linux/net/ipv4/ipmr.c
<<
>>
Prefs
   1/*
   2 *      IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *        Linux Consultancy and Custom Driver Development
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 *
  12 *      Fixes:
  13 *      Michael Chastain        :       Incorrect size of copying.
  14 *      Alan Cox                :       Added the cache manager code
  15 *      Alan Cox                :       Fixed the clone/copy bug and device race.
  16 *      Mike McLagan            :       Routing by source
  17 *      Malcolm Beattie         :       Buffer handling fixes.
  18 *      Alexey Kuznetsov        :       Double buffer free and other fixes.
  19 *      SVR Anand               :       Fixed several multicast bugs and problems.
  20 *      Alexey Kuznetsov        :       Status, optimisations and more.
  21 *      Brad Parker             :       Better behaviour on mrouted upcall
  22 *                                      overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
  25 *                                      Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ipip.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM 1
  71#endif
  72
  73struct mr_table {
  74        struct list_head        list;
  75#ifdef CONFIG_NET_NS
  76        struct net              *net;
  77#endif
  78        u32                     id;
  79        struct sock __rcu       *mroute_sk;
  80        struct timer_list       ipmr_expire_timer;
  81        struct list_head        mfc_unres_queue;
  82        struct list_head        mfc_cache_array[MFC_LINES];
  83        struct vif_device       vif_table[MAXVIFS];
  84        int                     maxvif;
  85        atomic_t                cache_resolve_queue_len;
  86        int                     mroute_do_assert;
  87        int                     mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89        int                     mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94        struct fib_rule         common;
  95};
  96
  97struct ipmr_result {
  98        struct mr_table         *mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *      Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 128                         struct sk_buff *skb, struct mfc_cache *cache,
 129                         int local);
 130static int ipmr_cache_report(struct mr_table *mrt,
 131                             struct sk_buff *pkt, vifi_t vifi, int assert);
 132static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 133                              struct mfc_cache *c, struct rtmsg *rtm);
 134static void ipmr_expire_process(unsigned long arg);
 135
 136#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 137#define ipmr_for_each_table(mrt, net) \
 138        list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 139
 140static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 141{
 142        struct mr_table *mrt;
 143
 144        ipmr_for_each_table(mrt, net) {
 145                if (mrt->id == id)
 146                        return mrt;
 147        }
 148        return NULL;
 149}
 150
 151static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 152                           struct mr_table **mrt)
 153{
 154        struct ipmr_result res;
 155        struct fib_lookup_arg arg = { .result = &res, };
 156        int err;
 157
 158        err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 159                               flowi4_to_flowi(flp4), 0, &arg);
 160        if (err < 0)
 161                return err;
 162        *mrt = res.mrt;
 163        return 0;
 164}
 165
 166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 167                            int flags, struct fib_lookup_arg *arg)
 168{
 169        struct ipmr_result *res = arg->result;
 170        struct mr_table *mrt;
 171
 172        switch (rule->action) {
 173        case FR_ACT_TO_TBL:
 174                break;
 175        case FR_ACT_UNREACHABLE:
 176                return -ENETUNREACH;
 177        case FR_ACT_PROHIBIT:
 178                return -EACCES;
 179        case FR_ACT_BLACKHOLE:
 180        default:
 181                return -EINVAL;
 182        }
 183
 184        mrt = ipmr_get_table(rule->fr_net, rule->table);
 185        if (mrt == NULL)
 186                return -EAGAIN;
 187        res->mrt = mrt;
 188        return 0;
 189}
 190
 191static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 192{
 193        return 1;
 194}
 195
 196static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 197        FRA_GENERIC_POLICY,
 198};
 199
 200static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 201                               struct fib_rule_hdr *frh, struct nlattr **tb)
 202{
 203        return 0;
 204}
 205
 206static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 207                             struct nlattr **tb)
 208{
 209        return 1;
 210}
 211
 212static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 213                          struct fib_rule_hdr *frh)
 214{
 215        frh->dst_len = 0;
 216        frh->src_len = 0;
 217        frh->tos     = 0;
 218        return 0;
 219}
 220
 221static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 222        .family         = RTNL_FAMILY_IPMR,
 223        .rule_size      = sizeof(struct ipmr_rule),
 224        .addr_size      = sizeof(u32),
 225        .action         = ipmr_rule_action,
 226        .match          = ipmr_rule_match,
 227        .configure      = ipmr_rule_configure,
 228        .compare        = ipmr_rule_compare,
 229        .default_pref   = fib_default_rule_pref,
 230        .fill           = ipmr_rule_fill,
 231        .nlgroup        = RTNLGRP_IPV4_RULE,
 232        .policy         = ipmr_rule_policy,
 233        .owner          = THIS_MODULE,
 234};
 235
 236static int __net_init ipmr_rules_init(struct net *net)
 237{
 238        struct fib_rules_ops *ops;
 239        struct mr_table *mrt;
 240        int err;
 241
 242        ops = fib_rules_register(&ipmr_rules_ops_template, net);
 243        if (IS_ERR(ops))
 244                return PTR_ERR(ops);
 245
 246        INIT_LIST_HEAD(&net->ipv4.mr_tables);
 247
 248        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 249        if (mrt == NULL) {
 250                err = -ENOMEM;
 251                goto err1;
 252        }
 253
 254        err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 255        if (err < 0)
 256                goto err2;
 257
 258        net->ipv4.mr_rules_ops = ops;
 259        return 0;
 260
 261err2:
 262        kfree(mrt);
 263err1:
 264        fib_rules_unregister(ops);
 265        return err;
 266}
 267
 268static void __net_exit ipmr_rules_exit(struct net *net)
 269{
 270        struct mr_table *mrt, *next;
 271
 272        list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 273                list_del(&mrt->list);
 274                kfree(mrt);
