linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23
  24#include <asm/irq_regs.h>
  25
  26#include "tick-internal.h"
  27
  28/*
  29 * Per cpu nohz control structure
  30 */
  31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  32
  33/*
  34 * The time, when the last jiffy update happened. Protected by xtime_lock.
  35 */
  36static ktime_t last_jiffies_update;
  37
  38struct tick_sched *tick_get_tick_sched(int cpu)
  39{
  40        return &per_cpu(tick_cpu_sched, cpu);
  41}
  42
  43/*
  44 * Must be called with interrupts disabled !
  45 */
  46static void tick_do_update_jiffies64(ktime_t now)
  47{
  48        unsigned long ticks = 0;
  49        ktime_t delta;
  50
  51        /*
  52         * Do a quick check without holding xtime_lock:
  53         */
  54        delta = ktime_sub(now, last_jiffies_update);
  55        if (delta.tv64 < tick_period.tv64)
  56                return;
  57
  58        /* Reevalute with xtime_lock held */
  59        write_seqlock(&xtime_lock);
  60
  61        delta = ktime_sub(now, last_jiffies_update);
  62        if (delta.tv64 >= tick_period.tv64) {
  63
  64                delta = ktime_sub(delta, tick_period);
  65                last_jiffies_update = ktime_add(last_jiffies_update,
  66                                                tick_period);
  67
  68                /* Slow path for long timeouts */
  69                if (unlikely(delta.tv64 >= tick_period.tv64)) {
  70                        s64 incr = ktime_to_ns(tick_period);
  71
  72                        ticks = ktime_divns(delta, incr);
  73
  74                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
  75                                                           incr * ticks);
  76                }
  77                do_timer(++ticks);
  78
  79                /* Keep the tick_next_period variable up to date */
  80                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  81        }
  82        write_sequnlock(&xtime_lock);
  83}
  84
  85/*
  86 * Initialize and return retrieve the jiffies update.
  87 */
  88static ktime_t tick_init_jiffy_update(void)
  89{
  90        ktime_t period;
  91
  92        write_seqlock(&xtime_lock);
  93        /* Did we start the jiffies update yet ? */
  94        if (last_jiffies_update.tv64 == 0)
  95                last_jiffies_update = tick_next_period;
  96        period = last_jiffies_update;
  97        write_sequnlock(&xtime_lock);
  98        return period;
  99}
 100
 101/*
 102 * NOHZ - aka dynamic tick functionality
 103 */
 104#ifdef CONFIG_NO_HZ
 105/*
 106 * NO HZ enabled ?
 107 */
 108static int tick_nohz_enabled __read_mostly  = 1;
 109
 110/*
 111 * Enable / Disable tickless mode
 112 */
 113static int __init setup_tick_nohz(char *str)
 114{
 115        if (!strcmp(str, "off"))
 116                tick_nohz_enabled = 0;
 117        else if (!strcmp(str, "on"))
 118                tick_nohz_enabled = 1;
 119        else
 120                return 0;
 121        return 1;
 122}
 123
 124__setup("nohz=", setup_tick_nohz);
 125
 126/**
 127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 128 *
 129 * Called from interrupt entry when the CPU was idle
 130 *
 131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 133 * value. We do this unconditionally on any cpu, as we don't know whether the
 134 * cpu, which has the update task assigned is in a long sleep.
