linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_sb.h"
  38#include "xfs_log.h"
  39#include "xfs_ag.h"
  40#include "xfs_mount.h"
  41#include "xfs_trace.h"
  42
  43static kmem_zone_t *xfs_buf_zone;
  44
  45static struct workqueue_struct *xfslogd_workqueue;
  46
  47#ifdef XFS_BUF_LOCK_TRACKING
  48# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  49# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  50# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  51#else
  52# define XB_SET_OWNER(bp)       do { } while (0)
  53# define XB_CLEAR_OWNER(bp)     do { } while (0)
  54# define XB_GET_OWNER(bp)       do { } while (0)
  55#endif
  56
  57#define xb_to_gfp(flags) \
  58        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  59
  60
  61static inline int
  62xfs_buf_is_vmapped(
  63        struct xfs_buf  *bp)
  64{
  65        /*
  66         * Return true if the buffer is vmapped.
  67         *
  68         * b_addr is null if the buffer is not mapped, but the code is clever
  69         * enough to know it doesn't have to map a single page, so the check has
  70         * to be both for b_addr and bp->b_page_count > 1.
  71         */
  72        return bp->b_addr && bp->b_page_count > 1;
  73}
  74
  75static inline int
  76xfs_buf_vmap_len(
  77        struct xfs_buf  *bp)
  78{
  79        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  80}
  81
  82/*
  83 * xfs_buf_lru_add - add a buffer to the LRU.
  84 *
  85 * The LRU takes a new reference to the buffer so that it will only be freed
  86 * once the shrinker takes the buffer off the LRU.
  87 */
  88STATIC void
  89xfs_buf_lru_add(
  90        struct xfs_buf  *bp)
  91{
  92        struct xfs_buftarg *btp = bp->b_target;
  93
  94        spin_lock(&btp->bt_lru_lock);
  95        if (list_empty(&bp->b_lru)) {
  96                atomic_inc(&bp->b_hold);
  97                list_add_tail(&bp->b_lru, &btp->bt_lru);
  98                btp->bt_lru_nr++;
  99        }
 100        spin_unlock(&btp->bt_lru_lock);
 101}
 102
 103/*
 104 * xfs_buf_lru_del - remove a buffer from the LRU
 105 *
 106 * The unlocked check is safe here because it only occurs when there are not
 107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 108 * to optimise the shrinker removing the buffer from the LRU and calling
 109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
 110 * bt_lru_lock.
 111 */
 112STATIC void
 113xfs_buf_lru_del(
 114        struct xfs_buf  *bp)
 115{
 116        struct xfs_buftarg *btp = bp->b_target;
 117
 118        if (list_empty(&bp->b_lru))
 119                return;
 120
 121        spin_lock(&btp->bt_lru_lock);
 122        if (!list_empty(&bp->b_lru)) {
 123                list_del_init(&bp->b_lru);
 124                btp->bt_lru_nr--;
 125        }
 126        spin_unlock(&btp->bt_lru_lock);
 127}
 128
 129/*
 130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 131 * b_lru_ref count so that the buffer is freed immediately when the buffer
 132 * reference count falls to zero. If the buffer is already on the LRU, we need
 133 * to remove the reference that LRU holds on the buffer.
 134 *
 135 * This prevents build-up of stale buffers on the LRU.
 136 */
 137void
 138xfs_buf_stale(
 139        struct xfs_buf  *bp)
 140{
 141        ASSERT(xfs_buf_islocked(bp));
 142
 143        bp->b_flags |= XBF_STALE;
 144
 145        /*
 146         * Clear the delwri status so that a delwri queue walker will not
 147         * flush this buffer to disk now that it is stale. The delwri queue has
 148         * a reference to the buffer, so this is safe to do.
 149         */
 150        bp->b_flags &= ~_XBF_DELWRI_Q;
 151
 152        atomic_set(&(bp)->b_lru_ref, 0);
 153        if (!list_empty(&bp->b_lru)) {
 154                struct xfs_buftarg *btp = bp->b_target;
 155
 156                spin_lock(&btp->bt_lru_lock);
 157                if (!list_empty(&bp->b_lru)) {
 158                        list_del_init(&bp->b_lru);
 159                        btp->bt_lru_nr--;
 160                        atomic_dec(&bp->b_hold);
 161                }
 162                spin_unlock(&btp->bt_lru_lock);
 163        }
 164        ASSERT(atomic_read(&bp->b_hold) >= 1);
 165}
 166
 167struct xfs_buf *
 168xfs_buf_alloc(
 169        struct xfs_buftarg      *target,
 170        xfs_daddr_t             blkno,
 171        size_t                  numblks,
 172        xfs_buf_flags_t         flags)
 173{
 174        struct xfs_buf          *bp;
 175
 176        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 177        if (unlikely(!bp))
 178                return NULL;
 179
 180        /*
 181         * We don't want certain flags to appear in b_flags unless they are
 182         * specifically set by later operations on the buffer.
 183         */
 184        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 185
 186        atomic_set(&bp->b_hold, 1);
 187        atomic_set(&bp->b_lru_ref, 1);
 188        init_completion(&bp->b_iowait);
 189        INIT_LIST_HEAD(&bp->b_lru);
 190        INIT_LIST_HEAD(&bp->b_list);
 191        RB_CLEAR_NODE(&bp->b_rbnode);
 192        sema_init(&bp->b_sema, 0); /* held, no waiters */
 193        XB_SET_OWNER(bp);
 194        bp->b_target = target;
 195
 196        /*
 197         * Set length and io_length to the same value initially.
 198         * I/O routines should use io_length, which will be the same in
 199         * most cases but may be reset (e.g. XFS recovery).
 200         */
 201        bp->b_length = numblks;
 202        bp->b_io_length = numblks;
 203        bp->b_flags = flags;
 204        bp->b_bn = blkno;
 205        atomic_set(&bp->b_pin_count, 0);
 206        init_waitqueue_head(&bp->b_waiters);
 207
 208        XFS_STATS_INC(xb_create);
 209        trace_xfs_buf_init(bp, _RET_IP_);
 210
 211        return bp;
 212}
 213
 214/*
 215 *      Allocate a page array capable of holding a specified number
 216 *      of pages, and point the page buf at it.
