linux/include/linux/slub_def.h
<<
>>
Prefs
   1#ifndef _LINUX_SLUB_DEF_H
   2#define _LINUX_SLUB_DEF_H
   3
   4/*
   5 * SLUB : A Slab allocator without object queues.
   6 *
   7 * (C) 2007 SGI, Christoph Lameter
   8 */
   9#include <linux/types.h>
  10#include <linux/gfp.h>
  11#include <linux/bug.h>
  12#include <linux/workqueue.h>
  13#include <linux/kobject.h>
  14
  15#include <linux/kmemleak.h>
  16
  17enum stat_item {
  18        ALLOC_FASTPATH,         /* Allocation from cpu slab */
  19        ALLOC_SLOWPATH,         /* Allocation by getting a new cpu slab */
  20        FREE_FASTPATH,          /* Free to cpu slub */
  21        FREE_SLOWPATH,          /* Freeing not to cpu slab */
  22        FREE_FROZEN,            /* Freeing to frozen slab */
  23        FREE_ADD_PARTIAL,       /* Freeing moves slab to partial list */
  24        FREE_REMOVE_PARTIAL,    /* Freeing removes last object */
  25        ALLOC_FROM_PARTIAL,     /* Cpu slab acquired from node partial list */
  26        ALLOC_SLAB,             /* Cpu slab acquired from page allocator */
  27        ALLOC_REFILL,           /* Refill cpu slab from slab freelist */
  28        ALLOC_NODE_MISMATCH,    /* Switching cpu slab */
  29        FREE_SLAB,              /* Slab freed to the page allocator */
  30        CPUSLAB_FLUSH,          /* Abandoning of the cpu slab */
  31        DEACTIVATE_FULL,        /* Cpu slab was full when deactivated */
  32        DEACTIVATE_EMPTY,       /* Cpu slab was empty when deactivated */
  33        DEACTIVATE_TO_HEAD,     /* Cpu slab was moved to the head of partials */
  34        DEACTIVATE_TO_TAIL,     /* Cpu slab was moved to the tail of partials */
  35        DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  36        DEACTIVATE_BYPASS,      /* Implicit deactivation */
  37        ORDER_FALLBACK,         /* Number of times fallback was necessary */
  38        CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  39        CMPXCHG_DOUBLE_FAIL,    /* Number of times that cmpxchg double did not match */
  40        CPU_PARTIAL_ALLOC,      /* Used cpu partial on alloc */
  41        CPU_PARTIAL_FREE,       /* Refill cpu partial on free */
  42        CPU_PARTIAL_NODE,       /* Refill cpu partial from node partial */
  43        CPU_PARTIAL_DRAIN,      /* Drain cpu partial to node partial */
  44        NR_SLUB_STAT_ITEMS };
  45
  46struct kmem_cache_cpu {
  47        void **freelist;        /* Pointer to next available object */
  48        unsigned long tid;      /* Globally unique transaction id */
  49        struct page *page;      /* The slab from which we are allocating */
  50        struct page *partial;   /* Partially allocated frozen slabs */
  51        int node;               /* The node of the page (or -1 for debug) */
  52#ifdef CONFIG_SLUB_STATS
  53        unsigned stat[NR_SLUB_STAT_ITEMS];
  54#endif
  55};
  56
  57struct kmem_cache_node {
  58        spinlock_t list_lock;   /* Protect partial list and nr_partial */
  59        unsigned long nr_partial;
  60        struct list_head partial;
  61#ifdef CONFIG_SLUB_DEBUG
  62        atomic_long_t nr_slabs;
  63        atomic_long_t total_objects;
  64        struct list_head full;
  65#endif
  66};
  67
  68/*
  69 * Word size structure that can be atomically updated or read and that
  70 * contains both the order and the number of objects that a slab of the
  71 * given order would contain.
  72 */
  73struct kmem_cache_order_objects {
  74        unsigned long x;
  75};
  76
  77/*
  78 * Slab cache management.
  79 */
  80struct kmem_cache {
  81        struct kmem_cache_cpu __percpu *cpu_slab;
  82        /* Used for retriving partial slabs etc */
  83        unsigned long flags;
  84        unsigned long min_partial;
  85        int size;               /* The size of an object including meta data */
  86        int objsize;            /* The size of an object without meta data */
  87        int offset;             /* Free pointer offset. */
  88        int cpu_partial;        /* Number of per cpu partial objects to keep around */
  89        struct kmem_cache_order_objects oo;
  90
  91        /* Allocation and freeing of slabs */
  92        struct kmem_cache_order_objects max;
  93        struct kmem_cache_order_objects min;
  94        gfp_t allocflags;       /* gfp flags to use on each alloc */
  95        int refcount;           /* Refcount for slab cache destroy */
  96        void (*ctor)(void *);
  97        int inuse;              /* Offset to metadata */
  98        int align;              /* Alignment */
  99        int reserved;           /* Reserved bytes at the end of slabs */
 100        const char *name;       /* Name (only for display!) */
 101        struct list_head list;  /* List of slab caches */
 102#ifdef CONFIG_SYSFS
 103        struct kobject kobj;    /* For sysfs */
 104#endif
 105
 106#ifdef CONFIG_NUMA
 107        /*
 108         * Defragmentation by allocating from a remote node.
 109         */
 110        int remote_node_defrag_ratio;
 111#endif
 112        struct kmem_cache_node *node[MAX_NUMNODES];
 113};
 114
 115/*
 116 * Kmalloc subsystem.
 117 */
 118#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 119#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 120#else
 121#define KMALLOC_MIN_SIZE 8
 122#endif
 123
 124#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
 125
 126/*
 127 * Maximum kmalloc object size handled by SLUB. Larger object allocations
 128 * are passed through to the page allocator. The page allocator "fastpath"
 129 * is relatively slow so we need this value sufficiently high so that
 130 * performance critical objects are allocated through the SLUB fastpath.
