree *map_tree;
1959        struct extent_state *state;
1960        int num_copies;
1961        int did_repair = 0;
1962        int ret;
1963        struct inode *inode = page->mapping->host;
1964
1965        private = 0;
1966        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967                                (u64)-1, 1, EXTENT_DIRTY, 0);
1968        if (!ret)
1969                return 0;
1970
1971        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972                                &private_failure);
1973        if (ret)
1974                return 0;
1975
1976        failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977        BUG_ON(!failrec->this_mirror);
1978
1979        if (failrec->in_validation) {
1980                /* there was no real error, just free the record */
1981                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982                         failrec->start);
1983                did_repair = 1;
1984                goto out;
1985        }
1986
1987        spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989                                            failrec->start,
1990                                            EXTENT_LOCKED);
1991        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1992
1993        if (state && state->start == failrec->start) {
1994                map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995                num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996                                                failrec->len);
1997                if (num_copies > 1)  {
1998                        ret = repair_io_failure(map_tree, start, failrec->len,
1999                                                failrec->logical, page,
2000                                                failrec->failed_mirror);
2001                        did_repair = !ret;
2002                }
2003        }
2004
2005out:
2006        if (!ret)
2007                ret = free_io_failure(inode, failrec, did_repair);
2008
2009        return ret;
2010}
2011
2012/*
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2017 * needed
2018 */
2019
2020static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021                                u64 start, u64 end, int failed_mirror,
2022                                struct extent_state *state)
2023{
2024        struct io_failure_record *failrec = NULL;
2025        u64 private;
2026        struct extent_map *em;
2027        struct inode *inode = page->mapping->host;
2028        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031        struct bio *bio;
2032        int num_copies;
2033        int ret;
2034        int read_mode;
2035        u64 logical;
2036
2037        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2038
2039        ret = get_state_private(failure_tree, start, &private);
2040        if (ret) {
2041                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042                if (!failrec)
2043                        return -ENOMEM;
2044                failrec->start = start;
2045                failrec->len = end - start + 1;
2046                failrec->this_mirror = 0;
2047                failrec->bio_flags = 0;
2048                failrec->in_validation = 0;
2049
2050                read_lock(&em_tree->lock);
2051                em = lookup_extent_mapping(em_tree, start, failrec->len);
2052                if (!em) {
2053                        read_unlock(&em_tree->lock);
2054                        kfree(failrec);
2055                        return -EIO;
2056                }
2057
2058                if (em->start > start || em->start + em->len < start) {
2059                        free_extent_map(em);
2060                        em = NULL;
2061                }
2062                read_unlock(&em_tree->lock);
2063
2064                if (!em || IS_ERR(em)) {
2065                        kfree(failrec);
2066                        return -EIO;
2067                }
2068                logical = start - em->start;
2069                logical = em->block_start + logical;
2070                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071                        logical = em->block_start;
2072                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073                        extent_set_compress_type(&failrec->bio_flags,
2074                                                 em->compress_type);
2075                }
2076                pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077                         "len=%llu\n", logical, start, failrec->len);
2078                failrec->logical = logical;
2079                free_extent_map(em);
2080
2081                /* set the bits in the private failure tree */
2082                ret = set_extent_bits(failure_tree, start, end,
2083                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084                if (ret >= 0)
2085                        ret = set_state_private(failure_tree, start,
2086                                                (u64)(unsigned long)failrec);
2087                /* set the bits in the inode's tree */
2088                if (ret >= 0)
2089                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090                                                GFP_NOFS);
2091                if (ret < 0) {
2092                        kfree(failrec);
2093                        return ret;
2094                }
2095        } else {
2096                failrec = (struct io_failure_record *)(unsigned long)private;
2097                pr_debug("bio_readpage_error: (found) logical=%llu, "
2098                         "start=%llu, len=%llu, validation=%d\n",
2099                         failrec->logical, failrec->start, failrec->len,
2100                         failrec->in_validation);
2101                /*
2102                 * when data can be on disk more than twice, add to failrec here
2103                 * (e.g. with a list for failed_mirror) to make
2104                 * clean_io_failure() clean all those errors at once.
2105                 */
2106        }
2107        num_copies = btrfs_num_copies(
2108                              &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109                              failrec->logical, failrec->len);
2110        if (num_copies == 1) {
2111                /*
2112                 * we only have a single copy of the data, so don't bother with
2113                 * all the retry and error correction code that follows. no
2114                 * matter what the error is, it is very likely to persist.
2115                 */
2116                pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117                         "state=%p, num_copies=%d, next_mirror %d, "
2118                         "failed_mirror %d\n", state, num_copies,
2119                         failrec->this_mirror, failed_mirror);
2120                free_io_failure(inode, failrec, 0);
2121                return -EIO;
2122        }
2123
2124        if (!state) {
2125                spin_lock(&tree->lock);
2126                state = find_first_extent_bit_state(tree, failrec->start,
2127                                                    EXTENT_LOCKED);
2128                if (state && state->start != failrec->start)
2129                        state = NULL;
2130                spin_unlock(&tree->lock);
2131        }
2132
2133        /*
2134         * there are two premises:
2135         *      a) deliver good data to the caller
2136         *      b) correct the bad sectors on disk
2137         */
2138        if (failed_bio->bi_vcnt > 1) {
2139                /*
2140                 * to fulfill b), we need to know the exact failing sectors, as
2141                 * we don't want to rewrite any more than the failed ones. thus,
2142                 * we need separate read requests for the failed bio
2143                 *
2144                 * if the following BUG_ON triggers, our validation request got
2145                 * merged. we need separate requests for our algorithm to work.
2146                 */
2147                BUG_ON(failrec->in_validation);
2148                failrec->in_validation = 1;
2149                failrec->this_mirror = failed_mirror;
2150                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151        } else {
2152                /*
2153                 * we're ready to fulfill a) and b) alongside. get a good copy
2154                 * of the failed sector and if we succeed, we have setup
2155                 * everything for repair_io_failure to do the rest for us.
2156                 */
2157                if (failrec->in_validation) {
2158                        BUG_ON(failrec->this_mirror != failed_mirror);
2159                        failrec->in_validation = 0;
2160                        failrec->this_mirror = 0;
2161                }
2162                failrec->failed_mirror = failed_mirror;
2163                failrec->this_mirror++;
2164                if (failrec->this_mirror == failed_mirror)
2165                        failrec->this_mirror++;
2166                read_mode = READ_SYNC;
2167        }
2168
2169        if (!state || failrec->this_mirror > num_copies) {
2170                pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171                         "next_mirror %d, failed_mirror %d\n", state,
2172                         num_copies, failrec->this_mirror, failed_mirror);
2173                free_io_failure(inode, failrec, 0);
2174                return -EIO;
2175        }
2176
2177        bio = bio_alloc(GFP_NOFS, 1);
2178        if (!bio) {
2179                free_io_failure(inode, failrec, 0);
2180                return -EIO;
2181        }
2182        bio->bi_private = state;
2183        bio->bi_end_io = failed_bio->bi_end_io;
2184        bio->bi_sector = failrec->logical >> 9;
2185        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2186        bio->bi_size = 0;
2187
2188        bio_add_page(bio, page, failrec->len, start - page_offset(page));
2189
2190        pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191                 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192                 failrec->this_mirror, num_copies, failrec->in_validation);
2193
2194        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195                                         failrec->this_mirror,
2196                                         failrec->bio_flags, 0);
2197        return ret;
2198}
2199
2200/* lots and lots of room for performance fixes in the end_bio funcs */
2201
2202int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2203{
2204        int uptodate = (err == 0);
2205        struct extent_io_tree *tree;
2206        int ret;
2207
2208        tree = &BTRFS_I(page->mapping->host)->io_tree;
2209
2210        if (tree->ops && tree->ops->writepage_end_io_hook) {
2211                ret = tree->ops->writepage_end_io_hook(page, start,
2212                                               end, NULL, uptodate);
2213                if (ret)
2214                        uptodate = 0;
2215        }
2216
2217        if (!uptodate) {
2218                ClearPageUptodate(page);
2219                SetPageError(page);
2220        }
2221        return 0;
2222}
2223
2224/*
2225 * after a writepage IO is done, we need to:
2226 * clear the uptodate bits on error
2227 * clear the writeback bits in the extent tree for this IO
2228 * end_page_writeback if the page has no more pending IO
2229 *
2230 * Scheduling is not allowed, so the extent state tree is expected
2231 * to have one and only one object corresponding to this IO.
2232 */
2233static void end_bio_extent_writepage(struct bio *bio, int err)
2234{
2235        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236        struct extent_io_tree *tree;
2237        u64 start;
2238        u64 end;
2239        int whole_page;
2240
2241        do {
2242                struct page *page = bvec->bv_page;
2243                tree = &BTRFS_I(page->mapping->host)->io_tree;
2244
2245                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2246                         bvec->bv_offset;
2247                end = start + bvec->bv_len - 1;
2248
2249                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2250                        whole_page = 1;
2251                else
2252                        whole_page = 0;
2253
2254                if (--bvec >= bio->bi_io_vec)
2255                        prefetchw(&bvec->bv_page->flags);
2256
2257                if (end_extent_writepage(page, err, start, end))
2258                        continue;
2259
2260                if (whole_page)
2261                        end_page_writeback(page);
2262                else
2263                        check_page_writeback(tree, page);
2264        } while (bvec >= bio->bi_io_vec);
2265
2266        bio_put(bio);
2267}
2268
2269/*
2270 * after a readpage IO is done, we need to:
2271 * clear the uptodate bits on error
2272 * set the uptodate bits if things worked
2273 * set the page up to date if all extents in the tree are uptodate
2274 * clear the lock bit in the extent tree
2275 * unlock the page if there are no other extents locked for it
2276 *
2277 * Scheduling is not allowed, so the extent state tree is expected
2278 * to have one and only one object corresponding to this IO.
2279 */
2280static void end_bio_extent_readpage(struct bio *bio, int err)
2281{
2282        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284        struct bio_vec *bvec = bio->bi_io_vec;
2285        struct extent_io_tree *tree;
2286        u64 start;
2287        u64 end;
2288        int whole_page;
2289        int mirror;
2290        int ret;
2291
2292        if (err)
2293                uptodate = 0;
2294
2295        do {
2296                struct page *page = bvec->bv_page;
2297                struct extent_state *cached = NULL;
2298                struct extent_state *state;
2299
2300                pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301                         "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302                         (long int)bio->bi_bdev);
2303                tree = &BTRFS_I(page->mapping->host)->io_tree;
2304
2305                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2306                        bvec->bv_offset;
2307                end = start + bvec->bv_len - 1;
2308
2309                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2310                        whole_page = 1;
2311                else
2312                        whole_page = 0;
2313
2314                if (++bvec <= bvec_end)
2315                        prefetchw(&bvec->bv_page->flags);
2316
2317                spin_lock(&tree->lock);
2318                state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319                if (state && state->start == start) {
2320                        /*
2321                         * take a reference on the state, unlock will drop
2322                         * the ref
2323                         */
2324                        cache_state(state, &cached);
2325                }
2326                spin_unlock(&tree->lock);
2327
2328                mirror = (int)(unsigned long)bio->bi_bdev;
2329                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330                        ret = tree->ops->readpage_end_io_hook(page, start, end,
2331                                                              state, mirror);
2332                        if (ret) {
2333                                /* no IO indicated but software detected errors
2334                                 * in the block, either checksum errors or
2335                                 * issues with the contents */
2336                                struct btrfs_root *root =
2337                                        BTRFS_I(page->mapping->host)->root;
2338                                struct btrfs_device *device;
2339
2340                                uptodate = 0;
2341                                device = btrfs_find_device_for_logical(
2342                                                root, start, mirror);
2343                                if (device)
2344                                        btrfs_dev_stat_inc_and_print(device,
2345                                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
2346                        } else {
2347                                clean_io_failure(start, page);
2348                        }
2349                }
2350
2351                if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2352                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2353                        if (!ret && !err &&
2354                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2355                                uptodate = 1;
2356                } else if (!uptodate) {
2357                        /*
2358                         * The generic bio_readpage_error handles errors the
2359                         * following way: If possible, new read requests are
2360                         * created and submitted and will end up in
2361                         * end_bio_extent_readpage as well (if we're lucky, not
2362                         * in the !uptodate case). In that case it returns 0 and
2363                         * we just go on with the next page in our bio. If it
2364                         * can't handle the error it will return -EIO and we
2365                         * remain responsible for that page.