 217 */
 218STATIC int
 219_xfs_buf_get_pages(
 220        xfs_buf_t               *bp,
 221        int                     page_count,
 222        xfs_buf_flags_t         flags)
 223{
 224        /* Make sure that we have a page list */
 225        if (bp->b_pages == NULL) {
 226                bp->b_page_count = page_count;
 227                if (page_count <= XB_PAGES) {
 228                        bp->b_pages = bp->b_page_array;
 229                } else {
 230                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 231                                                 page_count, KM_NOFS);
 232                        if (bp->b_pages == NULL)
 233                                return -ENOMEM;
 234                }
 235                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 236        }
 237        return 0;
 238}
 239
 240/*
 241 *      Frees b_pages if it was allocated.
 242 */
 243STATIC void
 244_xfs_buf_free_pages(
 245        xfs_buf_t       *bp)
 246{
 247        if (bp->b_pages != bp->b_page_array) {
 248                kmem_free(bp->b_pages);
 249                bp->b_pages = NULL;
 250        }
 251}
 252
 253/*
 254 *      Releases the specified buffer.
 255 *
 256 *      The modification state of any associated pages is left unchanged.
 257 *      The buffer most not be on any hash - use xfs_buf_rele instead for
 258 *      hashed and refcounted buffers
 259 */
 260void
 261xfs_buf_free(
 262        xfs_buf_t               *bp)
 263{
 264        trace_xfs_buf_free(bp, _RET_IP_);
 265
 266        ASSERT(list_empty(&bp->b_lru));
 267
 268        if (bp->b_flags & _XBF_PAGES) {
 269                uint            i;
 270
 271                if (xfs_buf_is_vmapped(bp))
 272                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 273                                        bp->b_page_count);
 274
 275                for (i = 0; i < bp->b_page_count; i++) {
 276                        struct page     *page = bp->b_pages[i];
 277
 278                        __free_page(page);
 279                }
 280        } else if (bp->b_flags & _XBF_KMEM)
 281                kmem_free(bp->b_addr);
 282        _xfs_buf_free_pages(bp);
 283        kmem_zone_free(xfs_buf_zone, bp);
 284}
 285
 286/*
 287 * Allocates all the pages for buffer in question and builds it's page list.
 288 */
 289STATIC int
 290xfs_buf_allocate_memory(
 291        xfs_buf_t               *bp,
 292        uint                    flags)
 293{
 294        size_t                  size;
 295        size_t                  nbytes, offset;
 296        gfp_t                   gfp_mask = xb_to_gfp(flags);
 297        unsigned short          page_count, i;
 298        xfs_off_t               start, end;
 299        int                     error;
 300
 301        /*
 302         * for buffers that are contained within a single page, just allocate
 303         * the memory from the heap - there's no need for the complexity of
 304         * page arrays to keep allocation down to order 0.
 305         */
 306        size = BBTOB(bp->b_length);
 307        if (size < PAGE_SIZE) {
 308                bp->b_addr = kmem_alloc(size, KM_NOFS);
 309                if (!bp->b_addr) {
 310                        /* low memory - use alloc_page loop instead */
 311                        goto use_alloc_page;
 312                }
 313
 314                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 315                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 316                        /* b_addr spans two pages - use alloc_page instead */
 317                        kmem_free(bp->b_addr);
 318                        bp->b_addr = NULL;
 319                        goto use_alloc_page;
 320                }
 321                bp->b_offset = offset_in_page(bp->b_addr);
 322                bp->b_pages = bp->b_page_array;
 323                bp->b_pages[0] = virt_to_page(bp->b_addr);
 324                bp->b_page_count = 1;
 325                bp->b_flags |= _XBF_KMEM;
 326                return 0;
 327        }
 328
 329use_alloc_page:
 330        start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
 331        end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 332        page_count = end - start;
 333        error = _xfs_buf_get_pages(bp, page_count, flags);
 334        if (unlikely(error))
 335                return error;
 336
 337        offset = bp->b_offset;
 338        bp->b_flags |= _XBF_PAGES;
 339
 340        for (i = 0; i < bp->b_page_count; i++) {
 341                struct page     *page;
 342                uint            retries = 0;
 343retry:
 344                page = alloc_page(gfp_mask);
 345                if (unlikely(page == NULL)) {
 346                        if (flags & XBF_READ_AHEAD) {
 347                                bp->b_page_count = i;
 348                                error = ENOMEM;
 349                                goto out_free_pages;
 350                        }
 351
 352                        /*
 353                         * This could deadlock.
 354                         *
 355                         * But until all the XFS lowlevel code is revamped to
 356                         * handle buffer allocation failures we can't do much.
 357                         */
 358                        if (!(++retries % 100))
 359                                xfs_err(NULL,
 360                "possible memory allocation deadlock in %s (mode:0x%x)",
 361                                        __func__, gfp_mask);
 362
 363                        XFS_STATS_INC(xb_page_retries);
 364                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 365                        goto retry;
 366                }
 367
 368                XFS_STATS_INC(xb_page_found);
 369
 370                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 371                size -= nbytes;
 372                bp->b_pages[i] = page;
 373                offset = 0;
 374        }
 375        return 0;
 376
 377out_free_pages:
 378        for (i = 0; i < bp->b_page_count; i++)
 379                __free_page(bp->b_pages[i]);
 380        return error;
 381}
 382
 383/*
 384 *      Map buffer into kernel address-space if necessary.
 385 */
 386STATIC int
 387_xfs_buf_map_pages(
 388        xfs_buf_t               *bp,
 389        uint                    flags)
 390{
 391        ASSERT(bp->b_flags & _XBF_PAGES);
 392        if (bp->b_page_count == 1) {
 393                /* A single page buffer is always mappable */
 394                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 395        } else if (flags & XBF_UNMAPPED) {
 396                bp->b_addr = NULL;
 397        } else {
 398                int retried = 0;
 399
 400                do {
 401                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 402                                                -1, PAGE_KERNEL);
 403                        if (bp->b_addr)
 404                                break;
 405                        vm_unmap_aliases();
 406                } while (retried++ <= 1);
 407
 408                if (!bp->b_addr)
 409                        return -ENOMEM;
 410                bp->b_addr += bp->b_offset;
 411        }
 412
 413        return 0;
 414}
 415
 416/*
 417 *      Finding and Reading Buffers
 418 */
 419
 420/*
 421 *      Look up, and creates if absent, a lockable buffer for
 422 *      a given range of an inode.  The buffer is returned
 423 *      locked. No I/O is implied by this call.
