linux/include/linux/pagemap.h
<<
>>
Prefs
   1#ifndef _LINUX_PAGEMAP_H
   2#define _LINUX_PAGEMAP_H
   3
   4/*
   5 * Copyright 1995 Linus Torvalds
   6 */
   7#include <linux/mm.h>
   8#include <linux/fs.h>
   9#include <linux/list.h>
  10#include <linux/highmem.h>
  11#include <linux/compiler.h>
  12#include <asm/uaccess.h>
  13#include <linux/gfp.h>
  14#include <linux/bitops.h>
  15#include <linux/hardirq.h> /* for in_interrupt() */
  16#include <linux/hugetlb_inline.h>
  17
  18/*
  19 * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
  20 * allocation mode flags.
  21 */
  22enum mapping_flags {
  23        AS_EIO          = __GFP_BITS_SHIFT + 0, /* IO error on async write */
  24        AS_ENOSPC       = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
  25        AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
  26        AS_UNEVICTABLE  = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
  27};
  28
  29static inline void mapping_set_error(struct address_space *mapping, int error)
  30{
  31        if (unlikely(error)) {
  32                if (error == -ENOSPC)
  33                        set_bit(AS_ENOSPC, &mapping->flags);
  34                else
  35                        set_bit(AS_EIO, &mapping->flags);
  36        }
  37}
  38
  39static inline void mapping_set_unevictable(struct address_space *mapping)
  40{
  41        set_bit(AS_UNEVICTABLE, &mapping->flags);
  42}
  43
  44static inline void mapping_clear_unevictable(struct address_space *mapping)
  45{
  46        clear_bit(AS_UNEVICTABLE, &mapping->flags);
  47}
  48
  49static inline int mapping_unevictable(struct address_space *mapping)
  50{
  51        if (mapping)
  52                return test_bit(AS_UNEVICTABLE, &mapping->flags);
  53        return !!mapping;
  54}
  55
  56static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  57{
  58        return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  59}
  60
  61/*
  62 * This is non-atomic.  Only to be used before the mapping is activated.
  63 * Probably needs a barrier...
  64 */
  65static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  66{
  67        m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  68                                (__force unsigned long)mask;
  69}
  70
  71/*
  72 * The page cache can done in larger chunks than
  73 * one page, because it allows for more efficient
  74 * throughput (it can then be mapped into user
  75 * space in smaller chunks for same flexibility).
  76 *
  77 * Or rather, it _will_ be done in larger chunks.
  78 */
  79#define PAGE_CACHE_SHIFT        PAGE_SHIFT
  80#define PAGE_CACHE_SIZE         PAGE_SIZE
  81#define PAGE_CACHE_MASK         PAGE_MASK
  82#define PAGE_CACHE_ALIGN(addr)  (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  83
  84#define page_cache_get(page)            get_page(page)
  85#define page_cache_release(page)        put_page(page)
  86void release_pages(struct page **pages, int nr, int cold);
  87
  88/*
  89 * speculatively take a reference to a page.
  90 * If the page is free (_count == 0), then _count is untouched, and 0
  91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  92 *
  93 * This function must be called inside the same rcu_read_lock() section as has
  94 * been used to lookup the page in the pagecache radix-tree (or page table):
  95 * this allows allocators to use a synchronize_rcu() to stabilize _count.
  96 *
  97 * Unless an RCU grace period has passed, the count of all pages coming out
  98 * of the allocator must be considered unstable. page_count may return higher
  99 * than expected, and put_page must be able to do the right thing when the
 100 * page has been finished with, no matter what it is subsequently allocated
 101 * for (because put_page is what is used here to drop an invalid speculative
 102 * reference).
 103 *
 104 * This is the interesting part of the lockless pagecache (and lockless
 105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
 106 * has the following pattern:
 107 * 1. find page in radix tree
 108 * 2. conditionally increment refcount
 109 * 3. check the page is still in pagecache (if no, goto 1)
 110 *
 111 * Remove-side that cares about stability of _count (eg. reclaim) has the
 112 * following (with tree_lock held for write):
 113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
 114 * B. remove page from pagecache
 115 * C. free the page
 116 *
 117 * There are 2 critical interleavings that matter:
 118 * - 2 runs before A: in this case, A sees elevated refcount and bails out
 119 * - A runs before 2: in this case, 2 sees zero refcount and retries;
 120 *   subsequently, B will complete and 1 will find no page, causing the
 121 *   lookup to return NULL.