2366                         */
2367                        ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2368                        if (ret == 0) {
2369                                uptodate =
2370                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2371                                if (err)
2372                                        uptodate = 0;
2373                                uncache_state(&cached);
2374                                continue;
2375                        }
2376                }
2377
2378                if (uptodate && tree->track_uptodate) {
2379                        set_extent_uptodate(tree, start, end, &cached,
2380                                            GFP_ATOMIC);
2381                }
2382                unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2383
2384                if (whole_page) {
2385                        if (uptodate) {
2386                                SetPageUptodate(page);
2387                        } else {
2388                                ClearPageUptodate(page);
2389                                SetPageError(page);
2390                        }
2391                        unlock_page(page);
2392                } else {
2393                        if (uptodate) {
2394                                check_page_uptodate(tree, page);
2395                        } else {
2396                                ClearPageUptodate(page);
2397                                SetPageError(page);
2398                        }
2399                        check_page_locked(tree, page);
2400                }
2401        } while (bvec <= bvec_end);
2402
2403        bio_put(bio);
2404}
2405
2406struct bio *
2407btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2408                gfp_t gfp_flags)
2409{
2410        struct bio *bio;
2411
2412        bio = bio_alloc(gfp_flags, nr_vecs);
2413
2414        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2415                while (!bio && (nr_vecs /= 2))
2416                        bio = bio_alloc(gfp_flags, nr_vecs);
2417        }
2418
2419        if (bio) {
2420                bio->bi_size = 0;
2421                bio->bi_bdev = bdev;
2422                bio->bi_sector = first_sector;
2423        }
2424        return bio;
2425}
2426
2427/*
2428 * Since writes are async, they will only return -ENOMEM.
2429 * Reads can return the full range of I/O error conditions.
2430 */
2431static int __must_check submit_one_bio(int rw, struct bio *bio,
2432                                       int mirror_num, unsigned long bio_flags)
2433{
2434        int ret = 0;
2435        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2436        struct page *page = bvec->bv_page;
2437        struct extent_io_tree *tree = bio->bi_private;
2438        u64 start;
2439
2440        start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2441
2442        bio->bi_private = NULL;
2443
2444        bio_get(bio);
2445
2446        if (tree->ops && tree->ops->submit_bio_hook)
2447                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2448                                           mirror_num, bio_flags, start);
2449        else
2450                btrfsic_submit_bio(rw, bio);
2451
2452        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2453                ret = -EOPNOTSUPP;
2454        bio_put(bio);
2455        return ret;
2456}
2457
2458static int merge_bio(struct extent_io_tree *tree, struct page *page,
2459                     unsigned long offset, size_t size, struct bio *bio,
2460                     unsigned long bio_flags)
2461{
2462        int ret = 0;
2463        if (tree->ops && tree->ops->merge_bio_hook)
2464                ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2465                                                bio_flags);
2466        BUG_ON(ret < 0);
2467        return ret;
2468
2469}
2470
2471static int submit_extent_page(int rw, struct extent_io_tree *tree,
2472                              struct page *page, sector_t sector,
2473                              size_t size, unsigned long offset,
2474                              struct block_device *bdev,
2475                              struct bio **bio_ret,
2476                              unsigned long max_pages,
2477                              bio_end_io_t end_io_func,
2478                              int mirror_num,
2479                              unsigned long prev_bio_flags,
2480                              unsigned long bio_flags)
2481{
2482        int ret = 0;
2483        struct bio *bio;
2484        int nr;
2485        int contig = 0;
2486        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2487        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2488        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2489
2490        if (bio_ret && *bio_ret) {
2491                bio = *bio_ret;
2492                if (old_compressed)
2493                        contig = bio->bi_sector == sector;
2494                else
2495                        contig = bio->bi_sector + (bio->bi_size >> 9) ==
2496                                sector;
2497
2498                if (prev_bio_flags != bio_flags || !contig ||
2499                    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2500                    bio_add_page(bio, page, page_size, offset) < page_size) {
2501                        ret = submit_one_bio(rw, bio, mirror_num,
2502                                             prev_bio_flags);
2503                        if (ret < 0)
2504                                return ret;
2505                        bio = NULL;
2506                } else {
2507                        return 0;
2508                }
2509        }
2510        if (this_compressed)
2511                nr = BIO_MAX_PAGES;
2512        else
2513                nr = bio_get_nr_vecs(bdev);
2514
2515        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2516        if (!bio)
2517                return -ENOMEM;
2518
2519        bio_add_page(bio, page, page_size, offset);
2520        bio->bi_end_io = end_io_func;
2521        bio->bi_private = tree;
2522
2523        if (bio_ret)
2524                *bio_ret = bio;
2525        else
2526                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2527
2528        return ret;
2529}
2530
2531void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2532{
2533        if (!PagePrivate(page)) {
2534                SetPagePrivate(page);
2535                page_cache_get(page);
2536                set_page_private(page, (unsigned long)eb);
2537        } else {
2538                WARN_ON(page->private != (unsigned long)eb);
2539        }
2540}
2541
2542void set_page_extent_mapped(struct page *page)
2543{
2544        if (!PagePrivate(page)) {
2545                SetPagePrivate(page);
2546                page_cache_get(page);
2547                set_page_private(page, EXTENT_PAGE_PRIVATE);
2548        }
2549}
2550
2551/*
2552 * basic readpage implementation.  Locked extent state structs are inserted
2553 * into the tree that are removed when the IO is done (by the end_io
2554 * handlers)
2555 * XXX JDM: This needs looking at to ensure proper page locking
2556 */
2557static int __extent_read_full_page(struct extent_io_tree *tree,
2558                                   struct page *page,
2559                                   get_extent_t *get_extent,
2560                                   struct bio **bio, int mirror_num,
2561                                   unsigned long *bio_flags)
2562{
2563        struct inode *inode = page->mapping->host;
2564        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2565        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2566        u64 end;
2567        u64 cur = start;
2568        u64 extent_offset;
2569        u64 last_byte = i_size_read(inode);
2570        u64 block_start;
2571        u64 cur_end;
2572        sector_t sector;
2573        struct extent_map *em;
2574        struct block_device *bdev;
2575        struct btrfs_ordered_extent *ordered;
2576        int ret;
2577        int nr = 0;
2578        size_t pg_offset = 0;
2579        size_t iosize;
2580        size_t disk_io_size;
2581        size_t blocksize = inode->i_sb->s_blocksize;
2582        unsigned long this_bio_flag = 0;
2583
2584        set_page_extent_mapped(page);
2585
2586        if (!PageUptodate(page)) {
2587                if (cleancache_get_page(page) == 0) {
2588                        BUG_ON(blocksize != PAGE_SIZE);
2589                        goto out;
2590                }
2591        }
2592
2593        end = page_end;
2594        while (1) {
2595                lock_extent(tree, start, end);
2596                ordered = btrfs_lookup_ordered_extent(inode, start);
2597                if (!ordered)
2598                        break;
2599                unlock_extent(tree, start, end);
2600                btrfs_start_ordered_extent(inode, ordered, 1);
2601                btrfs_put_ordered_extent(ordered);
2602        }
2603
2604        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2605                char *userpage;
2606                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2607
2608                if (zero_offset) {
2609                        iosize = PAGE_CACHE_SIZE - zero_offset;
2610                        userpage = kmap_atomic(page);
2611                        memset(userpage + zero_offset, 0, iosize);
2612                        flush_dcache_page(page);
2613                        kunmap_atomic(userpage);
2614                }
2615        }
2616        while (cur <= end) {
2617                if (cur >= last_byte) {
2618                        char *userpage;
2619                        struct extent_state *cached = NULL;
2620
2621                        iosize = PAGE_CACHE_SIZE - pg_offset;
2622                        userpage = kmap_atomic(page);
2623                        memset(userpage + pg_offset, 0, iosize);
2624                        flush_dcache_page(page);
2625                        kunmap_atomic(userpage);
2626                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2627                                            &cached, GFP_NOFS);
2628                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2629                                             &cached, GFP_NOFS);
2630                        break;
2631                }
2632                em = get_extent(inode, page, pg_offset, cur,
2633                                end - cur + 1, 0);
2634                if (IS_ERR_OR_NULL(em)) {
2635                        SetPageError(page);
2636                        unlock_extent(tree, cur, end);
2637                        break;
2638                }
2639                extent_offset = cur - em->start;
2640                BUG_ON(extent_map_end(em) <= cur);
2641                BUG_ON(end < cur);
2642
2643                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2644                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2645                        extent_set_compress_type(&this_bio_flag,
2646                                                 em->compress_type);
2647                }
2648
2649                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2650                cur_end = min(extent_map_end(em) - 1, end);
2651                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2652                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2653                        disk_io_size = em->block_len;
2654                        sector = em->block_start >> 9;
2655                } else {
2656                        sector = (em->block_start + extent_offset) >> 9;
2657                        disk_io_size = iosize;
2658                }
2659                bdev = em->bdev;
2660                block_start = em->block_start;
2661                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2662                        block_start = EXTENT_MAP_HOLE;
2663                free_extent_map(em);
2664                em = NULL;
2665
2666                /* we've found a hole, just zero and go on */
2667                if (block_start == EXTENT_MAP_HOLE) {
2668                        char *userpage;
2669                        struct extent_state *cached = NULL;
2670
2671                        userpage = kmap_atomic(page);
2672                        memset(userpage + pg_offset, 0, iosize);
2673                        flush_dcache_page(page);
2674                        kunmap_atomic(userpage);
2675
2676                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2677                                            &cached, GFP_NOFS);
2678                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2679                                             &cached, GFP_NOFS);
2680                        cur = cur + iosize;
2681                        pg_offset += iosize;
2682                        continue;
2683                }
2684                /* the get_extent function already copied into the page */
2685                if (test_range_bit(tree, cur, cur_end,
2686                                   EXTENT_UPTODATE, 1, NULL)) {
2687                        check_page_uptodate(tree, page);
2688                        unlock_extent(tree, cur, cur + iosize - 1);
2689                        cur = cur + iosize;
2690                        pg_offset += iosize;
2691                        continue;
2692                }
2693                /* we have an inline extent but it didn't get marked up
2694                 * to date.  Error out
2695                 */
2696                if (block_start == EXTENT_MAP_INLINE) {
2697                        SetPageError(page);
2698                        unlock_extent(tree, cur, cur + iosize - 1);
2699                        cur = cur + iosize;
2700                        pg_offset += iosize;
2701                        continue;
2702                }
2703
2704                ret = 0;
2705                if (tree->ops && tree->ops->readpage_io_hook) {
2706                        ret = tree->ops->readpage_io_hook(page, cur,
2707                                                          cur + iosize - 1);
2708                }
2709                if (!ret) {
2710                        unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2711                        pnr -= page->index;
2712                        ret = submit_extent_page(READ, tree, page,
2713                                         sector, disk_io_size, pg_offset,
2714                                         bdev, bio, pnr,
2715                                         end_bio_extent_readpage, mirror_num,
2716                                         *bio_flags,