 424 */
 425xfs_buf_t *
 426_xfs_buf_find(
 427        struct xfs_buftarg      *btp,
 428        xfs_daddr_t             blkno,
 429        size_t                  numblks,
 430        xfs_buf_flags_t         flags,
 431        xfs_buf_t               *new_bp)
 432{
 433        size_t                  numbytes;
 434        struct xfs_perag        *pag;
 435        struct rb_node          **rbp;
 436        struct rb_node          *parent;
 437        xfs_buf_t               *bp;
 438
 439        numbytes = BBTOB(numblks);
 440
 441        /* Check for IOs smaller than the sector size / not sector aligned */
 442        ASSERT(!(numbytes < (1 << btp->bt_sshift)));
 443        ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
 444
 445        /* get tree root */
 446        pag = xfs_perag_get(btp->bt_mount,
 447                                xfs_daddr_to_agno(btp->bt_mount, blkno));
 448
 449        /* walk tree */
 450        spin_lock(&pag->pag_buf_lock);
 451        rbp = &pag->pag_buf_tree.rb_node;
 452        parent = NULL;
 453        bp = NULL;
 454        while (*rbp) {
 455                parent = *rbp;
 456                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 457
 458                if (blkno < bp->b_bn)
 459                        rbp = &(*rbp)->rb_left;
 460                else if (blkno > bp->b_bn)
 461                        rbp = &(*rbp)->rb_right;
 462                else {
 463                        /*
 464                         * found a block number match. If the range doesn't
 465                         * match, the only way this is allowed is if the buffer
 466                         * in the cache is stale and the transaction that made
 467                         * it stale has not yet committed. i.e. we are
 468                         * reallocating a busy extent. Skip this buffer and
 469                         * continue searching to the right for an exact match.
 470                         */
 471                        if (bp->b_length != numblks) {
 472                                ASSERT(bp->b_flags & XBF_STALE);
 473                                rbp = &(*rbp)->rb_right;
 474                                continue;
 475                        }
 476                        atomic_inc(&bp->b_hold);
 477                        goto found;
 478                }
 479        }
 480
 481        /* No match found */
 482        if (new_bp) {
 483                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 484                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 485                /* the buffer keeps the perag reference until it is freed */
 486                new_bp->b_pag = pag;
 487                spin_unlock(&pag->pag_buf_lock);
 488        } else {
 489                XFS_STATS_INC(xb_miss_locked);
 490                spin_unlock(&pag->pag_buf_lock);
 491                xfs_perag_put(pag);
 492        }
 493        return new_bp;
 494
 495found:
 496        spin_unlock(&pag->pag_buf_lock);
 497        xfs_perag_put(pag);
 498
 499        if (!xfs_buf_trylock(bp)) {
 500                if (flags & XBF_TRYLOCK) {
 501                        xfs_buf_rele(bp);
 502                        XFS_STATS_INC(xb_busy_locked);
 503                        return NULL;
 504                }
 505                xfs_buf_lock(bp);
 506                XFS_STATS_INC(xb_get_locked_waited);
 507        }
 508
 509        /*
 510         * if the buffer is stale, clear all the external state associated with
 511         * it. We need to keep flags such as how we allocated the buffer memory
 512         * intact here.
 513         */
 514        if (bp->b_flags & XBF_STALE) {
 515                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 516                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 517        }
 518
 519        trace_xfs_buf_find(bp, flags, _RET_IP_);
 520        XFS_STATS_INC(xb_get_locked);
 521        return bp;
 522}
 523
 524/*
 525 * Assembles a buffer covering the specified range. The code is optimised for
 526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 527 * more hits than misses.
 528 */
 529struct xfs_buf *
 530xfs_buf_get(
 531        xfs_buftarg_t           *target,
 532        xfs_daddr_t             blkno,
 533        size_t                  numblks,
 534        xfs_buf_flags_t         flags)
 535{
 536        struct xfs_buf          *bp;
 537        struct xfs_buf          *new_bp;
 538        int                     error = 0;
 539
 540        bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
 541        if (likely(bp))
 542                goto found;
 543
 544        new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
 545        if (unlikely(!new_bp))
 546                return NULL;
 547
 548        error = xfs_buf_allocate_memory(new_bp, flags);
 549        if (error) {
 550                kmem_zone_free(xfs_buf_zone, new_bp);
 551                return NULL;
 552        }
 553
 554        bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
 555        if (!bp) {
 556                xfs_buf_free(new_bp);
 557                return NULL;
 558        }
 559
 560        if (bp != new_bp)
 561                xfs_buf_free(new_bp);
 562
 563        bp->b_io_length = bp->b_length;
 564
 565found:
 566        if (!bp->b_addr) {
 567                error = _xfs_buf_map_pages(bp, flags);
 568                if (unlikely(error)) {
 569                        xfs_warn(target->bt_mount,
 570                                "%s: failed to map pages\n", __func__);
 571                        xfs_buf_relse(bp);
 572                        return NULL;
 573                }
 574        }
 575
 576        XFS_STATS_INC(xb_get);
 577        trace_xfs_buf_get(bp, flags, _RET_IP_);
 578        return bp;
 579}
 580
 581STATIC int
 582_xfs_buf_read(
 583        xfs_buf_t               *bp,
 584        xfs_buf_flags_t         flags)
 585{
 586        ASSERT(!(flags & XBF_WRITE));
 587        ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 588
 589        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 590        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 591
 592        xfs_buf_iorequest(bp);
 593        if (flags & XBF_ASYNC)
 594                return 0;
 595        return xfs_buf_iowait(bp);
 596}
 597
 598xfs_buf_t *
 599xfs_buf_read(
 600        xfs_buftarg_t           *target,
 601        xfs_daddr_t             blkno,
 602        size_t                  numblks,
 603        xfs_buf_flags_t         flags)
 604{
 605        xfs_buf_t               *bp;
 606
 607        flags |= XBF_READ;
 608
 609        bp = xfs_buf_get(target, blkno, numblks, flags);
 610        if (bp) {
 611                trace_xfs_buf_read(bp, flags, _RET_IP_);
 612
 613                if (!XFS_BUF_ISDONE(bp)) {
 614                        XFS_STATS_INC(xb_get_read);
 615                        _xfs_buf_read(bp, flags);
 616                } else if (flags & XBF_ASYNC) {
 617                        /*
 618                         * Read ahead call which is already satisfied,
 619                         * drop the buffer
 620                         */
 621                        xfs_buf_relse(bp);
 622                        return NULL;
 623                } else {
 624                        /* We do not want read in the flags */
 625                        bp->b_flags &= ~XBF_READ;
 626                }
 627        }
 628
 629        return bp;
 630}
 631
 632/*
 633 *      If we are not low on memory then do the readahead in a deadlock
 634 *      safe manner.
