linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *      (jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51                              struct ext4_inode_info *ei)
  52{
  53        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54        __u16 csum_lo;
  55        __u16 csum_hi = 0;
  56        __u32 csum;
  57
  58        csum_lo = raw->i_checksum_lo;
  59        raw->i_checksum_lo = 0;
  60        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62                csum_hi = raw->i_checksum_hi;
  63                raw->i_checksum_hi = 0;
  64        }
  65
  66        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67                           EXT4_INODE_SIZE(inode->i_sb));
  68
  69        raw->i_checksum_lo = csum_lo;
  70        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72                raw->i_checksum_hi = csum_hi;
  73
  74        return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78                                  struct ext4_inode_info *ei)
  79{
  80        __u32 provided, calculated;
  81
  82        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83            cpu_to_le32(EXT4_OS_LINUX) ||
  84            !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  85                EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  86                return 1;
  87
  88        provided = le16_to_cpu(raw->i_checksum_lo);
  89        calculated = ext4_inode_csum(inode, raw, ei);
  90        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  91            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  92                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  93        else
  94                calculated &= 0xFFFF;
  95
  96        return provided == calculated;
  97}
  98
  99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 100                                struct ext4_inode_info *ei)
 101{
 102        __u32 csum;
 103
 104        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 105            cpu_to_le32(EXT4_OS_LINUX) ||
 106            !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 107                EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 108                return;
 109
 110        csum = ext4_inode_csum(inode, raw, ei);
 111        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 112        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 113            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 114                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 115}
 116
 117static inline int ext4_begin_ordered_truncate(struct inode *inode,
 118                                              loff_t new_size)
 119{
 120        trace_ext4_begin_ordered_truncate(inode, new_size);
 121        /*
 122         * If jinode is zero, then we never opened the file for
 123         * writing, so there's no need to call
 124         * jbd2_journal_begin_ordered_truncate() since there's no
 125         * outstanding writes we need to flush.
 126         */
 127        if (!EXT4_I(inode)->jinode)
 128                return 0;
 129        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 130                                                   EXT4_I(inode)->jinode,
 131                                                   new_size);
 132}
 133
 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
 135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
 136                                   struct buffer_head *bh_result, int create);
 137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
 138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
 142                struct inode *inode, struct page *page, loff_t from,
 143                loff_t length, int flags);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 */
 148static int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151                (inode->i_sb->s_blocksize >> 9) : 0;
 152
 153        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 154}
 155
 156/*
 157 * Restart the transaction associated with *handle.  This does a commit,
 158 * so before we call here everything must be consistently dirtied against
 159 * this transaction.
 160 */
 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 162                                 int nblocks)
 163{
 164        int ret;
 165
 166        /*
 167         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 168         * moment, get_block can be called only for blocks inside i_size since
 169         * page cache has been already dropped and writes are blocked by
 170         * i_mutex. So we can safely drop the i_data_sem here.
 171         */
 172        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 173        jbd_debug(2, "restarting handle %p\n", handle);
 174        up_write(&EXT4_I(inode)->i_data_sem);
 175        ret = ext4_journal_restart(handle, nblocks);
 176        down_write(&EXT4_I(inode)->i_data_sem);
 177        ext4_discard_preallocations(inode);
 178
 179        return ret;
 180}
 181
 182/*
 183 * Called at the last iput() if i_nlink is zero.
 184 */
 185void ext4_evict_inode(struct inode *inode)
 186{
 187        handle_t *handle;
 188        int err;
 189
 190        trace_ext4_evict_inode(inode);
 191
 192        ext4_ioend_wait(inode);
 193
 194        if (inode->i_nlink) {
 195                /*
 196                 * When journalling data dirty buffers are tracked only in the
 197                 * journal. So although mm thinks everything is clean and
 198                 * ready for reaping the inode might still have some pages to
 199                 * write in the running transaction or waiting to be
 200                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 201                 * (via truncate_inode_pages()) to discard these buffers can
 202                 * cause data loss. Also even if we did not discard these
 203                 * buffers, we would have no way to find them after the inode
 204                 * is reaped and thus user could see stale data if he tries to
 205                 * read them before the transaction is checkpointed. So be
 206                 * careful and force everything to disk here... We use
 207                 * ei->i_datasync_tid to store the newest transaction
 208                 * containing inode's data.
 209                 *
 210                 * Note that directories do not have this problem because they
 211                 * don't use page cache.
 212                 */
 213                if (ext4_should_journal_data(inode) &&
 214                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 215                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 216                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 217
 218                        jbd2_log_start_commit(journal, commit_tid);
 219                        jbd2_log_wait_commit(journal, commit_tid);
 220                        filemap_write_and_wait(&inode->i_data);
 221                }
 222                truncate_inode_pages(&inode->i_data, 0);
 223                goto no_delete;
 224        }
 225
 226        if (!is_bad_inode(inode))
 227                dquot_initialize(inode);
 228
 229        if (ext4_should_order_data(inode))
 230                ext4_begin_ordered_truncate(inode, 0);
 231        truncate_inode_pages(&inode->i_data, 0);
 232
 233        if (is_bad_inode(inode))
 234                goto no_delete;
 235
 236        handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 237        if (IS_ERR(handle)) {
 238                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239                /*
 240                 * If we're going to skip the normal cleanup, we still need to
 241                 * make sure that the in-core orphan linked list is properly
 242                 * cleaned up.
 243                 */
 244                ext4_orphan_del(NULL, inode);
 245                goto no_delete;
 246        }
 247
 248        if (IS_SYNC(inode))
 249                ext4_handle_sync(handle);
 250        inode->i_size = 0;
 251        err = ext4_mark_inode_dirty(handle, inode);
 252        if (err) {
 253                ext4_warning(inode->i_sb,
 254                             "couldn't mark inode dirty (err %d)", err);
 255                goto stop_handle;
 256        }
 257        if (inode->i_blocks)
 258                ext4_truncate(inode);
 259
 260        /*
 261         * ext4_ext_truncate() doesn't reserve any slop when it
 262         * restarts journal transactions; therefore there may not be
 263         * enough credits left in the handle to remove the inode from
 264         * the orphan list and set the dtime field.
 265         */
 266        if (!ext4_handle_has_enough_credits(handle, 3)) {
 267                err = ext4_journal_extend(handle, 3);
 268                if (err > 0)
 269                        err = ext4_journal_restart(handle, 3);
 270                if (err != 0) {
 271                        ext4_warning(inode->i_sb,
 272                                     "couldn't extend journal (err %d)", err);
 273                stop_handle:
 274                        ext4_journal_stop(handle);
 275                        ext4_orphan_del(NULL, inode);
 276                        goto no_delete;
 277                }
 278        }
 279
 280        /*
 281         * Kill off the orphan record which ext4_truncate created.
 282         * AKPM: I think this can be inside the above `if'.
 283         * Note that ext4_orphan_del() has to be able to cope with the
 284         * deletion of a non-existent orphan - this is because we don't
 285         * know if ext4_truncate() actually created an orphan record.
 286         * (Well, we could do this if we need to, but heck - it works)
 287         */
 288        ext4_orphan_del(handle, inode);
 289        EXT4_I(inode)->i_dtime  = get_seconds();
 290
 291        /*
 292         * One subtle ordering requirement: if anything has gone wrong
 293         * (transaction abort, IO errors, whatever), then we can still
 294         * do these next steps (the fs will already have been marked as
 295         * having errors), but we can't free the inode if the mark_dirty
 296         * fails.
 297         */
 298        if (ext4_mark_inode_dirty(handle, inode))
 299                /* If that failed, just do the required in-core inode clear. */
 300                ext4_clear_inode(inode);
 301        else
 302                ext4_free_inode(handle, inode);
 303        ext4_journal_stop(handle);
 304        return;
 305no_delete:
 306        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 307}
 308
 309#ifdef CONFIG_QUOTA
 310qsize_t *ext4_get_reserved_space(struct inode *inode)
 311{
 312        return &EXT4_I(inode)->i_reserved_quota;
 313}
 314#endif
 315
 316/*
 317 * Calculate the number of metadata blocks need to reserve
 318 * to allocate a block located at @lblock
 319 */
 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 321{
 322        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 323                return ext4_ext_calc_metadata_amount(inode, lblock);
 324
 325        return ext4_ind_calc_metadata_amount(inode, lblock);
 326}
 327
 328/*
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333                                        int used, int quota_claim)
 334{
 335        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336        struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338        spin_lock(&ei->i_block_reservation_lock);
 339        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340        if (unlikely(used > ei->i_reserved_data_blocks)) {
 341                ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 342                         "with only %d reserved data blocks",
 343                         __func__, inode->i_ino, used,
 344                         ei->i_reserved_data_blocks);
 345                WARN_ON(1);
 346                used = ei->i_reserved_data_blocks;
 347        }
 348
 349        /* Update per-inode reservations */
 350        ei->i_reserved_data_blocks -= used;
 351        ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 352        percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 353                           used + ei->i_allocated_meta_blocks);
 354        ei->i_allocated_meta_blocks = 0;
 355
 356        if (ei->i_reserved_data_blocks == 0) {
 357                /*
 358                 * We can release all of the reserved metadata blocks
 359                 * only when we have written all of the delayed
 360                 * allocation blocks.
 361                 */
 362                percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 363                                   ei->i_reserved_meta_blocks);
 364                ei->i_reserved_meta_blocks = 0;
 365                ei->i_da_metadata_calc_len = 0;
 366        }
 367        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 368
 369        /* Update quota subsystem for data blocks */
 370        if (quota_claim)
 371                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 372        else {
 373                /*
 374                 * We did fallocate with an offset that is already delayed
 375                 * allocated. So on delayed allocated writeback we should
 376                 * not re-claim the quota for fallocated blocks.
 377                 */
 378                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 379        }
 380
 381        /*
 382         * If we have done all the pending block allocations and if
 383         * there aren't any writers on the inode, we can discard the
 384         * inode's preallocations.
 385         */
 386        if ((ei->i_reserved_data_blocks == 0) &&
 387            (atomic_read(&inode->i_writecount) == 0))
 388                ext4_discard_preallocations(inode);
 389}
 390
 391static int __check_block_validity(struct inode *inode, const char *func,
 392                                unsigned int line,
 393                                struct ext4_map_blocks *map)
 394{
 395        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 396                                   map->m_len)) {
 397                ext4_error_inode(inode, func, line, map->m_pblk,
 398                                 "lblock %lu mapped to illegal pblock "
 399                                 "(length %d)", (unsigned long) map->m_lblk,
 400                                 map->m_len);
 401                return -EIO;
 402        }
 403        return 0;
 404}
 405
 406#define check_block_validity(inode, map)        \
 407        __check_block_validity((inode), __func__, __LINE__, (map))
 408
 409/*
 410 * Return the number of contiguous dirty pages in a given inode
 411 * starting at page frame idx.
 412 */
 413static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 414                                    unsigned int max_pages)
 415{
 416        struct address_space *mapping = inode->i_mapping;
 417        pgoff_t index;
 418        struct pagevec pvec;
 419        pgoff_t num = 0;
 420        int i, nr_pages, done = 0;
 421
 422        if (max_pages == 0)
 423                return 0;
 424        pagevec_init(&pvec, 0);
 425        while (!done) {
 426                index = idx;
 427                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 428                                              PAGECACHE_TAG_DIRTY,
 429                                              (pgoff_t)PAGEVEC_SIZE);
 430                if (nr_pages == 0)
 431                        break;
 432                for (i = 0; i < nr_pages; i++) {
 433                        struct page *page = pvec.pages[i];
 434                        struct buffer_head *bh, *head;
 435
 436                        lock_page(page);
 437                        if (unlikely(page->mapping != mapping) ||
 438                            !PageDirty(page) ||
 439                            PageWriteback(page) ||
 440                            page->index != idx) {
 441                                done = 1;
 442                                unlock_page(page);
 443                                break;
 444                        }
 445                        if (page_has_buffers(page)) {
 446                                bh = head = page_buffers(page);
 447                                do {
 448                                        if (!buffer_delay(bh) &&
 449                                            !buffer_unwritten(bh))
 450                                                done = 1;
 451                                        bh = bh->b_this_page;
 452                                } while (!done && (bh != head));
 453                        }
 454                        unlock_page(page);
 455                        if (done)
 456                                break;
 457                        idx++;
 458                        num++;
 459                        if (num >= max_pages) {
 460                                done = 1;
 461                                break;
 462                        }
 463                }
 464                pagevec_release(&pvec);
 465        }
 466        return num;
 467}
 468
 469/*
 470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 471 */
 472static void set_buffers_da_mapped(struct inode *inode,
 473                                   struct ext4_map_blocks *map)
 474{
 475        struct address_space *mapping = inode->i_mapping;
 476        struct pagevec pvec;
 477        int i, nr_pages;
 478        pgoff_t index, end;
 479
 480        index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 481        end = (map->m_lblk + map->m_len - 1) >>
 482                (PAGE_CACHE_SHIFT - inode->i_blkbits);
 483
 484        pagevec_init(&pvec, 0);
 485        while (index <= end) {
 486                nr_pages = pagevec_lookup(&pvec, mapping, index,
 487                                          min(end - index + 1,
 488                                              (pgoff_t)PAGEVEC_SIZE));
 489                if (nr_pages == 0)
 490                        break;
 491                for (i = 0; i < nr_pages; i++) {
 492                        struct page *page = pvec.pages[i];
 493                        struct buffer_head *bh, *head;
 494
 495                        if (unlikely(page->mapping != mapping) ||
 496                            !PageDirty(page))
 497                                break;
 498
 499                        if (page_has_buffers(page)) {
 500                                bh = head = page_buffers(page);
 501                                do {
 502                                        set_buffer_da_mapped(bh);
 503                                        bh = bh->b_this_page;
 504                                } while (bh != head);
 505                        }
 506                        index++;
 507                }
 508                pagevec_release(&pvec);
 509        }
 510}
 511
 512/*
 513 * The ext4_map_blocks() function tries to look up the requested blocks,
 514 * and returns if the blocks are already mapped.
 515 *
 516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 517 * and store the allocated blocks in the result buffer head and mark it
 518 * mapped.
 519 *
 520 * If file type is extents based, it will call ext4_ext_map_blocks(),
 521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 522 * based files
 523 *
 524 * On success, it returns the number of blocks being mapped or allocate.
 525 * if create==0 and the blocks are pre-allocated and uninitialized block,
 526 * the result buffer head is unmapped. If the create ==1, it will make sure
 527 * the buffer head is mapped.
 528 *
 529 * It returns 0 if plain look up failed (blocks have not been allocated), in
 530 * that case, buffer head is unmapped
 531 *
 532 * It returns the error in case of allocation failure.
 533 */
 534int ext4_map_blocks(handle_t *handle, struct inode *inode,
 535                    struct ext4_map_blocks *map, int flags)
 536{
 537        int retval;
 538
 539        map->m_flags = 0;
 540        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 541                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 542                  (unsigned long) map->m_lblk);
 543        /*
 544         * Try to see if we can get the block without requesting a new
 545         * file system block.
 546         */
 547        down_read((&EXT4_I(inode)->i_data_sem));
 548        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 549                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 550                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 551        } else {
 552                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 553                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 554        }
 555        up_read((&EXT4_I(inode)->i_data_sem));
 556
 557        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 558                int ret = check_block_validity(inode, map);
 559                if (ret != 0)
 560                        return ret;
 561        }
 562
 563        /* If it is only a block(s) look up */
 564        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 565                return retval;
 566
 567        /*
 568         * Returns if the blocks have already allocated
 569         *
 570         * Note that if blocks have been preallocated
 571         * ext4_ext_get_block() returns the create = 0
 572         * with buffer head unmapped.
 573         */
 574        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 575                return retval;
 576
 577        /*
 578         * When we call get_blocks without the create flag, the
 579         * BH_Unwritten flag could have gotten set if the blocks
 580         * requested were part of a uninitialized extent.  We need to
 581         * clear this flag now that we are committed to convert all or
 582         * part of the uninitialized extent to be an initialized
 583         * extent.  This is because we need to avoid the combination
 584         * of BH_Unwritten and BH_Mapped flags being simultaneously
 585         * set on the buffer_head.
 586         */
 587        map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 588
 589        /*
 590         * New blocks allocate and/or writing to uninitialized extent
 591         * will possibly result in updating i_data, so we take
 592         * the write lock of i_data_sem, and call get_blocks()
 593         * with create == 1 flag.
 594         */
 595        down_write((&EXT4_I(inode)->i_data_sem));
 596
 597        /*
 598         * if the caller is from delayed allocation writeout path
 599         * we have already reserved fs blocks for allocation
 600         * let the underlying get_block() function know to
 601         * avoid double accounting
 602         */
 603        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 604                ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 605        /*
 606         * We need to check for EXT4 here because migrate
 607         * could have changed the inode type in between
 608         */
 609        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 610                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 611        } else {
 612                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 613
 614                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 615                        /*
 616                         * We allocated new blocks which will result in
 617                         * i_data's format changing.  Force the migrate
 618                         * to fail by clearing migrate flags
 619                         */
 620                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 621                }
 622
 623                /*
 624                 * Update reserved blocks/metadata blocks after successful
 625                 * block allocation which had been deferred till now. We don't
 626                 * support fallocate for non extent files. So we can update
 627                 * reserve space here.
 628                 */
 629                if ((retval > 0) &&
 630                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 631                        ext4_da_update_reserve_space(inode, retval, 1);
 632        }
 633        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 634                ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 635
 636                /* If we have successfully mapped the delayed allocated blocks,
 637                 * set the BH_Da_Mapped bit on them. Its important to do this
 638                 * under the protection of i_data_sem.
 639                 */
 640                if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 641                        set_buffers_da_mapped(inode, map);
 642        }
 643
 644        up_write((&EXT4_I(inode)->i_data_sem));
 645        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 646                int ret = check_block_validity(inode, map);
 647                if (ret != 0)
 648                        return ret;
 649        }
 650        return retval;
 651}
 652
 653/* Maximum number of blocks we map for direct IO at once. */
 654#define DIO_MAX_BLOCKS 4096
 655
 656static int _ext4_get_block(struct inode *inode, sector_t iblock,
 657                           struct buffer_head *bh, int flags)
 658{
 659        handle_t *handle = ext4_journal_current_handle();
 660        struct ext4_map_blocks map;
 661        int ret = 0, started = 0;
 662        int dio_credits;
 663
 664        map.m_lblk = iblock;
 665        map.m_len = bh->b_size >> inode->i_blkbits;
 666
 667        if (flags && !handle) {
 668                /* Direct IO write... */
 669                if (map.m_len > DIO_MAX_BLOCKS)
 670                        map.m_len = DIO_MAX_BLOCKS;
 671                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 672                handle = ext4_journal_start(inode, dio_credits);
 673                if (IS_ERR(handle)) {
 674                        ret = PTR_ERR(handle);
 675                        return ret;
 676                }
 677                started = 1;
 678        }
 679
 680        ret = ext4_map_blocks(handle, inode, &map, flags);
 681        if (ret > 0) {
 682                map_bh(bh, inode->i_sb, map.m_pblk);
 683                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 684                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 685                ret = 0;
 686        }
 687        if (started)
 688                ext4_journal_stop(handle);
 689        return ret;
 690}
 691
 692int ext4_get_block(struct inode *inode, sector_t iblock,
 693                   struct buffer_head *bh, int create)
 694{
 695        return _ext4_get_block(inode, iblock, bh,
 696                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 697}
 698
 699/*
 700 * `handle' can be NULL if create is zero
 701 */
 702struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 703                                ext4_lblk_t block, int create, int *errp)
 704{
 705        struct ext4_map_blocks map;
 706        struct buffer_head *bh;
 707        int fatal = 0, err;
 708
 709        J_ASSERT(handle != NULL || create == 0);
 710
 711        map.m_lblk = block;
 712        map.m_len = 1;
 713        err = ext4_map_blocks(handle, inode, &map,
 714                              create ? EXT4_GET_BLOCKS_CREATE : 0);
 715
 716        if (err < 0)
 717                *errp = err;
 718        if (err <= 0)
 719                return NULL;
 720        *errp = 0;
 721
 722        bh = sb_getblk(inode->i_sb, map.m_pblk);
 723        if (!bh) {
 724                *errp = -EIO;
 725                return NULL;
 726        }
 727        if (map.m_flags & EXT4_MAP_NEW) {
 728                J_ASSERT(create != 0);
 729                J_ASSERT(handle != NULL);
 730
 731                /*
 732                 * Now that we do not always journal data, we should
 733                 * keep in mind whether this should always journal the
 734                 * new buffer as metadata.  For now, regular file
 735                 * writes use ext4_get_block instead, so it's not a
 736                 * problem.