 275        }
 276        fib_rules_unregister(net->ipv4.mr_rules_ops);
 277}
 278#else
 279#define ipmr_for_each_table(mrt, net) \
 280        for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 281
 282static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 283{
 284        return net->ipv4.mrt;
 285}
 286
 287static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 288                           struct mr_table **mrt)
 289{
 290        *mrt = net->ipv4.mrt;
 291        return 0;
 292}
 293
 294static int __net_init ipmr_rules_init(struct net *net)
 295{
 296        net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 297        return net->ipv4.mrt ? 0 : -ENOMEM;
 298}
 299
 300static void __net_exit ipmr_rules_exit(struct net *net)
 301{
 302        kfree(net->ipv4.mrt);
 303}
 304#endif
 305
 306static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 307{
 308        struct mr_table *mrt;
 309        unsigned int i;
 310
 311        mrt = ipmr_get_table(net, id);
 312        if (mrt != NULL)
 313                return mrt;
 314
 315        mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 316        if (mrt == NULL)
 317                return NULL;
 318        write_pnet(&mrt->net, net);
 319        mrt->id = id;
 320
 321        /* Forwarding cache */
 322        for (i = 0; i < MFC_LINES; i++)
 323                INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 324
 325        INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 326
 327        setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 328                    (unsigned long)mrt);
 329
 330#ifdef CONFIG_IP_PIMSM
 331        mrt->mroute_reg_vif_num = -1;
 332#endif
 333#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 334        list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 335#endif
 336        return mrt;
 337}
 338
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343        struct net *net = dev_net(dev);
 344
 345        dev_close(dev);
 346
 347        dev = __dev_get_by_name(net, "tunl0");
 348        if (dev) {
 349                const struct net_device_ops *ops = dev->netdev_ops;
 350                struct ifreq ifr;
 351                struct ip_tunnel_parm p;
 352
 353                memset(&p, 0, sizeof(p));
 354                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356                p.iph.version = 4;
 357                p.iph.ihl = 5;
 358                p.iph.protocol = IPPROTO_IPIP;
 359                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362                if (ops->ndo_do_ioctl) {
 363                        mm_segment_t oldfs = get_fs();
 364
 365                        set_fs(KERNEL_DS);
 366                        ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367                        set_fs(oldfs);
 368                }
 369        }
 370}
 371
 372static
 373struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 374{
 375        struct net_device  *dev;
 376
 377        dev = __dev_get_by_name(net, "tunl0");
 378
 379        if (dev) {
 380                const struct net_device_ops *ops = dev->netdev_ops;
 381                int err;
 382                struct ifreq ifr;
 383                struct ip_tunnel_parm p;
 384                struct in_device  *in_dev;
 385
 386                memset(&p, 0, sizeof(p));
 387                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 388                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 389                p.iph.version = 4;
 390                p.iph.ihl = 5;
 391                p.iph.protocol = IPPROTO_IPIP;
 392                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 393                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 394
 395                if (ops->ndo_do_ioctl) {
 396                        mm_segment_t oldfs = get_fs();
 397
 398                        set_fs(KERNEL_DS);
 399                        err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 400                        set_fs(oldfs);
 401                } else {
 402                        err = -EOPNOTSUPP;
 403                }
 404                dev = NULL;
 405
 406                if (err == 0 &&
 407                    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 408                        dev->flags |= IFF_MULTICAST;
 409
 410                        in_dev = __in_dev_get_rtnl(dev);
 411                        if (in_dev == NULL)
 412                                goto failure;
 413
 414                        ipv4_devconf_setall(in_dev);
 415                        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 416
 417                        if (dev_open(dev))
 418                                goto failure;
 419                        dev_hold(dev);
 420                }
 421        }
 422        return dev;
 423
 424failure:
 425        /* allow the register to be completed before unregistering. */
 426        rtnl_unlock();
 427        rtnl_lock();
 428
 429        unregister_netdevice(dev);
 430        return NULL;
 431}
 432
 433#ifdef CONFIG_IP_PIMSM
 434
 435static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 436{
 437        struct net *net = dev_net(dev);
 438        struct mr_table *mrt;
 439        struct flowi4 fl4 = {
 440                .flowi4_oif     = dev->ifindex,
 441                .flowi4_iif     = skb->skb_iif,
 442                .flowi4_mark    = skb->mark,
 443        };
 444        int err;
 445
 446        err = ipmr_fib_lookup(net, &fl4, &mrt);
 447        if (err < 0) {
 448                kfree_skb(skb);
 449                return err;
 450        }
 451
 452        read_lock(&mrt_lock);
 453        dev->stats.tx_bytes += skb->len;
 454        dev->stats.tx_packets++;
 455        ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 456        read_unlock(&mrt_lock);
 457        kfree_skb(skb);
 458        return NETDEV_TX_OK;
 459}
 460
 461static const struct net_device_ops reg_vif_netdev_ops = {
 462        .ndo_start_xmit = reg_vif_xmit,
 463};
 464
 465static void reg_vif_setup(struct net_device *dev)
 466{
 467        dev->type               = ARPHRD_PIMREG;
 468        dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 469        dev->flags              = IFF_NOARP;
 470        dev->netdev_ops         = &reg_vif_netdev_ops,
 471        dev->destructor         = free_netdev;
 472        dev->features           |= NETIF_F_NETNS_LOCAL;
 473}
 474
 475static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 476{
 477        struct net_device *dev;
 478        struct in_device *in_dev;
 479        char name[IFNAMSIZ];
 480
 481        if (mrt->id == RT_TABLE_DEFAULT)
 482                sprintf(name, "pimreg");
 483        else
 484                sprintf(name, "pimreg%u", mrt->id);
 485
 486        dev = alloc_netdev(0, name, reg_vif_setup);
 487
 488        if (dev == NULL)
 489                return NULL;