2717                                         this_bio_flag);
2718                        BUG_ON(ret == -ENOMEM);
2719                        nr++;
2720                        *bio_flags = this_bio_flag;
2721                }
2722                if (ret)
2723                        SetPageError(page);
2724                cur = cur + iosize;
2725                pg_offset += iosize;
2726        }
2727out:
2728        if (!nr) {
2729                if (!PageError(page))
2730                        SetPageUptodate(page);
2731                unlock_page(page);
2732        }
2733        return 0;
2734}
2735
2736int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2737                            get_extent_t *get_extent, int mirror_num)
2738{
2739        struct bio *bio = NULL;
2740        unsigned long bio_flags = 0;
2741        int ret;
2742
2743        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2744                                      &bio_flags);
2745        if (bio)
2746                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2747        return ret;
2748}
2749
2750static noinline void update_nr_written(struct page *page,
2751                                      struct writeback_control *wbc,
2752                                      unsigned long nr_written)
2753{
2754        wbc->nr_to_write -= nr_written;
2755        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2756            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2757                page->mapping->writeback_index = page->index + nr_written;
2758}
2759
2760/*
2761 * the writepage semantics are similar to regular writepage.  extent
2762 * records are inserted to lock ranges in the tree, and as dirty areas
2763 * are found, they are marked writeback.  Then the lock bits are removed
2764 * and the end_io handler clears the writeback ranges
2765 */
2766static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2767                              void *data)
2768{
2769        struct inode *inode = page->mapping->host;
2770        struct extent_page_data *epd = data;
2771        struct extent_io_tree *tree = epd->tree;
2772        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2773        u64 delalloc_start;
2774        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2775        u64 end;
2776        u64 cur = start;
2777        u64 extent_offset;
2778        u64 last_byte = i_size_read(inode);
2779        u64 block_start;
2780        u64 iosize;
2781        sector_t sector;
2782        struct extent_state *cached_state = NULL;
2783        struct extent_map *em;
2784        struct block_device *bdev;
2785        int ret;
2786        int nr = 0;
2787        size_t pg_offset = 0;
2788        size_t blocksize;
2789        loff_t i_size = i_size_read(inode);
2790        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2791        u64 nr_delalloc;
2792        u64 delalloc_end;
2793        int page_started;
2794        int compressed;
2795        int write_flags;
2796        unsigned long nr_written = 0;
2797        bool fill_delalloc = true;
2798
2799        if (wbc->sync_mode == WB_SYNC_ALL)
2800                write_flags = WRITE_SYNC;
2801        else
2802                write_flags = WRITE;
2803
2804        trace___extent_writepage(page, inode, wbc);
2805
2806        WARN_ON(!PageLocked(page));
2807
2808        ClearPageError(page);
2809
2810        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2811        if (page->index > end_index ||
2812           (page->index == end_index && !pg_offset)) {
2813                page->mapping->a_ops->invalidatepage(page, 0);
2814                unlock_page(page);
2815                return 0;
2816        }
2817
2818        if (page->index == end_index) {
2819                char *userpage;
2820
2821                userpage = kmap_atomic(page);
2822                memset(userpage + pg_offset, 0,
2823                       PAGE_CACHE_SIZE - pg_offset);
2824                kunmap_atomic(userpage);
2825                flush_dcache_page(page);
2826        }
2827        pg_offset = 0;
2828
2829        set_page_extent_mapped(page);
2830
2831        if (!tree->ops || !tree->ops->fill_delalloc)
2832                fill_delalloc = false;
2833
2834        delalloc_start = start;
2835        delalloc_end = 0;
2836        page_started = 0;
2837        if (!epd->extent_locked && fill_delalloc) {
2838                u64 delalloc_to_write = 0;
2839                /*
2840                 * make sure the wbc mapping index is at least updated
2841                 * to this page.
2842                 */
2843                update_nr_written(page, wbc, 0);
2844
2845                while (delalloc_end < page_end) {
2846                        nr_delalloc = find_lock_delalloc_range(inode, tree,
2847                                                       page,
2848                                                       &delalloc_start,
2849                                                       &delalloc_end,
2850                                                       128 * 1024 * 1024);
2851                        if (nr_delalloc == 0) {
2852                                delalloc_start = delalloc_end + 1;
2853                                continue;
2854                        }
2855                        ret = tree->ops->fill_delalloc(inode, page,
2856                                                       delalloc_start,
2857                                                       delalloc_end,
2858                                                       &page_started,
2859                                                       &nr_written);
2860                        /* File system has been set read-only */
2861                        if (ret) {
2862                                SetPageError(page);
2863                                goto done;
2864                        }
2865                        /*
2866                         * delalloc_end is already one less than the total
2867                         * length, so we don't subtract one from
2868                         * PAGE_CACHE_SIZE
2869                         */
2870                        delalloc_to_write += (delalloc_end - delalloc_start +
2871                                              PAGE_CACHE_SIZE) >>
2872                                              PAGE_CACHE_SHIFT;
2873                        delalloc_start = delalloc_end + 1;
2874                }
2875                if (wbc->nr_to_write < delalloc_to_write) {
2876                        int thresh = 8192;
2877
2878                        if (delalloc_to_write < thresh * 2)
2879                                thresh = delalloc_to_write;
2880                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
2881                                                 thresh);
2882                }
2883
2884                /* did the fill delalloc function already unlock and start
2885                 * the IO?
2886                 */
2887                if (page_started) {
2888                        ret = 0;
2889                        /*
2890                         * we've unlocked the page, so we can't update
2891                         * the mapping's writeback index, just update
2892                         * nr_to_write.
2893                         */
2894                        wbc->nr_to_write -= nr_written;
2895                        goto done_unlocked;
2896                }
2897        }
2898        if (tree->ops && tree->ops->writepage_start_hook) {
2899                ret = tree->ops->writepage_start_hook(page, start,
2900                                                      page_end);
2901                if (ret) {
2902                        /* Fixup worker will requeue */
2903                        if (ret == -EBUSY)
2904                                wbc->pages_skipped++;
2905                        else
2906                                redirty_page_for_writepage(wbc, page);
2907                        update_nr_written(page, wbc, nr_written);
2908                        unlock_page(page);
2909                        ret = 0;
2910                        goto done_unlocked;
2911                }
2912        }
2913
2914        /*
2915         * we don't want to touch the inode after unlocking the page,
2916         * so we update the mapping writeback index now
2917         */
2918        update_nr_written(page, wbc, nr_written + 1);
2919
2920        end = page_end;
2921        if (last_byte <= start) {
2922                if (tree->ops && tree->ops->writepage_end_io_hook)
2923                        tree->ops->writepage_end_io_hook(page, start,
2924                                                         page_end, NULL, 1);
2925                goto done;
2926        }
2927
2928        blocksize = inode->i_sb->s_blocksize;
2929
2930        while (cur <= end) {
2931                if (cur >= last_byte) {
2932                        if (tree->ops && tree->ops->writepage_end_io_hook)
2933                                tree->ops->writepage_end_io_hook(page, cur,
2934                                                         page_end, NULL, 1);
2935                        break;
2936                }
2937                em = epd->get_extent(inode, page, pg_offset, cur,
2938                                     end - cur + 1, 1);
2939                if (IS_ERR_OR_NULL(em)) {
2940                        SetPageError(page);
2941                        break;
2942                }
2943
2944                extent_offset = cur - em->start;
2945                BUG_ON(extent_map_end(em) <= cur);
2946                BUG_ON(end < cur);
2947                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2949                sector = (em->block_start + extent_offset) >> 9;
2950                bdev = em->bdev;
2951                block_start = em->block_start;
2952                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2953                free_extent_map(em);
2954                em = NULL;
2955
2956                /*
2957                 * compressed and inline extents are written through other
2958                 * paths in the FS
2959                 */
2960                if (compressed || block_start == EXTENT_MAP_HOLE ||
2961                    block_start == EXTENT_MAP_INLINE) {
2962                        /*
2963                         * end_io notification does not happen here for
2964                         * compressed extents
2965                         */
2966                        if (!compressed && tree->ops &&
2967                            tree->ops->writepage_end_io_hook)
2968                                tree->ops->writepage_end_io_hook(page, cur,
2969                                                         cur + iosize - 1,
2970                                                         NULL, 1);
2971                        else if (compressed) {
2972                                /* we don't want to end_page_writeback on
2973                                 * a compressed extent.  this happens
2974                                 * elsewhere
2975                                 */
2976                                nr++;
2977                        }
2978
2979                        cur += iosize;
2980                        pg_offset += iosize;
2981                        continue;
2982                }
2983                /* leave this out until we have a page_mkwrite call */
2984                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2985                                   EXTENT_DIRTY, 0, NULL)) {
2986                        cur = cur + iosize;
2987                        pg_offset += iosize;
2988                        continue;
2989                }
2990
2991                if (tree->ops && tree->ops->writepage_io_hook) {
2992                        ret = tree->ops->writepage_io_hook(page, cur,
2993                                                cur + iosize - 1);
2994                } else {
2995                        ret = 0;
2996                }
2997                if (ret) {
2998                        SetPageError(page);
2999                } else {
3000                        unsigned long max_nr = end_index + 1;
3001
3002                        set_range_writeback(tree, cur, cur + iosize - 1);
3003                        if (!PageWriteback(page)) {
3004                                printk(KERN_ERR "btrfs warning page %lu not "
3005                                       "writeback, cur %llu end %llu\n",
3006                                       page->index, (unsigned long long)cur,
3007                                       (unsigned long long)end);
3008                        }
3009
3010                        ret = submit_extent_page(write_flags, tree, page,
3011                                                 sector, iosize, pg_offset,
3012                                                 bdev, &epd->bio, max_nr,
3013                                                 end_bio_extent_writepage,
3014                                                 0, 0, 0);
3015                        if (ret)
3016                                SetPageError(page);
3017                }
3018                cur = cur + iosize;
3019                pg_offset += iosize;
3020                nr++;
3021        }
3022done:
3023        if (nr == 0) {
3024                /* make sure the mapping tag for page dirty gets cleared */
3025                set_page_writeback(page);
3026                end_page_writeback(page);
3027        }
3028        unlock_page(page);
3029
3030done_unlocked:
3031
3032        /* drop our reference on any cached states */
3033        free_extent_state(cached_state);
3034        return 0;
3035}
3036
3037static int eb_wait(void *word)
3038{
3039        io_schedule();
3040        return 0;
3041}
3042
3043static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3044{
3045        wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3046                    TASK_UNINTERRUPTIBLE);
3047}
3048
3049static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3050                                     struct btrfs_fs_info *fs_info,
3051                                     struct extent_page_data *epd)
3052{
3053        unsigned long i, num_pages;
3054        int flush = 0;
3055        int ret = 0;
3056
3057        if (!btrfs_try_tree_write_lock(eb)) {
3058                flush = 1;
3059                flush_write_bio(epd);
3060                btrfs_tree_lock(eb);
3061        }
3062
3063        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3064                btrfs_tree_unlock(eb);
3065                if (!epd->sync_io)
3066                        return 0;
3067                if (!flush) {