 737                 */
 738                lock_buffer(bh);
 739                BUFFER_TRACE(bh, "call get_create_access");
 740                fatal = ext4_journal_get_create_access(handle, bh);
 741                if (!fatal && !buffer_uptodate(bh)) {
 742                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 743                        set_buffer_uptodate(bh);
 744                }
 745                unlock_buffer(bh);
 746                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 747                err = ext4_handle_dirty_metadata(handle, inode, bh);
 748                if (!fatal)
 749                        fatal = err;
 750        } else {
 751                BUFFER_TRACE(bh, "not a new buffer");
 752        }
 753        if (fatal) {
 754                *errp = fatal;
 755                brelse(bh);
 756                bh = NULL;
 757        }
 758        return bh;
 759}
 760
 761struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 762                               ext4_lblk_t block, int create, int *err)
 763{
 764        struct buffer_head *bh;
 765
 766        bh = ext4_getblk(handle, inode, block, create, err);
 767        if (!bh)
 768                return bh;
 769        if (buffer_uptodate(bh))
 770                return bh;
 771        ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 772        wait_on_buffer(bh);
 773        if (buffer_uptodate(bh))
 774                return bh;
 775        put_bh(bh);
 776        *err = -EIO;
 777        return NULL;
 778}
 779
 780static int walk_page_buffers(handle_t *handle,
 781                             struct buffer_head *head,
 782                             unsigned from,
 783                             unsigned to,
 784                             int *partial,
 785                             int (*fn)(handle_t *handle,
 786                                       struct buffer_head *bh))
 787{
 788        struct buffer_head *bh;
 789        unsigned block_start, block_end;
 790        unsigned blocksize = head->b_size;
 791        int err, ret = 0;
 792        struct buffer_head *next;
 793
 794        for (bh = head, block_start = 0;
 795             ret == 0 && (bh != head || !block_start);
 796             block_start = block_end, bh = next) {
 797                next = bh->b_this_page;
 798                block_end = block_start + blocksize;
 799                if (block_end <= from || block_start >= to) {
 800                        if (partial && !buffer_uptodate(bh))
 801                                *partial = 1;
 802                        continue;
 803                }
 804                err = (*fn)(handle, bh);
 805                if (!ret)
 806                        ret = err;
 807        }
 808        return ret;
 809}
 810
 811/*
 812 * To preserve ordering, it is essential that the hole instantiation and
 813 * the data write be encapsulated in a single transaction.  We cannot
 814 * close off a transaction and start a new one between the ext4_get_block()
 815 * and the commit_write().  So doing the jbd2_journal_start at the start of
 816 * prepare_write() is the right place.
 817 *
 818 * Also, this function can nest inside ext4_writepage() ->
 819 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 820 * has generated enough buffer credits to do the whole page.  So we won't
 821 * block on the journal in that case, which is good, because the caller may
 822 * be PF_MEMALLOC.
 823 *
 824 * By accident, ext4 can be reentered when a transaction is open via
 825 * quota file writes.  If we were to commit the transaction while thus
 826 * reentered, there can be a deadlock - we would be holding a quota
 827 * lock, and the commit would never complete if another thread had a
 828 * transaction open and was blocking on the quota lock - a ranking
 829 * violation.
 830 *
 831 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 832 * will _not_ run commit under these circumstances because handle->h_ref
 833 * is elevated.  We'll still have enough credits for the tiny quotafile
 834 * write.
 835 */
 836static int do_journal_get_write_access(handle_t *handle,
 837                                       struct buffer_head *bh)
 838{
 839        int dirty = buffer_dirty(bh);
 840        int ret;
 841
 842        if (!buffer_mapped(bh) || buffer_freed(bh))
 843                return 0;
 844        /*
 845         * __block_write_begin() could have dirtied some buffers. Clean
 846         * the dirty bit as jbd2_journal_get_write_access() could complain
 847         * otherwise about fs integrity issues. Setting of the dirty bit
 848         * by __block_write_begin() isn't a real problem here as we clear
 849         * the bit before releasing a page lock and thus writeback cannot
 850         * ever write the buffer.
 851         */
 852        if (dirty)
 853                clear_buffer_dirty(bh);
 854        ret = ext4_journal_get_write_access(handle, bh);
 855        if (!ret && dirty)
 856                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 857        return ret;
 858}
 859
 860static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 861                   struct buffer_head *bh_result, int create);
 862static int ext4_write_begin(struct file *file, struct address_space *mapping,
 863                            loff_t pos, unsigned len, unsigned flags,
 864                            struct page **pagep, void **fsdata)
 865{
 866        struct inode *inode = mapping->host;
 867        int ret, needed_blocks;
 868        handle_t *handle;
 869        int retries = 0;
 870        struct page *page;
 871        pgoff_t index;
 872        unsigned from, to;
 873
 874        trace_ext4_write_begin(inode, pos, len, flags);
 875        /*
 876         * Reserve one block more for addition to orphan list in case
 877         * we allocate blocks but write fails for some reason
 878         */
 879        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 880        index = pos >> PAGE_CACHE_SHIFT;
 881        from = pos & (PAGE_CACHE_SIZE - 1);
 882        to = from + len;
 883
 884retry:
 885        handle = ext4_journal_start(inode, needed_blocks);
 886        if (IS_ERR(handle)) {
 887                ret = PTR_ERR(handle);
 888                goto out;
 889        }
 890
 891        /* We cannot recurse into the filesystem as the transaction is already
 892         * started */
 893        flags |= AOP_FLAG_NOFS;
 894
 895        page = grab_cache_page_write_begin(mapping, index, flags);
 896        if (!page) {
 897                ext4_journal_stop(handle);
 898                ret = -ENOMEM;
 899                goto out;
 900        }
 901        *pagep = page;
 902
 903        if (ext4_should_dioread_nolock(inode))
 904                ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 905        else
 906                ret = __block_write_begin(page, pos, len, ext4_get_block);
 907
 908        if (!ret && ext4_should_journal_data(inode)) {
 909                ret = walk_page_buffers(handle, page_buffers(page),
 910                                from, to, NULL, do_journal_get_write_access);
 911        }
 912
 913        if (ret) {
 914                unlock_page(page);
 915                page_cache_release(page);
 916                /*
 917                 * __block_write_begin may have instantiated a few blocks
 918                 * outside i_size.  Trim these off again. Don't need
 919                 * i_size_read because we hold i_mutex.
 920                 *
 921                 * Add inode to orphan list in case we crash before
 922                 * truncate finishes
 923                 */
 924                if (pos + len > inode->i_size && ext4_can_truncate(inode))
 925                        ext4_orphan_add(handle, inode);
 926
 927                ext4_journal_stop(handle);
 928                if (pos + len > inode->i_size) {
 929                        ext4_truncate_failed_write(inode);
 930                        /*
 931                         * If truncate failed early the inode might
 932                         * still be on the orphan list; we need to
 933                         * make sure the inode is removed from the
 934                         * orphan list in that case.
 935                         */
 936                        if (inode->i_nlink)
 937                                ext4_orphan_del(NULL, inode);
 938                }
 939        }
 940
 941        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 942                goto retry;
 943out:
 944        return ret;
 945}
 946
 947/* For write_end() in data=journal mode */
 948static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 949{
 950        if (!buffer_mapped(bh) || buffer_freed(bh))
 951                return 0;
 952        set_buffer_uptodate(bh);
 953        return ext4_handle_dirty_metadata(handle, NULL, bh);
 954}
 955
 956static int ext4_generic_write_end(struct file *file,
 957                                  struct address_space *mapping,
 958                                  loff_t pos, unsigned len, unsigned copied,
 959                                  struct page *page, void *fsdata)
 960{
 961        int i_size_changed = 0;
 962        struct inode *inode = mapping->host;
 963        handle_t *handle = ext4_journal_current_handle();
 964
 965        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 966
 967        /*
 968         * No need to use i_size_read() here, the i_size
 969         * cannot change under us because we hold i_mutex.
 970         *
 971         * But it's important to update i_size while still holding page lock:
 972         * page writeout could otherwise come in and zero beyond i_size.
 973         */
 974        if (pos + copied > inode->i_size) {
 975                i_size_write(inode, pos + copied);
 976                i_size_changed = 1;
 977        }
 978
 979        if (pos + copied >  EXT4_I(inode)->i_disksize) {
 980                /* We need to mark inode dirty even if
 981                 * new_i_size is less that inode->i_size
 982                 * bu greater than i_disksize.(hint delalloc)
 983                 */
 984                ext4_update_i_disksize(inode, (pos + copied));
 985                i_size_changed = 1;
 986        }
 987        unlock_page(page);
 988        page_cache_release(page);
 989
 990        /*
 991         * Don't mark the inode dirty under page lock. First, it unnecessarily
 992         * makes the holding time of page lock longer. Second, it forces lock
 993         * ordering of page lock and transaction start for journaling
 994         * filesystems.
 995         */
 996        if (i_size_changed)
 997                ext4_mark_inode_dirty(handle, inode);
 998
 999        return copied;
1000}
1001
1002/*
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1005 *
1006 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1007 * buffers are managed internally.
1008 */
1009static int ext4_ordered_write_end(struct file *file,
1010                                  struct address_space *mapping,
1011                                  loff_t pos, unsigned len, unsigned copied,
1012                                  struct page *page, void *fsdata)
1013{
1014        handle_t *handle = ext4_journal_current_handle();
1015        struct inode *inode = mapping->host;
1016        int ret = 0, ret2;
1017
1018        trace_ext4_ordered_write_end(inode, pos, len, copied);
1019        ret = ext4_jbd2_file_inode(handle, inode);
1020
1021        if (ret == 0) {
1022                ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1023                                                        page, fsdata);
1024                copied = ret2;
1025                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1026                        /* if we have allocated more blocks and copied
1027                         * less. We will have blocks allocated outside
1028                         * inode->i_size. So truncate them
1029                         */
1030                        ext4_orphan_add(handle, inode);
1031                if (ret2 < 0)
1032                        ret = ret2;
1033        } else {
1034                unlock_page(page);
1035                page_cache_release(page);
1036        }
1037
1038        ret2 = ext4_journal_stop(handle);
1039        if (!ret)
1040                ret = ret2;
1041
1042        if (pos + len > inode->i_size) {
1043                ext4_truncate_failed_write(inode);
1044                /*
1045                 * If truncate failed early the inode might still be
1046                 * on the orphan list; we need to make sure the inode
1047                 * is removed from the orphan list in that case.
1048                 */
1049                if (inode->i_nlink)
1050                        ext4_orphan_del(NULL, inode);
1051        }
1052
1053
1054        return ret ? ret : copied;
1055}
1056
1057static int ext4_writeback_write_end(struct file *file,
1058                                    struct address_space *mapping,
1059                                    loff_t pos, unsigned len, unsigned copied,
1060                                    struct page *page, void *fsdata)
1061{
1062        handle_t *handle = ext4_journal_current_handle();
1063        struct inode *inode = mapping->host;
1064        int ret = 0, ret2;
1065
1066        trace_ext4_writeback_write_end(inode, pos, len, copied);
1067        ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1068                                                        page, fsdata);
1069        copied = ret2;
1070        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071                /* if we have allocated more blocks and copied
1072                 * less. We will have blocks allocated outside
1073                 * inode->i_size. So truncate them
1074                 */
1075                ext4_orphan_add(handle, inode);
1076
1077        if (ret2 < 0)
1078                ret = ret2;
1079
1080        ret2 = ext4_journal_stop(handle);
1081        if (!ret)
1082                ret = ret2;
1083
1084        if (pos + len > inode->i_size) {
1085                ext4_truncate_failed_write(inode);
1086                /*
1087                 * If truncate failed early the inode might still be
1088                 * on the orphan list; we need to make sure the inode
1089                 * is removed from the orphan list in that case.
1090                 */
1091                if (inode->i_nlink)
1092                        ext4_orphan_del(NULL, inode);
1093        }
1094
1095        return ret ? ret : copied;
1096}
1097
1098static int ext4_journalled_write_end(struct file *file,
1099                                     struct address_space *mapping,
1100                                     loff_t pos, unsigned len, unsigned copied,
1101                                     struct page *page, void *fsdata)
1102{
1103        handle_t *handle = ext4_journal_current_handle();
1104        struct inode *inode = mapping->host;
1105        int ret = 0, ret2;
1106        int partial = 0;
1107        unsigned from, to;
1108        loff_t new_i_size;
1109
1110        trace_ext4_journalled_write_end(inode, pos, len, copied);
1111        from = pos & (PAGE_CACHE_SIZE - 1);
1112        to = from + len;
1113
1114        BUG_ON(!ext4_handle_valid(handle));
1115
1116        if (copied < len) {
1117                if (!PageUptodate(page))
1118                        copied = 0;
1119                page_zero_new_buffers(page, from+copied, to);
1120        }
1121
1122        ret = walk_page_buffers(handle, page_buffers(page), from,
1123                                to, &partial, write_end_fn);
1124        if (!partial)
1125                SetPageUptodate(page);
1126        new_i_size = pos + copied;
1127        if (new_i_size > inode->i_size)
1128                i_size_write(inode, pos+copied);
1129        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131        if (new_i_size > EXT4_I(inode)->i_disksize) {
1132                ext4_update_i_disksize(inode, new_i_size);
1133                ret2 = ext4_mark_inode_dirty(handle, inode);
1134                if (!ret)
1135                        ret = ret2;
1136        }
1137
1138        unlock_page(page);
1139        page_cache_release(page);
1140        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1141                /* if we have allocated more blocks and copied
1142                 * less. We will have blocks allocated outside
1143                 * inode->i_size. So truncate them
1144                 */
1145                ext4_orphan_add(handle, inode);
1146
1147        ret2 = ext4_journal_stop(handle);
1148        if (!ret)
1149                ret = ret2;
1150        if (pos + len > inode->i_size) {
1151                ext4_truncate_failed_write(inode);
1152                /*
1153                 * If truncate failed early the inode might still be
1154                 * on the orphan list; we need to make sure the inode
1155                 * is removed from the orphan list in that case.
1156                 */
1157                if (inode->i_nlink)
1158                        ext4_orphan_del(NULL, inode);
1159        }
1160
1161        return ret ? ret : copied;
1162}
1163
1164/*
1165 * Reserve a single cluster located at lblock
1166 */
1167static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1168{
1169        int retries = 0;
1170        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171        struct ext4_inode_info *ei = EXT4_I(inode);
1172        unsigned int md_needed;
1173        int ret;
1174
1175        /*
1176         * recalculate the amount of metadata blocks to reserve
1177         * in order to allocate nrblocks
1178         * worse case is one extent per block
1179         */
1180repeat:
1181        spin_lock(&ei->i_block_reservation_lock);
1182        md_needed = EXT4_NUM_B2C(sbi,
1183                                 ext4_calc_metadata_amount(inode, lblock));
1184        trace_ext4_da_reserve_space(inode, md_needed);
1185        spin_unlock(&ei->i_block_reservation_lock);
1186
1187        /*
1188         * We will charge metadata quota at writeout time; this saves
1189         * us from metadata over-estimation, though we may go over by
1190         * a small amount in the end.  Here we just reserve for data.
1191         */
1192        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1193        if (ret)
1194                return ret;
1195        /*
1196         * We do still charge estimated metadata to the sb though;
1197         * we cannot afford to run out of free blocks.
1198         */
1199        if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1200                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201                if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1202                        yield();
1203                        goto repeat;
1204                }
1205                return -ENOSPC;
1206        }
1207        spin_lock(&ei->i_block_reservation_lock);
1208        ei->i_reserved_data_blocks++;
1209        ei->i_reserved_meta_blocks += md_needed;
1210        spin_unlock(&ei->i_block_reservation_lock);
1211
1212        return 0;       /* success */
1213}
1214
1215static void ext4_da_release_space(struct inode *inode, int to_free)
1216{
1217        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1218        struct ext4_inode_info *ei = EXT4_I(inode);
1219
1220        if (!to_free)
1221                return;         /* Nothing to release, exit */
1222
1223        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1224
1225        trace_ext4_da_release_space(inode, to_free);
1226        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1227                /*
1228                 * if there aren't enough reserved blocks, then the
1229                 * counter is messed up somewhere.  Since this
1230                 * function is called from invalidate page, it's
1231                 * harmless to return without any action.
1232                 */
1233                ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1234                         "ino %lu, to_free %d with only %d reserved "
1235                         "data blocks", inode->i_ino, to_free,
1236                         ei->i_reserved_data_blocks);
1237                WARN_ON(1);
1238                to_free = ei->i_reserved_data_blocks;
1239        }
1240        ei->i_reserved_data_blocks -= to_free;
1241
1242        if (ei->i_reserved_data_blocks == 0) {
1243                /*
1244                 * We can release all of the reserved metadata blocks
1245                 * only when we have written all of the delayed
1246                 * allocation blocks.
1247                 * Note that in case of bigalloc, i_reserved_meta_blocks,
1248                 * i_reserved_data_blocks, etc. refer to number of clusters.