 635 */
 636void
 637xfs_buf_readahead(
 638        xfs_buftarg_t           *target,
 639        xfs_daddr_t             blkno,
 640        size_t                  numblks)
 641{
 642        if (bdi_read_congested(target->bt_bdi))
 643                return;
 644
 645        xfs_buf_read(target, blkno, numblks,
 646                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
 647}
 648
 649/*
 650 * Read an uncached buffer from disk. Allocates and returns a locked
 651 * buffer containing the disk contents or nothing.
 652 */
 653struct xfs_buf *
 654xfs_buf_read_uncached(
 655        struct xfs_buftarg      *target,
 656        xfs_daddr_t             daddr,
 657        size_t                  numblks,
 658        int                     flags)
 659{
 660        xfs_buf_t               *bp;
 661        int                     error;
 662
 663        bp = xfs_buf_get_uncached(target, numblks, flags);
 664        if (!bp)
 665                return NULL;
 666
 667        /* set up the buffer for a read IO */
 668        XFS_BUF_SET_ADDR(bp, daddr);
 669        XFS_BUF_READ(bp);
 670
 671        xfsbdstrat(target->bt_mount, bp);
 672        error = xfs_buf_iowait(bp);
 673        if (error) {
 674                xfs_buf_relse(bp);
 675                return NULL;
 676        }
 677        return bp;
 678}
 679
 680/*
 681 * Return a buffer allocated as an empty buffer and associated to external
 682 * memory via xfs_buf_associate_memory() back to it's empty state.
 683 */
 684void
 685xfs_buf_set_empty(
 686        struct xfs_buf          *bp,
 687        size_t                  numblks)
 688{
 689        if (bp->b_pages)
 690                _xfs_buf_free_pages(bp);
 691
 692        bp->b_pages = NULL;
 693        bp->b_page_count = 0;
 694        bp->b_addr = NULL;
 695        bp->b_length = numblks;
 696        bp->b_io_length = numblks;
 697        bp->b_bn = XFS_BUF_DADDR_NULL;
 698}
 699
 700static inline struct page *
 701mem_to_page(
 702        void                    *addr)
 703{
 704        if ((!is_vmalloc_addr(addr))) {
 705                return virt_to_page(addr);
 706        } else {
 707                return vmalloc_to_page(addr);
 708        }
 709}
 710
 711int
 712xfs_buf_associate_memory(
 713        xfs_buf_t               *bp,
 714        void                    *mem,
 715        size_t                  len)
 716{
 717        int                     rval;
 718        int                     i = 0;
 719        unsigned long           pageaddr;
 720        unsigned long           offset;
 721        size_t                  buflen;
 722        int                     page_count;
 723
 724        pageaddr = (unsigned long)mem & PAGE_MASK;
 725        offset = (unsigned long)mem - pageaddr;
 726        buflen = PAGE_ALIGN(len + offset);
 727        page_count = buflen >> PAGE_SHIFT;
 728
 729        /* Free any previous set of page pointers */
 730        if (bp->b_pages)
 731                _xfs_buf_free_pages(bp);
 732
 733        bp->b_pages = NULL;
 734        bp->b_addr = mem;
 735
 736        rval = _xfs_buf_get_pages(bp, page_count, 0);
 737        if (rval)
 738                return rval;
 739
 740        bp->b_offset = offset;
 741
 742        for (i = 0; i < bp->b_page_count; i++) {
 743                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 744                pageaddr += PAGE_SIZE;
 745        }
 746
 747        bp->b_io_length = BTOBB(len);
 748        bp->b_length = BTOBB(buflen);
 749
 750        return 0;
 751}
 752
 753xfs_buf_t *
 754xfs_buf_get_uncached(
 755        struct xfs_buftarg      *target,
 756        size_t                  numblks,
 757        int                     flags)
 758{
 759        unsigned long           page_count;
 760        int                     error, i;
 761        xfs_buf_t               *bp;
 762
 763        bp = xfs_buf_alloc(target, XFS_BUF_DADDR_NULL, numblks, 0);
 764        if (unlikely(bp == NULL))
 765                goto fail;
 766
 767        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 768        error = _xfs_buf_get_pages(bp, page_count, 0);
 769        if (error)
 770                goto fail_free_buf;
 771
 772        for (i = 0; i < page_count; i++) {
 773                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 774                if (!bp->b_pages[i])
 775                        goto fail_free_mem;
 776        }
 777        bp->b_flags |= _XBF_PAGES;
 778
 779        error = _xfs_buf_map_pages(bp, 0);
 780        if (unlikely(error)) {
 781                xfs_warn(target->bt_mount,
 782                        "%s: failed to map pages\n", __func__);
 783                goto fail_free_mem;
 784        }
 785
 786        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 787        return bp;
 788
 789 fail_free_mem:
 790        while (--i >= 0)
 791                __free_page(bp->b_pages[i]);
 792        _xfs_buf_free_pages(bp);
 793 fail_free_buf:
 794        kmem_zone_free(xfs_buf_zone, bp);
 795 fail:
 796        return NULL;
 797}
 798
 799/*
 800 *      Increment reference count on buffer, to hold the buffer concurrently
 801 *      with another thread which may release (free) the buffer asynchronously.
 802 *      Must hold the buffer already to call this function.
 803 */
 804void
 805xfs_buf_hold(
 806        xfs_buf_t               *bp)
 807{
 808        trace_xfs_buf_hold(bp, _RET_IP_);
 809        atomic_inc(&bp->b_hold);
 810}
 811
 812/*
 813 *      Releases a hold on the specified buffer.  If the
 814 *      the hold count is 1, calls xfs_buf_free.
 815 */
 816void
 817xfs_buf_rele(
 818        xfs_buf_t               *bp)
 819{
 820        struct xfs_perag        *pag = bp->b_pag;
 821
 822        trace_xfs_buf_rele(bp, _RET_IP_);
 823
 824        if (!pag) {
 825                ASSERT(list_empty(&bp->b_lru));
 826                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 827                if (atomic_dec_and_test(&bp->b_hold))
 828                        xfs_buf_free(bp);
 829                return;
 830        }
 831
 832        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 833
 834        ASSERT(atomic_read(&bp->b_hold) > 0);
 835        if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 836                if (!(bp->b_flags & XBF_STALE) &&
 837                           atomic_read(&bp->b_lru_ref)) {
 838                        xfs_buf_lru_add(bp);
 839                        spin_unlock(&pag->pag_buf_lock);
 840                } else {
 841                        xfs_buf_lru_del(bp);
 842                        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 843                        rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 844                        spin_unlock(&pag->pag_buf_lock);
 845                        xfs_perag_put(pag);
 846                        xfs_buf_free(bp);
 847                }
 848        }
 849}
 850
 851
 852/*
 853 *      Lock a buffer object, if it is not already locked.