 490
 491        dev_net_set(dev, net);
 492
 493        if (register_netdevice(dev)) {
 494                free_netdev(dev);
 495                return NULL;
 496        }
 497        dev->iflink = 0;
 498
 499        rcu_read_lock();
 500        in_dev = __in_dev_get_rcu(dev);
 501        if (!in_dev) {
 502                rcu_read_unlock();
 503                goto failure;
 504        }
 505
 506        ipv4_devconf_setall(in_dev);
 507        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 508        rcu_read_unlock();
 509
 510        if (dev_open(dev))
 511                goto failure;
 512
 513        dev_hold(dev);
 514
 515        return dev;
 516
 517failure:
 518        /* allow the register to be completed before unregistering. */
 519        rtnl_unlock();
 520        rtnl_lock();
 521
 522        unregister_netdevice(dev);
 523        return NULL;
 524}
 525#endif
 526
 527/*
 528 *      Delete a VIF entry
 529 *      @notify: Set to 1, if the caller is a notifier_call
 530 */
 531
 532static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 533                      struct list_head *head)
 534{
 535        struct vif_device *v;
 536        struct net_device *dev;
 537        struct in_device *in_dev;
 538
 539        if (vifi < 0 || vifi >= mrt->maxvif)
 540                return -EADDRNOTAVAIL;
 541
 542        v = &mrt->vif_table[vifi];
 543
 544        write_lock_bh(&mrt_lock);
 545        dev = v->dev;
 546        v->dev = NULL;
 547
 548        if (!dev) {
 549                write_unlock_bh(&mrt_lock);
 550                return -EADDRNOTAVAIL;
 551        }
 552
 553#ifdef CONFIG_IP_PIMSM
 554        if (vifi == mrt->mroute_reg_vif_num)
 555                mrt->mroute_reg_vif_num = -1;
 556#endif
 557
 558        if (vifi + 1 == mrt->maxvif) {
 559                int tmp;
 560
 561                for (tmp = vifi - 1; tmp >= 0; tmp--) {
 562                        if (VIF_EXISTS(mrt, tmp))
 563                                break;
 564                }
 565                mrt->maxvif = tmp+1;
 566        }
 567
 568        write_unlock_bh(&mrt_lock);
 569
 570        dev_set_allmulti(dev, -1);
 571
 572        in_dev = __in_dev_get_rtnl(dev);
 573        if (in_dev) {
 574                IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 575                ip_rt_multicast_event(in_dev);
 576        }
 577
 578        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 579                unregister_netdevice_queue(dev, head);
 580
 581        dev_put(dev);
 582        return 0;
 583}
 584
 585static void ipmr_cache_free_rcu(struct rcu_head *head)
 586{
 587        struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 588
 589        kmem_cache_free(mrt_cachep, c);
 590}
 591
 592static inline void ipmr_cache_free(struct mfc_cache *c)
 593{
 594        call_rcu(&c->rcu, ipmr_cache_free_rcu);
 595}
 596
 597/* Destroy an unresolved cache entry, killing queued skbs
 598 * and reporting error to netlink readers.
 599 */
 600
 601static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 602{
 603        struct net *net = read_pnet(&mrt->net);
 604        struct sk_buff *skb;
 605        struct nlmsgerr *e;
 606
 607        atomic_dec(&mrt->cache_resolve_queue_len);
 608
 609        while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 610                if (ip_hdr(skb)->version == 0) {
 611                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 612                        nlh->nlmsg_type = NLMSG_ERROR;
 613                        nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 614                        skb_trim(skb, nlh->nlmsg_len);
 615                        e = NLMSG_DATA(nlh);
 616                        e->error = -ETIMEDOUT;
 617                        memset(&e->msg, 0, sizeof(e->msg));
 618
 619                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 620                } else {
 621                        kfree_skb(skb);
 622                }
 623        }
 624
 625        ipmr_cache_free(c);
 626}
 627
 628
 629/* Timer process for the unresolved queue. */
 630
 631static void ipmr_expire_process(unsigned long arg)
 632{
 633        struct mr_table *mrt = (struct mr_table *)arg;
 634        unsigned long now;
 635        unsigned long expires;
 636        struct mfc_cache *c, *next;
 637
 638        if (!spin_trylock(&mfc_unres_lock)) {
 639                mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 640                return;
 641        }
 642
 643        if (list_empty(&mrt->mfc_unres_queue))
 644                goto out;
 645
 646        now = jiffies;
 647        expires = 10*HZ;
 648
 649        list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 650                if (time_after(c->mfc_un.unres.expires, now)) {
 651                        unsigned long interval = c->mfc_un.unres.expires - now;
 652                        if (interval < expires)
 653                                expires = interval;
 654                        continue;
 655                }
 656
 657                list_del(&c->list);
 658                ipmr_destroy_unres(mrt, c);
 659        }
 660
 661        if (!list_empty(&mrt->mfc_unres_queue))
 662                mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 663
 664out:
 665        spin_unlock(&mfc_unres_lock);
 666}
 667
 668/* Fill oifs list. It is called under write locked mrt_lock. */
 669
 670static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 671                                   unsigned char *ttls)
 672{
 673        int vifi;
 674
 675        cache->mfc_un.res.minvif = MAXVIFS;
 676        cache->mfc_un.res.maxvif = 0;
 677        memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 678
 679        for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 680                if (VIF_EXISTS(mrt, vifi) &&
 681                    ttls[vifi] && ttls[vifi] < 255) {
 682                        cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 683                        if (cache->mfc_un.res.minvif > vifi)
 684                                cache->mfc_un.res.minvif = vifi;
 685                        if (cache->mfc_un.res.maxvif <= vifi)
 686                                cache->mfc_un.res.maxvif = vifi + 1;
 687                }
 688        }
 689}
 690
 691static int vif_add(struct net *net, struct mr_table *mrt,
 692                   struct vifctl *vifc, int mrtsock)
 693{
 694        int vifi = vifc->vifc_vifi;
 695        struct vif_device *v = &mrt->vif_table[vifi];
 696        struct net_device *dev;
 697        struct in_device *in_dev;
 698        int err;
 699
 700        /* Is vif busy ? */
 701        if (VIF_EXISTS(mrt, vifi))
 702                return -EADDRINUSE;
 703
 704        switch (vifc->vifc_flags) {
 705#ifdef CONFIG_IP_PIMSM
 706        case VIFF_REGISTER:
 707                /*
 708                 * Special Purpose VIF in PIM