3068                        flush_write_bio(epd);
3069                        flush = 1;
3070                }
3071                while (1) {
3072                        wait_on_extent_buffer_writeback(eb);
3073                        btrfs_tree_lock(eb);
3074                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3075                                break;
3076                        btrfs_tree_unlock(eb);
3077                }
3078        }
3079
3080        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3081                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3082                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3083                spin_lock(&fs_info->delalloc_lock);
3084                if (fs_info->dirty_metadata_bytes >= eb->len)
3085                        fs_info->dirty_metadata_bytes -= eb->len;
3086                else
3087                        WARN_ON(1);
3088                spin_unlock(&fs_info->delalloc_lock);
3089                ret = 1;
3090        }
3091
3092        btrfs_tree_unlock(eb);
3093
3094        if (!ret)
3095                return ret;
3096
3097        num_pages = num_extent_pages(eb->start, eb->len);
3098        for (i = 0; i < num_pages; i++) {
3099                struct page *p = extent_buffer_page(eb, i);
3100
3101                if (!trylock_page(p)) {
3102                        if (!flush) {
3103                                flush_write_bio(epd);
3104                                flush = 1;
3105                        }
3106                        lock_page(p);
3107                }
3108        }
3109
3110        return ret;
3111}
3112
3113static void end_extent_buffer_writeback(struct extent_buffer *eb)
3114{
3115        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3116        smp_mb__after_clear_bit();
3117        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3118}
3119
3120static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3121{
3122        int uptodate = err == 0;
3123        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3124        struct extent_buffer *eb;
3125        int done;
3126
3127        do {
3128                struct page *page = bvec->bv_page;
3129
3130                bvec--;
3131                eb = (struct extent_buffer *)page->private;
3132                BUG_ON(!eb);
3133                done = atomic_dec_and_test(&eb->io_pages);
3134
3135                if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3136                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3137                        ClearPageUptodate(page);
3138                        SetPageError(page);
3139                }
3140
3141                end_page_writeback(page);
3142
3143                if (!done)
3144                        continue;
3145
3146                end_extent_buffer_writeback(eb);
3147        } while (bvec >= bio->bi_io_vec);
3148
3149        bio_put(bio);
3150
3151}
3152
3153static int write_one_eb(struct extent_buffer *eb,
3154                        struct btrfs_fs_info *fs_info,
3155                        struct writeback_control *wbc,
3156                        struct extent_page_data *epd)
3157{
3158        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3159        u64 offset = eb->start;
3160        unsigned long i, num_pages;
3161        int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3162        int ret = 0;
3163
3164        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165        num_pages = num_extent_pages(eb->start, eb->len);
3166        atomic_set(&eb->io_pages, num_pages);
3167        for (i = 0; i < num_pages; i++) {
3168                struct page *p = extent_buffer_page(eb, i);
3169
3170                clear_page_dirty_for_io(p);
3171                set_page_writeback(p);
3172                ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3173                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3174                                         -1, end_bio_extent_buffer_writepage,
3175                                         0, 0, 0);
3176                if (ret) {
3177                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3178                        SetPageError(p);
3179                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3180                                end_extent_buffer_writeback(eb);
3181                        ret = -EIO;
3182                        break;
3183                }
3184                offset += PAGE_CACHE_SIZE;
3185                update_nr_written(p, wbc, 1);
3186                unlock_page(p);
3187        }
3188
3189        if (unlikely(ret)) {
3190                for (; i < num_pages; i++) {
3191                        struct page *p = extent_buffer_page(eb, i);
3192                        unlock_page(p);
3193                }
3194        }
3195
3196        return ret;
3197}
3198
3199int btree_write_cache_pages(struct address_space *mapping,
3200                                   struct writeback_control *wbc)
3201{
3202        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3203        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3204        struct extent_buffer *eb, *prev_eb = NULL;
3205        struct extent_page_data epd = {
3206                .bio = NULL,
3207                .tree = tree,
3208                .extent_locked = 0,
3209                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3210        };
3211        int ret = 0;
3212        int done = 0;
3213        int nr_to_write_done = 0;
3214        struct pagevec pvec;
3215        int nr_pages;
3216        pgoff_t index;
3217        pgoff_t end;            /* Inclusive */
3218        int scanned = 0;
3219        int tag;
3220
3221        pagevec_init(&pvec, 0);
3222        if (wbc->range_cyclic) {
3223                index = mapping->writeback_index; /* Start from prev offset */
3224                end = -1;
3225        } else {
3226                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3227                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3228                scanned = 1;
3229        }
3230        if (wbc->sync_mode == WB_SYNC_ALL)
3231                tag = PAGECACHE_TAG_TOWRITE;
3232        else
3233                tag = PAGECACHE_TAG_DIRTY;
3234retry:
3235        if (wbc->sync_mode == WB_SYNC_ALL)
3236                tag_pages_for_writeback(mapping, index, end);
3237        while (!done && !nr_to_write_done && (index <= end) &&
3238               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3239                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3240                unsigned i;
3241
3242                scanned = 1;
3243                for (i = 0; i < nr_pages; i++) {
3244                        struct page *page = pvec.pages[i];
3245
3246                        if (!PagePrivate(page))
3247                                continue;
3248
3249                        if (!wbc->range_cyclic && page->index > end) {
3250                                done = 1;
3251                                break;
3252                        }
3253
3254                        eb = (struct extent_buffer *)page->private;
3255                        if (!eb) {
3256                                WARN_ON(1);
3257                                continue;
3258                        }
3259
3260                        if (eb == prev_eb)
3261                                continue;
3262
3263                        if (!atomic_inc_not_zero(&eb->refs)) {
3264                                WARN_ON(1);
3265                                continue;
3266                        }
3267
3268                        prev_eb = eb;
3269                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3270                        if (!ret) {
3271                                free_extent_buffer(eb);
3272                                continue;
3273                        }
3274
3275                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3276                        if (ret) {
3277                                done = 1;
3278                                free_extent_buffer(eb);
3279                                break;
3280                        }
3281                        free_extent_buffer(eb);
3282
3283                        /*
3284                         * the filesystem may choose to bump up nr_to_write.
3285                         * We have to make sure to honor the new nr_to_write
3286                         * at any time
3287                         */
3288                        nr_to_write_done = wbc->nr_to_write <= 0;
3289                }
3290                pagevec_release(&pvec);
3291                cond_resched();
3292        }
3293        if (!scanned && !done) {
3294                /*
3295                 * We hit the last page and there is more work to be done: wrap
3296                 * back to the start of the file
3297                 */
3298                scanned = 1;
3299                index = 0;
3300                goto retry;
3301        }
3302        flush_write_bio(&epd);
3303        return ret;
3304}
3305
3306/**
3307 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3308 * @mapping: address space structure to write
3309 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3310 * @writepage: function called for each page
3311 * @data: data passed to writepage function
3312 *
3313 * If a page is already under I/O, write_cache_pages() skips it, even
3314 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3315 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3316 * and msync() need to guarantee that all the data which was dirty at the time
3317 * the call was made get new I/O started against them.  If wbc->sync_mode is
3318 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3319 * existing IO to complete.
3320 */
3321static int extent_write_cache_pages(struct extent_io_tree *tree,
3322                             struct address_space *mapping,
3323                             struct writeback_control *wbc,
3324                             writepage_t writepage, void *data,
3325                             void (*flush_fn)(void *))
3326{
3327        struct inode *inode = mapping->host;
3328        int ret = 0;
3329        int done = 0;
3330        int nr_to_write_done = 0;
3331        struct pagevec pvec;
3332        int nr_pages;
3333        pgoff_t index;
3334        pgoff_t end;            /* Inclusive */
3335        int scanned = 0;
3336        int tag;
3337
3338        /*
3339         * We have to hold onto the inode so that ordered extents can do their
3340         * work when the IO finishes.  The alternative to this is failing to add
3341         * an ordered extent if the igrab() fails there and that is a huge pain
3342         * to deal with, so instead just hold onto the inode throughout the
3343         * writepages operation.  If it fails here we are freeing up the inode
3344         * anyway and we'd rather not waste our time writing out stuff that is
3345         * going to be truncated anyway.
3346         */
3347        if (!igrab(inode))
3348                return 0;
3349
3350        pagevec_init(&pvec, 0);
3351        if (wbc->range_cyclic) {
3352                index = mapping->writeback_index; /* Start from prev offset */
3353                end = -1;
3354        } else {
3355                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3356                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3357                scanned = 1;
3358        }
3359        if (wbc->sync_mode == WB_SYNC_ALL)
3360                tag = PAGECACHE_TAG_TOWRITE;
3361        else
3362                tag = PAGECACHE_TAG_DIRTY;
3363retry:
3364        if (wbc->sync_mode == WB_SYNC_ALL)
3365                tag_pages_for_writeback(mapping, index, end);
3366        while (!done && !nr_to_write_done && (index <= end) &&
3367               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3368                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3369                unsigned i;
3370
3371                scanned = 1;
3372                for (i = 0; i < nr_pages; i++) {
3373                        struct page *page = pvec.pages[i];
3374
3375                        /*
3376                         * At this point we hold neither mapping->tree_lock nor
3377                         * lock on the page itself: the page may be truncated or
3378                         * invalidated (changing page->mapping to NULL), or even
3379                         * swizzled back from swapper_space to tmpfs file
3380                         * mapping
3381                         */
3382                        if (tree->ops &&
3383                            tree->ops->write_cache_pages_lock_hook) {
3384                                tree->ops->write_cache_pages_lock_hook(page,
3385                                                               data, flush_fn);
3386                        } else {
3387                                if (!trylock_page(page)) {
3388                                        flush_fn(data);
3389                                        lock_page(page);
3390                                }
3391                        }
3392
3393                        if (unlikely(page->mapping != mapping)) {
3394                                unlock_page(page);
3395                                continue;
3396                        }
3397
3398                        if (!wbc->range_cyclic && page->index > end) {
3399                                done = 1;
3400                                unlock_page(page);
3401                                continue;
3402                        }
3403
3404                        if (wbc->sync_mode != WB_SYNC_NONE) {
3405                                if (PageWriteback(page))
3406                                        flush_fn(data);
3407                                wait_on_page_writeback(page);
3408                        }
3409
3410                        if (PageWriteback(page) ||
3411                            !clear_page_dirty_for_io(page)) {
3412                                unlock_page(page);
3413                                continue;
3414                        }
3415
3416                        ret = (*writepage)(page, wbc, data);
3417
3418                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3419                                unlock_page(page);
3420                                ret = 0;
3421                        }
3422                        if (ret)
3423                                done = 1;
3424
3425                        /*
3426                         * the filesystem may choose to bump up nr_to_write.