1249                 */
1250                percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1251                                   ei->i_reserved_meta_blocks);
1252                ei->i_reserved_meta_blocks = 0;
1253                ei->i_da_metadata_calc_len = 0;
1254        }
1255
1256        /* update fs dirty data blocks counter */
1257        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1258
1259        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1260
1261        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1262}
1263
1264static void ext4_da_page_release_reservation(struct page *page,
1265                                             unsigned long offset)
1266{
1267        int to_release = 0;
1268        struct buffer_head *head, *bh;
1269        unsigned int curr_off = 0;
1270        struct inode *inode = page->mapping->host;
1271        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272        int num_clusters;
1273
1274        head = page_buffers(page);
1275        bh = head;
1276        do {
1277                unsigned int next_off = curr_off + bh->b_size;
1278
1279                if ((offset <= curr_off) && (buffer_delay(bh))) {
1280                        to_release++;
1281                        clear_buffer_delay(bh);
1282                        clear_buffer_da_mapped(bh);
1283                }
1284                curr_off = next_off;
1285        } while ((bh = bh->b_this_page) != head);
1286
1287        /* If we have released all the blocks belonging to a cluster, then we
1288         * need to release the reserved space for that cluster. */
1289        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1290        while (num_clusters > 0) {
1291                ext4_fsblk_t lblk;
1292                lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1293                        ((num_clusters - 1) << sbi->s_cluster_bits);
1294                if (sbi->s_cluster_ratio == 1 ||
1295                    !ext4_find_delalloc_cluster(inode, lblk, 1))
1296                        ext4_da_release_space(inode, 1);
1297
1298                num_clusters--;
1299        }
1300}
1301
1302/*
1303 * Delayed allocation stuff
1304 */
1305
1306/*
1307 * mpage_da_submit_io - walks through extent of pages and try to write
1308 * them with writepage() call back
1309 *
1310 * @mpd->inode: inode
1311 * @mpd->first_page: first page of the extent
1312 * @mpd->next_page: page after the last page of the extent
1313 *
1314 * By the time mpage_da_submit_io() is called we expect all blocks
1315 * to be allocated. this may be wrong if allocation failed.
1316 *
1317 * As pages are already locked by write_cache_pages(), we can't use it
1318 */
1319static int mpage_da_submit_io(struct mpage_da_data *mpd,
1320                              struct ext4_map_blocks *map)
1321{
1322        struct pagevec pvec;
1323        unsigned long index, end;
1324        int ret = 0, err, nr_pages, i;
1325        struct inode *inode = mpd->inode;
1326        struct address_space *mapping = inode->i_mapping;
1327        loff_t size = i_size_read(inode);
1328        unsigned int len, block_start;
1329        struct buffer_head *bh, *page_bufs = NULL;
1330        int journal_data = ext4_should_journal_data(inode);
1331        sector_t pblock = 0, cur_logical = 0;
1332        struct ext4_io_submit io_submit;
1333
1334        BUG_ON(mpd->next_page <= mpd->first_page);
1335        memset(&io_submit, 0, sizeof(io_submit));
1336        /*
1337         * We need to start from the first_page to the next_page - 1
1338         * to make sure we also write the mapped dirty buffer_heads.
1339         * If we look at mpd->b_blocknr we would only be looking
1340         * at the currently mapped buffer_heads.
1341         */
1342        index = mpd->first_page;
1343        end = mpd->next_page - 1;
1344
1345        pagevec_init(&pvec, 0);
1346        while (index <= end) {
1347                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1348                if (nr_pages == 0)
1349                        break;
1350                for (i = 0; i < nr_pages; i++) {
1351                        int commit_write = 0, skip_page = 0;
1352                        struct page *page = pvec.pages[i];
1353
1354                        index = page->index;
1355                        if (index > end)
1356                                break;
1357
1358                        if (index == size >> PAGE_CACHE_SHIFT)
1359                                len = size & ~PAGE_CACHE_MASK;
1360                        else
1361                                len = PAGE_CACHE_SIZE;
1362                        if (map) {
1363                                cur_logical = index << (PAGE_CACHE_SHIFT -
1364                                                        inode->i_blkbits);
1365                                pblock = map->m_pblk + (cur_logical -
1366                                                        map->m_lblk);
1367                        }
1368                        index++;
1369
1370                        BUG_ON(!PageLocked(page));
1371                        BUG_ON(PageWriteback(page));
1372
1373                        /*
1374                         * If the page does not have buffers (for
1375                         * whatever reason), try to create them using
1376                         * __block_write_begin.  If this fails,
1377                         * skip the page and move on.
1378                         */
1379                        if (!page_has_buffers(page)) {
1380                                if (__block_write_begin(page, 0, len,
1381                                                noalloc_get_block_write)) {
1382                                skip_page:
1383                                        unlock_page(page);
1384                                        continue;
1385                                }
1386                                commit_write = 1;
1387                        }
1388
1389                        bh = page_bufs = page_buffers(page);
1390                        block_start = 0;
1391                        do {
1392                                if (!bh)
1393                                        goto skip_page;
1394                                if (map && (cur_logical >= map->m_lblk) &&
1395                                    (cur_logical <= (map->m_lblk +
1396                                                     (map->m_len - 1)))) {
1397                                        if (buffer_delay(bh)) {
1398                                                clear_buffer_delay(bh);
1399                                                bh->b_blocknr = pblock;
1400                                        }
1401                                        if (buffer_da_mapped(bh))
1402                                                clear_buffer_da_mapped(bh);
1403                                        if (buffer_unwritten(bh) ||
1404                                            buffer_mapped(bh))
1405                                                BUG_ON(bh->b_blocknr != pblock);
1406                                        if (map->m_flags & EXT4_MAP_UNINIT)
1407                                                set_buffer_uninit(bh);
1408                                        clear_buffer_unwritten(bh);
1409                                }
1410
1411                                /*
1412                                 * skip page if block allocation undone and
1413                                 * block is dirty
1414                                 */
1415                                if (ext4_bh_delay_or_unwritten(NULL, bh))
1416                                        skip_page = 1;
1417                                bh = bh->b_this_page;
1418                                block_start += bh->b_size;
1419                                cur_logical++;
1420                                pblock++;
1421                        } while (bh != page_bufs);
1422
1423                        if (skip_page)
1424                                goto skip_page;
1425
1426                        if (commit_write)
1427                                /* mark the buffer_heads as dirty & uptodate */
1428                                block_commit_write(page, 0, len);
1429
1430                        clear_page_dirty_for_io(page);
1431                        /*
1432                         * Delalloc doesn't support data journalling,
1433                         * but eventually maybe we'll lift this
1434                         * restriction.
1435                         */
1436                        if (unlikely(journal_data && PageChecked(page)))
1437                                err = __ext4_journalled_writepage(page, len);
1438                        else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1439                                err = ext4_bio_write_page(&io_submit, page,
1440                                                          len, mpd->wbc);
1441                        else if (buffer_uninit(page_bufs)) {
1442                                ext4_set_bh_endio(page_bufs, inode);
1443                                err = block_write_full_page_endio(page,
1444                                        noalloc_get_block_write,
1445                                        mpd->wbc, ext4_end_io_buffer_write);
1446                        } else
1447                                err = block_write_full_page(page,
1448                                        noalloc_get_block_write, mpd->wbc);
1449
1450                        if (!err)
1451                                mpd->pages_written++;
1452                        /*
1453                         * In error case, we have to continue because
1454                         * remaining pages are still locked
1455                         */
1456                        if (ret == 0)
1457                                ret = err;
1458                }
1459                pagevec_release(&pvec);
1460        }
1461        ext4_io_submit(&io_submit);
1462        return ret;
1463}
1464
1465static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1466{
1467        int nr_pages, i;
1468        pgoff_t index, end;
1469        struct pagevec pvec;
1470        struct inode *inode = mpd->inode;
1471        struct address_space *mapping = inode->i_mapping;
1472
1473        index = mpd->first_page;
1474        end   = mpd->next_page - 1;
1475        while (index <= end) {
1476                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1477                if (nr_pages == 0)
1478                        break;
1479                for (i = 0; i < nr_pages; i++) {
1480                        struct page *page = pvec.pages[i];
1481                        if (page->index > end)
1482                                break;
1483                        BUG_ON(!PageLocked(page));
1484                        BUG_ON(PageWriteback(page));
1485                        block_invalidatepage(page, 0);
1486                        ClearPageUptodate(page);
1487                        unlock_page(page);
1488                }
1489                index = pvec.pages[nr_pages - 1]->index + 1;
1490                pagevec_release(&pvec);
1491        }
1492        return;
1493}
1494
1495static void ext4_print_free_blocks(struct inode *inode)
1496{
1497        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1498        struct super_block *sb = inode->i_sb;
1499
1500        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1501               EXT4_C2B(EXT4_SB(inode->i_sb),
1502                        ext4_count_free_clusters(inode->i_sb)));
1503        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1504        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1505               (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1506                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1507        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1508               (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1509                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1510        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1511        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1512                 EXT4_I(inode)->i_reserved_data_blocks);
1513        ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1514               EXT4_I(inode)->i_reserved_meta_blocks);
1515        return;
1516}
1517
1518/*
1519 * mpage_da_map_and_submit - go through given space, map them
1520 *       if necessary, and then submit them for I/O
1521 *
1522 * @mpd - bh describing space
1523 *
1524 * The function skips space we know is already mapped to disk blocks.
1525 *
1526 */
1527static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1528{
1529        int err, blks, get_blocks_flags;
1530        struct ext4_map_blocks map, *mapp = NULL;
1531        sector_t next = mpd->b_blocknr;
1532        unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1533        loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1534        handle_t *handle = NULL;
1535
1536        /*
1537         * If the blocks are mapped already, or we couldn't accumulate
1538         * any blocks, then proceed immediately to the submission stage.
1539         */
1540        if ((mpd->b_size == 0) ||
1541            ((mpd->b_state  & (1 << BH_Mapped)) &&
1542             !(mpd->b_state & (1 << BH_Delay)) &&
1543             !(mpd->b_state & (1 << BH_Unwritten))))
1544                goto submit_io;
1545
1546        handle = ext4_journal_current_handle();
1547        BUG_ON(!handle);
1548
1549        /*
1550         * Call ext4_map_blocks() to allocate any delayed allocation
1551         * blocks, or to convert an uninitialized extent to be
1552         * initialized (in the case where we have written into
1553         * one or more preallocated blocks).
1554         *
1555         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556         * indicate that we are on the delayed allocation path.  This
1557         * affects functions in many different parts of the allocation
1558         * call path.  This flag exists primarily because we don't
1559         * want to change *many* call functions, so ext4_map_blocks()
1560         * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1561         * inode's allocation semaphore is taken.
1562         *
1563         * If the blocks in questions were delalloc blocks, set
1564         * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565         * variables are updated after the blocks have been allocated.
1566         */
1567        map.m_lblk = next;
1568        map.m_len = max_blocks;
1569        get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1570        if (ext4_should_dioread_nolock(mpd->inode))
1571                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1572        if (mpd->b_state & (1 << BH_Delay))
1573                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1574
1575        blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1576        if (blks < 0) {
1577                struct super_block *sb = mpd->inode->i_sb;
1578
1579                err = blks;
1580                /*
1581                 * If get block returns EAGAIN or ENOSPC and there
1582                 * appears to be free blocks we will just let
1583                 * mpage_da_submit_io() unlock all of the pages.
1584                 */
1585                if (err == -EAGAIN)
1586                        goto submit_io;
1587
1588                if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1589                        mpd->retval = err;
1590                        goto submit_io;
1591                }
1592
1593                /*
1594                 * get block failure will cause us to loop in
1595                 * writepages, because a_ops->writepage won't be able
1596                 * to make progress. The page will be redirtied by
1597                 * writepage and writepages will again try to write
1598                 * the same.
1599                 */
1600                if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1601                        ext4_msg(sb, KERN_CRIT,
1602                                 "delayed block allocation failed for inode %lu "
1603                                 "at logical offset %llu with max blocks %zd "
1604                                 "with error %d", mpd->inode->i_ino,
1605                                 (unsigned long long) next,
1606                                 mpd->b_size >> mpd->inode->i_blkbits, err);
1607                        ext4_msg(sb, KERN_CRIT,
1608                                "This should not happen!! Data will be lost\n");
1609                        if (err == -ENOSPC)
1610                                ext4_print_free_blocks(mpd->inode);
1611                }
1612                /* invalidate all the pages */
1613                ext4_da_block_invalidatepages(mpd);
1614
1615                /* Mark this page range as having been completed */
1616                mpd->io_done = 1;
1617                return;
1618        }
1619        BUG_ON(blks == 0);
1620
1621        mapp = &map;
1622        if (map.m_flags & EXT4_MAP_NEW) {
1623                struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1624                int i;
1625
1626                for (i = 0; i < map.m_len; i++)
1627                        unmap_underlying_metadata(bdev, map.m_pblk + i);
1628
1629                if (ext4_should_order_data(mpd->inode)) {
1630                        err = ext4_jbd2_file_inode(handle, mpd->inode);
1631                        if (err) {
1632                                /* Only if the journal is aborted */
1633                                mpd->retval = err;
1634                                goto submit_io;
1635                        }
1636                }
1637        }
1638
1639        /*
1640         * Update on-disk size along with block allocation.
1641         */
1642        disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1643        if (disksize > i_size_read(mpd->inode))
1644                disksize = i_size_read(mpd->inode);
1645        if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1646                ext4_update_i_disksize(mpd->inode, disksize);
1647                err = ext4_mark_inode_dirty(handle, mpd->inode);
1648                if (err)
1649                        ext4_error(mpd->inode->i_sb,
1650                                   "Failed to mark inode %lu dirty",
1651                                   mpd->inode->i_ino);
1652        }
1653
1654submit_io:
1655        mpage_da_submit_io(mpd, mapp);
1656        mpd->io_done = 1;
1657}
1658
1659#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660                (1 << BH_Delay) | (1 << BH_Unwritten))
1661
1662/*
1663 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1664 *
1665 * @mpd->lbh - extent of blocks
1666 * @logical - logical number of the block in the file
1667 * @bh - bh of the block (used to access block's state)
1668 *
1669 * the function is used to collect contig. blocks in same state
1670 */
1671static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1672                                   sector_t logical, size_t b_size,
1673                                   unsigned long b_state)
1674{
1675        sector_t next;
1676        int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1677
1678        /*
1679         * XXX Don't go larger than mballoc is willing to allocate
1680         * This is a stopgap solution.  We eventually need to fold
1681         * mpage_da_submit_io() into this function and then call
1682         * ext4_map_blocks() multiple times in a loop
1683         */
1684        if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1685                goto flush_it;
1686
1687        /* check if thereserved journal credits might overflow */
1688        if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1689                if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1690                        /*
1691                         * With non-extent format we are limited by the journal
1692                         * credit available.  Total credit needed to insert
1693                         * nrblocks contiguous blocks is dependent on the
1694                         * nrblocks.  So limit nrblocks.
1695                         */
1696                        goto flush_it;
1697                } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1698                                EXT4_MAX_TRANS_DATA) {
1699                        /*
1700                         * Adding the new buffer_head would make it cross the
1701                         * allowed limit for which we have journal credit
1702                         * reserved. So limit the new bh->b_size
1703                         */
1704                        b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1705                                                mpd->inode->i_blkbits;
1706                        /* we will do mpage_da_submit_io in the next loop */
1707                }
1708        }
1709        /*
1710         * First block in the extent
1711         */
1712        if (mpd->b_size == 0) {
1713                mpd->b_blocknr = logical;
1714                mpd->b_size = b_size;
1715                mpd->b_state = b_state & BH_FLAGS;
1716                return;
1717        }
1718
1719        next = mpd->b_blocknr + nrblocks;
1720        /*
1721         * Can we merge the block to our big extent?
1722         */
1723        if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1724                mpd->b_size += b_size;
1725                return;
1726        }
1727
1728flush_it:
1729        /*
1730         * We couldn't merge the block to our extent, so we
1731         * need to flush current  extent and start new one
1732         */
1733        mpage_da_map_and_submit(mpd);
1734        return;
1735}
1736
1737static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1738{
1739        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1740}
1741
1742/*
1743 * This function is grabs code from the very beginning of
1744 * ext4_map_blocks, but assumes that the caller is from delayed write
1745 * time. This function looks up the requested blocks and sets the
1746 * buffer delay bit under the protection of i_data_sem.
1747 */
1748static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1749                              struct ext4_map_blocks *map,
1750                              struct buffer_head *bh)
1751{
1752        int retval;
1753        sector_t invalid_block = ~((sector_t) 0xffff);
1754
1755        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1756                invalid_block = ~0;
1757
1758        map->m_flags = 0;
1759        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760                  "logical block %lu\n", inode->i_ino, map->m_len,
1761                  (unsigned long) map->m_lblk);
1762        /*
1763         * Try to see if we can get the block without requesting a new
1764         * file system block.
1765         */
1766        down_read((&EXT4_I(inode)->i_data_sem));
1767        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1768                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769        else
1770                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1771
1772        if (retval == 0) {
1773                /*
1774                 * XXX: __block_prepare_write() unmaps passed block,
1775                 * is it OK?
1776                 */
1777                /* If the block was allocated from previously allocated cluster,
1778                 * then we dont need to reserve it again. */
1779                if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1780                        retval = ext4_da_reserve_space(inode, iblock);
1781                        if (retval)
1782                                /* not enough space to reserve */
1783                                goto out_unlock;
1784                }
1785
1786                /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787                 * and it should not appear on the bh->b_state.
1788                 */
1789                map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1790
1791                map_bh(bh, inode->i_sb, invalid_block);
1792                set_buffer_new(bh);
1793                set_buffer_delay(bh);
1794        }
1795
1796out_unlock:
1797        up_read((&EXT4_I(inode)->i_data_sem));
1798
1799        return retval;
1800}
1801
1802/*
1803 * This is a special get_blocks_t callback which is used by
1804 * ext4_da_write_begin().  It will either return mapped block or
1805 * reserve space for a single block.
1806 *
1807 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808 * We also have b_blocknr = -1 and b_bdev initialized properly
1809 *
1810 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812 * initialized properly.
1813 */
1814static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1815                                  struct buffer_head *bh, int create)
1816{
1817        struct ext4_map_blocks map;
1818        int ret = 0;
1819
1820        BUG_ON(create == 0);
1821        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1822
1823        map.m_lblk = iblock;
1824        map.m_len = 1;
1825
1826        /*
1827         * first, we need to know whether the block is allocated already
1828         * preallocated blocks are unmapped but should treated
1829         * the same as allocated blocks.
1830         */
1831        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1832        if (ret <= 0)
1833                return ret;
1834
1835        map_bh(bh, inode->i_sb, map.m_pblk);
1836        bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1837
1838        if (buffer_unwritten(bh)) {
1839                /* A delayed write to unwritten bh should be marked
1840                 * new and mapped.  Mapped ensures that we don't do
1841                 * get_block multiple times when we write to the same
1842                 * offset and new ensures that we do proper zero out
1843                 * for partial write.
1844                 */
1845                set_buffer_new(bh);
1846                set_buffer_mapped(bh);
1847        }
1848        return 0;
1849}
1850
1851/*
1852 * This function is used as a standard get_block_t calback function
1853 * when there is no desire to allocate any blocks.  It is used as a
1854 * callback function for block_write_begin() and block_write_full_page().
1855 * These functions should only try to map a single block at a time.
1856 *
1857 * Since this function doesn't do block allocations even if the caller
1858 * requests it by passing in create=1, it is critically important that
1859 * any caller checks to make sure that any buffer heads are returned
1860 * by this function are either all already mapped or marked for
1861 * delayed allocation before calling  block_write_full_page().  Otherwise,
1862 * b_blocknr could be left unitialized, and the page write functions will
1863 * be taken by surprise.