 709                 * All the packets will be sent to the daemon
 710                 */
 711                if (mrt->mroute_reg_vif_num >= 0)
 712                        return -EADDRINUSE;
 713                dev = ipmr_reg_vif(net, mrt);
 714                if (!dev)
 715                        return -ENOBUFS;
 716                err = dev_set_allmulti(dev, 1);
 717                if (err) {
 718                        unregister_netdevice(dev);
 719                        dev_put(dev);
 720                        return err;
 721                }
 722                break;
 723#endif
 724        case VIFF_TUNNEL:
 725                dev = ipmr_new_tunnel(net, vifc);
 726                if (!dev)
 727                        return -ENOBUFS;
 728                err = dev_set_allmulti(dev, 1);
 729                if (err) {
 730                        ipmr_del_tunnel(dev, vifc);
 731                        dev_put(dev);
 732                        return err;
 733                }
 734                break;
 735
 736        case VIFF_USE_IFINDEX:
 737        case 0:
 738                if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 739                        dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 740                        if (dev && __in_dev_get_rtnl(dev) == NULL) {
 741                                dev_put(dev);
 742                                return -EADDRNOTAVAIL;
 743                        }
 744                } else {
 745                        dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 746                }
 747                if (!dev)
 748                        return -EADDRNOTAVAIL;
 749                err = dev_set_allmulti(dev, 1);
 750                if (err) {
 751                        dev_put(dev);
 752                        return err;
 753                }
 754                break;
 755        default:
 756                return -EINVAL;
 757        }
 758
 759        in_dev = __in_dev_get_rtnl(dev);
 760        if (!in_dev) {
 761                dev_put(dev);
 762                return -EADDRNOTAVAIL;
 763        }
 764        IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 765        ip_rt_multicast_event(in_dev);
 766
 767        /* Fill in the VIF structures */
 768
 769        v->rate_limit = vifc->vifc_rate_limit;
 770        v->local = vifc->vifc_lcl_addr.s_addr;
 771        v->remote = vifc->vifc_rmt_addr.s_addr;
 772        v->flags = vifc->vifc_flags;
 773        if (!mrtsock)
 774                v->flags |= VIFF_STATIC;
 775        v->threshold = vifc->vifc_threshold;
 776        v->bytes_in = 0;
 777        v->bytes_out = 0;
 778        v->pkt_in = 0;
 779        v->pkt_out = 0;
 780        v->link = dev->ifindex;
 781        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 782                v->link = dev->iflink;
 783
 784        /* And finish update writing critical data */
 785        write_lock_bh(&mrt_lock);
 786        v->dev = dev;
 787#ifdef CONFIG_IP_PIMSM
 788        if (v->flags & VIFF_REGISTER)
 789                mrt->mroute_reg_vif_num = vifi;
 790#endif
 791        if (vifi+1 > mrt->maxvif)
 792                mrt->maxvif = vifi+1;
 793        write_unlock_bh(&mrt_lock);
 794        return 0;
 795}
 796
 797/* called with rcu_read_lock() */
 798static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 799                                         __be32 origin,
 800                                         __be32 mcastgrp)
 801{
 802        int line = MFC_HASH(mcastgrp, origin);
 803        struct mfc_cache *c;
 804
 805        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 806                if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 807                        return c;
 808        }
 809        return NULL;
 810}
 811
 812/*
 813 *      Allocate a multicast cache entry
 814 */
 815static struct mfc_cache *ipmr_cache_alloc(void)
 816{
 817        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 818
 819        if (c)
 820                c->mfc_un.res.minvif = MAXVIFS;
 821        return c;
 822}
 823
 824static struct mfc_cache *ipmr_cache_alloc_unres(void)
 825{
 826        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 827
 828        if (c) {
 829                skb_queue_head_init(&c->mfc_un.unres.unresolved);
 830                c->mfc_un.unres.expires = jiffies + 10*HZ;
 831        }
 832        return c;
 833}
 834
 835/*
 836 *      A cache entry has gone into a resolved state from queued
 837 */
 838
 839static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 840                               struct mfc_cache *uc, struct mfc_cache *c)
 841{
 842        struct sk_buff *skb;
 843        struct nlmsgerr *e;
 844
 845        /* Play the pending entries through our router */
 846
 847        while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 848                if (ip_hdr(skb)->version == 0) {
 849                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 850
 851                        if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 852                                nlh->nlmsg_len = skb_tail_pointer(skb) -
 853                                                 (u8 *)nlh;
 854                        } else {
 855                                nlh->nlmsg_type = NLMSG_ERROR;
 856                                nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 857                                skb_trim(skb, nlh->nlmsg_len);
 858                                e = NLMSG_DATA(nlh);
 859                                e->error = -EMSGSIZE;
 860                                memset(&e->msg, 0, sizeof(e->msg));
 861                        }
 862
 863                        rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 864                } else {
 865                        ip_mr_forward(net, mrt, skb, c, 0);
 866                }
 867        }
 868}
 869
 870/*
 871 *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 872 *      expects the following bizarre scheme.
 873 *
 874 *      Called under mrt_lock.
 875 */
 876
 877static int ipmr_cache_report(struct mr_table *mrt,
 878                             struct sk_buff *pkt, vifi_t vifi, int assert)
 879{
 880        struct sk_buff *skb;
 881        const int ihl = ip_hdrlen(pkt);
 882        struct igmphdr *igmp;
 883        struct igmpmsg *msg;
 884        struct sock *mroute_sk;
 885        int ret;
 886
 887#ifdef CONFIG_IP_PIMSM
 888        if (assert == IGMPMSG_WHOLEPKT)
 889                skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 890        else
 891#endif
 892                skb = alloc_skb(128, GFP_ATOMIC);
 893
 894        if (!skb)
 895                return -ENOBUFS;
 896
 897#ifdef CONFIG_IP_PIMSM
 898        if (assert == IGMPMSG_WHOLEPKT) {
 899                /* Ugly, but we have no choice with this interface.
 900                 * Duplicate old header, fix ihl, length etc.