 122 *
 123 * It is possible that between 1 and 2, the page is removed then the exact same
 124 * page is inserted into the same position in pagecache. That's OK: the
 125 * old find_get_page using tree_lock could equally have run before or after
 126 * such a re-insertion, depending on order that locks are granted.
 127 *
 128 * Lookups racing against pagecache insertion isn't a big problem: either 1
 129 * will find the page or it will not. Likewise, the old find_get_page could run
 130 * either before the insertion or afterwards, depending on timing.
 131 */
 132static inline int page_cache_get_speculative(struct page *page)
 133{
 134        VM_BUG_ON(in_interrupt());
 135
 136#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
 137# ifdef CONFIG_PREEMPT_COUNT
 138        VM_BUG_ON(!in_atomic());
 139# endif
 140        /*
 141         * Preempt must be disabled here - we rely on rcu_read_lock doing
 142         * this for us.
 143         *
 144         * Pagecache won't be truncated from interrupt context, so if we have
 145         * found a page in the radix tree here, we have pinned its refcount by
 146         * disabling preempt, and hence no need for the "speculative get" that
 147         * SMP requires.
 148         */
 149        VM_BUG_ON(page_count(page) == 0);
 150        atomic_inc(&page->_count);
 151
 152#else
 153        if (unlikely(!get_page_unless_zero(page))) {
 154                /*
 155                 * Either the page has been freed, or will be freed.
 156                 * In either case, retry here and the caller should
 157                 * do the right thing (see comments above).
 158                 */
 159                return 0;
 160        }
 161#endif
 162        VM_BUG_ON(PageTail(page));
 163
 164        return 1;
 165}
 166
 167/*
 168 * Same as above, but add instead of inc (could just be merged)
 169 */
 170static inline int page_cache_add_speculative(struct page *page, int count)
 171{
 172        VM_BUG_ON(in_interrupt());
 173
 174#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
 175# ifdef CONFIG_PREEMPT_COUNT
 176        VM_BUG_ON(!in_atomic());
 177# endif
 178        VM_BUG_ON(page_count(page) == 0);
 179        atomic_add(count, &page->_count);
 180
 181#else
 182        if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
 183                return 0;
 184#endif
 185        VM_BUG_ON(PageCompound(page) && page != compound_head(page));
 186
 187        return 1;
 188}
 189
 190static inline int page_freeze_refs(struct page *page, int count)
 191{
 192        return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
 193}
 194
 195static inline void page_unfreeze_refs(struct page *page, int count)
 196{
 197        VM_BUG_ON(page_count(page) != 0);
 198        VM_BUG_ON(count == 0);
 199
 200        atomic_set(&page->_count, count);
 201}
 202
 203#ifdef CONFIG_NUMA
 204extern struct page *__page_cache_alloc(gfp_t gfp);
 205#else
 206static inline struct page *__page_cache_alloc(gfp_t gfp)
 207{
 208        return alloc_pages(gfp, 0);
 209}
 210#endif
 211
 212static inline struct page *page_cache_alloc(struct address_space *x)
 213{
 214        return __page_cache_alloc(mapping_gfp_mask(x));
 215}
 216
 217static inline struct page *page_cache_alloc_cold(struct address_space *x)
 218{
 219        return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
 220}
 221
 222static inline struct page *page_cache_alloc_readahead(struct address_space *x)
 223{
 224        return __page_cache_alloc(mapping_gfp_mask(x) |
 225                                  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
 226}
 227
 228typedef int filler_t(void *, struct page *);
 229
 230extern struct page * find_get_page(struct address_space *mapping,
 231                                pgoff_t index);
 232extern struct page * find_lock_page(struct address_space *mapping,
 233                                pgoff_t index);
 234extern struct page * find_or_create_page(struct address_space *mapping,
 235                                pgoff_t index, gfp_t gfp_mask);
 236unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 237                        unsigned int nr_pages, struct page **pages);
 238unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
 239                               unsigned int nr_pages, struct page **pages);
 240unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 241                        int tag, unsigned int nr_pages, struct page **pages);
 242
 243struct page *grab_cache_page_write_begin(struct address_space *mapping,
 244                        pgoff_t index, unsigned flags);
 245
 246/*
 247 * Returns locked page at given index in given cache, creating it if needed.