3427                         * We have to make sure to honor the new nr_to_write
3428                         * at any time
3429                         */
3430                        nr_to_write_done = wbc->nr_to_write <= 0;
3431                }
3432                pagevec_release(&pvec);
3433                cond_resched();
3434        }
3435        if (!scanned && !done) {
3436                /*
3437                 * We hit the last page and there is more work to be done: wrap
3438                 * back to the start of the file
3439                 */
3440                scanned = 1;
3441                index = 0;
3442                goto retry;
3443        }
3444        btrfs_add_delayed_iput(inode);
3445        return ret;
3446}
3447
3448static void flush_epd_write_bio(struct extent_page_data *epd)
3449{
3450        if (epd->bio) {
3451                int rw = WRITE;
3452                int ret;
3453
3454                if (epd->sync_io)
3455                        rw = WRITE_SYNC;
3456
3457                ret = submit_one_bio(rw, epd->bio, 0, 0);
3458                BUG_ON(ret < 0); /* -ENOMEM */
3459                epd->bio = NULL;
3460        }
3461}
3462
3463static noinline void flush_write_bio(void *data)
3464{
3465        struct extent_page_data *epd = data;
3466        flush_epd_write_bio(epd);
3467}
3468
3469int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3470                          get_extent_t *get_extent,
3471                          struct writeback_control *wbc)
3472{
3473        int ret;
3474        struct extent_page_data epd = {
3475                .bio = NULL,
3476                .tree = tree,
3477                .get_extent = get_extent,
3478                .extent_locked = 0,
3479                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3480        };
3481
3482        ret = __extent_writepage(page, wbc, &epd);
3483
3484        flush_epd_write_bio(&epd);
3485        return ret;
3486}
3487
3488int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3489                              u64 start, u64 end, get_extent_t *get_extent,
3490                              int mode)
3491{
3492        int ret = 0;
3493        struct address_space *mapping = inode->i_mapping;
3494        struct page *page;
3495        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3496                PAGE_CACHE_SHIFT;
3497
3498        struct extent_page_data epd = {
3499                .bio = NULL,
3500                .tree = tree,
3501                .get_extent = get_extent,
3502                .extent_locked = 1,
3503                .sync_io = mode == WB_SYNC_ALL,
3504        };
3505        struct writeback_control wbc_writepages = {
3506                .sync_mode      = mode,
3507                .nr_to_write    = nr_pages * 2,
3508                .range_start    = start,
3509                .range_end      = end + 1,
3510        };
3511
3512        while (start <= end) {
3513                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3514                if (clear_page_dirty_for_io(page))
3515                        ret = __extent_writepage(page, &wbc_writepages, &epd);
3516                else {
3517                        if (tree->ops && tree->ops->writepage_end_io_hook)
3518                                tree->ops->writepage_end_io_hook(page, start,
3519                                                 start + PAGE_CACHE_SIZE - 1,
3520                                                 NULL, 1);
3521                        unlock_page(page);
3522                }
3523                page_cache_release(page);
3524                start += PAGE_CACHE_SIZE;
3525        }
3526
3527        flush_epd_write_bio(&epd);
3528        return ret;
3529}
3530
3531int extent_writepages(struct extent_io_tree *tree,
3532                      struct address_space *mapping,
3533                      get_extent_t *get_extent,
3534                      struct writeback_control *wbc)
3535{
3536        int ret = 0;
3537        struct extent_page_data epd = {
3538                .bio = NULL,
3539                .tree = tree,
3540                .get_extent = get_extent,
3541                .extent_locked = 0,
3542                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3543        };
3544
3545        ret = extent_write_cache_pages(tree, mapping, wbc,
3546                                       __extent_writepage, &epd,
3547                                       flush_write_bio);
3548        flush_epd_write_bio(&epd);
3549        return ret;
3550}
3551
3552int extent_readpages(struct extent_io_tree *tree,
3553                     struct address_space *mapping,
3554                     struct list_head *pages, unsigned nr_pages,
3555                     get_extent_t get_extent)
3556{
3557        struct bio *bio = NULL;
3558        unsigned page_idx;
3559        unsigned long bio_flags = 0;
3560
3561        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3562                struct page *page = list_entry(pages->prev, struct page, lru);
3563
3564                prefetchw(&page->flags);
3565                list_del(&page->lru);
3566                if (!add_to_page_cache_lru(page, mapping,
3567                                        page->index, GFP_NOFS)) {
3568                        __extent_read_full_page(tree, page, get_extent,
3569                                                &bio, 0, &bio_flags);
3570                }
3571                page_cache_release(page);
3572        }
3573        BUG_ON(!list_empty(pages));
3574        if (bio)
3575                return submit_one_bio(READ, bio, 0, bio_flags);
3576        return 0;
3577}
3578
3579/*
3580 * basic invalidatepage code, this waits on any locked or writeback
3581 * ranges corresponding to the page, and then deletes any extent state
3582 * records from the tree
3583 */
3584int extent_invalidatepage(struct extent_io_tree *tree,
3585                          struct page *page, unsigned long offset)
3586{
3587        struct extent_state *cached_state = NULL;
3588        u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3589        u64 end = start + PAGE_CACHE_SIZE - 1;
3590        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3591
3592        start += (offset + blocksize - 1) & ~(blocksize - 1);
3593        if (start > end)
3594                return 0;
3595
3596        lock_extent_bits(tree, start, end, 0, &cached_state);
3597        wait_on_page_writeback(page);
3598        clear_extent_bit(tree, start, end,
3599                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3600                         EXTENT_DO_ACCOUNTING,
3601                         1, 1, &cached_state, GFP_NOFS);
3602        return 0;
3603}
3604
3605/*
3606 * a helper for releasepage, this tests for areas of the page that
3607 * are locked or under IO and drops the related state bits if it is safe
3608 * to drop the page.
3609 */
3610int try_release_extent_state(struct extent_map_tree *map,
3611                             struct extent_io_tree *tree, struct page *page,
3612                             gfp_t mask)
3613{
3614        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3615        u64 end = start + PAGE_CACHE_SIZE - 1;
3616        int ret = 1;
3617
3618        if (test_range_bit(tree, start, end,
3619                           EXTENT_IOBITS, 0, NULL))
3620                ret = 0;
3621        else {
3622                if ((mask & GFP_NOFS) == GFP_NOFS)
3623                        mask = GFP_NOFS;
3624                /*
3625                 * at this point we can safely clear everything except the
3626                 * locked bit and the nodatasum bit
3627                 */
3628                ret = clear_extent_bit(tree, start, end,
3629                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3630                                 0, 0, NULL, mask);
3631
3632                /* if clear_extent_bit failed for enomem reasons,
3633                 * we can't allow the release to continue.
3634                 */
3635                if (ret < 0)
3636                        ret = 0;
3637                else
3638                        ret = 1;
3639        }
3640        return ret;
3641}
3642
3643/*
3644 * a helper for releasepage.  As long as there are no locked extents
3645 * in the range corresponding to the page, both state records and extent
3646 * map records are removed
3647 */
3648int try_release_extent_mapping(struct extent_map_tree *map,
3649                               struct extent_io_tree *tree, struct page *page,
3650                               gfp_t mask)
3651{
3652        struct extent_map *em;
3653        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3654        u64 end = start + PAGE_CACHE_SIZE - 1;
3655
3656        if ((mask & __GFP_WAIT) &&
3657            page->mapping->host->i_size > 16 * 1024 * 1024) {
3658                u64 len;
3659                while (start <= end) {
3660                        len = end - start + 1;
3661                        write_lock(&map->lock);
3662                        em = lookup_extent_mapping(map, start, len);
3663                        if (!em) {
3664                                write_unlock(&map->lock);
3665                                break;
3666                        }
3667                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3668                            em->start != start) {
3669                                write_unlock(&map->lock);
3670                                free_extent_map(em);
3671                                break;
3672                        }
3673                        if (!test_range_bit(tree, em->start,
3674                                            extent_map_end(em) - 1,
3675                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
3676                                            0, NULL)) {
3677                                remove_extent_mapping(map, em);
3678                                /* once for the rb tree */
3679                                free_extent_map(em);
3680                        }
3681                        start = extent_map_end(em);
3682                        write_unlock(&map->lock);
3683
3684                        /* once for us */
3685                        free_extent_map(em);
3686                }
3687        }
3688        return try_release_extent_state(map, tree, page, mask);
3689}
3690
3691/*
3692 * helper function for fiemap, which doesn't want to see any holes.
3693 * This maps until we find something past 'last'
3694 */
3695static struct extent_map *get_extent_skip_holes(struct inode *inode,
3696                                                u64 offset,
3697                                                u64 last,
3698                                                get_extent_t *get_extent)
3699{
3700        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3701        struct extent_map *em;
3702        u64 len;
3703
3704        if (offset >= last)
3705                return NULL;
3706
3707        while(1) {
3708                len = last - offset;
3709                if (len == 0)
3710                        break;
3711                len = (len + sectorsize - 1) & ~(sectorsize - 1);
3712                em = get_extent(inode, NULL, 0, offset, len, 0);
3713                if (IS_ERR_OR_NULL(em))
3714                        return em;
3715
3716                /* if this isn't a hole return it */
3717                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3718                    em->block_start != EXTENT_MAP_HOLE) {
3719                        return em;
3720                }
3721
3722                /* this is a hole, advance to the next extent */
3723                offset = extent_map_end(em);
3724                free_extent_map(em);
3725                if (offset >= last)
3726                        break;
3727        }
3728        return NULL;
3729}
3730
3731int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3732                __u64 start, __u64 len, get_extent_t *get_extent)
3733{
3734        int ret = 0;
3735        u64 off = start;
3736        u64 max = start + len;
3737        u32 flags = 0;
3738        u32 found_type;
3739        u64 last;
3740        u64 last_for_get_extent = 0;
3741        u64 disko = 0;
3742        u64 isize = i_size_read(inode);
3743        struct btrfs_key found_key;
3744        struct extent_map *em = NULL;
3745        struct extent_state *cached_state = NULL;
3746        struct btrfs_path *path;
3747        struct btrfs_file_extent_item *item;
3748        int end = 0;
3749        u64 em_start = 0;
3750        u64 em_len = 0;
3751        u64 em_end = 0;
3752        unsigned long emflags;
3753
3754        if (len == 0)
3755                return -EINVAL;
3756
3757        path = btrfs_alloc_path();
3758        if (!path)
3759                return -ENOMEM;
3760        path->leave_spinning = 1;
3761
3762        start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3763        len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3764
3765        /*
3766         * lookup the last file extent.  We're not using i_size here
3767         * because there might be preallocation past i_size
3768         */
3769        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3770                                       path, btrfs_ino(inode), -1, 0);
3771        if (ret < 0) {
3772                btrfs_free_path(path);
3773                return ret;
3774        }
3775        WARN_ON(!ret);
3776        path->slots[0]--;
3777        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3778                              struct btrfs_file_extent_item);
3779        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3780        found_type = btrfs_key_type(&found_key);
3781
3782        /* No extents, but there might be delalloc bits */
3783        if (found_key.objectid != btrfs_ino(inode) ||
3784            found_type != BTRFS_EXTENT_DATA_KEY) {
3785                /* have to trust i_size as the end */
3786                last = (u64)-1;
3787                last_for_get_extent = isize;
3788        } else {
3789                /*
3790                 * remember the start of the last extent.  There are a
3791                 * bunch of different factors that go into the length of the
3792                 * extent, so its much less complex to remember where it started
3793                 */
3794                last = found_key.offset;
3795                last_for_get_extent = last + 1;
3796        }
3797        btrfs_free_path(path);
3798
3799        /*
3800         * we might have some extents allocated but more delalloc past those
3801         * extents.  so, we trust isize unless the start of the last extent is
3802         * beyond isize
3803         */
3804        if (last < isize) {
3805                last = (u64)-1;