 901                 * And all this only to mangle msg->im_msgtype and
 902                 * to set msg->im_mbz to "mbz" :-)
 903                 */
 904                skb_push(skb, sizeof(struct iphdr));
 905                skb_reset_network_header(skb);
 906                skb_reset_transport_header(skb);
 907                msg = (struct igmpmsg *)skb_network_header(skb);
 908                memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 909                msg->im_msgtype = IGMPMSG_WHOLEPKT;
 910                msg->im_mbz = 0;
 911                msg->im_vif = mrt->mroute_reg_vif_num;
 912                ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 913                ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 914                                             sizeof(struct iphdr));
 915        } else
 916#endif
 917        {
 918
 919        /* Copy the IP header */
 920
 921        skb->network_header = skb->tail;
 922        skb_put(skb, ihl);
 923        skb_copy_to_linear_data(skb, pkt->data, ihl);
 924        ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
 925        msg = (struct igmpmsg *)skb_network_header(skb);
 926        msg->im_vif = vifi;
 927        skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 928
 929        /* Add our header */
 930
 931        igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 932        igmp->type      =
 933        msg->im_msgtype = assert;
 934        igmp->code      = 0;
 935        ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
 936        skb->transport_header = skb->network_header;
 937        }
 938
 939        rcu_read_lock();
 940        mroute_sk = rcu_dereference(mrt->mroute_sk);
 941        if (mroute_sk == NULL) {
 942                rcu_read_unlock();
 943                kfree_skb(skb);
 944                return -EINVAL;
 945        }
 946
 947        /* Deliver to mrouted */
 948
 949        ret = sock_queue_rcv_skb(mroute_sk, skb);
 950        rcu_read_unlock();
 951        if (ret < 0) {
 952                net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 953                kfree_skb(skb);
 954        }
 955
 956        return ret;
 957}
 958
 959/*
 960 *      Queue a packet for resolution. It gets locked cache entry!
 961 */
 962
 963static int
 964ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 965{
 966        bool found = false;
 967        int err;
 968        struct mfc_cache *c;
 969        const struct iphdr *iph = ip_hdr(skb);
 970
 971        spin_lock_bh(&mfc_unres_lock);
 972        list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 973                if (c->mfc_mcastgrp == iph->daddr &&
 974                    c->mfc_origin == iph->saddr) {
 975                        found = true;
 976                        break;
 977                }
 978        }
 979
 980        if (!found) {
 981                /* Create a new entry if allowable */
 982
 983                if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 984                    (c = ipmr_cache_alloc_unres()) == NULL) {
 985                        spin_unlock_bh(&mfc_unres_lock);
 986
 987                        kfree_skb(skb);
 988                        return -ENOBUFS;
 989                }
 990
 991                /* Fill in the new cache entry */
 992
 993                c->mfc_parent   = -1;
 994                c->mfc_origin   = iph->saddr;
 995                c->mfc_mcastgrp = iph->daddr;
 996
 997                /* Reflect first query at mrouted. */
 998
 999                err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000                if (err < 0) {
1001                        /* If the report failed throw the cache entry
1002                           out - Brad Parker
1003                         */
1004                        spin_unlock_bh(&mfc_unres_lock);
1005
1006                        ipmr_cache_free(c);
1007                        kfree_skb(skb);
1008                        return err;
1009                }
1010
1011                atomic_inc(&mrt->cache_resolve_queue_len);
1012                list_add(&c->list, &mrt->mfc_unres_queue);
1013
1014                if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015                        mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016        }
1017
1018        /* See if we can append the packet */
1019
1020        if (c->mfc_un.unres.unresolved.qlen > 3) {
1021                kfree_skb(skb);
1022                err = -ENOBUFS;
1023        } else {
1024                skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025                err = 0;
1026        }
1027
1028        spin_unlock_bh(&mfc_unres_lock);
1029        return err;
1030}
1031
1032/*
1033 *      MFC cache manipulation by user space mroute daemon
1034 */
1035
1036static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037{
1038        int line;
1039        struct mfc_cache *c, *next;
1040
1041        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042
1043        list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046                        list_del_rcu(&c->list);
1047
1048                        ipmr_cache_free(c);
1049                        return 0;
1050                }
1051        }
1052        return -ENOENT;
1053}
1054
1055static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056                        struct mfcctl *mfc, int mrtsock)
1057{
1058        bool found = false;
1059        int line;
1060        struct mfc_cache *uc, *c;
1061
1062        if (mfc->mfcc_parent >= MAXVIFS)
1063                return -ENFILE;
1064
1065        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066
1067        list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070                        found = true;
1071                        break;
1072                }
1073        }
1074
1075        if (found) {
1076                write_lock_bh(&mrt_lock);
1077                c->mfc_parent = mfc->mfcc_parent;
1078                ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079                if (!mrtsock)
1080                        c->mfc_flags |= MFC_STATIC;
1081                write_unlock_bh(&mrt_lock);
1082                return 0;
1083        }
1084
1085        if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086                return -EINVAL;
1087
1088        c = ipmr_cache_alloc();
1089        if (c == NULL)
1090                return -ENOMEM;
1091
1092        c->mfc_origin = mfc->mfcc_origin.s_addr;
1093        c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094        c->mfc_parent = mfc->mfcc_parent;
1095        ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096        if (!mrtsock)
1097                c->mfc_flags |= MFC_STATIC;
1098
1099        list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100
1101        /*
1102         *      Check to see if we resolved a queued list. If so we
1103         *      need to send on the frames and tidy up.
1104         */
1105        found = false;
1106        spin_lock_bh(&mfc_unres_lock);
1107        list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108                if (uc->mfc_origin == c->mfc_origin &&
1109                    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110                        list_del(&uc->list);
1111                        atomic_dec(&mrt->cache_resolve_queue_len);
1112                        found = true;
1113                        break;
1114                }
1115        }
1116        if (list_empty(&mrt->mfc_unres_queue))
1117                del_timer(&mrt->ipmr_expire_timer);
1118        spin_unlock_bh(&mfc_unres_lock);
1119
1120        if (found) {
1121                ipmr_cache_resolve(net, mrt, uc, c);
1122                ipmr_cache_free(uc);
1123        }
1124        return 0;
1125}
1126
1127/*
1128 *      Close the multicast socket, and clear the vif tables etc
1129 */
1130
1131static void mroute_clean_tables(struct mr_table *mrt)
1132{
1133        int i;
1134        LIST_HEAD(list);
1135        struct mfc_cache *c, *next;
1136
1137        /* Shut down all active vif entries */
1138
1139        for (i = 0; i < mrt->maxvif; i++) {
1140                if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141                        vif_delete(mrt, i, 0, &list);
1142        }
1143        unregister_netdevice_many(&list);
1144
1145        /* Wipe the cache */
1146
1147        for (i = 0; i < MFC_LINES; i++) {
1148                list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149                        if (c->mfc_flags & MFC_STATIC)
1150                                continue;
1151                        list_del_rcu(&c->list);
1152                        ipmr_cache_free(c);
1153                }
1154        }
1155
1156        if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157                spin_lock_bh(&mfc_unres_lock);
1158                list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159                        list_del(&c->list);
1160                        ipmr_destroy_unres(mrt, c);
1161                }
1162                spin_unlock_bh(&mfc_unres_lock);
1163        }
1164}
1165
1166/* called from ip_ra_control(), before an RCU grace period,
1167 * we dont need to call synchronize_rcu() here
1168 */
1169static void mrtsock_destruct(struct sock *sk)
1170{
1171        struct net *net = sock_net(sk);
1172        struct mr_table *mrt;
1173
1174        rtnl_lock();
1175        ipmr_for_each_table(mrt, net) {
1176                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178                        RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1179                        mroute_clean_tables(mrt);
1180                }
1181        }
1182        rtnl_unlock();
1183}
1184
1185/*
1186 *      Socket options and virtual interface manipulation. The whole
1187 *      virtual interface system is a complete heap, but unfortunately
1188 *      that's how BSD mrouted happens to think. Maybe one day with a proper
1189 *      MOSPF/PIM router set up we can clean this up.