 135 */
 136static void tick_nohz_update_jiffies(ktime_t now)
 137{
 138        int cpu = smp_processor_id();
 139        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 140        unsigned long flags;
 141
 142        ts->idle_waketime = now;
 143
 144        local_irq_save(flags);
 145        tick_do_update_jiffies64(now);
 146        local_irq_restore(flags);
 147
 148        touch_softlockup_watchdog();
 149}
 150
 151/*
 152 * Updates the per cpu time idle statistics counters
 153 */
 154static void
 155update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 156{
 157        ktime_t delta;
 158
 159        if (ts->idle_active) {
 160                delta = ktime_sub(now, ts->idle_entrytime);
 161                if (nr_iowait_cpu(cpu) > 0)
 162                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 163                else
 164                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 165                ts->idle_entrytime = now;
 166        }
 167
 168        if (last_update_time)
 169                *last_update_time = ktime_to_us(now);
 170
 171}
 172
 173static void tick_nohz_stop_idle(int cpu, ktime_t now)
 174{
 175        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 176
 177        update_ts_time_stats(cpu, ts, now, NULL);
 178        ts->idle_active = 0;
 179
 180        sched_clock_idle_wakeup_event(0);
 181}
 182
 183static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
 184{
 185        ktime_t now = ktime_get();
 186
 187        ts->idle_entrytime = now;
 188        ts->idle_active = 1;
 189        sched_clock_idle_sleep_event();
 190        return now;
 191}
 192
 193/**
 194 * get_cpu_idle_time_us - get the total idle time of a cpu
 195 * @cpu: CPU number to query
 196 * @last_update_time: variable to store update time in. Do not update
 197 * counters if NULL.
 198 *
 199 * Return the cummulative idle time (since boot) for a given
 200 * CPU, in microseconds.
 201 *
 202 * This time is measured via accounting rather than sampling,
 203 * and is as accurate as ktime_get() is.
 204 *
 205 * This function returns -1 if NOHZ is not enabled.
 206 */
 207u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 208{
 209        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 210        ktime_t now, idle;
 211
 212        if (!tick_nohz_enabled)
 213                return -1;
 214
 215        now = ktime_get();
 216        if (last_update_time) {
 217                update_ts_time_stats(cpu, ts, now, last_update_time);
 218                idle = ts->idle_sleeptime;
 219        } else {
 220                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 221                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 222
 223                        idle = ktime_add(ts->idle_sleeptime, delta);
 224                } else {
 225                        idle = ts->idle_sleeptime;
 226                }
 227        }
 228
 229        return ktime_to_us(idle);
 230
 231}
 232EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 233
 234/**
 235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 236 * @cpu: CPU number to query
 237 * @last_update_time: variable to store update time in. Do not update
 238 * counters if NULL.
 239 *
 240 * Return the cummulative iowait time (since boot) for a given
 241 * CPU, in microseconds.
 242 *
 243 * This time is measured via accounting rather than sampling,
 244 * and is as accurate as ktime_get() is.
 245 *
 246 * This function returns -1 if NOHZ is not enabled.
 247 */
 248u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 249{
 250        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 251        ktime_t now, iowait;
 252
 253        if (!tick_nohz_enabled)
 254                return -1;
 255
 256        now = ktime_get();
 257        if (last_update_time) {
 258                update_ts_time_stats(cpu, ts, now, last_update_time);
 259                iowait = ts->iowait_sleeptime;
 260        } else {
 261                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 262                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 263
 264                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 265                } else {
 266                        iowait = ts->iowait_sleeptime;
 267                }
 268        }
 269
 270        return ktime_to_us(iowait);
 271}
 272EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 273
 274static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
 275{
 276        unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
 277        unsigned long rcu_delta_jiffies;
 278        ktime_t last_update, expires, now;
 279        struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
 280        u64 time_delta;
 281        int cpu;
 282
 283        cpu = smp_processor_id();
 284        ts = &per_cpu(tick_cpu_sched, cpu);
 285
 286        now = tick_nohz_start_idle(cpu, ts);
 287
 288        /*
 289         * If this cpu is offline and it is the one which updates
 290         * jiffies, then give up the assignment and let it be taken by
 291         * the cpu which runs the tick timer next. If we don't drop
 292         * this here the jiffies might be stale and do_timer() never
 293         * invoked.