 854 *
 855 *      If we come across a stale, pinned, locked buffer, we know that we are
 856 *      being asked to lock a buffer that has been reallocated. Because it is
 857 *      pinned, we know that the log has not been pushed to disk and hence it
 858 *      will still be locked.  Rather than continuing to have trylock attempts
 859 *      fail until someone else pushes the log, push it ourselves before
 860 *      returning.  This means that the xfsaild will not get stuck trying
 861 *      to push on stale inode buffers.
 862 */
 863int
 864xfs_buf_trylock(
 865        struct xfs_buf          *bp)
 866{
 867        int                     locked;
 868
 869        locked = down_trylock(&bp->b_sema) == 0;
 870        if (locked)
 871                XB_SET_OWNER(bp);
 872        else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 873                xfs_log_force(bp->b_target->bt_mount, 0);
 874
 875        trace_xfs_buf_trylock(bp, _RET_IP_);
 876        return locked;
 877}
 878
 879/*
 880 *      Lock a buffer object.
 881 *
 882 *      If we come across a stale, pinned, locked buffer, we know that we
 883 *      are being asked to lock a buffer that has been reallocated. Because
 884 *      it is pinned, we know that the log has not been pushed to disk and
 885 *      hence it will still be locked. Rather than sleeping until someone
 886 *      else pushes the log, push it ourselves before trying to get the lock.
 887 */
 888void
 889xfs_buf_lock(
 890        struct xfs_buf          *bp)
 891{
 892        trace_xfs_buf_lock(bp, _RET_IP_);
 893
 894        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 895                xfs_log_force(bp->b_target->bt_mount, 0);
 896        down(&bp->b_sema);
 897        XB_SET_OWNER(bp);
 898
 899        trace_xfs_buf_lock_done(bp, _RET_IP_);
 900}
 901
 902void
 903xfs_buf_unlock(
 904        struct xfs_buf          *bp)
 905{
 906        XB_CLEAR_OWNER(bp);
 907        up(&bp->b_sema);
 908
 909        trace_xfs_buf_unlock(bp, _RET_IP_);
 910}
 911
 912STATIC void
 913xfs_buf_wait_unpin(
 914        xfs_buf_t               *bp)
 915{
 916        DECLARE_WAITQUEUE       (wait, current);
 917
 918        if (atomic_read(&bp->b_pin_count) == 0)
 919                return;
 920
 921        add_wait_queue(&bp->b_waiters, &wait);
 922        for (;;) {
 923                set_current_state(TASK_UNINTERRUPTIBLE);
 924                if (atomic_read(&bp->b_pin_count) == 0)
 925                        break;
 926                io_schedule();
 927        }
 928        remove_wait_queue(&bp->b_waiters, &wait);
 929        set_current_state(TASK_RUNNING);
 930}
 931
 932/*
 933 *      Buffer Utility Routines
 934 */
 935
 936STATIC void
 937xfs_buf_iodone_work(
 938        struct work_struct      *work)
 939{
 940        xfs_buf_t               *bp =
 941                container_of(work, xfs_buf_t, b_iodone_work);
 942
 943        if (bp->b_iodone)
 944                (*(bp->b_iodone))(bp);
 945        else if (bp->b_flags & XBF_ASYNC)
 946                xfs_buf_relse(bp);
 947}
 948
 949void
 950xfs_buf_ioend(
 951        xfs_buf_t               *bp,
 952        int                     schedule)
 953{
 954        trace_xfs_buf_iodone(bp, _RET_IP_);
 955
 956        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 957        if (bp->b_error == 0)
 958                bp->b_flags |= XBF_DONE;
 959
 960        if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
 961                if (schedule) {
 962                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
 963                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
 964                } else {
 965                        xfs_buf_iodone_work(&bp->b_iodone_work);
 966                }
 967        } else {
 968                complete(&bp->b_iowait);
 969        }
 970}
 971
 972void
 973xfs_buf_ioerror(
 974        xfs_buf_t               *bp,
 975        int                     error)
 976{
 977        ASSERT(error >= 0 && error <= 0xffff);
 978        bp->b_error = (unsigned short)error;
 979        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
 980}
 981
 982void
 983xfs_buf_ioerror_alert(
 984        struct xfs_buf          *bp,
 985        const char              *func)
 986{
 987        xfs_alert(bp->b_target->bt_mount,
 988"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
 989                (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
 990}
 991
 992/*
 993 * Called when we want to stop a buffer from getting written or read.
 994 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
 995 * so that the proper iodone callbacks get called.
 996 */
 997STATIC int
 998xfs_bioerror(
 999        xfs_buf_t *bp)
1000{
1001#ifdef XFSERRORDEBUG
1002        ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1003#endif
1004
1005        /*
1006         * No need to wait until the buffer is unpinned, we aren't flushing it.
1007         */
1008        xfs_buf_ioerror(bp, EIO);
1009
1010        /*
1011         * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1012         */
1013        XFS_BUF_UNREAD(bp);
1014        XFS_BUF_UNDONE(bp);
1015        xfs_buf_stale(bp);
1016
1017        xfs_buf_ioend(bp, 0);
1018
1019        return EIO;
1020}
1021
1022/*
1023 * Same as xfs_bioerror, except that we are releasing the buffer
1024 * here ourselves, and avoiding the xfs_buf_ioend call.
1025 * This is meant for userdata errors; metadata bufs come with
1026 * iodone functions attached, so that we can track down errors.
1027 */
1028STATIC int
1029xfs_bioerror_relse(
1030        struct xfs_buf  *bp)
1031{
1032        int64_t         fl = bp->b_flags;
1033        /*
1034         * No need to wait until the buffer is unpinned.
1035         * We aren't flushing it.
1036         *
1037         * chunkhold expects B_DONE to be set, whether
1038         * we actually finish the I/O or not. We don't want to
1039         * change that interface.
1040         */
1041        XFS_BUF_UNREAD(bp);
1042        XFS_BUF_DONE(bp);
1043        xfs_buf_stale(bp);
1044        bp->b_iodone = NULL;
1045        if (!(fl & XBF_ASYNC)) {
1046                /*
1047                 * Mark b_error and B_ERROR _both_.
1048                 * Lot's of chunkcache code assumes that.
1049                 * There's no reason to mark error for
1050                 * ASYNC buffers.