1190 */
1191
1192int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193{
1194        int ret;
1195        struct vifctl vif;
1196        struct mfcctl mfc;
1197        struct net *net = sock_net(sk);
1198        struct mr_table *mrt;
1199
1200        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201        if (mrt == NULL)
1202                return -ENOENT;
1203
1204        if (optname != MRT_INIT) {
1205                if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1206                    !capable(CAP_NET_ADMIN))
1207                        return -EACCES;
1208        }
1209
1210        switch (optname) {
1211        case MRT_INIT:
1212                if (sk->sk_type != SOCK_RAW ||
1213                    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214                        return -EOPNOTSUPP;
1215                if (optlen != sizeof(int))
1216                        return -ENOPROTOOPT;
1217
1218                rtnl_lock();
1219                if (rtnl_dereference(mrt->mroute_sk)) {
1220                        rtnl_unlock();
1221                        return -EADDRINUSE;
1222                }
1223
1224                ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225                if (ret == 0) {
1226                        rcu_assign_pointer(mrt->mroute_sk, sk);
1227                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228                }
1229                rtnl_unlock();
1230                return ret;
1231        case MRT_DONE:
1232                if (sk != rcu_access_pointer(mrt->mroute_sk))
1233                        return -EACCES;
1234                return ip_ra_control(sk, 0, NULL);
1235        case MRT_ADD_VIF:
1236        case MRT_DEL_VIF:
1237                if (optlen != sizeof(vif))
1238                        return -EINVAL;
1239                if (copy_from_user(&vif, optval, sizeof(vif)))
1240                        return -EFAULT;
1241                if (vif.vifc_vifi >= MAXVIFS)
1242                        return -ENFILE;
1243                rtnl_lock();
1244                if (optname == MRT_ADD_VIF) {
1245                        ret = vif_add(net, mrt, &vif,
1246                                      sk == rtnl_dereference(mrt->mroute_sk));
1247                } else {
1248                        ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249                }
1250                rtnl_unlock();
1251                return ret;
1252
1253                /*
1254                 *      Manipulate the forwarding caches. These live
1255                 *      in a sort of kernel/user symbiosis.
1256                 */
1257        case MRT_ADD_MFC:
1258        case MRT_DEL_MFC:
1259                if (optlen != sizeof(mfc))
1260                        return -EINVAL;
1261                if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262                        return -EFAULT;
1263                rtnl_lock();
1264                if (optname == MRT_DEL_MFC)
1265                        ret = ipmr_mfc_delete(mrt, &mfc);
1266                else
1267                        ret = ipmr_mfc_add(net, mrt, &mfc,
1268                                           sk == rtnl_dereference(mrt->mroute_sk));
1269                rtnl_unlock();
1270                return ret;
1271                /*
1272                 *      Control PIM assert.
1273                 */
1274        case MRT_ASSERT:
1275        {
1276                int v;
1277                if (get_user(v, (int __user *)optval))
1278                        return -EFAULT;
1279                mrt->mroute_do_assert = (v) ? 1 : 0;
1280                return 0;
1281        }
1282#ifdef CONFIG_IP_PIMSM
1283        case MRT_PIM:
1284        {
1285                int v;
1286
1287                if (get_user(v, (int __user *)optval))
1288                        return -EFAULT;
1289                v = (v) ? 1 : 0;
1290
1291                rtnl_lock();
1292                ret = 0;
1293                if (v != mrt->mroute_do_pim) {
1294                        mrt->mroute_do_pim = v;
1295                        mrt->mroute_do_assert = v;
1296                }
1297                rtnl_unlock();
1298                return ret;
1299        }
1300#endif
1301#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302        case MRT_TABLE:
1303        {
1304                u32 v;
1305
1306                if (optlen != sizeof(u32))
1307                        return -EINVAL;
1308                if (get_user(v, (u32 __user *)optval))
1309                        return -EFAULT;
1310
1311                rtnl_lock();
1312                ret = 0;
1313                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314                        ret = -EBUSY;
1315                } else {
1316                        if (!ipmr_new_table(net, v))
1317                                ret = -ENOMEM;
1318                        raw_sk(sk)->ipmr_table = v;
1319                }
1320                rtnl_unlock();
1321                return ret;
1322        }
1323#endif
1324        /*
1325         *      Spurious command, or MRT_VERSION which you cannot
1326         *      set.
1327         */
1328        default:
1329                return -ENOPROTOOPT;
1330        }
1331}
1332
1333/*
1334 *      Getsock opt support for the multicast routing system.