3806                last_for_get_extent = isize;
3807        }
3808
3809        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3810                         &cached_state);
3811
3812        em = get_extent_skip_holes(inode, start, last_for_get_extent,
3813                                   get_extent);
3814        if (!em)
3815                goto out;
3816        if (IS_ERR(em)) {
3817                ret = PTR_ERR(em);
3818                goto out;
3819        }
3820
3821        while (!end) {
3822                u64 offset_in_extent;
3823
3824                /* break if the extent we found is outside the range */
3825                if (em->start >= max || extent_map_end(em) < off)
3826                        break;
3827
3828                /*
3829                 * get_extent may return an extent that starts before our
3830                 * requested range.  We have to make sure the ranges
3831                 * we return to fiemap always move forward and don't
3832                 * overlap, so adjust the offsets here
3833                 */
3834                em_start = max(em->start, off);
3835
3836                /*
3837                 * record the offset from the start of the extent
3838                 * for adjusting the disk offset below
3839                 */
3840                offset_in_extent = em_start - em->start;
3841                em_end = extent_map_end(em);
3842                em_len = em_end - em_start;
3843                emflags = em->flags;
3844                disko = 0;
3845                flags = 0;
3846
3847                /*
3848                 * bump off for our next call to get_extent
3849                 */
3850                off = extent_map_end(em);
3851                if (off >= max)
3852                        end = 1;
3853
3854                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3855                        end = 1;
3856                        flags |= FIEMAP_EXTENT_LAST;
3857                } else if (em->block_start == EXTENT_MAP_INLINE) {
3858                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
3859                                  FIEMAP_EXTENT_NOT_ALIGNED);
3860                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3861                        flags |= (FIEMAP_EXTENT_DELALLOC |
3862                                  FIEMAP_EXTENT_UNKNOWN);
3863                } else {
3864                        disko = em->block_start + offset_in_extent;
3865                }
3866                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3867                        flags |= FIEMAP_EXTENT_ENCODED;
3868
3869                free_extent_map(em);
3870                em = NULL;
3871                if ((em_start >= last) || em_len == (u64)-1 ||
3872                   (last == (u64)-1 && isize <= em_end)) {
3873                        flags |= FIEMAP_EXTENT_LAST;
3874                        end = 1;
3875                }
3876
3877                /* now scan forward to see if this is really the last extent. */
3878                em = get_extent_skip_holes(inode, off, last_for_get_extent,
3879                                           get_extent);
3880                if (IS_ERR(em)) {
3881                        ret = PTR_ERR(em);
3882                        goto out;
3883                }
3884                if (!em) {
3885                        flags |= FIEMAP_EXTENT_LAST;
3886                        end = 1;
3887                }
3888                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3889                                              em_len, flags);
3890                if (ret)
3891                        goto out_free;
3892        }
3893out_free:
3894        free_extent_map(em);
3895out:
3896        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3897                             &cached_state, GFP_NOFS);
3898        return ret;
3899}
3900
3901inline struct page *extent_buffer_page(struct extent_buffer *eb,
3902                                              unsigned long i)
3903{
3904        return eb->pages[i];
3905}
3906
3907inline unsigned long num_extent_pages(u64 start, u64 len)
3908{
3909        return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3910                (start >> PAGE_CACHE_SHIFT);
3911}
3912
3913static void __free_extent_buffer(struct extent_buffer *eb)
3914{
3915#if LEAK_DEBUG
3916        unsigned long flags;
3917        spin_lock_irqsave(&leak_lock, flags);
3918        list_del(&eb->leak_list);
3919        spin_unlock_irqrestore(&leak_lock, flags);
3920#endif
3921        if (eb->pages && eb->pages != eb->inline_pages)
3922                kfree(eb->pages);
3923        kmem_cache_free(extent_buffer_cache, eb);
3924}
3925
3926static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3927                                                   u64 start,
3928                                                   unsigned long len,
3929                                                   gfp_t mask)
3930{
3931        struct extent_buffer *eb = NULL;
3932#if LEAK_DEBUG
3933        unsigned long flags;
3934#endif
3935
3936        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3937        if (eb == NULL)
3938                return NULL;
3939        eb->start = start;
3940        eb->len = len;
3941        eb->tree = tree;
3942        eb->bflags = 0;
3943        rwlock_init(&eb->lock);
3944        atomic_set(&eb->write_locks, 0);
3945        atomic_set(&eb->read_locks, 0);
3946        atomic_set(&eb->blocking_readers, 0);
3947        atomic_set(&eb->blocking_writers, 0);
3948        atomic_set(&eb->spinning_readers, 0);
3949        atomic_set(&eb->spinning_writers, 0);
3950        eb->lock_nested = 0;
3951        init_waitqueue_head(&eb->write_lock_wq);
3952        init_waitqueue_head(&eb->read_lock_wq);
3953
3954#if LEAK_DEBUG
3955        spin_lock_irqsave(&leak_lock, flags);
3956        list_add(&eb->leak_list, &buffers);
3957        spin_unlock_irqrestore(&leak_lock, flags);
3958#endif
3959        spin_lock_init(&eb->refs_lock);
3960        atomic_set(&eb->refs, 1);
3961        atomic_set(&eb->io_pages, 0);
3962
3963        if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3964                struct page **pages;
3965                int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3966                        PAGE_CACHE_SHIFT;
3967                pages = kzalloc(num_pages, mask);
3968                if (!pages) {
3969                        __free_extent_buffer(eb);
3970                        return NULL;
3971                }
3972                eb->pages = pages;
3973        } else {
3974                eb->pages = eb->inline_pages;
3975        }
3976
3977        return eb;
3978}
3979
3980struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3981{
3982        unsigned long i;
3983        struct page *p;
3984        struct extent_buffer *new;
3985        unsigned long num_pages = num_extent_pages(src->start, src->len);
3986
3987        new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3988        if (new == NULL)
3989                return NULL;
3990
3991        for (i = 0; i < num_pages; i++) {
3992                p = alloc_page(GFP_ATOMIC);
3993                BUG_ON(!p);
3994                attach_extent_buffer_page(new, p);
3995                WARN_ON(PageDirty(p));
3996                SetPageUptodate(p);
3997                new->pages[i] = p;
3998        }
3999
4000        copy_extent_buffer(new, src, 0, 0, src->len);
4001        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4002        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4003
4004        return new;
4005}
4006
4007struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4008{
4009        struct extent_buffer *eb;
4010        unsigned long num_pages = num_extent_pages(0, len);
4011        unsigned long i;
4012
4013        eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4014        if (!eb)
4015                return NULL;
4016
4017        for (i = 0; i < num_pages; i++) {
4018                eb->pages[i] = alloc_page(GFP_ATOMIC);
4019                if (!eb->pages[i])
4020                        goto err;
4021        }
4022        set_extent_buffer_uptodate(eb);
4023        btrfs_set_header_nritems(eb, 0);
4024        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4025
4026        return eb;
4027err:
4028        for (i--; i > 0; i--)
4029                __free_page(eb->pages[i]);
4030        __free_extent_buffer(eb);
4031        return NULL;
4032}
4033
4034static int extent_buffer_under_io(struct extent_buffer *eb)
4035{
4036        return (atomic_read(&eb->io_pages) ||
4037                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4038                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4039}
4040
4041/*
4042 * Helper for releasing extent buffer page.
4043 */
4044static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4045                                                unsigned long start_idx)
4046{
4047        unsigned long index;
4048        unsigned long num_pages;
4049        struct page *page;
4050        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4051
4052        BUG_ON(extent_buffer_under_io(eb));
4053
4054        num_pages = num_extent_pages(eb->start, eb->len);
4055        index = start_idx + num_pages;
4056        if (start_idx >= index)
4057                return;
4058
4059        do {
4060                index--;
4061                page = extent_buffer_page(eb, index);
4062                if (page && mapped) {
4063                        spin_lock(&page->mapping->private_lock);
4064                        /*
4065                         * We do this since we'll remove the pages after we've
4066                         * removed the eb from the radix tree, so we could race
4067                         * and have this page now attached to the new eb.  So
4068                         * only clear page_private if it's still connected to
4069                         * this eb.
4070                         */
4071                        if (PagePrivate(page) &&
4072                            page->private == (unsigned long)eb) {
4073                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4074                                BUG_ON(PageDirty(page));
4075                                BUG_ON(PageWriteback(page));
4076                                /*
4077                                 * We need to make sure we haven't be attached
4078                                 * to a new eb.
4079                                 */
4080                                ClearPagePrivate(page);
4081                                set_page_private(page, 0);
4082                                /* One for the page private */
4083                                page_cache_release(page);
4084                        }
4085                        spin_unlock(&page->mapping->private_lock);
4086
4087                }
4088                if (page) {
4089                        /* One for when we alloced the page */
4090                        page_cache_release(page);
4091                }
4092        } while (index != start_idx);
4093}
4094
4095/*
4096 * Helper for releasing the extent buffer.
4097 */
4098static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4099{
4100        btrfs_release_extent_buffer_page(eb, 0);
4101        __free_extent_buffer(eb);
4102}
4103
4104static void check_buffer_tree_ref(struct extent_buffer *eb)
4105{
4106        /* the ref bit is tricky.  We have to make sure it is set
4107         * if we have the buffer dirty.   Otherwise the
4108         * code to free a buffer can end up dropping a dirty
4109         * page
4110         *
4111         * Once the ref bit is set, it won't go away while the
4112         * buffer is dirty or in writeback, and it also won't
4113         * go away while we have the reference count on the
4114         * eb bumped.
4115         *
4116         * We can't just set the ref bit without bumping the
4117         * ref on the eb because free_extent_buffer might
4118         * see the ref bit and try to clear it.  If this happens
4119         * free_extent_buffer might end up dropping our original
4120         * ref by mistake and freeing the page before we are able
4121         * to add one more ref.
4122         *
4123         * So bump the ref count first, then set the bit.  If someone
4124         * beat us to it, drop the ref we added.
4125         */
4126        if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4127                atomic_inc(&eb->refs);
4128                if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4129                        atomic_dec(&eb->refs);
4130        }
4131}
4132
4133static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4134{
4135        unsigned long num_pages, i;
4136
4137        check_buffer_tree_ref(eb);
4138
4139        num_pages = num_extent_pages(eb->start, eb->len);
4140        for (i = 0; i < num_pages; i++) {
4141                struct page *p = extent_buffer_page(eb, i);
4142                mark_page_accessed(p);
4143        }
4144}
4145
4146struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4147                                          u64 start, unsigned long len)
4148{
4149        unsigned long num_pages = num_extent_pages(start, len);
4150        unsigned long i;
4151        unsigned long index = start >> PAGE_CACHE_SHIFT;
4152        struct extent_buffer *eb;
4153        struct extent_buffer *exists = NULL;
4154        struct page *p;
4155        struct address_space *mapping = tree->mapping;
4156        int uptodate = 1;
4157        int ret;
4158
4159        rcu_read_lock();
4160        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4161        if (eb && atomic_inc_not_zero(&eb->refs)) {
4162                rcu_read_unlock();
4163                mark_extent_buffer_accessed(eb);
4164                return eb;
4165        }
4166        rcu_read_unlock();
4167
4168        eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4169        if (!eb)
4170                return NULL;
4171
4172        for (i = 0; i < num_pages; i++, index++) {
4173                p = find_or_create_page(mapping, index, GFP_NOFS);
4174                if (!p) {
4175                        WARN_ON(1);
4176                        goto free_eb;
4177                }
4178
4179                spin_lock(&mapping->private_lock);
4180                if (PagePrivate(p)) {
4181                        /*
4182                         * We could have already allocated an eb for this page
4183                         * and attached one so lets see if we can get a ref on
4184                         * the existing eb, and if we can we know it's good and
4185                         * we can just return that one, else we know we can just
4186                         * overwrite page->private.