 294         */
 295        if (unlikely(!cpu_online(cpu))) {
 296                if (cpu == tick_do_timer_cpu)
 297                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 298        }
 299
 300        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 301                return;
 302
 303        if (need_resched())
 304                return;
 305
 306        if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 307                static int ratelimit;
 308
 309                if (ratelimit < 10) {
 310                        printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
 311                               (unsigned int) local_softirq_pending());
 312                        ratelimit++;
 313                }
 314                return;
 315        }
 316
 317        ts->idle_calls++;
 318        /* Read jiffies and the time when jiffies were updated last */
 319        do {
 320                seq = read_seqbegin(&xtime_lock);
 321                last_update = last_jiffies_update;
 322                last_jiffies = jiffies;
 323                time_delta = timekeeping_max_deferment();
 324        } while (read_seqretry(&xtime_lock, seq));
 325
 326        if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
 327            arch_needs_cpu(cpu)) {
 328                next_jiffies = last_jiffies + 1;
 329                delta_jiffies = 1;
 330        } else {
 331                /* Get the next timer wheel timer */
 332                next_jiffies = get_next_timer_interrupt(last_jiffies);
 333                delta_jiffies = next_jiffies - last_jiffies;
 334                if (rcu_delta_jiffies < delta_jiffies) {
 335                        next_jiffies = last_jiffies + rcu_delta_jiffies;
 336                        delta_jiffies = rcu_delta_jiffies;
 337                }
 338        }
 339        /*
 340         * Do not stop the tick, if we are only one off
 341         * or if the cpu is required for rcu
 342         */
 343        if (!ts->tick_stopped && delta_jiffies == 1)
 344                goto out;
 345
 346        /* Schedule the tick, if we are at least one jiffie off */
 347        if ((long)delta_jiffies >= 1) {
 348
 349                /*
 350                 * If this cpu is the one which updates jiffies, then
 351                 * give up the assignment and let it be taken by the
 352                 * cpu which runs the tick timer next, which might be
 353                 * this cpu as well. If we don't drop this here the
 354                 * jiffies might be stale and do_timer() never
 355                 * invoked. Keep track of the fact that it was the one
 356                 * which had the do_timer() duty last. If this cpu is
 357                 * the one which had the do_timer() duty last, we
 358                 * limit the sleep time to the timekeeping
 359                 * max_deferement value which we retrieved
 360                 * above. Otherwise we can sleep as long as we want.
 361                 */
 362                if (cpu == tick_do_timer_cpu) {
 363                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 364                        ts->do_timer_last = 1;
 365                } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 366                        time_delta = KTIME_MAX;
 367                        ts->do_timer_last = 0;
 368                } else if (!ts->do_timer_last) {
 369                        time_delta = KTIME_MAX;
 370                }
 371
 372                /*
 373                 * calculate the expiry time for the next timer wheel
 374                 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
 375                 * that there is no timer pending or at least extremely
 376                 * far into the future (12 days for HZ=1000). In this
 377                 * case we set the expiry to the end of time.
 378                 */
 379                if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
 380                        /*
 381                         * Calculate the time delta for the next timer event.
 382                         * If the time delta exceeds the maximum time delta
 383                         * permitted by the current clocksource then adjust
 384                         * the time delta accordingly to ensure the
 385                         * clocksource does not wrap.
 386                         */
 387                        time_delta = min_t(u64, time_delta,
 388                                           tick_period.tv64 * delta_jiffies);
 389                }
 390
 391                if (time_delta < KTIME_MAX)
 392                        expires = ktime_add_ns(last_update, time_delta);
 393                else
 394                        expires.tv64 = KTIME_MAX;
 395
 396                /* Skip reprogram of event if its not changed */
 397                if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
 398                        goto out;
 399
 400                /*
 401                 * nohz_stop_sched_tick can be called several times before
 402                 * the nohz_restart_sched_tick is called. This happens when
 403                 * interrupts arrive which do not cause a reschedule. In the
 404                 * first call we save the current tick time, so we can restart
 405                 * the scheduler tick in nohz_restart_sched_tick.
 406                 */
 407                if (!ts->tick_stopped) {
 408                        select_nohz_load_balancer(1);
 409                        calc_load_enter_idle();
 410
 411                        ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
 412                        ts->tick_stopped = 1;
 413                        ts->idle_jiffies = last_jiffies;
 414                }
 415
 416                ts->idle_sleeps++;
 417
 418                /* Mark expires */
 419                ts->idle_expires = expires;
 420
 421                /*
 422                 * If the expiration time == KTIME_MAX, then
 423                 * in this case we simply stop the tick timer.