1335 */
1336
1337int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338{
1339        int olr;
1340        int val;
1341        struct net *net = sock_net(sk);
1342        struct mr_table *mrt;
1343
1344        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345        if (mrt == NULL)
1346                return -ENOENT;
1347
1348        if (optname != MRT_VERSION &&
1349#ifdef CONFIG_IP_PIMSM
1350           optname != MRT_PIM &&
1351#endif
1352           optname != MRT_ASSERT)
1353                return -ENOPROTOOPT;
1354
1355        if (get_user(olr, optlen))
1356                return -EFAULT;
1357
1358        olr = min_t(unsigned int, olr, sizeof(int));
1359        if (olr < 0)
1360                return -EINVAL;
1361
1362        if (put_user(olr, optlen))
1363                return -EFAULT;
1364        if (optname == MRT_VERSION)
1365                val = 0x0305;
1366#ifdef CONFIG_IP_PIMSM
1367        else if (optname == MRT_PIM)
1368                val = mrt->mroute_do_pim;
1369#endif
1370        else
1371                val = mrt->mroute_do_assert;
1372        if (copy_to_user(optval, &val, olr))
1373                return -EFAULT;
1374        return 0;
1375}
1376
1377/*
1378 *      The IP multicast ioctl support routines.
1379 */
1380
1381int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382{
1383        struct sioc_sg_req sr;
1384        struct sioc_vif_req vr;
1385        struct vif_device *vif;
1386        struct mfc_cache *c;
1387        struct net *net = sock_net(sk);
1388        struct mr_table *mrt;
1389
1390        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391        if (mrt == NULL)
1392                return -ENOENT;
1393
1394        switch (cmd) {
1395        case SIOCGETVIFCNT:
1396                if (copy_from_user(&vr, arg, sizeof(vr)))
1397                        return -EFAULT;
1398                if (vr.vifi >= mrt->maxvif)
1399                        return -EINVAL;
1400                read_lock(&mrt_lock);
1401                vif = &mrt->vif_table[vr.vifi];
1402                if (VIF_EXISTS(mrt, vr.vifi)) {
1403                        vr.icount = vif->pkt_in;
1404                        vr.ocount = vif->pkt_out;
1405                        vr.ibytes = vif->bytes_in;
1406                        vr.obytes = vif->bytes_out;
1407                        read_unlock(&mrt_lock);
1408
1409                        if (copy_to_user(arg, &vr, sizeof(vr)))
1410                                return -EFAULT;
1411                        return 0;
1412                }
1413                read_unlock(&mrt_lock);
1414                return -EADDRNOTAVAIL;
1415        case SIOCGETSGCNT:
1416                if (copy_from_user(&sr, arg, sizeof(sr)))
1417                        return -EFAULT;
1418
1419                rcu_read_lock();
1420                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421                if (c) {
1422                        sr.pktcnt = c->mfc_un.res.pkt;
1423                        sr.bytecnt = c->mfc_un.res.bytes;
1424                        sr.wrong_if = c->mfc_un.res.wrong_if;
1425                        rcu_read_unlock();
1426
1427                        if (copy_to_user(arg, &sr, sizeof(sr)))
1428                                return -EFAULT;
1429                        return 0;
1430                }
1431                rcu_read_unlock();
1432                return -EADDRNOTAVAIL;
1433        default:
1434                return -ENOIOCTLCMD;
1435        }
1436}
1437
1438#ifdef CONFIG_COMPAT
1439struct compat_sioc_sg_req {
1440        struct in_addr src;
1441        struct in_addr grp;
1442        compat_ulong_t pktcnt;
1443        compat_ulong_t bytecnt;
1444        compat_ulong_t wrong_if;
1445};
1446
1447struct compat_sioc_vif_req {
1448        vifi_t  vifi;           /* Which iface */
1449        compat_ulong_t icount;
1450        compat_ulong_t ocount;
1451        compat_ulong_t ibytes;
1452        compat_ulong_t obytes;
1453};
1454
1455int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1456{
1457        struct compat_sioc_sg_req sr;
1458        struct compat_sioc_vif_req vr;
1459        struct vif_device *vif;
1460        struct mfc_cache *c;
1461        struct net *net = sock_net(sk);
1462        struct mr_table *mrt;
1463
1464        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465        if (mrt == NULL)
1466                return -ENOENT;
1467
1468        switch (cmd) {
1469        case SIOCGETVIFCNT:
1470                if (copy_from_user(&vr, arg, sizeof(vr)))
1471                        return -EFAULT;
1472                if (vr.vifi >= mrt->maxvif)
1473                        return -EINVAL;
1474                read_lock(&mrt_lock);
1475                vif = &mrt->vif_table[vr.vifi];
1476                if (VIF_EXISTS(mrt, vr.vifi)) {
1477                        vr.icount = vif->pkt_in;
1478                        vr.ocount = vif->pkt_out;
1479                        vr.ibytes = vif->bytes_in;
1480                        vr.obytes = vif->bytes_out;
1481                        read_unlock(&mrt_lock);
1482
1483                        if (copy_to_user(arg, &vr, sizeof(vr)))
1484                                return -EFAULT;
1485                        return 0;
1486                }
1487                read_unlock(&mrt_lock);
1488                return -EADDRNOTAVAIL;
1489        case SIOCGETSGCNT:
1490                if (copy_from_user(&sr, arg, sizeof(sr)))
1491                        return -EFAULT;
1492
1493                rcu_read_lock();
1494                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495                if (c) {
1496                        sr.pktcnt = c->mfc_un.res.pkt;
1497                        sr.bytecnt = c->mfc_un.res.bytes;
1498                        sr.wrong_if = c->mfc_un.res.wrong_if;
1499                        rcu_read_unlock();
1500
1501                        if (copy_to_user(arg, &sr, sizeof(sr)))
1502                                return -EFAULT;
1503                        return 0;
1504                }
1505                rcu_read_unlock();
1506                return -EADDRNOTAVAIL;
1507        default:
1508                return -ENOIOCTLCMD;
1509        }
1510}
1511#endif
1512
1513
1514static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1515{
1516        struct net_device *dev = ptr;
1517        struct net *net = dev_net(dev);
1518        struct mr_table *mrt;
1519        struct vif_device *v;
1520        int ct;
1521
1522        if (event != NETDEV_UNREGISTER)
1523                return NOTIFY_DONE;
1524
1525        ipmr_for_each_table(mrt, net) {
1526                v = &mrt->vif_table[0];
1527                for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1528                        if (v->dev == dev)
1529                                vif_delete(mrt, ct, 1, NULL);
1530                }
1531        }
1532        return NOTIFY_DONE;
1533}
1534
1535
1536static struct notifier_block ip_mr_notifier = {
1537        .notifier_call = ipmr_device_event,
1538};
1539
1540/*
1541 *      Encapsulate a packet by attaching a valid IPIP header to it.