1051                 */
1052                xfs_buf_ioerror(bp, EIO);
1053                complete(&bp->b_iowait);
1054        } else {
1055                xfs_buf_relse(bp);
1056        }
1057
1058        return EIO;
1059}
1060
1061STATIC int
1062xfs_bdstrat_cb(
1063        struct xfs_buf  *bp)
1064{
1065        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1066                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1067                /*
1068                 * Metadata write that didn't get logged but
1069                 * written delayed anyway. These aren't associated
1070                 * with a transaction, and can be ignored.
1071                 */
1072                if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1073                        return xfs_bioerror_relse(bp);
1074                else
1075                        return xfs_bioerror(bp);
1076        }
1077
1078        xfs_buf_iorequest(bp);
1079        return 0;
1080}
1081
1082int
1083xfs_bwrite(
1084        struct xfs_buf          *bp)
1085{
1086        int                     error;
1087
1088        ASSERT(xfs_buf_islocked(bp));
1089
1090        bp->b_flags |= XBF_WRITE;
1091        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1092
1093        xfs_bdstrat_cb(bp);
1094
1095        error = xfs_buf_iowait(bp);
1096        if (error) {
1097                xfs_force_shutdown(bp->b_target->bt_mount,
1098                                   SHUTDOWN_META_IO_ERROR);
1099        }
1100        return error;
1101}
1102
1103/*
1104 * Wrapper around bdstrat so that we can stop data from going to disk in case
1105 * we are shutting down the filesystem.  Typically user data goes thru this
1106 * path; one of the exceptions is the superblock.
1107 */
1108void
1109xfsbdstrat(
1110        struct xfs_mount        *mp,
1111        struct xfs_buf          *bp)
1112{
1113        if (XFS_FORCED_SHUTDOWN(mp)) {
1114                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1115                xfs_bioerror_relse(bp);
1116                return;
1117        }
1118
1119        xfs_buf_iorequest(bp);
1120}
1121
1122STATIC void
1123_xfs_buf_ioend(
1124        xfs_buf_t               *bp,
1125        int                     schedule)
1126{
1127        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1128                xfs_buf_ioend(bp, schedule);
1129}
1130
1131STATIC void
1132xfs_buf_bio_end_io(
1133        struct bio              *bio,
1134        int                     error)
1135{
1136        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1137
1138        xfs_buf_ioerror(bp, -error);
1139
1140        if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1141                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1142
1143        _xfs_buf_ioend(bp, 1);
1144        bio_put(bio);
1145}
1146
1147STATIC void
1148_xfs_buf_ioapply(
1149        xfs_buf_t               *bp)
1150{
1151        int                     rw, map_i, total_nr_pages, nr_pages;
1152        struct bio              *bio;
1153        int                     offset = bp->b_offset;
1154        int                     size = BBTOB(bp->b_io_length);
1155        sector_t                sector = bp->b_bn;
1156
1157        total_nr_pages = bp->b_page_count;
1158        map_i = 0;
1159
1160        if (bp->b_flags & XBF_WRITE) {
1161                if (bp->b_flags & XBF_SYNCIO)
1162                        rw = WRITE_SYNC;
1163                else
1164                        rw = WRITE;
1165                if (bp->b_flags & XBF_FUA)
1166                        rw |= REQ_FUA;
1167                if (bp->b_flags & XBF_FLUSH)
1168                        rw |= REQ_FLUSH;
1169        } else if (bp->b_flags & XBF_READ_AHEAD) {
1170                rw = READA;
1171        } else {
1172                rw = READ;
1173        }
1174
1175        /* we only use the buffer cache for meta-data */
1176        rw |= REQ_META;
1177
1178next_chunk:
1179        atomic_inc(&bp->b_io_remaining);
1180        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1181        if (nr_pages > total_nr_pages)
1182                nr_pages = total_nr_pages;
1183
1184        bio = bio_alloc(GFP_NOIO, nr_pages);
1185        bio->bi_bdev = bp->b_target->bt_bdev;
1186        bio->bi_sector = sector;
1187        bio->bi_end_io = xfs_buf_bio_end_io;
1188        bio->bi_private = bp;
1189
1190
1191        for (; size && nr_pages; nr_pages--, map_i++) {
1192                int     rbytes, nbytes = PAGE_SIZE - offset;
1193
1194                if (nbytes > size)
1195                        nbytes = size;
1196
1197                rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1198                if (rbytes < nbytes)
1199                        break;
1200
1201                offset = 0;
1202                sector += BTOBB(nbytes);
1203                size -= nbytes;
1204                total_nr_pages--;
1205        }
1206
1207        if (likely(bio->bi_size)) {
1208                if (xfs_buf_is_vmapped(bp)) {
1209                        flush_kernel_vmap_range(bp->b_addr,
1210                                                xfs_buf_vmap_len(bp));
1211                }
1212                submit_bio(rw, bio);
1213                if (size)
1214                        goto next_chunk;
1215        } else {
1216                xfs_buf_ioerror(bp, EIO);
1217                bio_put(bio);
1218        }
1219}
1220
1221void
1222xfs_buf_iorequest(
1223        xfs_buf_t               *bp)
1224{
1225        trace_xfs_buf_iorequest(bp, _RET_IP_);
1226
1227        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1228
1229        if (bp->b_flags & XBF_WRITE)
1230                xfs_buf_wait_unpin(bp);
1231        xfs_buf_hold(bp);
1232
1233        /* Set the count to 1 initially, this will stop an I/O
1234         * completion callout which happens before we have started
1235         * all the I/O from calling xfs_buf_ioend too early.
1236         */
1237        atomic_set(&bp->b_io_remaining, 1);
1238        _xfs_buf_ioapply(bp);
1239        _xfs_buf_ioend(bp, 1);
1240
1241        xfs_buf_rele(bp);
1242}
1243
1244/*
1245 * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1246 * no I/O is pending or there is already a pending error on the buffer.  It
1247 * returns the I/O error code, if any, or 0 if there was no error.
1248 */
1249int
1250xfs_buf_iowait(
1251        xfs_buf_t               *bp)
1252{
1253        trace_xfs_buf_iowait(bp, _RET_IP_);
1254
1255        if (!bp->b_error)
1256                wait_for_completion(&bp->b_iowait);
1257
1258        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1259        return bp->b_error;
1260}
1261
1262xfs_caddr_t
1263xfs_buf_offset(
1264        xfs_buf_t               *bp,
1265        size_t                  offset)
1266{
1267        struct page             *page;
1268
1269        if (bp->b_addr)
1270                return bp->b_addr + offset;
1271
1272        offset += bp->b_offset;
1273        page = bp->b_pages[offset >> PAGE_SHIFT];
1274        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1275}
1276
1277/*
1278 *      Move data into or out of a buffer.