1864 */
1865static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1866                                   struct buffer_head *bh_result, int create)
1867{
1868        BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1869        return _ext4_get_block(inode, iblock, bh_result, 0);
1870}
1871
1872static int bget_one(handle_t *handle, struct buffer_head *bh)
1873{
1874        get_bh(bh);
1875        return 0;
1876}
1877
1878static int bput_one(handle_t *handle, struct buffer_head *bh)
1879{
1880        put_bh(bh);
1881        return 0;
1882}
1883
1884static int __ext4_journalled_writepage(struct page *page,
1885                                       unsigned int len)
1886{
1887        struct address_space *mapping = page->mapping;
1888        struct inode *inode = mapping->host;
1889        struct buffer_head *page_bufs;
1890        handle_t *handle = NULL;
1891        int ret = 0;
1892        int err;
1893
1894        ClearPageChecked(page);
1895        page_bufs = page_buffers(page);
1896        BUG_ON(!page_bufs);
1897        walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1898        /* As soon as we unlock the page, it can go away, but we have
1899         * references to buffers so we are safe */
1900        unlock_page(page);
1901
1902        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1903        if (IS_ERR(handle)) {
1904                ret = PTR_ERR(handle);
1905                goto out;
1906        }
1907
1908        BUG_ON(!ext4_handle_valid(handle));
1909
1910        ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911                                do_journal_get_write_access);
1912
1913        err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914                                write_end_fn);
1915        if (ret == 0)
1916                ret = err;
1917        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918        err = ext4_journal_stop(handle);
1919        if (!ret)
1920                ret = err;
1921
1922        walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1923        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924out:
1925        return ret;
1926}
1927
1928static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1929static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1930
1931/*
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
1936 * we are writing back data modified via mmap(), no one guarantees in which
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1940 *
1941 * This function can get called via...
1942 *   - ext4_da_writepages after taking page lock (have journal handle)
1943 *   - journal_submit_inode_data_buffers (no journal handle)
1944 *   - shrink_page_list via pdflush (no journal handle)
1945 *   - grab_page_cache when doing write_begin (have journal handle)
1946 *
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1952 * a[0] = 'a';
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1960 *
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1963 *
1964 * We can get recursively called as show below.
1965 *
1966 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967 *              ext4_writepage()
1968 *
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971 */
1972static int ext4_writepage(struct page *page,
1973                          struct writeback_control *wbc)
1974{
1975        int ret = 0, commit_write = 0;
1976        loff_t size;
1977        unsigned int len;
1978        struct buffer_head *page_bufs = NULL;
1979        struct inode *inode = page->mapping->host;
1980
1981        trace_ext4_writepage(page);
1982        size = i_size_read(inode);
1983        if (page->index == size >> PAGE_CACHE_SHIFT)
1984                len = size & ~PAGE_CACHE_MASK;
1985        else
1986                len = PAGE_CACHE_SIZE;
1987
1988        /*
1989         * If the page does not have buffers (for whatever reason),
1990         * try to create them using __block_write_begin.  If this
1991         * fails, redirty the page and move on.
1992         */
1993        if (!page_has_buffers(page)) {
1994                if (__block_write_begin(page, 0, len,
1995                                        noalloc_get_block_write)) {
1996                redirty_page:
1997                        redirty_page_for_writepage(wbc, page);
1998                        unlock_page(page);
1999                        return 0;
2000                }
2001                commit_write = 1;
2002        }
2003        page_bufs = page_buffers(page);
2004        if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005                              ext4_bh_delay_or_unwritten)) {
2006                /*
2007                 * We don't want to do block allocation, so redirty
2008                 * the page and return.  We may reach here when we do
2009                 * a journal commit via journal_submit_inode_data_buffers.
2010                 * We can also reach here via shrink_page_list but it
2011                 * should never be for direct reclaim so warn if that
2012                 * happens
2013                 */
2014                WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2015                                                                PF_MEMALLOC);
2016                goto redirty_page;
2017        }
2018        if (commit_write)
2019                /* now mark the buffer_heads as dirty and uptodate */
2020                block_commit_write(page, 0, len);
2021
2022        if (PageChecked(page) && ext4_should_journal_data(inode))
2023                /*
2024                 * It's mmapped pagecache.  Add buffers and journal it.  There
2025                 * doesn't seem much point in redirtying the page here.
2026                 */
2027                return __ext4_journalled_writepage(page, len);
2028
2029        if (buffer_uninit(page_bufs)) {
2030                ext4_set_bh_endio(page_bufs, inode);
2031                ret = block_write_full_page_endio(page, noalloc_get_block_write,
2032                                            wbc, ext4_end_io_buffer_write);
2033        } else
2034                ret = block_write_full_page(page, noalloc_get_block_write,
2035                                            wbc);
2036
2037        return ret;
2038}
2039
2040/*
2041 * This is called via ext4_da_writepages() to
2042 * calculate the total number of credits to reserve to fit
2043 * a single extent allocation into a single transaction,
2044 * ext4_da_writpeages() will loop calling this before
2045 * the block allocation.
2046 */
2047
2048static int ext4_da_writepages_trans_blocks(struct inode *inode)
2049{
2050        int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2051
2052        /*
2053         * With non-extent format the journal credit needed to
2054         * insert nrblocks contiguous block is dependent on
2055         * number of contiguous block. So we will limit
2056         * number of contiguous block to a sane value
2057         */
2058        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2059            (max_blocks > EXT4_MAX_TRANS_DATA))
2060                max_blocks = EXT4_MAX_TRANS_DATA;
2061
2062        return ext4_chunk_trans_blocks(inode, max_blocks);
2063}
2064
2065/*
2066 * write_cache_pages_da - walk the list of dirty pages of the given
2067 * address space and accumulate pages that need writing, and call
2068 * mpage_da_map_and_submit to map a single contiguous memory region
2069 * and then write them.
2070 */
2071static int write_cache_pages_da(struct address_space *mapping,
2072                                struct writeback_control *wbc,
2073                                struct mpage_da_data *mpd,
2074                                pgoff_t *done_index)
2075{
2076        struct buffer_head      *bh, *head;
2077        struct inode            *inode = mapping->host;
2078        struct pagevec          pvec;
2079        unsigned int            nr_pages;
2080        sector_t                logical;
2081        pgoff_t                 index, end;
2082        long                    nr_to_write = wbc->nr_to_write;
2083        int                     i, tag, ret = 0;
2084
2085        memset(mpd, 0, sizeof(struct mpage_da_data));
2086        mpd->wbc = wbc;
2087        mpd->inode = inode;
2088        pagevec_init(&pvec, 0);
2089        index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090        end = wbc->range_end >> PAGE_CACHE_SHIFT;
2091
2092        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2093                tag = PAGECACHE_TAG_TOWRITE;
2094        else
2095                tag = PAGECACHE_TAG_DIRTY;
2096
2097        *done_index = index;
2098        while (index <= end) {
2099                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2100                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2101                if (nr_pages == 0)
2102                        return 0;
2103
2104                for (i = 0; i < nr_pages; i++) {
2105                        struct page *page = pvec.pages[i];
2106
2107                        /*
2108                         * At this point, the page may be truncated or
2109                         * invalidated (changing page->mapping to NULL), or
2110                         * even swizzled back from swapper_space to tmpfs file
2111                         * mapping. However, page->index will not change
2112                         * because we have a reference on the page.
2113                         */
2114                        if (page->index > end)
2115                                goto out;
2116
2117                        *done_index = page->index + 1;
2118
2119                        /*
2120                         * If we can't merge this page, and we have
2121                         * accumulated an contiguous region, write it
2122                         */
2123                        if ((mpd->next_page != page->index) &&
2124                            (mpd->next_page != mpd->first_page)) {
2125                                mpage_da_map_and_submit(mpd);
2126                                goto ret_extent_tail;
2127                        }
2128
2129                        lock_page(page);
2130
2131                        /*
2132                         * If the page is no longer dirty, or its
2133                         * mapping no longer corresponds to inode we
2134                         * are writing (which means it has been
2135                         * truncated or invalidated), or the page is
2136                         * already under writeback and we are not
2137                         * doing a data integrity writeback, skip the page
2138                         */
2139                        if (!PageDirty(page) ||
2140                            (PageWriteback(page) &&
2141                             (wbc->sync_mode == WB_SYNC_NONE)) ||
2142                            unlikely(page->mapping != mapping)) {
2143                                unlock_page(page);
2144                                continue;
2145                        }
2146
2147                        wait_on_page_writeback(page);
2148                        BUG_ON(PageWriteback(page));
2149
2150                        if (mpd->next_page != page->index)
2151                                mpd->first_page = page->index;
2152                        mpd->next_page = page->index + 1;
2153                        logical = (sector_t) page->index <<
2154                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155
2156                        if (!page_has_buffers(page)) {
2157                                mpage_add_bh_to_extent(mpd, logical,
2158                                                       PAGE_CACHE_SIZE,
2159                                                       (1 << BH_Dirty) | (1 << BH_Uptodate));
2160                                if (mpd->io_done)
2161                                        goto ret_extent_tail;
2162                        } else {
2163                                /*
2164                                 * Page with regular buffer heads,
2165                                 * just add all dirty ones
2166                                 */
2167                                head = page_buffers(page);
2168                                bh = head;
2169                                do {
2170                                        BUG_ON(buffer_locked(bh));
2171                                        /*
2172                                         * We need to try to allocate
2173                                         * unmapped blocks in the same page.
2174                                         * Otherwise we won't make progress
2175                                         * with the page in ext4_writepage
2176                                         */
2177                                        if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2178                                                mpage_add_bh_to_extent(mpd, logical,
2179                                                                       bh->b_size,
2180                                                                       bh->b_state);
2181                                                if (mpd->io_done)
2182                                                        goto ret_extent_tail;
2183                                        } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2184                                                /*
2185                                                 * mapped dirty buffer. We need
2186                                                 * to update the b_state
2187                                                 * because we look at b_state
2188                                                 * in mpage_da_map_blocks.  We
2189                                                 * don't update b_size because
2190                                                 * if we find an unmapped
2191                                                 * buffer_head later we need to
2192                                                 * use the b_state flag of that
2193                                                 * buffer_head.
2194                                                 */
2195                                                if (mpd->b_size == 0)
2196                                                        mpd->b_state = bh->b_state & BH_FLAGS;
2197                                        }
2198                                        logical++;
2199                                } while ((bh = bh->b_this_page) != head);
2200                        }
2201
2202                        if (nr_to_write > 0) {
2203                                nr_to_write--;
2204                                if (nr_to_write == 0 &&
2205                                    wbc->sync_mode == WB_SYNC_NONE)
2206                                        /*
2207                                         * We stop writing back only if we are
2208                                         * not doing integrity sync. In case of
2209                                         * integrity sync we have to keep going
2210                                         * because someone may be concurrently
2211                                         * dirtying pages, and we might have
2212                                         * synced a lot of newly appeared dirty
2213                                         * pages, but have not synced all of the
2214                                         * old dirty pages.
2215                                         */
2216                                        goto out;
2217                        }
2218                }
2219                pagevec_release(&pvec);
2220                cond_resched();
2221        }
2222        return 0;
2223ret_extent_tail:
2224        ret = MPAGE_DA_EXTENT_TAIL;
2225out:
2226        pagevec_release(&pvec);
2227        cond_resched();
2228        return ret;
2229}
2230
2231
2232static int ext4_da_writepages(struct address_space *mapping,
2233                              struct writeback_control *wbc)
2234{
2235        pgoff_t index;
2236        int range_whole = 0;
2237        handle_t *handle = NULL;
2238        struct mpage_da_data mpd;
2239        struct inode *inode = mapping->host;
2240        int pages_written = 0;
2241        unsigned int max_pages;
2242        int range_cyclic, cycled = 1, io_done = 0;
2243        int needed_blocks, ret = 0;
2244        long desired_nr_to_write, nr_to_writebump = 0;
2245        loff_t range_start = wbc->range_start;
2246        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2247        pgoff_t done_index = 0;
2248        pgoff_t end;
2249        struct blk_plug plug;
2250
2251        trace_ext4_da_writepages(inode, wbc);
2252
2253        /*
2254         * No pages to write? This is mainly a kludge to avoid starting
2255         * a transaction for special inodes like journal inode on last iput()
2256         * because that could violate lock ordering on umount
2257         */
2258        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2259                return 0;
2260
2261        /*
2262         * If the filesystem has aborted, it is read-only, so return
2263         * right away instead of dumping stack traces later on that
2264         * will obscure the real source of the problem.  We test
2265         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2266         * the latter could be true if the filesystem is mounted
2267         * read-only, and in that case, ext4_da_writepages should
2268         * *never* be called, so if that ever happens, we would want
2269         * the stack trace.
2270         */
2271        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2272                return -EROFS;
2273
2274        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2275                range_whole = 1;
2276
2277        range_cyclic = wbc->range_cyclic;
2278        if (wbc->range_cyclic) {
2279                index = mapping->writeback_index;
2280                if (index)
2281                        cycled = 0;
2282                wbc->range_start = index << PAGE_CACHE_SHIFT;
2283                wbc->range_end  = LLONG_MAX;
2284                wbc->range_cyclic = 0;
2285                end = -1;
2286        } else {
2287                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2288                end = wbc->range_end >> PAGE_CACHE_SHIFT;
2289        }
2290
2291        /*
2292         * This works around two forms of stupidity.  The first is in
2293         * the writeback code, which caps the maximum number of pages
2294         * written to be 1024 pages.  This is wrong on multiple
2295         * levels; different architectues have a different page size,
2296         * which changes the maximum amount of data which gets
2297         * written.  Secondly, 4 megabytes is way too small.  XFS
2298         * forces this value to be 16 megabytes by multiplying
2299         * nr_to_write parameter by four, and then relies on its
2300         * allocator to allocate larger extents to make them
2301         * contiguous.  Unfortunately this brings us to the second
2302         * stupidity, which is that ext4's mballoc code only allocates
2303         * at most 2048 blocks.  So we force contiguous writes up to
2304         * the number of dirty blocks in the inode, or
2305         * sbi->max_writeback_mb_bump whichever is smaller.
2306         */
2307        max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2308        if (!range_cyclic && range_whole) {
2309                if (wbc->nr_to_write == LONG_MAX)
2310                        desired_nr_to_write = wbc->nr_to_write;
2311                else
2312                        desired_nr_to_write = wbc->nr_to_write * 8;
2313        } else
2314                desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2315                                                           max_pages);
2316        if (desired_nr_to_write > max_pages)
2317                desired_nr_to_write = max_pages;
2318
2319        if (wbc->nr_to_write < desired_nr_to_write) {
2320                nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2321                wbc->nr_to_write = desired_nr_to_write;
2322        }
2323
2324retry:
2325        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2326                tag_pages_for_writeback(mapping, index, end);
2327
2328        blk_start_plug(&plug);
2329        while (!ret && wbc->nr_to_write > 0) {
2330
2331                /*
2332                 * we  insert one extent at a time. So we need
2333                 * credit needed for single extent allocation.
2334                 * journalled mode is currently not supported
2335                 * by delalloc
2336                 */
2337                BUG_ON(ext4_should_journal_data(inode));
2338                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2339
2340                /* start a new transaction*/
2341                handle = ext4_journal_start(inode, needed_blocks);
2342                if (IS_ERR(handle)) {
2343                        ret = PTR_ERR(handle);
2344                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2345                               "%ld pages, ino %lu; err %d", __func__,
2346                                wbc->nr_to_write, inode->i_ino, ret);
2347                        blk_finish_plug(&plug);
2348                        goto out_writepages;
2349                }
2350
2351                /*
2352                 * Now call write_cache_pages_da() to find the next
2353                 * contiguous region of logical blocks that need
2354                 * blocks to be allocated by ext4 and submit them.
2355                 */
2356                ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2357                /*
2358                 * If we have a contiguous extent of pages and we
2359                 * haven't done the I/O yet, map the blocks and submit
2360                 * them for I/O.
2361                 */
2362                if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2363                        mpage_da_map_and_submit(&mpd);
2364                        ret = MPAGE_DA_EXTENT_TAIL;
2365                }
2366                trace_ext4_da_write_pages(inode, &mpd);
2367                wbc->nr_to_write -= mpd.pages_written;
2368
2369                ext4_journal_stop(handle);
2370
2371                if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2372                        /* commit the transaction which would
2373                         * free blocks released in the transaction
2374                         * and try again
2375                         */
2376                        jbd2_journal_force_commit_nested(sbi->s_journal);
2377                        ret = 0;
2378                } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2379                        /*
2380                         * Got one extent now try with rest of the pages.
2381                         * If mpd.retval is set -EIO, journal is aborted.
2382                         * So we don't need to write any more.
2383                         */
2384                        pages_written += mpd.pages_written;
2385                        ret = mpd.retval;
2386                        io_done = 1;
2387                } else if (wbc->nr_to_write)
2388                        /*
2389                         * There is no more writeout needed
2390                         * or we requested for a noblocking writeout
2391                         * and we found the device congested
2392                         */
2393                        break;
2394        }
2395        blk_finish_plug(&plug);
2396        if (!io_done && !cycled) {
2397                cycled = 1;
2398                index = 0;
2399                wbc->range_start = index << PAGE_CACHE_SHIFT;
2400                wbc->range_end  = mapping->writeback_index - 1;
2401                goto retry;
2402        }
2403
2404        /* Update index */
2405        wbc->range_cyclic = range_cyclic;
2406        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2407                /*
2408                 * set the writeback_index so that range_cyclic
2409                 * mode will write it back later
2410                 */
2411                mapping->writeback_index = done_index;
2412
2413out_writepages:
2414        wbc->nr_to_write -= nr_to_writebump;
2415        wbc->range_start = range_start;
2416        trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2417        return ret;
2418}
2419
2420#define FALL_BACK_TO_NONDELALLOC 1
2421static int ext4_nonda_switch(struct super_block *sb)
2422{
2423        s64 free_blocks, dirty_blocks;
2424        struct ext4_sb_info *sbi = EXT4_SB(sb);
2425
2426        /*
2427         * switch to non delalloc mode if we are running low
2428         * on free block. The free block accounting via percpu
2429         * counters can get slightly wrong with percpu_counter_batch getting
2430         * accumulated on each CPU without updating global counters
2431         * Delalloc need an accurate free block accounting. So switch
2432         * to non delalloc when we are near to error range.
2433         */
2434        free_blocks  = EXT4_C2B(sbi,
2435                percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2436        dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2437        if (2 * free_blocks < 3 * dirty_blocks ||
2438                free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2439                /*
2440                 * free block count is less than 150% of dirty blocks
2441                 * or free blocks is less than watermark
2442                 */
2443                return 1;
2444        }
2445        /*
2446         * Even if we don't switch but are nearing capacity,
2447         * start pushing delalloc when 1/2 of free blocks are dirty.