 424                 */
 425                 if (unlikely(expires.tv64 == KTIME_MAX)) {
 426                        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 427                                hrtimer_cancel(&ts->sched_timer);
 428                        goto out;
 429                }
 430
 431                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 432                        hrtimer_start(&ts->sched_timer, expires,
 433                                      HRTIMER_MODE_ABS_PINNED);
 434                        /* Check, if the timer was already in the past */
 435                        if (hrtimer_active(&ts->sched_timer))
 436                                goto out;
 437                } else if (!tick_program_event(expires, 0))
 438                                goto out;
 439                /*
 440                 * We are past the event already. So we crossed a
 441                 * jiffie boundary. Update jiffies and raise the
 442                 * softirq.
 443                 */
 444                tick_do_update_jiffies64(ktime_get());
 445        }
 446        raise_softirq_irqoff(TIMER_SOFTIRQ);
 447out:
 448        ts->next_jiffies = next_jiffies;
 449        ts->last_jiffies = last_jiffies;
 450        ts->sleep_length = ktime_sub(dev->next_event, now);
 451}
 452
 453/**
 454 * tick_nohz_idle_enter - stop the idle tick from the idle task
 455 *
 456 * When the next event is more than a tick into the future, stop the idle tick
 457 * Called when we start the idle loop.
 458 *
 459 * The arch is responsible of calling:
 460 *
 461 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 462 *  to sleep.
 463 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 464 */
 465void tick_nohz_idle_enter(void)
 466{
 467        struct tick_sched *ts;
 468
 469        WARN_ON_ONCE(irqs_disabled());
 470
 471        /*
 472         * Update the idle state in the scheduler domain hierarchy
 473         * when tick_nohz_stop_sched_tick() is called from the idle loop.
 474         * State will be updated to busy during the first busy tick after
 475         * exiting idle.
 476         */
 477        set_cpu_sd_state_idle();
 478
 479        local_irq_disable();
 480
 481        ts = &__get_cpu_var(tick_cpu_sched);
 482        /*
 483         * set ts->inidle unconditionally. even if the system did not
 484         * switch to nohz mode the cpu frequency governers rely on the
 485         * update of the idle time accounting in tick_nohz_start_idle().
 486         */
 487        ts->inidle = 1;
 488        tick_nohz_stop_sched_tick(ts);
 489
 490        local_irq_enable();
 491}
 492
 493/**
 494 * tick_nohz_irq_exit - update next tick event from interrupt exit
 495 *
 496 * When an interrupt fires while we are idle and it doesn't cause
 497 * a reschedule, it may still add, modify or delete a timer, enqueue
 498 * an RCU callback, etc...
 499 * So we need to re-calculate and reprogram the next tick event.
 500 */
 501void tick_nohz_irq_exit(void)
 502{
 503        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 504
 505        if (!ts->inidle)
 506                return;
 507
 508        tick_nohz_stop_sched_tick(ts);
 509}
 510
 511/**
 512 * tick_nohz_get_sleep_length - return the length of the current sleep
 513 *
 514 * Called from power state control code with interrupts disabled
 515 */
 516ktime_t tick_nohz_get_sleep_length(void)
 517{
 518        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 519
 520        return ts->sleep_length;
 521}
 522
 523static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 524{
 525        hrtimer_cancel(&ts->sched_timer);
 526        hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
 527
 528        while (1) {
 529                /* Forward the time to expire in the future */
 530                hrtimer_forward(&ts->sched_timer, now, tick_period);
 531
 532                if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 533                        hrtimer_start_expires(&ts->sched_timer,
 534                                              HRTIMER_MODE_ABS_PINNED);
 535                        /* Check, if the timer was already in the past */
 536                        if (hrtimer_active(&ts->sched_timer))
 537                                break;
 538                } else {
 539                        if (!tick_program_event(
 540                                hrtimer_get_expires(&ts->sched_timer), 0))
 541                                break;
 542                }
 543                /* Reread time and update jiffies */
 544                now = ktime_get();
 545                tick_do_update_jiffies64(now);
 546        }
 547}
 548
 549/**
 550 * tick_nohz_idle_exit - restart the idle tick from the idle task
 551 *
 552 * Restart the idle tick when the CPU is woken up from idle
 553 * This also exit the RCU extended quiescent state. The CPU
 554 * can use RCU again after this function is called.