4187                         */
4188                        exists = (struct extent_buffer *)p->private;
4189                        if (atomic_inc_not_zero(&exists->refs)) {
4190                                spin_unlock(&mapping->private_lock);
4191                                unlock_page(p);
4192                                page_cache_release(p);
4193                                mark_extent_buffer_accessed(exists);
4194                                goto free_eb;
4195                        }
4196
4197                        /*
4198                         * Do this so attach doesn't complain and we need to
4199                         * drop the ref the old guy had.
4200                         */
4201                        ClearPagePrivate(p);
4202                        WARN_ON(PageDirty(p));
4203                        page_cache_release(p);
4204                }
4205                attach_extent_buffer_page(eb, p);
4206                spin_unlock(&mapping->private_lock);
4207                WARN_ON(PageDirty(p));
4208                mark_page_accessed(p);
4209                eb->pages[i] = p;
4210                if (!PageUptodate(p))
4211                        uptodate = 0;
4212
4213                /*
4214                 * see below about how we avoid a nasty race with release page
4215                 * and why we unlock later
4216                 */
4217        }
4218        if (uptodate)
4219                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4220again:
4221        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4222        if (ret)
4223                goto free_eb;
4224
4225        spin_lock(&tree->buffer_lock);
4226        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4227        if (ret == -EEXIST) {
4228                exists = radix_tree_lookup(&tree->buffer,
4229                                                start >> PAGE_CACHE_SHIFT);
4230                if (!atomic_inc_not_zero(&exists->refs)) {
4231                        spin_unlock(&tree->buffer_lock);
4232                        radix_tree_preload_end();
4233                        exists = NULL;
4234                        goto again;
4235                }
4236                spin_unlock(&tree->buffer_lock);
4237                radix_tree_preload_end();
4238                mark_extent_buffer_accessed(exists);
4239                goto free_eb;
4240        }
4241        /* add one reference for the tree */
4242        spin_lock(&eb->refs_lock);
4243        check_buffer_tree_ref(eb);
4244        spin_unlock(&eb->refs_lock);
4245        spin_unlock(&tree->buffer_lock);
4246        radix_tree_preload_end();
4247
4248        /*
4249         * there is a race where release page may have
4250         * tried to find this extent buffer in the radix
4251         * but failed.  It will tell the VM it is safe to
4252         * reclaim the, and it will clear the page private bit.
4253         * We must make sure to set the page private bit properly
4254         * after the extent buffer is in the radix tree so
4255         * it doesn't get lost
4256         */
4257        SetPageChecked(eb->pages[0]);
4258        for (i = 1; i < num_pages; i++) {
4259                p = extent_buffer_page(eb, i);
4260                ClearPageChecked(p);
4261                unlock_page(p);
4262        }
4263        unlock_page(eb->pages[0]);
4264        return eb;
4265
4266free_eb:
4267        for (i = 0; i < num_pages; i++) {
4268                if (eb->pages[i])
4269                        unlock_page(eb->pages[i]);
4270        }
4271
4272        WARN_ON(!atomic_dec_and_test(&eb->refs));
4273        btrfs_release_extent_buffer(eb);
4274        return exists;
4275}
4276
4277struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4278                                         u64 start, unsigned long len)
4279{
4280        struct extent_buffer *eb;
4281
4282        rcu_read_lock();
4283        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4284        if (eb && atomic_inc_not_zero(&eb->refs)) {
4285                rcu_read_unlock();
4286                mark_extent_buffer_accessed(eb);
4287                return eb;
4288        }
4289        rcu_read_unlock();
4290
4291        return NULL;
4292}
4293
4294static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4295{
4296        struct extent_buffer *eb =
4297                        container_of(head, struct extent_buffer, rcu_head);
4298
4299        __free_extent_buffer(eb);
4300}
4301
4302/* Expects to have eb->eb_lock already held */
4303static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4304{
4305        WARN_ON(atomic_read(&eb->refs) == 0);
4306        if (atomic_dec_and_test(&eb->refs)) {
4307                if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4308                        spin_unlock(&eb->refs_lock);
4309                } else {
4310                        struct extent_io_tree *tree = eb->tree;
4311
4312                        spin_unlock(&eb->refs_lock);
4313
4314                        spin_lock(&tree->buffer_lock);
4315                        radix_tree_delete(&tree->buffer,
4316                                          eb->start >> PAGE_CACHE_SHIFT);
4317                        spin_unlock(&tree->buffer_lock);
4318                }
4319
4320                /* Should be safe to release our pages at this point */
4321                btrfs_release_extent_buffer_page(eb, 0);
4322
4323                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4324                return;
4325        }
4326        spin_unlock(&eb->refs_lock);
4327}
4328
4329void free_extent_buffer(struct extent_buffer *eb)
4330{
4331        if (!eb)
4332                return;
4333
4334        spin_lock(&eb->refs_lock);
4335        if (atomic_read(&eb->refs) == 2 &&
4336            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4337                atomic_dec(&eb->refs);
4338
4339        if (atomic_read(&eb->refs) == 2 &&
4340            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4341            !extent_buffer_under_io(eb) &&
4342            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4343                atomic_dec(&eb->refs);
4344
4345        /*
4346         * I know this is terrible, but it's temporary until we stop tracking
4347         * the uptodate bits and such for the extent buffers.
4348         */
4349        release_extent_buffer(eb, GFP_ATOMIC);
4350}
4351
4352void free_extent_buffer_stale(struct extent_buffer *eb)
4353{
4354        if (!eb)
4355                return;
4356
4357        spin_lock(&eb->refs_lock);
4358        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4359
4360        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4361            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4362                atomic_dec(&eb->refs);
4363        release_extent_buffer(eb, GFP_NOFS);
4364}
4365
4366void clear_extent_buffer_dirty(struct extent_buffer *eb)
4367{
4368        unsigned long i;
4369        unsigned long num_pages;
4370        struct page *page;
4371
4372        num_pages = num_extent_pages(eb->start, eb->len);
4373
4374        for (i = 0; i < num_pages; i++) {
4375                page = extent_buffer_page(eb, i);
4376                if (!PageDirty(page))
4377                        continue;
4378
4379                lock_page(page);
4380                WARN_ON(!PagePrivate(page));
4381
4382                clear_page_dirty_for_io(page);
4383                spin_lock_irq(&page->mapping->tree_lock);
4384                if (!PageDirty(page)) {
4385                        radix_tree_tag_clear(&page->mapping->page_tree,
4386                                                page_index(page),
4387                                                PAGECACHE_TAG_DIRTY);
4388                }
4389                spin_unlock_irq(&page->mapping->tree_lock);
4390                ClearPageError(page);
4391                unlock_page(page);
4392        }
4393        WARN_ON(atomic_read(&eb->refs) == 0);
4394}
4395
4396int set_extent_buffer_dirty(struct extent_buffer *eb)
4397{
4398        unsigned long i;
4399        unsigned long num_pages;
4400        int was_dirty = 0;
4401
4402        check_buffer_tree_ref(eb);
4403
4404        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4405
4406        num_pages = num_extent_pages(eb->start, eb->len);
4407        WARN_ON(atomic_read(&eb->refs) == 0);
4408        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4409
4410        for (i = 0; i < num_pages; i++)
4411                set_page_dirty(extent_buffer_page(eb, i));
4412        return was_dirty;
4413}
4414
4415static int range_straddles_pages(u64 start, u64 len)
4416{
4417        if (len < PAGE_CACHE_SIZE)
4418                return 1;
4419        if (start & (PAGE_CACHE_SIZE - 1))
4420                return 1;
4421        if ((start + len) & (PAGE_CACHE_SIZE - 1))
4422                return 1;
4423        return 0;
4424}
4425
4426int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4427{
4428        unsigned long i;
4429        struct page *page;
4430        unsigned long num_pages;
4431
4432        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4433        num_pages = num_extent_pages(eb->start, eb->len);
4434        for (i = 0; i < num_pages; i++) {
4435                page = extent_buffer_page(eb, i);
4436                if (page)
4437                        ClearPageUptodate(page);
4438        }
4439        return 0;
4440}
4441
4442int set_extent_buffer_uptodate(struct extent_buffer *eb)
4443{
4444        unsigned long i;
4445        struct page *page;
4446        unsigned long num_pages;
4447
4448        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4449        num_pages = num_extent_pages(eb->start, eb->len);
4450        for (i = 0; i < num_pages; i++) {
4451                page = extent_buffer_page(eb, i);
4452                SetPageUptodate(page);
4453        }
4454        return 0;
4455}
4456
4457int extent_range_uptodate(struct extent_io_tree *tree,
4458                          u64 start, u64 end)
4459{
4460        struct page *page;
4461        int ret;
4462        int pg_uptodate = 1;
4463        int uptodate;
4464        unsigned long index;
4465
4466        if (range_straddles_pages(start, end - start + 1)) {
4467                ret = test_range_bit(tree, start, end,
4468                                     EXTENT_UPTODATE, 1, NULL);
4469                if (ret)
4470                        return 1;
4471        }
4472        while (start <= end) {
4473                index = start >> PAGE_CACHE_SHIFT;
4474                page = find_get_page(tree->mapping, index);
4475                if (!page)
4476                        return 1;
4477                uptodate = PageUptodate(page);
4478                page_cache_release(page);
4479                if (!uptodate) {
4480                        pg_uptodate = 0;
4481                        break;
4482                }
4483                start += PAGE_CACHE_SIZE;
4484        }
4485        return pg_uptodate;
4486}
4487
4488int extent_buffer_uptodate(struct extent_buffer *eb)
4489{
4490        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4491}
4492
4493int read_extent_buffer_pages(struct extent_io_tree *tree,
4494                             struct extent_buffer *eb, u64 start, int wait,
4495                             get_extent_t *get_extent, int mirror_num)
4496{
4497        unsigned long i;
4498        unsigned long start_i;
4499        struct page *page;
4500        int err;
4501        int ret = 0;
4502        int locked_pages = 0;
4503        int all_uptodate = 1;
4504        unsigned long num_pages;
4505        unsigned long num_reads = 0;
4506        struct bio *bio = NULL;
4507        unsigned long bio_flags = 0;
4508
4509        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4510                return 0;
4511
4512        if (start) {
4513                WARN_ON(start < eb->start);
4514                start_i = (start >> PAGE_CACHE_SHIFT) -
4515                        (eb->start >> PAGE_CACHE_SHIFT);
4516        } else {
4517                start_i = 0;
4518        }
4519
4520        num_pages = num_extent_pages(eb->start, eb->len);
4521        for (i = start_i; i < num_pages; i++) {
4522                page = extent_buffer_page(eb, i);
4523                if (wait == WAIT_NONE) {
4524                        if (!trylock_page(page))
4525                                goto unlock_exit;
4526                } else {
4527                        lock_page(page);
4528                }
4529                locked_pages++;
4530                if (!PageUptodate(page)) {
4531                        num_reads++;
4532                        all_uptodate = 0;
4533                }
4534        }
4535        if (all_uptodate) {
4536                if (start_i == 0)
4537                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4538                goto unlock_exit;
4539        }
4540
4541        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4542        eb->read_mirror = 0;
4543        atomic_set(&eb->io_pages, num_reads);
4544        for (i = start_i; i < num_pages; i++) {
4545                page = extent_buffer_page(eb, i);
4546                if (!PageUptodate(page)) {
4547                        ClearPageError(page);
4548                        err = __extent_read_full_page(tree, page,
4549                                                      get_extent, &bio,
4550                                                      mirror_num, &bio_flags);
4551                        if (err)
4552                                ret = err;
4553                } else {
4554                        unlock_page(page);
4555                }
4556        }
4557
4558        if (bio) {
4559                err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4560                if (err)
4561                        return err;
4562        }
4563
4564        if (ret || wait != WAIT_COMPLETE)
4565                return ret;
4566
4567        for (i = start_i; i < num_pages; i++) {
4568                page = extent_buffer_page(eb, i);
4569                wait_on_page_locked(page);
4570                if (!PageUptodate(page))
4571                        ret = -EIO;
4572        }
4573
4574        return ret;
4575