 248 */
 249static inline struct page *grab_cache_page(struct address_space *mapping,
 250                                                                pgoff_t index)
 251{
 252        return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 253}
 254
 255extern struct page * grab_cache_page_nowait(struct address_space *mapping,
 256                                pgoff_t index);
 257extern struct page * read_cache_page_async(struct address_space *mapping,
 258                                pgoff_t index, filler_t *filler, void *data);
 259extern struct page * read_cache_page(struct address_space *mapping,
 260                                pgoff_t index, filler_t *filler, void *data);
 261extern struct page * read_cache_page_gfp(struct address_space *mapping,
 262                                pgoff_t index, gfp_t gfp_mask);
 263extern int read_cache_pages(struct address_space *mapping,
 264                struct list_head *pages, filler_t *filler, void *data);
 265
 266static inline struct page *read_mapping_page_async(
 267                                struct address_space *mapping,
 268                                pgoff_t index, void *data)
 269{
 270        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 271        return read_cache_page_async(mapping, index, filler, data);
 272}
 273
 274static inline struct page *read_mapping_page(struct address_space *mapping,
 275                                pgoff_t index, void *data)
 276{
 277        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 278        return read_cache_page(mapping, index, filler, data);
 279}
 280
 281/*
 282 * Return byte-offset into filesystem object for page.
 283 */
 284static inline loff_t page_offset(struct page *page)
 285{
 286        return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
 287}
 288
 289extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 290                                     unsigned long address);
 291
 292static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
 293                                        unsigned long address)
 294{
 295        pgoff_t pgoff;
 296        if (unlikely(is_vm_hugetlb_page(vma)))
 297                return linear_hugepage_index(vma, address);
 298        pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
 299        pgoff += vma->vm_pgoff;
 300        return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 301}
 302
 303extern void __lock_page(struct page *page);
 304extern int __lock_page_killable(struct page *page);
 305extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 306                                unsigned int flags);
 307extern void unlock_page(struct page *page);
 308
 309static inline void __set_page_locked(struct page *page)
 310{
 311        __set_bit(PG_locked, &page->flags);
 312}
 313
 314static inline void __clear_page_locked(struct page *page)
 315{
 316        __clear_bit(PG_locked, &page->flags);
 317}
 318
 319static inline int trylock_page(struct page *page)
 320{
 321        return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
 322}
 323
 324/*
 325 * lock_page may only be called if we have the page's inode pinned.
 326 */
 327static inline void lock_page(struct page *page)
 328{
 329        might_sleep();
 330        if (!trylock_page(page))
 331                __lock_page(page);
 332}
 333
 334/*
 335 * lock_page_killable is like lock_page but can be interrupted by fatal
 336 * signals.  It returns 0 if it locked the page and -EINTR if it was
 337 * killed while waiting.
 338 */
 339static inline int lock_page_killable(struct page *page)
 340{
 341        might_sleep();
 342        if (!trylock_page(page))
 343                return __lock_page_killable(page);
 344        return 0;
 345}
 346
 347/*
 348 * lock_page_or_retry - Lock the page, unless this would block and the
 349 * caller indicated that it can handle a retry.
 350 */
 351static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
 352                                     unsigned int flags)
 353{
 354        might_sleep();
 355        return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
 356}
 357
 358/*
 359 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
 360 * Never use this directly!
 361 */
 362extern void wait_on_page_bit(struct page *page, int bit_nr);
 363
 364extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
 365
 366static inline int wait_on_page_locked_killable(struct page *page)
 367{
 368        if (PageLocked(page))
 369                return wait_on_page_bit_killable(page, PG_locked);
 370        return 0;
 371}
 372
 373/* 
 374 * Wait for a page to be unlocked.
 375 *
 376 * This must be called with the caller "holding" the page,
 377 * ie with increased "page->count" so that the page won't
 378 * go away during the wait..
 379 */
 380static inline void wait_on_page_locked(struct page *page)
 381{
 382        if (PageLocked(page))
 383                wait_on_page_bit(page, PG_locked);
 384}
 385
 386/* 
 387 * Wait for a page to complete writeback
 388 */
 389static inline void wait_on_page_writeback(struct page *page)
 390{
 391        if (PageWriteback(page))
 392                wait_on_page_bit(page, PG_writeback);
 393}
 394
 395extern void end_page_writeback(struct page *page);
 396
 397/*
 398 * Add an arbitrary waiter to a page's wait queue
 399 */
 400extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
 401
 402/*
 403 * Fault a userspace page into pagetables.  Return non-zero on a fault.