2448         */
2449        if (free_blocks < 2 * dirty_blocks)
2450                writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2451
2452        return 0;
2453}
2454
2455static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2456                               loff_t pos, unsigned len, unsigned flags,
2457                               struct page **pagep, void **fsdata)
2458{
2459        int ret, retries = 0;
2460        struct page *page;
2461        pgoff_t index;
2462        struct inode *inode = mapping->host;
2463        handle_t *handle;
2464
2465        index = pos >> PAGE_CACHE_SHIFT;
2466
2467        if (ext4_nonda_switch(inode->i_sb)) {
2468                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2469                return ext4_write_begin(file, mapping, pos,
2470                                        len, flags, pagep, fsdata);
2471        }
2472        *fsdata = (void *)0;
2473        trace_ext4_da_write_begin(inode, pos, len, flags);
2474retry:
2475        /*
2476         * With delayed allocation, we don't log the i_disksize update
2477         * if there is delayed block allocation. But we still need
2478         * to journalling the i_disksize update if writes to the end
2479         * of file which has an already mapped buffer.
2480         */
2481        handle = ext4_journal_start(inode, 1);
2482        if (IS_ERR(handle)) {
2483                ret = PTR_ERR(handle);
2484                goto out;
2485        }
2486        /* We cannot recurse into the filesystem as the transaction is already
2487         * started */
2488        flags |= AOP_FLAG_NOFS;
2489
2490        page = grab_cache_page_write_begin(mapping, index, flags);
2491        if (!page) {
2492                ext4_journal_stop(handle);
2493                ret = -ENOMEM;
2494                goto out;
2495        }
2496        *pagep = page;
2497
2498        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2499        if (ret < 0) {
2500                unlock_page(page);
2501                ext4_journal_stop(handle);
2502                page_cache_release(page);
2503                /*
2504                 * block_write_begin may have instantiated a few blocks
2505                 * outside i_size.  Trim these off again. Don't need
2506                 * i_size_read because we hold i_mutex.
2507                 */
2508                if (pos + len > inode->i_size)
2509                        ext4_truncate_failed_write(inode);
2510        }
2511
2512        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2513                goto retry;
2514out:
2515        return ret;
2516}
2517
2518/*
2519 * Check if we should update i_disksize
2520 * when write to the end of file but not require block allocation
2521 */
2522static int ext4_da_should_update_i_disksize(struct page *page,
2523                                            unsigned long offset)
2524{
2525        struct buffer_head *bh;
2526        struct inode *inode = page->mapping->host;
2527        unsigned int idx;
2528        int i;
2529
2530        bh = page_buffers(page);
2531        idx = offset >> inode->i_blkbits;
2532
2533        for (i = 0; i < idx; i++)
2534                bh = bh->b_this_page;
2535
2536        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2537                return 0;
2538        return 1;
2539}
2540
2541static int ext4_da_write_end(struct file *file,
2542                             struct address_space *mapping,
2543                             loff_t pos, unsigned len, unsigned copied,
2544                             struct page *page, void *fsdata)
2545{
2546        struct inode *inode = mapping->host;
2547        int ret = 0, ret2;
2548        handle_t *handle = ext4_journal_current_handle();
2549        loff_t new_i_size;
2550        unsigned long start, end;
2551        int write_mode = (int)(unsigned long)fsdata;
2552
2553        if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2554                switch (ext4_inode_journal_mode(inode)) {
2555                case EXT4_INODE_ORDERED_DATA_MODE:
2556                        return ext4_ordered_write_end(file, mapping, pos,
2557                                        len, copied, page, fsdata);
2558                case EXT4_INODE_WRITEBACK_DATA_MODE:
2559                        return ext4_writeback_write_end(file, mapping, pos,
2560                                        len, copied, page, fsdata);
2561                default:
2562                        BUG();
2563                }
2564        }
2565
2566        trace_ext4_da_write_end(inode, pos, len, copied);
2567        start = pos & (PAGE_CACHE_SIZE - 1);
2568        end = start + copied - 1;
2569
2570        /*
2571         * generic_write_end() will run mark_inode_dirty() if i_size
2572         * changes.  So let's piggyback the i_disksize mark_inode_dirty
2573         * into that.
2574         */
2575
2576        new_i_size = pos + copied;
2577        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2578                if (ext4_da_should_update_i_disksize(page, end)) {
2579                        down_write(&EXT4_I(inode)->i_data_sem);
2580                        if (new_i_size > EXT4_I(inode)->i_disksize) {
2581                                /*
2582                                 * Updating i_disksize when extending file
2583                                 * without needing block allocation
2584                                 */
2585                                if (ext4_should_order_data(inode))
2586                                        ret = ext4_jbd2_file_inode(handle,
2587                                                                   inode);
2588
2589                                EXT4_I(inode)->i_disksize = new_i_size;
2590                        }
2591                        up_write(&EXT4_I(inode)->i_data_sem);
2592                        /* We need to mark inode dirty even if
2593                         * new_i_size is less that inode->i_size
2594                         * bu greater than i_disksize.(hint delalloc)
2595                         */
2596                        ext4_mark_inode_dirty(handle, inode);
2597                }
2598        }
2599        ret2 = generic_write_end(file, mapping, pos, len, copied,
2600                                                        page, fsdata);
2601        copied = ret2;
2602        if (ret2 < 0)
2603                ret = ret2;
2604        ret2 = ext4_journal_stop(handle);
2605        if (!ret)
2606                ret = ret2;
2607
2608        return ret ? ret : copied;
2609}
2610
2611static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612{
2613        /*
2614         * Drop reserved blocks
2615         */
2616        BUG_ON(!PageLocked(page));
2617        if (!page_has_buffers(page))
2618                goto out;
2619
2620        ext4_da_page_release_reservation(page, offset);
2621
2622out:
2623        ext4_invalidatepage(page, offset);
2624
2625        return;
2626}
2627
2628/*
2629 * Force all delayed allocation blocks to be allocated for a given inode.
2630 */
2631int ext4_alloc_da_blocks(struct inode *inode)
2632{
2633        trace_ext4_alloc_da_blocks(inode);
2634
2635        if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636            !EXT4_I(inode)->i_reserved_meta_blocks)
2637                return 0;
2638
2639        /*
2640         * We do something simple for now.  The filemap_flush() will
2641         * also start triggering a write of the data blocks, which is
2642         * not strictly speaking necessary (and for users of
2643         * laptop_mode, not even desirable).  However, to do otherwise
2644         * would require replicating code paths in:
2645         *
2646         * ext4_da_writepages() ->
2647         *    write_cache_pages() ---> (via passed in callback function)
2648         *        __mpage_da_writepage() -->
2649         *           mpage_add_bh_to_extent()
2650         *           mpage_da_map_blocks()
2651         *
2652         * The problem is that write_cache_pages(), located in
2653         * mm/page-writeback.c, marks pages clean in preparation for
2654         * doing I/O, which is not desirable if we're not planning on
2655         * doing I/O at all.
2656         *
2657         * We could call write_cache_pages(), and then redirty all of
2658         * the pages by calling redirty_page_for_writepage() but that
2659         * would be ugly in the extreme.  So instead we would need to
2660         * replicate parts of the code in the above functions,
2661         * simplifying them because we wouldn't actually intend to
2662         * write out the pages, but rather only collect contiguous
2663         * logical block extents, call the multi-block allocator, and
2664         * then update the buffer heads with the block allocations.
2665         *
2666         * For now, though, we'll cheat by calling filemap_flush(),
2667         * which will map the blocks, and start the I/O, but not
2668         * actually wait for the I/O to complete.
2669         */
2670        return filemap_flush(inode->i_mapping);
2671}
2672
2673/*
2674 * bmap() is special.  It gets used by applications such as lilo and by
2675 * the swapper to find the on-disk block of a specific piece of data.
2676 *
2677 * Naturally, this is dangerous if the block concerned is still in the
2678 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2679 * filesystem and enables swap, then they may get a nasty shock when the
2680 * data getting swapped to that swapfile suddenly gets overwritten by
2681 * the original zero's written out previously to the journal and
2682 * awaiting writeback in the kernel's buffer cache.
2683 *
2684 * So, if we see any bmap calls here on a modified, data-journaled file,
2685 * take extra steps to flush any blocks which might be in the cache.
2686 */
2687static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2688{
2689        struct inode *inode = mapping->host;
2690        journal_t *journal;
2691        int err;
2692
2693        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694                        test_opt(inode->i_sb, DELALLOC)) {
2695                /*
2696                 * With delalloc we want to sync the file
2697                 * so that we can make sure we allocate
2698                 * blocks for file
2699                 */
2700                filemap_write_and_wait(mapping);
2701        }
2702
2703        if (EXT4_JOURNAL(inode) &&
2704            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2705                /*
2706                 * This is a REALLY heavyweight approach, but the use of
2707                 * bmap on dirty files is expected to be extremely rare:
2708                 * only if we run lilo or swapon on a freshly made file
2709                 * do we expect this to happen.
2710                 *
2711                 * (bmap requires CAP_SYS_RAWIO so this does not
2712                 * represent an unprivileged user DOS attack --- we'd be
2713                 * in trouble if mortal users could trigger this path at
2714                 * will.)
2715                 *
2716                 * NB. EXT4_STATE_JDATA is not set on files other than
2717                 * regular files.  If somebody wants to bmap a directory
2718                 * or symlink and gets confused because the buffer
2719                 * hasn't yet been flushed to disk, they deserve
2720                 * everything they get.
2721                 */
2722
2723                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2724                journal = EXT4_JOURNAL(inode);
2725                jbd2_journal_lock_updates(journal);
2726                err = jbd2_journal_flush(journal);
2727                jbd2_journal_unlock_updates(journal);
2728
2729                if (err)
2730                        return 0;
2731        }
2732
2733        return generic_block_bmap(mapping, block, ext4_get_block);
2734}
2735
2736static int ext4_readpage(struct file *file, struct page *page)
2737{
2738        trace_ext4_readpage(page);
2739        return mpage_readpage(page, ext4_get_block);
2740}
2741
2742static int
2743ext4_readpages(struct file *file, struct address_space *mapping,
2744                struct list_head *pages, unsigned nr_pages)
2745{
2746        return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2747}
2748
2749static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2750{
2751        struct buffer_head *head, *bh;
2752        unsigned int curr_off = 0;
2753
2754        if (!page_has_buffers(page))
2755                return;
2756        head = bh = page_buffers(page);
2757        do {
2758                if (offset <= curr_off && test_clear_buffer_uninit(bh)
2759                                        && bh->b_private) {
2760                        ext4_free_io_end(bh->b_private);
2761                        bh->b_private = NULL;
2762                        bh->b_end_io = NULL;
2763                }
2764                curr_off = curr_off + bh->b_size;
2765                bh = bh->b_this_page;
2766        } while (bh != head);
2767}
2768
2769static void ext4_invalidatepage(struct page *page, unsigned long offset)
2770{
2771        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2772
2773        trace_ext4_invalidatepage(page, offset);
2774
2775        /*
2776         * free any io_end structure allocated for buffers to be discarded
2777         */
2778        if (ext4_should_dioread_nolock(page->mapping->host))
2779                ext4_invalidatepage_free_endio(page, offset);
2780        /*
2781         * If it's a full truncate we just forget about the pending dirtying
2782         */
2783        if (offset == 0)
2784                ClearPageChecked(page);
2785
2786        if (journal)
2787                jbd2_journal_invalidatepage(journal, page, offset);
2788        else
2789                block_invalidatepage(page, offset);
2790}
2791
2792static int ext4_releasepage(struct page *page, gfp_t wait)
2793{
2794        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2795
2796        trace_ext4_releasepage(page);
2797
2798        WARN_ON(PageChecked(page));
2799        if (!page_has_buffers(page))
2800                return 0;
2801        if (journal)
2802                return jbd2_journal_try_to_free_buffers(journal, page, wait);
2803        else
2804                return try_to_free_buffers(page);
2805}
2806
2807/*
2808 * ext4_get_block used when preparing for a DIO write or buffer write.
2809 * We allocate an uinitialized extent if blocks haven't been allocated.
2810 * The extent will be converted to initialized after the IO is complete.
2811 */
2812static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2813                   struct buffer_head *bh_result, int create)
2814{
2815        ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2816                   inode->i_ino, create);
2817        return _ext4_get_block(inode, iblock, bh_result,
2818                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
2819}
2820
2821static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2822                            ssize_t size, void *private, int ret,
2823                            bool is_async)
2824{
2825        struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2826        ext4_io_end_t *io_end = iocb->private;
2827        struct workqueue_struct *wq;
2828        unsigned long flags;
2829        struct ext4_inode_info *ei;
2830
2831        /* if not async direct IO or dio with 0 bytes write, just return */
2832        if (!io_end || !size)
2833                goto out;
2834
2835        ext_debug("ext4_end_io_dio(): io_end 0x%p "
2836                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2837                  iocb->private, io_end->inode->i_ino, iocb, offset,
2838                  size);
2839
2840        iocb->private = NULL;
2841
2842        /* if not aio dio with unwritten extents, just free io and return */
2843        if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2844                ext4_free_io_end(io_end);
2845out:
2846                if (is_async)
2847                        aio_complete(iocb, ret, 0);
2848                inode_dio_done(inode);
2849                return;
2850        }
2851
2852        io_end->offset = offset;
2853        io_end->size = size;
2854        if (is_async) {
2855                io_end->iocb = iocb;
2856                io_end->result = ret;
2857        }
2858        wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2859
2860        /* Add the io_end to per-inode completed aio dio list*/
2861        ei = EXT4_I(io_end->inode);
2862        spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2863        list_add_tail(&io_end->list, &ei->i_completed_io_list);
2864        spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2865
2866        /* queue the work to convert unwritten extents to written */
2867        queue_work(wq, &io_end->work);
2868}
2869
2870static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2871{
2872        ext4_io_end_t *io_end = bh->b_private;
2873        struct workqueue_struct *wq;
2874        struct inode *inode;
2875        unsigned long flags;
2876
2877        if (!test_clear_buffer_uninit(bh) || !io_end)
2878                goto out;
2879
2880        if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2881                ext4_msg(io_end->inode->i_sb, KERN_INFO,
2882                         "sb umounted, discard end_io request for inode %lu",
2883                         io_end->inode->i_ino);
2884                ext4_free_io_end(io_end);
2885                goto out;
2886        }
2887
2888        /*
2889         * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890         * but being more careful is always safe for the future change.
2891         */
2892        inode = io_end->inode;
2893        ext4_set_io_unwritten_flag(inode, io_end);
2894
2895        /* Add the io_end to per-inode completed io list*/
2896        spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2897        list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2898        spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2899
2900        wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2901        /* queue the work to convert unwritten extents to written */
2902        queue_work(wq, &io_end->work);
2903out:
2904        bh->b_private = NULL;
2905        bh->b_end_io = NULL;
2906        clear_buffer_uninit(bh);
2907        end_buffer_async_write(bh, uptodate);
2908}
2909
2910static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2911{
2912        ext4_io_end_t *io_end;
2913        struct page *page = bh->b_page;
2914        loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2915        size_t size = bh->b_size;
2916
2917retry:
2918        io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2919        if (!io_end) {
2920                pr_warn_ratelimited("%s: allocation fail\n", __func__);
2921                schedule();
2922                goto retry;
2923        }
2924        io_end->offset = offset;
2925        io_end->size = size;
2926        /*
2927         * We need to hold a reference to the page to make sure it
2928         * doesn't get evicted before ext4_end_io_work() has a chance
2929         * to convert the extent from written to unwritten.
2930         */
2931        io_end->page = page;
2932        get_page(io_end->page);
2933
2934        bh->b_private = io_end;
2935        bh->b_end_io = ext4_end_io_buffer_write;
2936        return 0;
2937}
2938
2939/*
2940 * For ext4 extent files, ext4 will do direct-io write to holes,
2941 * preallocated extents, and those write extend the file, no need to
2942 * fall back to buffered IO.
2943 *
2944 * For holes, we fallocate those blocks, mark them as uninitialized
2945 * If those blocks were preallocated, we mark sure they are splited, but
2946 * still keep the range to write as uninitialized.
2947 *
2948 * The unwrritten extents will be converted to written when DIO is completed.
2949 * For async direct IO, since the IO may still pending when return, we
2950 * set up an end_io call back function, which will do the conversion
2951 * when async direct IO completed.
2952 *
2953 * If the O_DIRECT write will extend the file then add this inode to the
2954 * orphan list.  So recovery will truncate it back to the original size
2955 * if the machine crashes during the write.
2956 *
2957 */
2958static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2959                              const struct iovec *iov, loff_t offset,
2960                              unsigned long nr_segs)
2961{
2962        struct file *file = iocb->ki_filp;
2963        struct inode *inode = file->f_mapping->host;
2964        ssize_t ret;
2965        size_t count = iov_length(iov, nr_segs);
2966
2967        loff_t final_size = offset + count;
2968        if (rw == WRITE && final_size <= inode->i_size) {
2969                /*
2970                 * We could direct write to holes and fallocate.
2971                 *
2972                 * Allocated blocks to fill the hole are marked as uninitialized
2973                 * to prevent parallel buffered read to expose the stale data
2974                 * before DIO complete the data IO.
2975                 *
2976                 * As to previously fallocated extents, ext4 get_block
2977                 * will just simply mark the buffer mapped but still
2978                 * keep the extents uninitialized.
2979                 *
2980                 * for non AIO case, we will convert those unwritten extents
2981                 * to written after return back from blockdev_direct_IO.
2982                 *
2983                 * for async DIO, the conversion needs to be defered when
2984                 * the IO is completed. The ext4 end_io callback function
2985                 * will be called to take care of the conversion work.
2986                 * Here for async case, we allocate an io_end structure to
2987                 * hook to the iocb.
2988                 */
2989                iocb->private = NULL;
2990                EXT4_I(inode)->cur_aio_dio = NULL;
2991                if (!is_sync_kiocb(iocb)) {
2992                        ext4_io_end_t *io_end =
2993                                ext4_init_io_end(inode, GFP_NOFS);
2994                        if (!io_end)
2995                                return -ENOMEM;
2996                        io_end->flag |= EXT4_IO_END_DIRECT;
2997                        iocb->private = io_end;
2998                        /*
2999                         * we save the io structure for current async
3000                         * direct IO, so that later ext4_map_blocks()
3001                         * could flag the io structure whether there
3002                         * is a unwritten extents needs to be converted
3003                         * when IO is completed.
3004                         */
3005                        EXT4_I(inode)->cur_aio_dio = iocb->private;
3006                }
3007
3008                ret = __blockdev_direct_IO(rw, iocb, inode,
3009                                         inode->i_sb->s_bdev, iov,
3010                                         offset, nr_segs,
3011                                         ext4_get_block_write,
3012                                         ext4_end_io_dio,
3013                                         NULL,
3014                                         DIO_LOCKING);
3015                if (iocb->private)
3016                        EXT4_I(inode)->cur_aio_dio = NULL;
3017                /*
3018                 * The io_end structure takes a reference to the inode,
3019                 * that structure needs to be destroyed and the
3020                 * reference to the inode need to be dropped, when IO is
3021                 * complete, even with 0 byte write, or failed.
3022                 *
3023                 * In the successful AIO DIO case, the io_end structure will be
3024                 * desctroyed and the reference to the inode will be dropped
3025                 * after the end_io call back function is called.
3026                 *
3027                 * In the case there is 0 byte write, or error case, since
3028                 * VFS direct IO won't invoke the end_io call back function,
3029                 * we need to free the end_io structure here.