4576unlock_exit:
4577        i = start_i;
4578        while (locked_pages > 0) {
4579                page = extent_buffer_page(eb, i);
4580                i++;
4581                unlock_page(page);
4582                locked_pages--;
4583        }
4584        return ret;
4585}
4586
4587void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4588                        unsigned long start,
4589                        unsigned long len)
4590{
4591        size_t cur;
4592        size_t offset;
4593        struct page *page;
4594        char *kaddr;
4595        char *dst = (char *)dstv;
4596        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4597        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4598
4599        WARN_ON(start > eb->len);
4600        WARN_ON(start + len > eb->start + eb->len);
4601
4602        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4603
4604        while (len > 0) {
4605                page = extent_buffer_page(eb, i);
4606
4607                cur = min(len, (PAGE_CACHE_SIZE - offset));
4608                kaddr = page_address(page);
4609                memcpy(dst, kaddr + offset, cur);
4610
4611                dst += cur;
4612                len -= cur;
4613                offset = 0;
4614                i++;
4615        }
4616}
4617
4618int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4619                               unsigned long min_len, char **map,
4620                               unsigned long *map_start,
4621                               unsigned long *map_len)
4622{
4623        size_t offset = start & (PAGE_CACHE_SIZE - 1);
4624        char *kaddr;
4625        struct page *p;
4626        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4627        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4628        unsigned long end_i = (start_offset + start + min_len - 1) >>
4629                PAGE_CACHE_SHIFT;
4630
4631        if (i != end_i)
4632                return -EINVAL;
4633
4634        if (i == 0) {
4635                offset = start_offset;
4636                *map_start = 0;
4637        } else {
4638                offset = 0;
4639                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4640        }
4641
4642        if (start + min_len > eb->len) {
4643                printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4644                       "wanted %lu %lu\n", (unsigned long long)eb->start,
4645                       eb->len, start, min_len);
4646                WARN_ON(1);
4647                return -EINVAL;
4648        }
4649
4650        p = extent_buffer_page(eb, i);
4651        kaddr = page_address(p);
4652        *map = kaddr + offset;
4653        *map_len = PAGE_CACHE_SIZE - offset;
4654        return 0;
4655}
4656
4657int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4658                          unsigned long start,
4659                          unsigned long len)
4660{
4661        size_t cur;
4662        size_t offset;
4663        struct page *page;
4664        char *kaddr;
4665        char *ptr = (char *)ptrv;
4666        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4667        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4668        int ret = 0;
4669
4670        WARN_ON(start > eb->len);
4671        WARN_ON(start + len > eb->start + eb->len);
4672
4673        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4674
4675        while (len > 0) {
4676                page = extent_buffer_page(eb, i);
4677
4678                cur = min(len, (PAGE_CACHE_SIZE - offset));
4679
4680                kaddr = page_address(page);
4681                ret = memcmp(ptr, kaddr + offset, cur);
4682                if (ret)
4683                        break;
4684
4685                ptr += cur;
4686                len -= cur;
4687                offset = 0;
4688                i++;
4689        }
4690        return ret;
4691}
4692
4693void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4694                         unsigned long start, unsigned long len)
4695{
4696        size_t cur;
4697        size_t offset;
4698        struct page *page;
4699        char *kaddr;
4700        char *src = (char *)srcv;
4701        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4702        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4703
4704        WARN_ON(start > eb->len);
4705        WARN_ON(start + len > eb->start + eb->len);
4706
4707        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4708
4709        while (len > 0) {
4710                page = extent_buffer_page(eb, i);
4711                WARN_ON(!PageUptodate(page));
4712
4713                cur = min(len, PAGE_CACHE_SIZE - offset);
4714                kaddr = page_address(page);
4715                memcpy(kaddr + offset, src, cur);
4716
4717                src += cur;
4718                len -= cur;
4719                offset = 0;
4720                i++;
4721        }
4722}
4723
4724void memset_extent_buffer(struct extent_buffer *eb, char c,
4725                          unsigned long start, unsigned long len)
4726{
4727        size_t cur;
4728        size_t offset;
4729        struct page *page;
4730        char *kaddr;
4731        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4732        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4733
4734        WARN_ON(start > eb->len);
4735        WARN_ON(start + len > eb->start + eb->len);
4736
4737        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4738
4739        while (len > 0) {
4740                page = extent_buffer_page(eb, i);
4741                WARN_ON(!PageUptodate(page));
4742
4743                cur = min(len, PAGE_CACHE_SIZE - offset);
4744                kaddr = page_address(page);
4745                memset(kaddr + offset, c, cur);
4746
4747                len -= cur;
4748                offset = 0;
4749                i++;
4750        }
4751}
4752
4753void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4754                        unsigned long dst_offset, unsigned long src_offset,
4755                        unsigned long len)
4756{
4757        u64 dst_len = dst->len;
4758        size_t cur;
4759        size_t offset;
4760        struct page *page;
4761        char *kaddr;
4762        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4763        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4764
4765        WARN_ON(src->len != dst_len);
4766
4767        offset = (start_offset + dst_offset) &
4768                ((unsigned long)PAGE_CACHE_SIZE - 1);
4769
4770        while (len > 0) {
4771                page = extent_buffer_page(dst, i);
4772                WARN_ON(!PageUptodate(page));
4773
4774                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4775
4776                kaddr = page_address(page);
4777                read_extent_buffer(src, kaddr + offset, src_offset, cur);
4778
4779                src_offset += cur;
4780                len -= cur;
4781                offset = 0;
4782                i++;
4783        }
4784}
4785
4786static void move_pages(struct page *dst_page, struct page *src_page,
4787                       unsigned long dst_off, unsigned long src_off,
4788                       unsigned long len)
4789{
4790        char *dst_kaddr = page_address(dst_page);
4791        if (dst_page == src_page) {
4792                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4793        } else {
4794                char *src_kaddr = page_address(src_page);
4795                char *p = dst_kaddr + dst_off + len;
4796                char *s = src_kaddr + src_off + len;
4797
4798                while (len--)
4799                        *--p = *--s;
4800        }
4801}
4802
4803static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4804{
4805        unsigned long distance = (src > dst) ? src - dst : dst - src;
4806        return distance < len;
4807}
4808
4809static void copy_pages(struct page *dst_page, struct page *src_page,
4810                       unsigned long dst_off, unsigned long src_off,
4811                       unsigned long len)
4812{
4813        char *dst_kaddr = page_address(dst_page);
4814        char *src_kaddr;
4815        int must_memmove = 0;
4816
4817        if (dst_page != src_page) {
4818                src_kaddr = page_address(src_page);
4819        } else {
4820                src_kaddr = dst_kaddr;
4821                if (areas_overlap(src_off, dst_off, len))
4822                        must_memmove = 1;
4823        }
4824
4825        if (must_memmove)
4826                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4827        else
4828                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4829}
4830
4831void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4832                           unsigned long src_offset, unsigned long len)
4833{
4834        size_t cur;
4835        size_t dst_off_in_page;
4836        size_t src_off_in_page;
4837        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4838        unsigned long dst_i;
4839        unsigned long src_i;
4840
4841        if (src_offset + len > dst->len) {
4842                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4843                       "len %lu dst len %lu\n", src_offset, len, dst->len);
4844                BUG_ON(1);
4845        }
4846        if (dst_offset + len > dst->len) {
4847                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4848                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4849                BUG_ON(1);
4850        }
4851
4852        while (len > 0) {
4853                dst_off_in_page = (start_offset + dst_offset) &
4854                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4855                src_off_in_page = (start_offset + src_offset) &
4856                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4857
4858                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4859                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4860
4861                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4862                                               src_off_in_page));
4863                cur = min_t(unsigned long, cur,
4864                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4865
4866                copy_pages(extent_buffer_page(dst, dst_i),
4867                           extent_buffer_page(dst, src_i),
4868                           dst_off_in_page, src_off_in_page, cur);
4869
4870                src_offset += cur;
4871                dst_offset += cur;
4872                len -= cur;
4873        }
4874}
4875
4876void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4877                           unsigned long src_offset, unsigned long len)
4878{
4879        size_t cur;
4880        size_t dst_off_in_page;
4881        size_t src_off_in_page;
4882        unsigned long dst_end = dst_offset + len - 1;
4883        unsigned long src_end = src_offset + len - 1;
4884        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4885        unsigned long dst_i;
4886        unsigned long src_i;
4887
4888        if (src_offset + len > dst->len) {
4889                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4890                       "len %lu len %lu\n", src_offset, len, dst->len);
4891                BUG_ON(1);
4892        }
4893        if (dst_offset + len > dst->len) {
4894                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4895                       "len %lu len %lu\n", dst_offset, len, dst->len);
4896                BUG_ON(1);
4897        }
4898        if (dst_offset < src_offset) {
4899                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4900                return;
4901        }
4902        while (len > 0) {
4903                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4904                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4905
4906                dst_off_in_page = (start_offset + dst_end) &
4907                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4908                src_off_in_page = (start_offset + src_end) &
4909                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4910
4911                cur = min_t(unsigned long, len, src_off_in_page + 1);
4912                cur = min(cur, dst_off_in_page + 1);
4913                move_pages(extent_buffer_page(dst, dst_i),
4914                           extent_buffer_page(dst, src_i),
4915                           dst_off_in_page - cur + 1,
4916                           src_off_in_page - cur + 1, cur);
4917
4918                dst_end -= cur;
4919                src_end -= cur;
4920                len -= cur;
4921        }
4922}
4923
4924int try_release_extent_buffer(struct page *page, gfp_t mask)
4925{
4926        struct extent_buffer *eb;
4927
4928        /*
4929         * We need to make sure noboody is attaching this page to an eb right
4930         * now.
4931         */
4932        spin_lock(&page->mapping->private_lock);
4933        if (!PagePrivate(page)) {
4934                spin_unlock(&page->mapping->private_lock);
4935                return 1;
4936        }
4937
4938        eb = (struct extent_buffer *)page->private;
4939        BUG_ON(!eb);
4940
4941        /*
4942         * This is a little awful but should be ok, we need to make sure that
4943         * the eb doesn't disappear out from under us while we're looking at
4944         * this page.
4945         */
4946        spin_lock(&eb->refs_lock);
4947        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4948                spin_unlock(&eb->refs_lock);
4949                spin_unlock(&page->mapping->private_lock);
4950                return 0;
4951        }
4952        spin_unlock(&page->mapping->private_lock);
4953
4954        if ((mask & GFP_NOFS) == GFP_NOFS)
4955                mask = GFP_NOFS;
4956
4957        /*
4958         * If tree ref isn't set then we know the ref on this eb is a real ref,
4959         * so just return, this page will likely be freed soon anyway.
4960         */
4961        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4962                spin_unlock(&eb->refs_lock);
4963                return 0;
4964        }
4965        release_extent_buffer(eb, mask);
4966
4967        return 1;
4968}
4969