 404 *
 405 * This assumes that two userspace pages are always sufficient.  That's
 406 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
 407 */
 408static inline int fault_in_pages_writeable(char __user *uaddr, int size)
 409{
 410        int ret;
 411
 412        if (unlikely(size == 0))
 413                return 0;
 414
 415        /*
 416         * Writing zeroes into userspace here is OK, because we know that if
 417         * the zero gets there, we'll be overwriting it.
 418         */
 419        ret = __put_user(0, uaddr);
 420        if (ret == 0) {
 421                char __user *end = uaddr + size - 1;
 422
 423                /*
 424                 * If the page was already mapped, this will get a cache miss
 425                 * for sure, so try to avoid doing it.
 426                 */
 427                if (((unsigned long)uaddr & PAGE_MASK) !=
 428                                ((unsigned long)end & PAGE_MASK))
 429                        ret = __put_user(0, end);
 430        }
 431        return ret;
 432}
 433
 434static inline int fault_in_pages_readable(const char __user *uaddr, int size)
 435{
 436        volatile char c;
 437        int ret;
 438
 439        if (unlikely(size == 0))
 440                return 0;
 441
 442        ret = __get_user(c, uaddr);
 443        if (ret == 0) {
 444                const char __user *end = uaddr + size - 1;
 445
 446                if (((unsigned long)uaddr & PAGE_MASK) !=
 447                                ((unsigned long)end & PAGE_MASK)) {
 448                        ret = __get_user(c, end);
 449                        (void)c;
 450                }
 451        }
 452        return ret;
 453}
 454
 455/*
 456 * Multipage variants of the above prefault helpers, useful if more than
 457 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
 458 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
 459 * filemap.c hotpaths.
 460 */
 461static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
 462{
 463        int ret = 0;
 464        char __user *end = uaddr + size - 1;
 465
 466        if (unlikely(size == 0))
 467                return ret;
 468
 469        /*
 470         * Writing zeroes into userspace here is OK, because we know that if
 471         * the zero gets there, we'll be overwriting it.
 472         */
 473        while (uaddr <= end) {
 474                ret = __put_user(0, uaddr);
 475                if (ret != 0)
 476                        return ret;
 477                uaddr += PAGE_SIZE;
 478        }
 479
 480        /* Check whether the range spilled into the next page. */
 481        if (((unsigned long)uaddr & PAGE_MASK) ==
 482                        ((unsigned long)end & PAGE_MASK))
 483                ret = __put_user(0, end);
 484
 485        return ret;
 486}
 487
 488static inline int fault_in_multipages_readable(const char __user *uaddr,
 489                                               int size)
 490{
 491        volatile char c;
 492        int ret = 0;
 493        const char __user *end = uaddr + size - 1;
 494
 495        if (unlikely(size == 0))
 496                return ret;
 497
 498        while (uaddr <= end) {
 499                ret = __get_user(c, uaddr);
 500                if (ret != 0)
 501                        return ret;
 502                uaddr += PAGE_SIZE;
 503        }
 504
 505        /* Check whether the range spilled into the next page. */
 506        if (((unsigned long)uaddr & PAGE_MASK) ==
 507                        ((unsigned long)end & PAGE_MASK)) {
 508                ret = __get_user(c, end);
 509                (void)c;
 510        }
 511
 512        return ret;
 513}
 514
 515int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 516                                pgoff_t index, gfp_t gfp_mask);
 517int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 518                                pgoff_t index, gfp_t gfp_mask);
 519extern void delete_from_page_cache(struct page *page);
 520extern void __delete_from_page_cache(struct page *page);
 521int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
 522
 523/*
 524 * Like add_to_page_cache_locked, but used to add newly allocated pages:
 525 * the page is new, so we can just run __set_page_locked() against it.
 526 */
 527static inline int add_to_page_cache(struct page *page,
 528                struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 529{
 530        int error;
 531
 532        __set_page_locked(page);
 533        error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
 534        if (unlikely(error))
 535                __clear_page_locked(page);
 536        return error;
 537}
 538
 539#endif /* _LINUX_PAGEMAP_H */
 540