 555 */
 556void tick_nohz_idle_exit(void)
 557{
 558        int cpu = smp_processor_id();
 559        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 560#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 561        unsigned long ticks;
 562#endif
 563        ktime_t now;
 564
 565        local_irq_disable();
 566
 567        WARN_ON_ONCE(!ts->inidle);
 568
 569        ts->inidle = 0;
 570
 571        if (ts->idle_active || ts->tick_stopped)
 572                now = ktime_get();
 573
 574        if (ts->idle_active)
 575                tick_nohz_stop_idle(cpu, now);
 576
 577        if (!ts->tick_stopped) {
 578                local_irq_enable();
 579                return;
 580        }
 581
 582        /* Update jiffies first */
 583        select_nohz_load_balancer(0);
 584        tick_do_update_jiffies64(now);
 585        update_cpu_load_nohz();
 586
 587#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 588        /*
 589         * We stopped the tick in idle. Update process times would miss the
 590         * time we slept as update_process_times does only a 1 tick
 591         * accounting. Enforce that this is accounted to idle !
 592         */
 593        ticks = jiffies - ts->idle_jiffies;
 594        /*
 595         * We might be one off. Do not randomly account a huge number of ticks!
 596         */
 597        if (ticks && ticks < LONG_MAX)
 598                account_idle_ticks(ticks);
 599#endif
 600
 601        calc_load_exit_idle();
 602        touch_softlockup_watchdog();
 603        /*
 604         * Cancel the scheduled timer and restore the tick
 605         */
 606        ts->tick_stopped  = 0;
 607        ts->idle_exittime = now;
 608
 609        tick_nohz_restart(ts, now);
 610
 611        local_irq_enable();
 612}
 613
 614static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 615{
 616        hrtimer_forward(&ts->sched_timer, now, tick_period);
 617        return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 618}
 619
 620/*
 621 * The nohz low res interrupt handler
 622 */
 623static void tick_nohz_handler(struct clock_event_device *dev)
 624{
 625        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 626        struct pt_regs *regs = get_irq_regs();
 627        int cpu = smp_processor_id();
 628        ktime_t now = ktime_get();
 629
 630        dev->next_event.tv64 = KTIME_MAX;
 631
 632        /*
 633         * Check if the do_timer duty was dropped. We don't care about
 634         * concurrency: This happens only when the cpu in charge went
 635         * into a long sleep. If two cpus happen to assign themself to
 636         * this duty, then the jiffies update is still serialized by
 637         * xtime_lock.
 638         */
 639        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 640                tick_do_timer_cpu = cpu;
 641
 642        /* Check, if the jiffies need an update */
 643        if (tick_do_timer_cpu == cpu)
 644                tick_do_update_jiffies64(now);
 645
 646        /*
 647         * When we are idle and the tick is stopped, we have to touch
 648         * the watchdog as we might not schedule for a really long
 649         * time. This happens on complete idle SMP systems while
 650         * waiting on the login prompt. We also increment the "start
 651         * of idle" jiffy stamp so the idle accounting adjustment we
 652         * do when we go busy again does not account too much ticks.
 653         */
 654        if (ts->tick_stopped) {
 655                touch_softlockup_watchdog();
 656                ts->idle_jiffies++;
 657        }
 658
 659        update_process_times(user_mode(regs));
 660        profile_tick(CPU_PROFILING);
 661
 662        while (tick_nohz_reprogram(ts, now)) {
 663                now = ktime_get();
 664                tick_do_update_jiffies64(now);
 665        }
 666}
 667
 668/**
 669 * tick_nohz_switch_to_nohz - switch to nohz mode
 670 */
 671static void tick_nohz_switch_to_nohz(void)
 672{
 673        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 674        ktime_t next;
 675
 676        if (!tick_nohz_enabled)
 677                return;
 678
 679        local_irq_disable();
 680        if (tick_switch_to_oneshot(tick_nohz_handler)) {
 681                local_irq_enable();
 682                return;
 683        }
 684
 685        ts->nohz_mode = NOHZ_MODE_LOWRES;
 686
 687        /*
 688         * Recycle the hrtimer in ts, so we can share the
 689         * hrtimer_forward with the highres code.