3030                 */
3031                if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3032                        ext4_free_io_end(iocb->private);
3033                        iocb->private = NULL;
3034                } else if (ret > 0 && ext4_test_inode_state(inode,
3035                                                EXT4_STATE_DIO_UNWRITTEN)) {
3036                        int err;
3037                        /*
3038                         * for non AIO case, since the IO is already
3039                         * completed, we could do the conversion right here
3040                         */
3041                        err = ext4_convert_unwritten_extents(inode,
3042                                                             offset, ret);
3043                        if (err < 0)
3044                                ret = err;
3045                        ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3046                }
3047                return ret;
3048        }
3049
3050        /* for write the the end of file case, we fall back to old way */
3051        return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3052}
3053
3054static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3055                              const struct iovec *iov, loff_t offset,
3056                              unsigned long nr_segs)
3057{
3058        struct file *file = iocb->ki_filp;
3059        struct inode *inode = file->f_mapping->host;
3060        ssize_t ret;
3061
3062        /*
3063         * If we are doing data journalling we don't support O_DIRECT
3064         */
3065        if (ext4_should_journal_data(inode))
3066                return 0;
3067
3068        trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3069        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3070                ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3071        else
3072                ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3073        trace_ext4_direct_IO_exit(inode, offset,
3074                                iov_length(iov, nr_segs), rw, ret);
3075        return ret;
3076}
3077
3078/*
3079 * Pages can be marked dirty completely asynchronously from ext4's journalling
3080 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3081 * much here because ->set_page_dirty is called under VFS locks.  The page is
3082 * not necessarily locked.
3083 *
3084 * We cannot just dirty the page and leave attached buffers clean, because the
3085 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3086 * or jbddirty because all the journalling code will explode.
3087 *
3088 * So what we do is to mark the page "pending dirty" and next time writepage
3089 * is called, propagate that into the buffers appropriately.
3090 */
3091static int ext4_journalled_set_page_dirty(struct page *page)
3092{
3093        SetPageChecked(page);
3094        return __set_page_dirty_nobuffers(page);
3095}
3096
3097static const struct address_space_operations ext4_ordered_aops = {
3098        .readpage               = ext4_readpage,
3099        .readpages              = ext4_readpages,
3100        .writepage              = ext4_writepage,
3101        .write_begin            = ext4_write_begin,
3102        .write_end              = ext4_ordered_write_end,
3103        .bmap                   = ext4_bmap,
3104        .invalidatepage         = ext4_invalidatepage,
3105        .releasepage            = ext4_releasepage,
3106        .direct_IO              = ext4_direct_IO,
3107        .migratepage            = buffer_migrate_page,
3108        .is_partially_uptodate  = block_is_partially_uptodate,
3109        .error_remove_page      = generic_error_remove_page,
3110};
3111
3112static const struct address_space_operations ext4_writeback_aops = {
3113        .readpage               = ext4_readpage,
3114        .readpages              = ext4_readpages,
3115        .writepage              = ext4_writepage,
3116        .write_begin            = ext4_write_begin,
3117        .write_end              = ext4_writeback_write_end,
3118        .bmap                   = ext4_bmap,
3119        .invalidatepage         = ext4_invalidatepage,
3120        .releasepage            = ext4_releasepage,
3121        .direct_IO              = ext4_direct_IO,
3122        .migratepage            = buffer_migrate_page,
3123        .is_partially_uptodate  = block_is_partially_uptodate,
3124        .error_remove_page      = generic_error_remove_page,
3125};
3126
3127static const struct address_space_operations ext4_journalled_aops = {
3128        .readpage               = ext4_readpage,
3129        .readpages              = ext4_readpages,
3130        .writepage              = ext4_writepage,
3131        .write_begin            = ext4_write_begin,
3132        .write_end              = ext4_journalled_write_end,
3133        .set_page_dirty         = ext4_journalled_set_page_dirty,
3134        .bmap                   = ext4_bmap,
3135        .invalidatepage         = ext4_invalidatepage,
3136        .releasepage            = ext4_releasepage,
3137        .direct_IO              = ext4_direct_IO,
3138        .is_partially_uptodate  = block_is_partially_uptodate,
3139        .error_remove_page      = generic_error_remove_page,
3140};
3141
3142static const struct address_space_operations ext4_da_aops = {
3143        .readpage               = ext4_readpage,
3144        .readpages              = ext4_readpages,
3145        .writepage              = ext4_writepage,
3146        .writepages             = ext4_da_writepages,
3147        .write_begin            = ext4_da_write_begin,
3148        .write_end              = ext4_da_write_end,
3149        .bmap                   = ext4_bmap,
3150        .invalidatepage         = ext4_da_invalidatepage,
3151        .releasepage            = ext4_releasepage,
3152        .direct_IO              = ext4_direct_IO,
3153        .migratepage            = buffer_migrate_page,
3154        .is_partially_uptodate  = block_is_partially_uptodate,
3155        .error_remove_page      = generic_error_remove_page,
3156};
3157
3158void ext4_set_aops(struct inode *inode)
3159{
3160        switch (ext4_inode_journal_mode(inode)) {
3161        case EXT4_INODE_ORDERED_DATA_MODE:
3162                if (test_opt(inode->i_sb, DELALLOC))
3163                        inode->i_mapping->a_ops = &ext4_da_aops;
3164                else
3165                        inode->i_mapping->a_ops = &ext4_ordered_aops;
3166                break;
3167        case EXT4_INODE_WRITEBACK_DATA_MODE:
3168                if (test_opt(inode->i_sb, DELALLOC))
3169                        inode->i_mapping->a_ops = &ext4_da_aops;
3170                else
3171                        inode->i_mapping->a_ops = &ext4_writeback_aops;
3172                break;
3173        case EXT4_INODE_JOURNAL_DATA_MODE:
3174                inode->i_mapping->a_ops = &ext4_journalled_aops;
3175                break;
3176        default:
3177                BUG();
3178        }
3179}
3180
3181
3182/*
3183 * ext4_discard_partial_page_buffers()
3184 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185 * This function finds and locks the page containing the offset
3186 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187 * Calling functions that already have the page locked should call
3188 * ext4_discard_partial_page_buffers_no_lock directly.
3189 */
3190int ext4_discard_partial_page_buffers(handle_t *handle,
3191                struct address_space *mapping, loff_t from,
3192                loff_t length, int flags)
3193{
3194        struct inode *inode = mapping->host;
3195        struct page *page;
3196        int err = 0;
3197
3198        page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3199                                   mapping_gfp_mask(mapping) & ~__GFP_FS);
3200        if (!page)
3201                return -ENOMEM;
3202
3203        err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3204                from, length, flags);
3205
3206        unlock_page(page);
3207        page_cache_release(page);
3208        return err;
3209}
3210
3211/*
3212 * ext4_discard_partial_page_buffers_no_lock()
3213 * Zeros a page range of length 'length' starting from offset 'from'.
3214 * Buffer heads that correspond to the block aligned regions of the
3215 * zeroed range will be unmapped.  Unblock aligned regions
3216 * will have the corresponding buffer head mapped if needed so that
3217 * that region of the page can be updated with the partial zero out.
3218 *
3219 * This function assumes that the page has already been  locked.  The
3220 * The range to be discarded must be contained with in the given page.
3221 * If the specified range exceeds the end of the page it will be shortened
3222 * to the end of the page that corresponds to 'from'.  This function is
3223 * appropriate for updating a page and it buffer heads to be unmapped and
3224 * zeroed for blocks that have been either released, or are going to be
3225 * released.
3226 *
3227 * handle: The journal handle
3228 * inode:  The files inode
3229 * page:   A locked page that contains the offset "from"
3230 * from:   The starting byte offset (from the begining of the file)
3231 *         to begin discarding
3232 * len:    The length of bytes to discard
3233 * flags:  Optional flags that may be used:
3234 *
3235 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236 *         Only zero the regions of the page whose buffer heads
3237 *         have already been unmapped.  This flag is appropriate
3238 *         for updateing the contents of a page whose blocks may
3239 *         have already been released, and we only want to zero
3240 *         out the regions that correspond to those released blocks.
3241 *
3242 * Returns zero on sucess or negative on failure.
3243 */
3244static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3245                struct inode *inode, struct page *page, loff_t from,
3246                loff_t length, int flags)
3247{
3248        ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3249        unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3250        unsigned int blocksize, max, pos;
3251        ext4_lblk_t iblock;
3252        struct buffer_head *bh;
3253        int err = 0;
3254
3255        blocksize = inode->i_sb->s_blocksize;
3256        max = PAGE_CACHE_SIZE - offset;
3257
3258        if (index != page->index)
3259                return -EINVAL;
3260
3261        /*
3262         * correct length if it does not fall between
3263         * 'from' and the end of the page
3264         */
3265        if (length > max || length < 0)
3266                length = max;
3267
3268        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3269
3270        if (!page_has_buffers(page))
3271                create_empty_buffers(page, blocksize, 0);
3272
3273        /* Find the buffer that contains "offset" */
3274        bh = page_buffers(page);
3275        pos = blocksize;
3276        while (offset >= pos) {
3277                bh = bh->b_this_page;
3278                iblock++;
3279                pos += blocksize;
3280        }
3281
3282        pos = offset;
3283        while (pos < offset + length) {
3284                unsigned int end_of_block, range_to_discard;
3285
3286                err = 0;
3287
3288                /* The length of space left to zero and unmap */
3289                range_to_discard = offset + length - pos;
3290
3291                /* The length of space until the end of the block */
3292                end_of_block = blocksize - (pos & (blocksize-1));
3293
3294                /*
3295                 * Do not unmap or zero past end of block
3296                 * for this buffer head
3297                 */
3298                if (range_to_discard > end_of_block)
3299                        range_to_discard = end_of_block;
3300
3301
3302                /*
3303                 * Skip this buffer head if we are only zeroing unampped
3304                 * regions of the page
3305                 */
3306                if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3307                        buffer_mapped(bh))
3308                                goto next;
3309
3310                /* If the range is block aligned, unmap */
3311                if (range_to_discard == blocksize) {
3312                        clear_buffer_dirty(bh);
3313                        bh->b_bdev = NULL;
3314                        clear_buffer_mapped(bh);
3315                        clear_buffer_req(bh);
3316                        clear_buffer_new(bh);
3317                        clear_buffer_delay(bh);
3318                        clear_buffer_unwritten(bh);
3319                        clear_buffer_uptodate(bh);
3320                        zero_user(page, pos, range_to_discard);
3321                        BUFFER_TRACE(bh, "Buffer discarded");
3322                        goto next;
3323                }
3324
3325                /*
3326                 * If this block is not completely contained in the range
3327                 * to be discarded, then it is not going to be released. Because
3328                 * we need to keep this block, we need to make sure this part
3329                 * of the page is uptodate before we modify it by writeing
3330                 * partial zeros on it.
3331                 */
3332                if (!buffer_mapped(bh)) {
3333                        /*
3334                         * Buffer head must be mapped before we can read
3335                         * from the block
3336                         */
3337                        BUFFER_TRACE(bh, "unmapped");
3338                        ext4_get_block(inode, iblock, bh, 0);
3339                        /* unmapped? It's a hole - nothing to do */
3340                        if (!buffer_mapped(bh)) {
3341                                BUFFER_TRACE(bh, "still unmapped");
3342                                goto next;
3343                        }
3344                }
3345
3346                /* Ok, it's mapped. Make sure it's up-to-date */
3347                if (PageUptodate(page))
3348                        set_buffer_uptodate(bh);
3349
3350                if (!buffer_uptodate(bh)) {
3351                        err = -EIO;
3352                        ll_rw_block(READ, 1, &bh);
3353                        wait_on_buffer(bh);
3354                        /* Uhhuh. Read error. Complain and punt.*/
3355                        if (!buffer_uptodate(bh))
3356                                goto next;
3357                }
3358
3359                if (ext4_should_journal_data(inode)) {
3360                        BUFFER_TRACE(bh, "get write access");
3361                        err = ext4_journal_get_write_access(handle, bh);
3362                        if (err)
3363                                goto next;
3364                }
3365
3366                zero_user(page, pos, range_to_discard);
3367
3368                err = 0;
3369                if (ext4_should_journal_data(inode)) {
3370                        err = ext4_handle_dirty_metadata(handle, inode, bh);
3371                } else
3372                        mark_buffer_dirty(bh);
3373
3374                BUFFER_TRACE(bh, "Partial buffer zeroed");
3375next:
3376                bh = bh->b_this_page;
3377                iblock++;
3378                pos += range_to_discard;
3379        }
3380
3381        return err;
3382}
3383
3384int ext4_can_truncate(struct inode *inode)
3385{
3386        if (S_ISREG(inode->i_mode))
3387                return 1;
3388        if (S_ISDIR(inode->i_mode))
3389                return 1;
3390        if (S_ISLNK(inode->i_mode))
3391                return !ext4_inode_is_fast_symlink(inode);
3392        return 0;
3393}
3394
3395/*
3396 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397 * associated with the given offset and length
3398 *
3399 * @inode:  File inode
3400 * @offset: The offset where the hole will begin
3401 * @len:    The length of the hole
3402 *
3403 * Returns: 0 on sucess or negative on failure
3404 */
3405
3406int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3407{
3408        struct inode *inode = file->f_path.dentry->d_inode;
3409        if (!S_ISREG(inode->i_mode))
3410                return -EOPNOTSUPP;
3411
3412        if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3413                /* TODO: Add support for non extent hole punching */
3414                return -EOPNOTSUPP;
3415        }
3416
3417        if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3418                /* TODO: Add support for bigalloc file systems */
3419                return -EOPNOTSUPP;
3420        }
3421
3422        return ext4_ext_punch_hole(file, offset, length);
3423}
3424
3425/*
3426 * ext4_truncate()
3427 *
3428 * We block out ext4_get_block() block instantiations across the entire
3429 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3430 * simultaneously on behalf of the same inode.
3431 *
3432 * As we work through the truncate and commit bits of it to the journal there
3433 * is one core, guiding principle: the file's tree must always be consistent on
3434 * disk.  We must be able to restart the truncate after a crash.
3435 *
3436 * The file's tree may be transiently inconsistent in memory (although it
3437 * probably isn't), but whenever we close off and commit a journal transaction,
3438 * the contents of (the filesystem + the journal) must be consistent and
3439 * restartable.  It's pretty simple, really: bottom up, right to left (although
3440 * left-to-right works OK too).
3441 *
3442 * Note that at recovery time, journal replay occurs *before* the restart of
3443 * truncate against the orphan inode list.
3444 *
3445 * The committed inode has the new, desired i_size (which is the same as
3446 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3447 * that this inode's truncate did not complete and it will again call
3448 * ext4_truncate() to have another go.  So there will be instantiated blocks
3449 * to the right of the truncation point in a crashed ext4 filesystem.  But
3450 * that's fine - as long as they are linked from the inode, the post-crash
3451 * ext4_truncate() run will find them and release them.
3452 */
3453void ext4_truncate(struct inode *inode)
3454{
3455        trace_ext4_truncate_enter(inode);
3456
3457        if (!ext4_can_truncate(inode))
3458                return;
3459
3460        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3461
3462        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3463                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3464
3465        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3466                ext4_ext_truncate(inode);
3467        else
3468                ext4_ind_truncate(inode);
3469
3470        trace_ext4_truncate_exit(inode);
3471}
3472
3473/*
3474 * ext4_get_inode_loc returns with an extra refcount against the inode's
3475 * underlying buffer_head on success. If 'in_mem' is true, we have all
3476 * data in memory that is needed to recreate the on-disk version of this
3477 * inode.
3478 */
3479static int __ext4_get_inode_loc(struct inode *inode,
3480                                struct ext4_iloc *iloc, int in_mem)
3481{
3482        struct ext4_group_desc  *gdp;
3483        struct buffer_head      *bh;
3484        struct super_block      *sb = inode->i_sb;
3485        ext4_fsblk_t            block;
3486        int                     inodes_per_block, inode_offset;
3487
3488        iloc->bh = NULL;
3489        if (!ext4_valid_inum(sb, inode->i_ino))
3490                return -EIO;
3491
3492        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3493        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3494        if (!gdp)
3495                return -EIO;
3496
3497        /*
3498         * Figure out the offset within the block group inode table
3499         */
3500        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3501        inode_offset = ((inode->i_ino - 1) %
3502                        EXT4_INODES_PER_GROUP(sb));
3503        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3504        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3505
3506        bh = sb_getblk(sb, block);
3507        if (!bh) {
3508                EXT4_ERROR_INODE_BLOCK(inode, block,
3509                                       "unable to read itable block");
3510                return -EIO;
3511        }
3512        if (!buffer_uptodate(bh)) {
3513                lock_buffer(bh);
3514
3515                /*
3516                 * If the buffer has the write error flag, we have failed
3517                 * to write out another inode in the same block.  In this
3518                 * case, we don't have to read the block because we may
3519                 * read the old inode data successfully.
3520                 */
3521                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3522                        set_buffer_uptodate(bh);
3523
3524                if (buffer_uptodate(bh)) {
3525                        /* someone brought it uptodate while we waited */
3526                        unlock_buffer(bh);
3527                        goto has_buffer;
3528                }
3529
3530                /*
3531                 * If we have all information of the inode in memory and this
3532                 * is the only valid inode in the block, we need not read the
3533                 * block.
3534                 */
3535                if (in_mem) {
3536                        struct buffer_head *bitmap_bh;
3537                        int i, start;
3538
3539                        start = inode_offset & ~(inodes_per_block - 1);
3540
3541                        /* Is the inode bitmap in cache? */
3542                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3543                        if (!bitmap_bh)
3544                                goto make_io;
3545
3546                        /*
3547                         * If the inode bitmap isn't in cache then the
3548                         * optimisation may end up performing two reads instead
3549                         * of one, so skip it.
3550                         */
3551                        if (!buffer_uptodate(bitmap_bh)) {
3552                                brelse(bitmap_bh);
3553                                goto make_io;
3554                        }
3555                        for (i = start; i < start + inodes_per_block; i++) {
3556                                if (i == inode_offset)
3557                                        continue;
3558                                if (ext4_test_bit(i, bitmap_bh->b_data))
3559                                        break;
3560                        }
3561                        brelse(bitmap_bh);
3562                        if (i == start + inodes_per_block) {
3563                                /* all other inodes are free, so skip I/O */
3564                                memset(bh->b_data, 0, bh->b_size);
3565                                set_buffer_uptodate(bh);
3566                                unlock_buffer(bh);
3567                                goto has_buffer;
3568                        }
3569                }
3570
3571make_io:
3572                /*
3573                 * If we need to do any I/O, try to pre-readahead extra
3574                 * blocks from the inode table.
3575                 */
3576                if (EXT4_SB(sb)->s_inode_readahead_blks) {
3577                        ext4_fsblk_t b, end, table;
3578                        unsigned num;
3579
3580                        table = ext4_inode_table(sb, gdp);
3581                        /* s_inode_readahead_blks is always a power of 2 */
3582                        b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583                        if (table > b)
3584                                b = table;
3585                        end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3586                        num = EXT4_INODES_PER_GROUP(sb);
3587                        if (ext4_has_group_desc_csum(sb))
3588                                num -= ext4_itable_unused_count(sb, gdp);
3589                        table += num / inodes_per_block;
3590                        if (end > table)
3591                                end = table;
3592                        while (b <= end)
3593                                sb_breadahead(sb, b++);
3594                }
3595
3596                /*
3597                 * There are other valid inodes in the buffer, this inode
3598                 * has in-inode xattrs, or we don't have this inode in memory.