1279 */
1280void
1281xfs_buf_iomove(
1282        xfs_buf_t               *bp,    /* buffer to process            */
1283        size_t                  boff,   /* starting buffer offset       */
1284        size_t                  bsize,  /* length to copy               */
1285        void                    *data,  /* data address                 */
1286        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1287{
1288        size_t                  bend;
1289
1290        bend = boff + bsize;
1291        while (boff < bend) {
1292                struct page     *page;
1293                int             page_index, page_offset, csize;
1294
1295                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1296                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1297                page = bp->b_pages[page_index];
1298                csize = min_t(size_t, PAGE_SIZE - page_offset,
1299                                      BBTOB(bp->b_io_length) - boff);
1300
1301                ASSERT((csize + page_offset) <= PAGE_SIZE);
1302
1303                switch (mode) {
1304                case XBRW_ZERO:
1305                        memset(page_address(page) + page_offset, 0, csize);
1306                        break;
1307                case XBRW_READ:
1308                        memcpy(data, page_address(page) + page_offset, csize);
1309                        break;
1310                case XBRW_WRITE:
1311                        memcpy(page_address(page) + page_offset, data, csize);
1312                }
1313
1314                boff += csize;
1315                data += csize;
1316        }
1317}
1318
1319/*
1320 *      Handling of buffer targets (buftargs).
1321 */
1322
1323/*
1324 * Wait for any bufs with callbacks that have been submitted but have not yet
1325 * returned. These buffers will have an elevated hold count, so wait on those
1326 * while freeing all the buffers only held by the LRU.
1327 */
1328void
1329xfs_wait_buftarg(
1330        struct xfs_buftarg      *btp)
1331{
1332        struct xfs_buf          *bp;
1333
1334restart:
1335        spin_lock(&btp->bt_lru_lock);
1336        while (!list_empty(&btp->bt_lru)) {
1337                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1338                if (atomic_read(&bp->b_hold) > 1) {
1339                        spin_unlock(&btp->bt_lru_lock);
1340                        delay(100);
1341                        goto restart;
1342                }
1343                /*
1344                 * clear the LRU reference count so the buffer doesn't get
1345                 * ignored in xfs_buf_rele().
1346                 */
1347                atomic_set(&bp->b_lru_ref, 0);
1348                spin_unlock(&btp->bt_lru_lock);
1349                xfs_buf_rele(bp);
1350                spin_lock(&btp->bt_lru_lock);
1351        }
1352        spin_unlock(&btp->bt_lru_lock);
1353}
1354
1355int
1356xfs_buftarg_shrink(
1357        struct shrinker         *shrink,
1358        struct shrink_control   *sc)
1359{
1360        struct xfs_buftarg      *btp = container_of(shrink,
1361                                        struct xfs_buftarg, bt_shrinker);
1362        struct xfs_buf          *bp;
1363        int nr_to_scan = sc->nr_to_scan;
1364        LIST_HEAD(dispose);
1365
1366        if (!nr_to_scan)
1367                return btp->bt_lru_nr;
1368
1369        spin_lock(&btp->bt_lru_lock);
1370        while (!list_empty(&btp->bt_lru)) {
1371                if (nr_to_scan-- <= 0)
1372                        break;
1373
1374                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1375
1376                /*
1377                 * Decrement the b_lru_ref count unless the value is already
1378                 * zero. If the value is already zero, we need to reclaim the
1379                 * buffer, otherwise it gets another trip through the LRU.
1380                 */
1381                if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1382                        list_move_tail(&bp->b_lru, &btp->bt_lru);
1383                        continue;
1384                }
1385
1386                /*
1387                 * remove the buffer from the LRU now to avoid needing another
1388                 * lock round trip inside xfs_buf_rele().
1389                 */
1390                list_move(&bp->b_lru, &dispose);
1391                btp->bt_lru_nr--;
1392        }
1393        spin_unlock(&btp->bt_lru_lock);
1394
1395        while (!list_empty(&dispose)) {
1396                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1397                list_del_init(&bp->b_lru);
1398                xfs_buf_rele(bp);
1399        }
1400
1401        return btp->bt_lru_nr;
1402}
1403
1404void
1405xfs_free_buftarg(
1406        struct xfs_mount        *mp,
1407        struct xfs_buftarg      *btp)
1408{
1409        unregister_shrinker(&btp->bt_shrinker);
1410
1411        if (mp->m_flags & XFS_MOUNT_BARRIER)
1412                xfs_blkdev_issue_flush(btp);
1413
1414        kmem_free(btp);
1415}
1416
1417STATIC int
1418xfs_setsize_buftarg_flags(
1419        xfs_buftarg_t           *btp,
1420        unsigned int            blocksize,
1421        unsigned int            sectorsize,
1422        int                     verbose)
1423{
1424        btp->bt_bsize = blocksize;
1425        btp->bt_sshift = ffs(sectorsize) - 1;
1426        btp->bt_smask = sectorsize - 1;
1427
1428        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1429                char name[BDEVNAME_SIZE];
1430
1431                bdevname(btp->bt_bdev, name);
1432
1433                xfs_warn(btp->bt_mount,
1434                        "Cannot set_blocksize to %u on device %s\n",
1435                        sectorsize, name);
1436                return EINVAL;
1437        }
1438
1439        return 0;
1440}
1441
1442/*
1443 *      When allocating the initial buffer target we have not yet
1444 *      read in the superblock, so don't know what sized sectors
1445 *      are being used is at this early stage.  Play safe.
1446 */
1447STATIC int
1448xfs_setsize_buftarg_early(
1449        xfs_buftarg_t           *btp,
1450        struct block_device     *bdev)
1451{
1452        return xfs_setsize_buftarg_flags(btp,
1453                        PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1454}
1455
1456int
1457xfs_setsize_buftarg(
1458        xfs_buftarg_t           *btp,
1459        unsigned int            blocksize,
1460        unsigned int            sectorsize)
1461{
1462        return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1463}
1464
1465xfs_buftarg_t *
1466xfs_alloc_buftarg(
1467        struct xfs_mount        *mp,
1468        struct block_device     *bdev,
1469        int                     external,
1470        const char              *fsname)
1471{
1472        xfs_buftarg_t           *btp;
1473
1474        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1475
1476        btp->bt_mount = mp;
1477        btp->bt_dev =  bdev->bd_dev;
1478        btp->bt_bdev = bdev;
1479        btp->bt_bdi = blk_get_backing_dev_info(bdev);
1480        if (!btp->bt_bdi)
1481                goto error;
1482
1483        INIT_LIST_HEAD(&btp->bt_lru);
1484        spin_lock_init(&btp->bt_lru_lock);
1485        if (xfs_setsize_buftarg_early(btp, bdev))
1486                goto error;
1487        btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1488        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1489        register_shrinker(&btp->bt_shrinker);
1490        return btp;
1491
1492error:
1493        kmem_free(btp);
1494        return NULL;
1495}
1496
1497/*
1498 * Add a buffer to the delayed write list.