 690         */
 691        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 692        /* Get the next period */
 693        next = tick_init_jiffy_update();
 694
 695        for (;;) {
 696                hrtimer_set_expires(&ts->sched_timer, next);
 697                if (!tick_program_event(next, 0))
 698                        break;
 699                next = ktime_add(next, tick_period);
 700        }
 701        local_irq_enable();
 702}
 703
 704/*
 705 * When NOHZ is enabled and the tick is stopped, we need to kick the
 706 * tick timer from irq_enter() so that the jiffies update is kept
 707 * alive during long running softirqs. That's ugly as hell, but
 708 * correctness is key even if we need to fix the offending softirq in
 709 * the first place.
 710 *
 711 * Note, this is different to tick_nohz_restart. We just kick the
 712 * timer and do not touch the other magic bits which need to be done
 713 * when idle is left.
 714 */
 715static void tick_nohz_kick_tick(int cpu, ktime_t now)
 716{
 717#if 0
 718        /* Switch back to 2.6.27 behaviour */
 719
 720        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 721        ktime_t delta;
 722
 723        /*
 724         * Do not touch the tick device, when the next expiry is either
 725         * already reached or less/equal than the tick period.
 726         */
 727        delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
 728        if (delta.tv64 <= tick_period.tv64)
 729                return;
 730
 731        tick_nohz_restart(ts, now);
 732#endif
 733}
 734
 735static inline void tick_check_nohz(int cpu)
 736{
 737        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 738        ktime_t now;
 739
 740        if (!ts->idle_active && !ts->tick_stopped)
 741                return;
 742        now = ktime_get();
 743        if (ts->idle_active)
 744                tick_nohz_stop_idle(cpu, now);
 745        if (ts->tick_stopped) {
 746                tick_nohz_update_jiffies(now);
 747                tick_nohz_kick_tick(cpu, now);
 748        }
 749}
 750
 751#else
 752
 753static inline void tick_nohz_switch_to_nohz(void) { }
 754static inline void tick_check_nohz(int cpu) { }
 755
 756#endif /* NO_HZ */
 757
 758/*
 759 * Called from irq_enter to notify about the possible interruption of idle()
 760 */
 761void tick_check_idle(int cpu)
 762{
 763        tick_check_oneshot_broadcast(cpu);
 764        tick_check_nohz(cpu);
 765}
 766
 767/*
 768 * High resolution timer specific code
 769 */
 770#ifdef CONFIG_HIGH_RES_TIMERS
 771/*
 772 * We rearm the timer until we get disabled by the idle code.
 773 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 774 */
 775static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
 776{
 777        struct tick_sched *ts =
 778                container_of(timer, struct tick_sched, sched_timer);
 779        struct pt_regs *regs = get_irq_regs();
 780        ktime_t now = ktime_get();
 781        int cpu = smp_processor_id();
 782
 783#ifdef CONFIG_NO_HZ
 784        /*
 785         * Check if the do_timer duty was dropped. We don't care about
 786         * concurrency: This happens only when the cpu in charge went
 787         * into a long sleep. If two cpus happen to assign themself to
 788         * this duty, then the jiffies update is still serialized by
 789         * xtime_lock.
 790         */
 791        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 792                tick_do_timer_cpu = cpu;
 793#endif
 794
 795        /* Check, if the jiffies need an update */
 796        if (tick_do_timer_cpu == cpu)
 797                tick_do_update_jiffies64(now);
 798
 799        /*
 800         * Do not call, when we are not in irq context and have
 801         * no valid regs pointer
 802         */
 803        if (regs) {
 804                /*
 805                 * When we are idle and the tick is stopped, we have to touch
 806                 * the watchdog as we might not schedule for a really long
 807                 * time. This happens on complete idle SMP systems while
 808                 * waiting on the login prompt. We also increment the "start of
 809                 * idle" jiffy stamp so the idle accounting adjustment we do
 810                 * when we go busy again does not account too much ticks.