3599                 * Read the block from disk.
3600                 */
3601                trace_ext4_load_inode(inode);
3602                get_bh(bh);
3603                bh->b_end_io = end_buffer_read_sync;
3604                submit_bh(READ | REQ_META | REQ_PRIO, bh);
3605                wait_on_buffer(bh);
3606                if (!buffer_uptodate(bh)) {
3607                        EXT4_ERROR_INODE_BLOCK(inode, block,
3608                                               "unable to read itable block");
3609                        brelse(bh);
3610                        return -EIO;
3611                }
3612        }
3613has_buffer:
3614        iloc->bh = bh;
3615        return 0;
3616}
3617
3618int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3619{
3620        /* We have all inode data except xattrs in memory here. */
3621        return __ext4_get_inode_loc(inode, iloc,
3622                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3623}
3624
3625void ext4_set_inode_flags(struct inode *inode)
3626{
3627        unsigned int flags = EXT4_I(inode)->i_flags;
3628
3629        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3630        if (flags & EXT4_SYNC_FL)
3631                inode->i_flags |= S_SYNC;
3632        if (flags & EXT4_APPEND_FL)
3633                inode->i_flags |= S_APPEND;
3634        if (flags & EXT4_IMMUTABLE_FL)
3635                inode->i_flags |= S_IMMUTABLE;
3636        if (flags & EXT4_NOATIME_FL)
3637                inode->i_flags |= S_NOATIME;
3638        if (flags & EXT4_DIRSYNC_FL)
3639                inode->i_flags |= S_DIRSYNC;
3640}
3641
3642/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643void ext4_get_inode_flags(struct ext4_inode_info *ei)
3644{
3645        unsigned int vfs_fl;
3646        unsigned long old_fl, new_fl;
3647
3648        do {
3649                vfs_fl = ei->vfs_inode.i_flags;
3650                old_fl = ei->i_flags;
3651                new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3652                                EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3653                                EXT4_DIRSYNC_FL);
3654                if (vfs_fl & S_SYNC)
3655                        new_fl |= EXT4_SYNC_FL;
3656                if (vfs_fl & S_APPEND)
3657                        new_fl |= EXT4_APPEND_FL;
3658                if (vfs_fl & S_IMMUTABLE)
3659                        new_fl |= EXT4_IMMUTABLE_FL;
3660                if (vfs_fl & S_NOATIME)
3661                        new_fl |= EXT4_NOATIME_FL;
3662                if (vfs_fl & S_DIRSYNC)
3663                        new_fl |= EXT4_DIRSYNC_FL;
3664        } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3665}
3666
3667static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3668                                  struct ext4_inode_info *ei)
3669{
3670        blkcnt_t i_blocks ;
3671        struct inode *inode = &(ei->vfs_inode);
3672        struct super_block *sb = inode->i_sb;
3673
3674        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3675                                EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3676                /* we are using combined 48 bit field */
3677                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3678                                        le32_to_cpu(raw_inode->i_blocks_lo);
3679                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3680                        /* i_blocks represent file system block size */
3681                        return i_blocks  << (inode->i_blkbits - 9);
3682                } else {
3683                        return i_blocks;
3684                }
3685        } else {
3686                return le32_to_cpu(raw_inode->i_blocks_lo);
3687        }
3688}
3689
3690struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3691{
3692        struct ext4_iloc iloc;
3693        struct ext4_inode *raw_inode;
3694        struct ext4_inode_info *ei;
3695        struct inode *inode;
3696        journal_t *journal = EXT4_SB(sb)->s_journal;
3697        long ret;
3698        int block;
3699        uid_t i_uid;
3700        gid_t i_gid;
3701
3702        inode = iget_locked(sb, ino);
3703        if (!inode)
3704                return ERR_PTR(-ENOMEM);
3705        if (!(inode->i_state & I_NEW))
3706                return inode;
3707
3708        ei = EXT4_I(inode);
3709        iloc.bh = NULL;
3710
3711        ret = __ext4_get_inode_loc(inode, &iloc, 0);
3712        if (ret < 0)
3713                goto bad_inode;
3714        raw_inode = ext4_raw_inode(&iloc);
3715
3716        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3717                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3718                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3719                    EXT4_INODE_SIZE(inode->i_sb)) {
3720                        EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3721                                EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3722                                EXT4_INODE_SIZE(inode->i_sb));
3723                        ret = -EIO;
3724                        goto bad_inode;
3725                }
3726        } else
3727                ei->i_extra_isize = 0;
3728
3729        /* Precompute checksum seed for inode metadata */
3730        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3731                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3732                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3733                __u32 csum;
3734                __le32 inum = cpu_to_le32(inode->i_ino);
3735                __le32 gen = raw_inode->i_generation;
3736                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3737                                   sizeof(inum));
3738                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3739                                              sizeof(gen));
3740        }
3741
3742        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3743                EXT4_ERROR_INODE(inode, "checksum invalid");
3744                ret = -EIO;
3745                goto bad_inode;
3746        }
3747
3748        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3749        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3750        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3751        if (!(test_opt(inode->i_sb, NO_UID32))) {
3752                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3753                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3754        }
3755        i_uid_write(inode, i_uid);
3756        i_gid_write(inode, i_gid);
3757        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3758
3759        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3760        ei->i_dir_start_lookup = 0;
3761        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3762        /* We now have enough fields to check if the inode was active or not.
3763         * This is needed because nfsd might try to access dead inodes
3764         * the test is that same one that e2fsck uses
3765         * NeilBrown 1999oct15
3766         */
3767        if (inode->i_nlink == 0) {
3768                if (inode->i_mode == 0 ||
3769                    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3770                        /* this inode is deleted */
3771                        ret = -ESTALE;
3772                        goto bad_inode;
3773                }
3774                /* The only unlinked inodes we let through here have
3775                 * valid i_mode and are being read by the orphan
3776                 * recovery code: that's fine, we're about to complete
3777                 * the process of deleting those. */
3778        }
3779        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3780        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3781        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3782        if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3783                ei->i_file_acl |=
3784                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3785        inode->i_size = ext4_isize(raw_inode);
3786        ei->i_disksize = inode->i_size;
3787#ifdef CONFIG_QUOTA
3788        ei->i_reserved_quota = 0;
3789#endif
3790        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3791        ei->i_block_group = iloc.block_group;
3792        ei->i_last_alloc_group = ~0;
3793        /*
3794         * NOTE! The in-memory inode i_data array is in little-endian order
3795         * even on big-endian machines: we do NOT byteswap the block numbers!
3796         */
3797        for (block = 0; block < EXT4_N_BLOCKS; block++)
3798                ei->i_data[block] = raw_inode->i_block[block];
3799        INIT_LIST_HEAD(&ei->i_orphan);
3800
3801        /*
3802         * Set transaction id's of transactions that have to be committed
3803         * to finish f[data]sync. We set them to currently running transaction
3804         * as we cannot be sure that the inode or some of its metadata isn't
3805         * part of the transaction - the inode could have been reclaimed and
3806         * now it is reread from disk.
3807         */
3808        if (journal) {
3809                transaction_t *transaction;
3810                tid_t tid;
3811
3812                read_lock(&journal->j_state_lock);
3813                if (journal->j_running_transaction)
3814                        transaction = journal->j_running_transaction;
3815                else
3816                        transaction = journal->j_committing_transaction;
3817                if (transaction)
3818                        tid = transaction->t_tid;
3819                else
3820                        tid = journal->j_commit_sequence;
3821                read_unlock(&journal->j_state_lock);
3822                ei->i_sync_tid = tid;
3823                ei->i_datasync_tid = tid;
3824        }
3825
3826        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3827                if (ei->i_extra_isize == 0) {
3828                        /* The extra space is currently unused. Use it. */
3829                        ei->i_extra_isize = sizeof(struct ext4_inode) -
3830                                            EXT4_GOOD_OLD_INODE_SIZE;
3831                } else {
3832                        __le32 *magic = (void *)raw_inode +
3833                                        EXT4_GOOD_OLD_INODE_SIZE +
3834                                        ei->i_extra_isize;
3835                        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3836                                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3837                }
3838        }
3839
3840        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3841        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3842        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3843        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3844
3845        inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3846        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3847                if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3848                        inode->i_version |=
3849                        (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3850        }
3851
3852        ret = 0;
3853        if (ei->i_file_acl &&
3854            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3855                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3856                                 ei->i_file_acl);
3857                ret = -EIO;
3858                goto bad_inode;
3859        } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3860                if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3861                    (S_ISLNK(inode->i_mode) &&
3862                     !ext4_inode_is_fast_symlink(inode)))
3863                        /* Validate extent which is part of inode */
3864                        ret = ext4_ext_check_inode(inode);
3865        } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3866                   (S_ISLNK(inode->i_mode) &&
3867                    !ext4_inode_is_fast_symlink(inode))) {
3868                /* Validate block references which are part of inode */
3869                ret = ext4_ind_check_inode(inode);
3870        }
3871        if (ret)
3872                goto bad_inode;
3873
3874        if (S_ISREG(inode->i_mode)) {
3875                inode->i_op = &ext4_file_inode_operations;
3876                inode->i_fop = &ext4_file_operations;
3877                ext4_set_aops(inode);
3878        } else if (S_ISDIR(inode->i_mode)) {
3879                inode->i_op = &ext4_dir_inode_operations;
3880                inode->i_fop = &ext4_dir_operations;
3881        } else if (S_ISLNK(inode->i_mode)) {
3882                if (ext4_inode_is_fast_symlink(inode)) {
3883                        inode->i_op = &ext4_fast_symlink_inode_operations;
3884                        nd_terminate_link(ei->i_data, inode->i_size,
3885                                sizeof(ei->i_data) - 1);
3886                } else {
3887                        inode->i_op = &ext4_symlink_inode_operations;
3888                        ext4_set_aops(inode);
3889                }
3890        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3891              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3892                inode->i_op = &ext4_special_inode_operations;
3893                if (raw_inode->i_block[0])
3894                        init_special_inode(inode, inode->i_mode,
3895                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3896                else
3897                        init_special_inode(inode, inode->i_mode,
3898                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3899        } else {
3900                ret = -EIO;
3901                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3902                goto bad_inode;
3903        }
3904        brelse(iloc.bh);
3905        ext4_set_inode_flags(inode);
3906        unlock_new_inode(inode);
3907        return inode;
3908
3909bad_inode:
3910        brelse(iloc.bh);
3911        iget_failed(inode);
3912        return ERR_PTR(ret);
3913}
3914
3915static int ext4_inode_blocks_set(handle_t *handle,
3916                                struct ext4_inode *raw_inode,
3917                                struct ext4_inode_info *ei)
3918{
3919        struct inode *inode = &(ei->vfs_inode);
3920        u64 i_blocks = inode->i_blocks;
3921        struct super_block *sb = inode->i_sb;
3922
3923        if (i_blocks <= ~0U) {
3924                /*
3925                 * i_blocks can be represnted in a 32 bit variable
3926                 * as multiple of 512 bytes
3927                 */
3928                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3929                raw_inode->i_blocks_high = 0;
3930                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3931                return 0;
3932        }
3933        if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3934                return -EFBIG;
3935
3936        if (i_blocks <= 0xffffffffffffULL) {
3937                /*
3938                 * i_blocks can be represented in a 48 bit variable
3939                 * as multiple of 512 bytes
3940                 */
3941                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3942                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3943                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3944        } else {
3945                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3946                /* i_block is stored in file system block size */
3947                i_blocks = i_blocks >> (inode->i_blkbits - 9);
3948                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3949                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3950        }
3951        return 0;
3952}
3953
3954/*
3955 * Post the struct inode info into an on-disk inode location in the
3956 * buffer-cache.  This gobbles the caller's reference to the
3957 * buffer_head in the inode location struct.
3958 *
3959 * The caller must have write access to iloc->bh.
3960 */
3961static int ext4_do_update_inode(handle_t *handle,
3962                                struct inode *inode,
3963                                struct ext4_iloc *iloc)
3964{
3965        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3966        struct ext4_inode_info *ei = EXT4_I(inode);
3967        struct buffer_head *bh = iloc->bh;
3968        int err = 0, rc, block;
3969        uid_t i_uid;
3970        gid_t i_gid;
3971
3972        /* For fields not not tracking in the in-memory inode,
3973         * initialise them to zero for new inodes. */
3974        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3975                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3976
3977        ext4_get_inode_flags(ei);
3978        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3979        i_uid = i_uid_read(inode);
3980        i_gid = i_gid_read(inode);
3981        if (!(test_opt(inode->i_sb, NO_UID32))) {
3982                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3983                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3984/*
3985 * Fix up interoperability with old kernels. Otherwise, old inodes get
3986 * re-used with the upper 16 bits of the uid/gid intact
3987 */
3988                if (!ei->i_dtime) {
3989                        raw_inode->i_uid_high =
3990                                cpu_to_le16(high_16_bits(i_uid));
3991                        raw_inode->i_gid_high =
3992                                cpu_to_le16(high_16_bits(i_gid));
3993                } else {
3994                        raw_inode->i_uid_high = 0;
3995                        raw_inode->i_gid_high = 0;
3996                }
3997        } else {
3998                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3999                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4000                raw_inode->i_uid_high = 0;
4001                raw_inode->i_gid_high = 0;
4002        }
4003        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4004
4005        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4006        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4007        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4008        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4009
4010        if (ext4_inode_blocks_set(handle, raw_inode, ei))
4011                goto out_brelse;
4012        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4013        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4014        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4015            cpu_to_le32(EXT4_OS_HURD))
4016                raw_inode->i_file_acl_high =
4017                        cpu_to_le16(ei->i_file_acl >> 32);
4018        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4019        ext4_isize_set(raw_inode, ei->i_disksize);
4020        if (ei->i_disksize > 0x7fffffffULL) {
4021                struct super_block *sb = inode->i_sb;
4022                if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4023                                EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4024                                EXT4_SB(sb)->s_es->s_rev_level ==
4025                                cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4026                        /* If this is the first large file
4027                         * created, add a flag to the superblock.
4028                         */
4029                        err = ext4_journal_get_write_access(handle,
4030                                        EXT4_SB(sb)->s_sbh);
4031                        if (err)
4032                                goto out_brelse;
4033                        ext4_update_dynamic_rev(sb);
4034                        EXT4_SET_RO_COMPAT_FEATURE(sb,
4035                                        EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4036                        ext4_handle_sync(handle);
4037                        err = ext4_handle_dirty_super_now(handle, sb);
4038                }
4039        }
4040        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4041        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4042                if (old_valid_dev(inode->i_rdev)) {
4043                        raw_inode->i_block[0] =
4044                                cpu_to_le32(old_encode_dev(inode->i_rdev));
4045                        raw_inode->i_block[1] = 0;
4046                } else {
4047                        raw_inode->i_block[0] = 0;
4048                        raw_inode->i_block[1] =
4049                                cpu_to_le32(new_encode_dev(inode->i_rdev));
4050                        raw_inode->i_block[2] = 0;
4051                }
4052        } else
4053                for (block = 0; block < EXT4_N_BLOCKS; block++)
4054                        raw_inode->i_block[block] = ei->i_data[block];
4055
4056        raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4057        if (ei->i_extra_isize) {
4058                if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4059                        raw_inode->i_version_hi =
4060                        cpu_to_le32(inode->i_version >> 32);
4061                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4062        }
4063
4064        ext4_inode_csum_set(inode, raw_inode, ei);
4065
4066        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4067        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4068        if (!err)
4069                err = rc;
4070        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4071
4072        ext4_update_inode_fsync_trans(handle, inode, 0);
4073out_brelse:
4074        brelse(bh);
4075        ext4_std_error(inode->i_sb, err);
4076        return err;
4077}
4078
4079/*
4080 * ext4_write_inode()
4081 *
4082 * We are called from a few places:
4083 *
4084 * - Within generic_file_write() for O_SYNC files.
4085 *   Here, there will be no transaction running. We wait for any running
4086 *   trasnaction to commit.
4087 *
4088 * - Within sys_sync(), kupdate and such.
4089 *   We wait on commit, if tol to.
4090 *
4091 * - Within prune_icache() (PF_MEMALLOC == true)
4092 *   Here we simply return.  We can't afford to block kswapd on the
4093 *   journal commit.
4094 *
4095 * In all cases it is actually safe for us to return without doing anything,
4096 * because the inode has been copied into a raw inode buffer in
4097 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4098 * knfsd.
4099 *
4100 * Note that we are absolutely dependent upon all inode dirtiers doing the
4101 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4102 * which we are interested.
4103 *
4104 * It would be a bug for them to not do this.  The code:
4105 *
4106 *      mark_inode_dirty(inode)
4107 *      stuff();
4108 *      inode->i_size = expr;
4109 *
4110 * is in error because a kswapd-driven write_inode() could occur while
4111 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4112 * will no longer be on the superblock's dirty inode list.
4113 */
4114int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4115{
4116        int err;
4117
4118        if (current->flags & PF_MEMALLOC)
4119                return 0;
4120
4121        if (EXT4_SB(inode->i_sb)->s_journal) {
4122                if (ext4_journal_current_handle()) {
4123                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4124                        dump_stack();
4125                        return -EIO;
4126                }
4127
4128                if (wbc->sync_mode != WB_SYNC_ALL)
4129                        return 0;
4130
4131                err = ext4_force_commit(inode->i_sb);
4132        } else {
4133                struct ext4_iloc iloc;
4134
4135                err = __ext4_get_inode_loc(inode, &iloc, 0);
4136                if (err)
4137                        return err;
4138                if (wbc->sync_mode == WB_SYNC_ALL)
4139                        sync_dirty_buffer(iloc.bh);
4140                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4141                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4142                                         "IO error syncing inode");
4143                        err = -EIO;
4144                }
4145                brelse(iloc.bh);
4146        }
4147        return err;
4148}
4149
4150/*
4151 * ext4_setattr()
4152 *
4153 * Called from notify_change.
4154 *
4155 * We want to trap VFS attempts to truncate the file as soon as
4156 * possible.  In particular, we want to make sure that when the VFS
4157 * shrinks i_size, we put the inode on the orphan list and modify
4158 * i_disksize immediately, so that during the subsequent flushing of
4159 * dirty pages and freeing of disk blocks, we can guarantee that any
4160 * commit will leave the blocks being flushed in an unused state on
4161 * disk.  (On recovery, the inode will get truncated and the blocks will
4162 * be freed, so we have a strong guarantee that no future commit will
4163 * leave these blocks visible to the user.)
4164 *
4165 * Another thing we have to assure is that if we are in ordered mode
4166 * and inode is still attached to the committing transaction, we must
4167 * we start writeout of all the dirty pages which are being truncated.
4168 * This way we are sure that all the data written in the previous
4169 * transaction are already on disk (truncate waits for pages under
4170 * writeback).
4171 *
4172 * Called with inode->i_mutex down.