1499 *
1500 * This queues a buffer for writeout if it hasn't already been.  Note that
1501 * neither this routine nor the buffer list submission functions perform
1502 * any internal synchronization.  It is expected that the lists are thread-local
1503 * to the callers.
1504 *
1505 * Returns true if we queued up the buffer, or false if it already had
1506 * been on the buffer list.
1507 */
1508bool
1509xfs_buf_delwri_queue(
1510        struct xfs_buf          *bp,
1511        struct list_head        *list)
1512{
1513        ASSERT(xfs_buf_islocked(bp));
1514        ASSERT(!(bp->b_flags & XBF_READ));
1515
1516        /*
1517         * If the buffer is already marked delwri it already is queued up
1518         * by someone else for imediate writeout.  Just ignore it in that
1519         * case.
1520         */
1521        if (bp->b_flags & _XBF_DELWRI_Q) {
1522                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1523                return false;
1524        }
1525
1526        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1527
1528        /*
1529         * If a buffer gets written out synchronously or marked stale while it
1530         * is on a delwri list we lazily remove it. To do this, the other party
1531         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1532         * It remains referenced and on the list.  In a rare corner case it
1533         * might get readded to a delwri list after the synchronous writeout, in
1534         * which case we need just need to re-add the flag here.
1535         */
1536        bp->b_flags |= _XBF_DELWRI_Q;
1537        if (list_empty(&bp->b_list)) {
1538                atomic_inc(&bp->b_hold);
1539                list_add_tail(&bp->b_list, list);
1540        }
1541
1542        return true;
1543}
1544
1545/*
1546 * Compare function is more complex than it needs to be because
1547 * the return value is only 32 bits and we are doing comparisons
1548 * on 64 bit values
1549 */
1550static int
1551xfs_buf_cmp(
1552        void            *priv,
1553        struct list_head *a,
1554        struct list_head *b)
1555{
1556        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1557        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1558        xfs_daddr_t             diff;
1559
1560        diff = ap->b_bn - bp->b_bn;
1561        if (diff < 0)
1562                return -1;
1563        if (diff > 0)
1564                return 1;
1565        return 0;
1566}
1567
1568static int
1569__xfs_buf_delwri_submit(
1570        struct list_head        *buffer_list,
1571        struct list_head        *io_list,
1572        bool                    wait)
1573{
1574        struct blk_plug         plug;
1575        struct xfs_buf          *bp, *n;
1576        int                     pinned = 0;
1577
1578        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1579                if (!wait) {
1580                        if (xfs_buf_ispinned(bp)) {
1581                                pinned++;
1582                                continue;
1583                        }
1584                        if (!xfs_buf_trylock(bp))
1585                                continue;
1586                } else {
1587                        xfs_buf_lock(bp);
1588                }
1589
1590                /*
1591                 * Someone else might have written the buffer synchronously or
1592                 * marked it stale in the meantime.  In that case only the
1593                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1594                 * reference and remove it from the list here.
1595                 */
1596                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1597                        list_del_init(&bp->b_list);
1598                        xfs_buf_relse(bp);
1599                        continue;
1600                }
1601
1602                list_move_tail(&bp->b_list, io_list);
1603                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1604        }
1605
1606        list_sort(NULL, io_list, xfs_buf_cmp);
1607
1608        blk_start_plug(&plug);
1609        list_for_each_entry_safe(bp, n, io_list, b_list) {
1610                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1611                bp->b_flags |= XBF_WRITE;
1612
1613                if (!wait) {
1614                        bp->b_flags |= XBF_ASYNC;
1615                        list_del_init(&bp->b_list);
1616                }
1617                xfs_bdstrat_cb(bp);
1618        }
1619        blk_finish_plug(&plug);
1620
1621        return pinned;
1622}
1623
1624/*
1625 * Write out a buffer list asynchronously.
1626 *
1627 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1628 * out and not wait for I/O completion on any of the buffers.  This interface
1629 * is only safely useable for callers that can track I/O completion by higher
1630 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1631 * function.
1632 */
1633int
1634xfs_buf_delwri_submit_nowait(
1635        struct list_head        *buffer_list)
1636{
1637        LIST_HEAD               (io_list);
1638        return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1639}
1640
1641/*
1642 * Write out a buffer list synchronously.
1643 *
1644 * This will take the @buffer_list, write all buffers out and wait for I/O
1645 * completion on all of the buffers. @buffer_list is consumed by the function,
1646 * so callers must have some other way of tracking buffers if they require such
1647 * functionality.
1648 */
1649int
1650xfs_buf_delwri_submit(
1651        struct list_head        *buffer_list)
1652{
1653        LIST_HEAD               (io_list);
1654        int                     error = 0, error2;
1655        struct xfs_buf          *bp;
1656
1657        __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1658
1659        /* Wait for IO to complete. */
1660        while (!list_empty(&io_list)) {
1661                bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1662
1663                list_del_init(&bp->b_list);
1664                error2 = xfs_buf_iowait(bp);
1665                xfs_buf_relse(bp);
1666                if (!error)
1667                        error = error2;
1668        }
1669
1670        return error;
1671}
1672
1673int __init
1674xfs_buf_init(void)
1675{
1676        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1677                                                KM_ZONE_HWALIGN, NULL);
1678        if (!xfs_buf_zone)
1679                goto out;
1680
1681        xfslogd_workqueue = alloc_workqueue("xfslogd",
1682                                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1683        if (!xfslogd_workqueue)
1684                goto out_free_buf_zone;
1685
1686        return 0;
1687
1688 out_free_buf_zone:
1689        kmem_zone_destroy(xfs_buf_zone);
1690 out:
1691        return -ENOMEM;
1692}
1693
1694void
1695xfs_buf_terminate(void)
1696{
1697        destroy_workqueue(xfslogd_workqueue);
1698        kmem_zone_destroy(xfs_buf_zone);
1699}
1700