 131 *
 132 * This should be dropped to PAGE_SIZE / 2 once the page allocator
 133 * "fastpath" becomes competitive with the slab allocator fastpaths.
 134 */
 135#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
 136
 137#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
 138
 139#ifdef CONFIG_ZONE_DMA
 140#define SLUB_DMA __GFP_DMA
 141#else
 142/* Disable DMA functionality */
 143#define SLUB_DMA (__force gfp_t)0
 144#endif
 145
 146/*
 147 * We keep the general caches in an array of slab caches that are used for
 148 * 2^x bytes of allocations.
 149 */
 150extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
 151
 152/*
 153 * Sorry that the following has to be that ugly but some versions of GCC
 154 * have trouble with constant propagation and loops.
 155 */
 156static __always_inline int kmalloc_index(size_t size)
 157{
 158        if (!size)
 159                return 0;
 160
 161        if (size <= KMALLOC_MIN_SIZE)
 162                return KMALLOC_SHIFT_LOW;
 163
 164        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 165                return 1;
 166        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 167                return 2;
 168        if (size <=          8) return 3;
 169        if (size <=         16) return 4;
 170        if (size <=         32) return 5;
 171        if (size <=         64) return 6;
 172        if (size <=        128) return 7;
 173        if (size <=        256) return 8;
 174        if (size <=        512) return 9;
 175        if (size <=       1024) return 10;
 176        if (size <=   2 * 1024) return 11;
 177        if (size <=   4 * 1024) return 12;
 178/*
 179 * The following is only needed to support architectures with a larger page
 180 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
 181 * size we would have to go up to 128k.
 182 */
 183        if (size <=   8 * 1024) return 13;
 184        if (size <=  16 * 1024) return 14;
 185        if (size <=  32 * 1024) return 15;
 186        if (size <=  64 * 1024) return 16;
 187        if (size <= 128 * 1024) return 17;
 188        if (size <= 256 * 1024) return 18;
 189        if (size <= 512 * 1024) return 19;
 190        if (size <= 1024 * 1024) return 20;
 191        if (size <=  2 * 1024 * 1024) return 21;
 192        BUG();
 193        return -1; /* Will never be reached */
 194
 195/*
 196 * What we really wanted to do and cannot do because of compiler issues is:
 197 *      int i;
 198 *      for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
 199 *              if (size <= (1 << i))
 200 *                      return i;
 201 */
 202}
 203
 204/*
 205 * Find the slab cache for a given combination of allocation flags and size.
 206 *
 207 * This ought to end up with a global pointer to the right cache
 208 * in kmalloc_caches.
 209 */
 210static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
 211{
 212        int index = kmalloc_index(size);
 213
 214        if (index == 0)
 215                return NULL;
 216
 217        return kmalloc_caches[index];
 218}
 219
 220void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 221void *__kmalloc(size_t size, gfp_t flags);
 222
 223static __always_inline void *
 224kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 225{
 226        void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
 227        kmemleak_alloc(ret, size, 1, flags);
 228        return ret;
 229}
 230
 231/**
 232 * Calling this on allocated memory will check that the memory
 233 * is expected to be in use, and print warnings if not.
 234 */
 235#ifdef CONFIG_SLUB_DEBUG
 236extern bool verify_mem_not_deleted(const void *x);
 237#else
 238static inline bool verify_mem_not_deleted(const void *x)
 239{
 240        return true;
 241}
 242#endif
 243
 244#ifdef CONFIG_TRACING
 245extern void *
 246kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
 247extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
 248#else
 249static __always_inline void *
 250kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
 251{
 252        return kmem_cache_alloc(s, gfpflags);
 253}
 254
 255static __always_inline void *
 256kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
 257{
 258        return kmalloc_order(size, flags, order);
 259}
 260#endif
 261
 262static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
 263{
 264        unsigned int order = get_order(size);
 265        return kmalloc_order_trace(size, flags, order);
 266}
 267
 268static __always_inline void *kmalloc(size_t size, gfp_t flags)
 269{
 270        if (__builtin_constant_p(size)) {
 271                if (size > SLUB_MAX_SIZE)
 272                        return kmalloc_large(size, flags);
 273
 274                if (!(flags & SLUB_DMA)) {
 275                        struct kmem_cache *s = kmalloc_slab(size);
 276
 277                        if (!s)
 278                                return ZERO_SIZE_PTR;
 279
 280                        return kmem_cache_alloc_trace(s, flags, size);
 281                }
 282        }
 283        return __kmalloc(size, flags);
 284}
 285
 286#ifdef CONFIG_NUMA
 287void *__kmalloc_node(size_t size, gfp_t flags, int node);
 288void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
 289
 290#ifdef CONFIG_TRACING
 291extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
 292                                           gfp_t gfpflags,
 293                                           int node, size_t size);
 294#else
 295static __always_inline void *
 296kmem_cache_alloc_node_trace(struct kmem_cache *s,
 297                              gfp_t gfpflags,
 298                              int node, size_t size)
 299{
 300        return kmem_cache_alloc_node(s, gfpflags, node);
 301}
 302#endif
 303
 304static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 305{
 306        if (__builtin_constant_p(size) &&
 307                size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
 308                        struct kmem_cache *s = kmalloc_slab(size);
 309
 310                if (!s)
 311                        return ZERO_SIZE_PTR;
 312
 313                return kmem_cache_alloc_node_trace(s, flags, node, size);
 314        }
 315        return __kmalloc_node(size, flags, node);
 316}
 317#endif
 318
 319#endif /* _LINUX_SLUB_DEF_H */
 320