4173 */
4174int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4175{
4176        struct inode *inode = dentry->d_inode;
4177        int error, rc = 0;
4178        int orphan = 0;
4179        const unsigned int ia_valid = attr->ia_valid;
4180
4181        error = inode_change_ok(inode, attr);
4182        if (error)
4183                return error;
4184
4185        if (is_quota_modification(inode, attr))
4186                dquot_initialize(inode);
4187        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4188            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4189                handle_t *handle;
4190
4191                /* (user+group)*(old+new) structure, inode write (sb,
4192                 * inode block, ? - but truncate inode update has it) */
4193                handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4194                                        EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4195                if (IS_ERR(handle)) {
4196                        error = PTR_ERR(handle);
4197                        goto err_out;
4198                }
4199                error = dquot_transfer(inode, attr);
4200                if (error) {
4201                        ext4_journal_stop(handle);
4202                        return error;
4203                }
4204                /* Update corresponding info in inode so that everything is in
4205                 * one transaction */
4206                if (attr->ia_valid & ATTR_UID)
4207                        inode->i_uid = attr->ia_uid;
4208                if (attr->ia_valid & ATTR_GID)
4209                        inode->i_gid = attr->ia_gid;
4210                error = ext4_mark_inode_dirty(handle, inode);
4211                ext4_journal_stop(handle);
4212        }
4213
4214        if (attr->ia_valid & ATTR_SIZE) {
4215                inode_dio_wait(inode);
4216
4217                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4218                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4219
4220                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
4221                                return -EFBIG;
4222                }
4223        }
4224
4225        if (S_ISREG(inode->i_mode) &&
4226            attr->ia_valid & ATTR_SIZE &&
4227            (attr->ia_size < inode->i_size)) {
4228                handle_t *handle;
4229
4230                handle = ext4_journal_start(inode, 3);
4231                if (IS_ERR(handle)) {
4232                        error = PTR_ERR(handle);
4233                        goto err_out;
4234                }
4235                if (ext4_handle_valid(handle)) {
4236                        error = ext4_orphan_add(handle, inode);
4237                        orphan = 1;
4238                }
4239                EXT4_I(inode)->i_disksize = attr->ia_size;
4240                rc = ext4_mark_inode_dirty(handle, inode);
4241                if (!error)
4242                        error = rc;
4243                ext4_journal_stop(handle);
4244
4245                if (ext4_should_order_data(inode)) {
4246                        error = ext4_begin_ordered_truncate(inode,
4247                                                            attr->ia_size);
4248                        if (error) {
4249                                /* Do as much error cleanup as possible */
4250                                handle = ext4_journal_start(inode, 3);
4251                                if (IS_ERR(handle)) {
4252                                        ext4_orphan_del(NULL, inode);
4253                                        goto err_out;
4254                                }
4255                                ext4_orphan_del(handle, inode);
4256                                orphan = 0;
4257                                ext4_journal_stop(handle);
4258                                goto err_out;
4259                        }
4260                }
4261        }
4262
4263        if (attr->ia_valid & ATTR_SIZE) {
4264                if (attr->ia_size != i_size_read(inode))
4265                        truncate_setsize(inode, attr->ia_size);
4266                ext4_truncate(inode);
4267        }
4268
4269        if (!rc) {
4270                setattr_copy(inode, attr);
4271                mark_inode_dirty(inode);
4272        }
4273
4274        /*
4275         * If the call to ext4_truncate failed to get a transaction handle at
4276         * all, we need to clean up the in-core orphan list manually.
4277         */
4278        if (orphan && inode->i_nlink)
4279                ext4_orphan_del(NULL, inode);
4280
4281        if (!rc && (ia_valid & ATTR_MODE))
4282                rc = ext4_acl_chmod(inode);
4283
4284err_out:
4285        ext4_std_error(inode->i_sb, error);
4286        if (!error)
4287                error = rc;
4288        return error;
4289}
4290
4291int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4292                 struct kstat *stat)
4293{
4294        struct inode *inode;
4295        unsigned long delalloc_blocks;
4296
4297        inode = dentry->d_inode;
4298        generic_fillattr(inode, stat);
4299
4300        /*
4301         * We can't update i_blocks if the block allocation is delayed
4302         * otherwise in the case of system crash before the real block
4303         * allocation is done, we will have i_blocks inconsistent with
4304         * on-disk file blocks.
4305         * We always keep i_blocks updated together with real
4306         * allocation. But to not confuse with user, stat
4307         * will return the blocks that include the delayed allocation
4308         * blocks for this file.
4309         */
4310        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4311                                EXT4_I(inode)->i_reserved_data_blocks);
4312
4313        stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4314        return 0;
4315}
4316
4317static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4318{
4319        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4320                return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4321        return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4322}
4323
4324/*
4325 * Account for index blocks, block groups bitmaps and block group
4326 * descriptor blocks if modify datablocks and index blocks
4327 * worse case, the indexs blocks spread over different block groups
4328 *
4329 * If datablocks are discontiguous, they are possible to spread over
4330 * different block groups too. If they are contiuguous, with flexbg,
4331 * they could still across block group boundary.
4332 *
4333 * Also account for superblock, inode, quota and xattr blocks
4334 */
4335static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4336{
4337        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4338        int gdpblocks;
4339        int idxblocks;
4340        int ret = 0;
4341
4342        /*
4343         * How many index blocks need to touch to modify nrblocks?
4344         * The "Chunk" flag indicating whether the nrblocks is
4345         * physically contiguous on disk
4346         *
4347         * For Direct IO and fallocate, they calls get_block to allocate
4348         * one single extent at a time, so they could set the "Chunk" flag
4349         */
4350        idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4351
4352        ret = idxblocks;
4353
4354        /*
4355         * Now let's see how many group bitmaps and group descriptors need
4356         * to account
4357         */
4358        groups = idxblocks;
4359        if (chunk)
4360                groups += 1;
4361        else
4362                groups += nrblocks;
4363
4364        gdpblocks = groups;
4365        if (groups > ngroups)
4366                groups = ngroups;
4367        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4368                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4369
4370        /* bitmaps and block group descriptor blocks */
4371        ret += groups + gdpblocks;
4372
4373        /* Blocks for super block, inode, quota and xattr blocks */
4374        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4375
4376        return ret;
4377}
4378
4379/*
4380 * Calculate the total number of credits to reserve to fit
4381 * the modification of a single pages into a single transaction,
4382 * which may include multiple chunks of block allocations.
4383 *
4384 * This could be called via ext4_write_begin()
4385 *
4386 * We need to consider the worse case, when
4387 * one new block per extent.
4388 */
4389int ext4_writepage_trans_blocks(struct inode *inode)
4390{
4391        int bpp = ext4_journal_blocks_per_page(inode);
4392        int ret;
4393
4394        ret = ext4_meta_trans_blocks(inode, bpp, 0);
4395
4396        /* Account for data blocks for journalled mode */
4397        if (ext4_should_journal_data(inode))
4398                ret += bpp;
4399        return ret;
4400}
4401
4402/*
4403 * Calculate the journal credits for a chunk of data modification.
4404 *
4405 * This is called from DIO, fallocate or whoever calling
4406 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4407 *
4408 * journal buffers for data blocks are not included here, as DIO
4409 * and fallocate do no need to journal data buffers.
4410 */
4411int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4412{
4413        return ext4_meta_trans_blocks(inode, nrblocks, 1);
4414}
4415
4416/*
4417 * The caller must have previously called ext4_reserve_inode_write().
4418 * Give this, we know that the caller already has write access to iloc->bh.
4419 */
4420int ext4_mark_iloc_dirty(handle_t *handle,
4421                         struct inode *inode, struct ext4_iloc *iloc)
4422{
4423        int err = 0;
4424
4425        if (IS_I_VERSION(inode))
4426                inode_inc_iversion(inode);
4427
4428        /* the do_update_inode consumes one bh->b_count */
4429        get_bh(iloc->bh);
4430
4431        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4432        err = ext4_do_update_inode(handle, inode, iloc);
4433        put_bh(iloc->bh);
4434        return err;
4435}
4436
4437/*
4438 * On success, We end up with an outstanding reference count against
4439 * iloc->bh.  This _must_ be cleaned up later.
4440 */
4441
4442int
4443ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4444                         struct ext4_iloc *iloc)
4445{
4446        int err;
4447
4448        err = ext4_get_inode_loc(inode, iloc);
4449        if (!err) {
4450                BUFFER_TRACE(iloc->bh, "get_write_access");
4451                err = ext4_journal_get_write_access(handle, iloc->bh);
4452                if (err) {
4453                        brelse(iloc->bh);
4454                        iloc->bh = NULL;
4455                }
4456        }
4457        ext4_std_error(inode->i_sb, err);
4458        return err;
4459}
4460
4461/*
4462 * Expand an inode by new_extra_isize bytes.
4463 * Returns 0 on success or negative error number on failure.
4464 */
4465static int ext4_expand_extra_isize(struct inode *inode,
4466                                   unsigned int new_extra_isize,
4467                                   struct ext4_iloc iloc,
4468                                   handle_t *handle)
4469{
4470        struct ext4_inode *raw_inode;
4471        struct ext4_xattr_ibody_header *header;
4472
4473        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4474                return 0;
4475
4476        raw_inode = ext4_raw_inode(&iloc);
4477
4478        header = IHDR(inode, raw_inode);
4479
4480        /* No extended attributes present */
4481        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4482            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4483                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4484                        new_extra_isize);
4485                EXT4_I(inode)->i_extra_isize = new_extra_isize;
4486                return 0;
4487        }
4488
4489        /* try to expand with EAs present */
4490        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4491                                          raw_inode, handle);
4492}
4493
4494/*
4495 * What we do here is to mark the in-core inode as clean with respect to inode
4496 * dirtiness (it may still be data-dirty).
4497 * This means that the in-core inode may be reaped by prune_icache
4498 * without having to perform any I/O.  This is a very good thing,
4499 * because *any* task may call prune_icache - even ones which
4500 * have a transaction open against a different journal.
4501 *
4502 * Is this cheating?  Not really.  Sure, we haven't written the
4503 * inode out, but prune_icache isn't a user-visible syncing function.
4504 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4505 * we start and wait on commits.
4506 *
4507 * Is this efficient/effective?  Well, we're being nice to the system
4508 * by cleaning up our inodes proactively so they can be reaped
4509 * without I/O.  But we are potentially leaving up to five seconds'
4510 * worth of inodes floating about which prune_icache wants us to
4511 * write out.  One way to fix that would be to get prune_icache()
4512 * to do a write_super() to free up some memory.  It has the desired
4513 * effect.
4514 */
4515int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4516{
4517        struct ext4_iloc iloc;
4518        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4519        static unsigned int mnt_count;
4520        int err, ret;
4521
4522        might_sleep();
4523        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4524        err = ext4_reserve_inode_write(handle, inode, &iloc);
4525        if (ext4_handle_valid(handle) &&
4526            EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4527            !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4528                /*
4529                 * We need extra buffer credits since we may write into EA block
4530                 * with this same handle. If journal_extend fails, then it will
4531                 * only result in a minor loss of functionality for that inode.
4532                 * If this is felt to be critical, then e2fsck should be run to
4533                 * force a large enough s_min_extra_isize.
4534                 */
4535                if ((jbd2_journal_extend(handle,
4536                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4537                        ret = ext4_expand_extra_isize(inode,
4538                                                      sbi->s_want_extra_isize,
4539                                                      iloc, handle);
4540                        if (ret) {
4541                                ext4_set_inode_state(inode,
4542                                                     EXT4_STATE_NO_EXPAND);
4543                                if (mnt_count !=
4544                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
4545                                        ext4_warning(inode->i_sb,
4546                                        "Unable to expand inode %lu. Delete"
4547                                        " some EAs or run e2fsck.",
4548                                        inode->i_ino);
4549                                        mnt_count =
4550                                          le16_to_cpu(sbi->s_es->s_mnt_count);
4551                                }
4552                        }
4553                }
4554        }
4555        if (!err)
4556                err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4557        return err;
4558}
4559
4560/*
4561 * ext4_dirty_inode() is called from __mark_inode_dirty()
4562 *
4563 * We're really interested in the case where a file is being extended.
4564 * i_size has been changed by generic_commit_write() and we thus need
4565 * to include the updated inode in the current transaction.
4566 *
4567 * Also, dquot_alloc_block() will always dirty the inode when blocks
4568 * are allocated to the file.
4569 *
4570 * If the inode is marked synchronous, we don't honour that here - doing
4571 * so would cause a commit on atime updates, which we don't bother doing.
4572 * We handle synchronous inodes at the highest possible level.
4573 */
4574void ext4_dirty_inode(struct inode *inode, int flags)
4575{
4576        handle_t *handle;
4577
4578        handle = ext4_journal_start(inode, 2);
4579        if (IS_ERR(handle))
4580                goto out;
4581
4582        ext4_mark_inode_dirty(handle, inode);
4583
4584        ext4_journal_stop(handle);
4585out:
4586        return;
4587}
4588
4589#if 0
4590/*
4591 * Bind an inode's backing buffer_head into this transaction, to prevent
4592 * it from being flushed to disk early.  Unlike
4593 * ext4_reserve_inode_write, this leaves behind no bh reference and
4594 * returns no iloc structure, so the caller needs to repeat the iloc
4595 * lookup to mark the inode dirty later.
4596 */
4597static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4598{
4599        struct ext4_iloc iloc;
4600
4601        int err = 0;
4602        if (handle) {
4603                err = ext4_get_inode_loc(inode, &iloc);
4604                if (!err) {
4605                        BUFFER_TRACE(iloc.bh, "get_write_access");
4606                        err = jbd2_journal_get_write_access(handle, iloc.bh);
4607                        if (!err)
4608                                err = ext4_handle_dirty_metadata(handle,
4609                                                                 NULL,
4610                                                                 iloc.bh);
4611                        brelse(iloc.bh);
4612                }
4613        }
4614        ext4_std_error(inode->i_sb, err);
4615        return err;
4616}
4617#endif
4618
4619int ext4_change_inode_journal_flag(struct inode *inode, int val)
4620{
4621        journal_t *journal;
4622        handle_t *handle;
4623        int err;
4624
4625        /*
4626         * We have to be very careful here: changing a data block's
4627         * journaling status dynamically is dangerous.  If we write a
4628         * data block to the journal, change the status and then delete
4629         * that block, we risk forgetting to revoke the old log record
4630         * from the journal and so a subsequent replay can corrupt data.
4631         * So, first we make sure that the journal is empty and that
4632         * nobody is changing anything.
4633         */
4634
4635        journal = EXT4_JOURNAL(inode);
4636        if (!journal)
4637                return 0;
4638        if (is_journal_aborted(journal))
4639                return -EROFS;
4640        /* We have to allocate physical blocks for delalloc blocks
4641         * before flushing journal. otherwise delalloc blocks can not
4642         * be allocated any more. even more truncate on delalloc blocks
4643         * could trigger BUG by flushing delalloc blocks in journal.
4644         * There is no delalloc block in non-journal data mode.
4645         */
4646        if (val && test_opt(inode->i_sb, DELALLOC)) {
4647                err = ext4_alloc_da_blocks(inode);
4648                if (err < 0)
4649                        return err;
4650        }
4651
4652        jbd2_journal_lock_updates(journal);
4653
4654        /*
4655         * OK, there are no updates running now, and all cached data is
4656         * synced to disk.  We are now in a completely consistent state
4657         * which doesn't have anything in the journal, and we know that
4658         * no filesystem updates are running, so it is safe to modify
4659         * the inode's in-core data-journaling state flag now.
4660         */
4661
4662        if (val)
4663                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4664        else {
4665                jbd2_journal_flush(journal);
4666                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4667        }
4668        ext4_set_aops(inode);
4669
4670        jbd2_journal_unlock_updates(journal);
4671
4672        /* Finally we can mark the inode as dirty. */
4673
4674        handle = ext4_journal_start(inode, 1);
4675        if (IS_ERR(handle))
4676                return PTR_ERR(handle);
4677
4678        err = ext4_mark_inode_dirty(handle, inode);
4679        ext4_handle_sync(handle);
4680        ext4_journal_stop(handle);
4681        ext4_std_error(inode->i_sb, err);
4682
4683        return err;
4684}
4685
4686static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4687{
4688        return !buffer_mapped(bh);
4689}
4690
4691int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4692{
4693        struct page *page = vmf->page;
4694        loff_t size;
4695        unsigned long len;
4696        int ret;
4697        struct file *file = vma->vm_file;
4698        struct inode *inode = file->f_path.dentry->d_inode;
4699        struct address_space *mapping = inode->i_mapping;
4700        handle_t *handle;
4701        get_block_t *get_block;
4702        int retries = 0;
4703
4704        /*
4705         * This check is racy but catches the common case. We rely on
4706         * __block_page_mkwrite() to do a reliable check.
4707         */
4708        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4709        /* Delalloc case is easy... */
4710        if (test_opt(inode->i_sb, DELALLOC) &&
4711            !ext4_should_journal_data(inode) &&
4712            !ext4_nonda_switch(inode->i_sb)) {
4713                do {
4714                        ret = __block_page_mkwrite(vma, vmf,
4715                                                   ext4_da_get_block_prep);
4716                } while (ret == -ENOSPC &&
4717                       ext4_should_retry_alloc(inode->i_sb, &retries));
4718                goto out_ret;
4719        }
4720
4721        lock_page(page);
4722        size = i_size_read(inode);
4723        /* Page got truncated from under us? */
4724        if (page->mapping != mapping || page_offset(page) > size) {
4725                unlock_page(page);
4726                ret = VM_FAULT_NOPAGE;
4727                goto out;
4728        }
4729
4730        if (page->index == size >> PAGE_CACHE_SHIFT)
4731                len = size & ~PAGE_CACHE_MASK;
4732        else
4733                len = PAGE_CACHE_SIZE;
4734        /*
4735         * Return if we have all the buffers mapped. This avoids the need to do
4736         * journal_start/journal_stop which can block and take a long time
4737         */
4738        if (page_has_buffers(page)) {
4739                if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4740                                        ext4_bh_unmapped)) {
4741                        /* Wait so that we don't change page under IO */
4742                        wait_on_page_writeback(page);
4743                        ret = VM_FAULT_LOCKED;
4744                        goto out;
4745                }
4746        }
4747        unlock_page(page);
4748        /* OK, we need to fill the hole... */
4749        if (ext4_should_dioread_nolock(inode))
4750                get_block = ext4_get_block_write;
4751        else
4752                get_block = ext4_get_block;
4753retry_alloc:
4754        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4755        if (IS_ERR(handle)) {
4756                ret = VM_FAULT_SIGBUS;
4757                goto out;
4758        }
4759        ret = __block_page_mkwrite(vma, vmf, get_block);
4760        if (!ret && ext4_should_journal_data(inode)) {
4761                if (walk_page_buffers(handle, page_buffers(page), 0,
4762                          PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4763                        unlock_page(page);
4764                        ret = VM_FAULT_SIGBUS;
4765                        ext4_journal_stop(handle);
4766                        goto out;
4767                }
4768                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4769        }
4770        ext4_journal_stop(handle);
4771        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4772                goto retry_alloc;
4773out_ret:
4774        ret = block_page_mkwrite_return(ret);
4775out:
4776        return ret;
4777}
4778