 811                 */
 812                if (ts->tick_stopped) {
 813                        touch_softlockup_watchdog();
 814                        ts->idle_jiffies++;
 815                }
 816                update_process_times(user_mode(regs));
 817                profile_tick(CPU_PROFILING);
 818        }
 819
 820        hrtimer_forward(timer, now, tick_period);
 821
 822        return HRTIMER_RESTART;
 823}
 824
 825static int sched_skew_tick;
 826
 827static int __init skew_tick(char *str)
 828{
 829        get_option(&str, &sched_skew_tick);
 830
 831        return 0;
 832}
 833early_param("skew_tick", skew_tick);
 834
 835/**
 836 * tick_setup_sched_timer - setup the tick emulation timer
 837 */
 838void tick_setup_sched_timer(void)
 839{
 840        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 841        ktime_t now = ktime_get();
 842
 843        /*
 844         * Emulate tick processing via per-CPU hrtimers:
 845         */
 846        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 847        ts->sched_timer.function = tick_sched_timer;
 848
 849        /* Get the next period (per cpu) */
 850        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
 851
 852        /* Offset the tick to avert xtime_lock contention. */
 853        if (sched_skew_tick) {
 854                u64 offset = ktime_to_ns(tick_period) >> 1;
 855                do_div(offset, num_possible_cpus());
 856                offset *= smp_processor_id();
 857                hrtimer_add_expires_ns(&ts->sched_timer, offset);
 858        }
 859
 860        for (;;) {
 861                hrtimer_forward(&ts->sched_timer, now, tick_period);
 862                hrtimer_start_expires(&ts->sched_timer,
 863                                      HRTIMER_MODE_ABS_PINNED);
 864                /* Check, if the timer was already in the past */
 865                if (hrtimer_active(&ts->sched_timer))
 866                        break;
 867                now = ktime_get();
 868        }
 869
 870#ifdef CONFIG_NO_HZ
 871        if (tick_nohz_enabled)
 872                ts->nohz_mode = NOHZ_MODE_HIGHRES;
 873#endif
 874}
 875#endif /* HIGH_RES_TIMERS */
 876
 877#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
 878void tick_cancel_sched_timer(int cpu)
 879{
 880        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 881
 882# ifdef CONFIG_HIGH_RES_TIMERS
 883        if (ts->sched_timer.base)
 884                hrtimer_cancel(&ts->sched_timer);
 885# endif
 886
 887        ts->nohz_mode = NOHZ_MODE_INACTIVE;
 888}
 889#endif
 890
 891/**
 892 * Async notification about clocksource changes
 893 */
 894void tick_clock_notify(void)
 895{
 896        int cpu;
 897
 898        for_each_possible_cpu(cpu)
 899                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
 900}
 901
 902/*
 903 * Async notification about clock event changes
 904 */
 905void tick_oneshot_notify(void)
 906{
 907        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 908
 909        set_bit(0, &ts->check_clocks);
 910}
 911
 912/**
 913 * Check, if a change happened, which makes oneshot possible.
 914 *
 915 * Called cyclic from the hrtimer softirq (driven by the timer
 916 * softirq) allow_nohz signals, that we can switch into low-res nohz
 917 * mode, because high resolution timers are disabled (either compile
 918 * or runtime).
 919 */
 920int tick_check_oneshot_change(int allow_nohz)
 921{
 922        struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 923
 924        if (!test_and_clear_bit(0, &ts->check_clocks))
 925                return 0;
 926
 927        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
 928                return 0;
 929
 930        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
 931                return 0;
 932
 933        if (!allow_nohz)
 934                return 1;
 935
 936        tick_nohz_switch_to_nohz();
 937        return 0;
 938}
 939