1542 *      This avoids tunnel drivers and other mess and gives us the speed so
1543 *      important for multicast video.
1544 */
1545
1546static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1547{
1548        struct iphdr *iph;
1549        const struct iphdr *old_iph = ip_hdr(skb);
1550
1551        skb_push(skb, sizeof(struct iphdr));
1552        skb->transport_header = skb->network_header;
1553        skb_reset_network_header(skb);
1554        iph = ip_hdr(skb);
1555
1556        iph->version    =       4;
1557        iph->tos        =       old_iph->tos;
1558        iph->ttl        =       old_iph->ttl;
1559        iph->frag_off   =       0;
1560        iph->daddr      =       daddr;
1561        iph->saddr      =       saddr;
1562        iph->protocol   =       IPPROTO_IPIP;
1563        iph->ihl        =       5;
1564        iph->tot_len    =       htons(skb->len);
1565        ip_select_ident(iph, skb_dst(skb), NULL);
1566        ip_send_check(iph);
1567
1568        memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1569        nf_reset(skb);
1570}
1571
1572static inline int ipmr_forward_finish(struct sk_buff *skb)
1573{
1574        struct ip_options *opt = &(IPCB(skb)->opt);
1575
1576        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1577        IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1578
1579        if (unlikely(opt->optlen))
1580                ip_forward_options(skb);
1581
1582        return dst_output(skb);
1583}
1584
1585/*
1586 *      Processing handlers for ipmr_forward
1587 */
1588
1589static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1590                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
1591{
1592        const struct iphdr *iph = ip_hdr(skb);
1593        struct vif_device *vif = &mrt->vif_table[vifi];
1594        struct net_device *dev;
1595        struct rtable *rt;
1596        struct flowi4 fl4;
1597        int    encap = 0;
1598
1599        if (vif->dev == NULL)
1600                goto out_free;
1601
1602#ifdef CONFIG_IP_PIMSM
1603        if (vif->flags & VIFF_REGISTER) {
1604                vif->pkt_out++;
1605                vif->bytes_out += skb->len;
1606                vif->dev->stats.tx_bytes += skb->len;
1607                vif->dev->stats.tx_packets++;
1608                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609                goto out_free;
1610        }
1611#endif
1612
1613        if (vif->flags & VIFF_TUNNEL) {
1614                rt = ip_route_output_ports(net, &fl4, NULL,
1615                                           vif->remote, vif->local,
1616                                           0, 0,
1617                                           IPPROTO_IPIP,
1618                                           RT_TOS(iph->tos), vif->link);
1619                if (IS_ERR(rt))
1620                        goto out_free;
1621                encap = sizeof(struct iphdr);
1622        } else {
1623                rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1624                                           0, 0,
1625                                           IPPROTO_IPIP,
1626                                           RT_TOS(iph->tos), vif->link);
1627                if (IS_ERR(rt))
1628                        goto out_free;
1629        }
1630
1631        dev = rt->dst.dev;
1632
1633        if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1634                /* Do not fragment multicasts. Alas, IPv4 does not
1635                 * allow to send ICMP, so that packets will disappear
1636                 * to blackhole.
1637                 */
1638
1639                IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1640                ip_rt_put(rt);
1641                goto out_free;
1642        }
1643
1644        encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1645
1646        if (skb_cow(skb, encap)) {
1647                ip_rt_put(rt);
1648                goto out_free;
1649        }
1650
1651        vif->pkt_out++;
1652        vif->bytes_out += skb->len;
1653
1654        skb_dst_drop(skb);
1655        skb_dst_set(skb, &rt->dst);
1656        ip_decrease_ttl(ip_hdr(skb));
1657
1658        /* FIXME: forward and output firewalls used to be called here.
1659         * What do we do with netfilter? -- RR
1660         */
1661        if (vif->flags & VIFF_TUNNEL) {
1662                ip_encap(skb, vif->local, vif->remote);
1663                /* FIXME: extra output firewall step used to be here. --RR */
1664                vif->dev->stats.tx_packets++;
1665                vif->dev->stats.tx_bytes += skb->len;
1666        }
1667
1668        IPCB(skb)->flags |= IPSKB_FORWARDED;
1669
1670        /*
1671         * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1672         * not only before forwarding, but after forwarding on all output
1673         * interfaces. It is clear, if mrouter runs a multicasting
1674         * program, it should receive packets not depending to what interface
1675         * program is joined.
1676         * If we will not make it, the program will have to join on all
1677         * interfaces. On the other hand, multihoming host (or router, but
1678         * not mrouter) cannot join to more than one interface - it will
1679         * result in receiving multiple packets.
1680         */
1681        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1682                ipmr_forward_finish);
1683        return;
1684
1685out_free:
1686        kfree_skb(skb);
1687}
1688
1689static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1690{
1691        int ct;
1692
1693        for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1694                if (mrt->vif_table[ct].dev == dev)
1695                        break;
1696        }
1697        return ct;
1698}
1699
1700/* "local" means that we should preserve one skb (for local delivery) */
1701
1702static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1703                         struct sk_buff *skb, struct mfc_cache *cache,
1704                         int local)
1705{
1706        int psend = -1;
1707        int vif, ct;
1708
1709        vif = cache->mfc_parent;
1710        cache->mfc_un.res.pkt++;
1711        cache->mfc_un.res.bytes += skb->len;
1712
1713        /*
1714         * Wrong interface: drop packet and (maybe) send PIM assert.
1715         */
1716        if (mrt->vif_table[vif].dev != skb->dev) {
1717                int true_vifi;
1718
1719                if (rt_is_output_route(skb_rtable(skb))) {
1720                        /* It is our own packet, looped back.
1721                         * Very complicated situation...
1722                         *
1723                         * The best workaround until routing daemons will be
1724                         * fixed is not to redistribute packet, if it was
1725                         * send through wrong interface. It means, that
1726                         * multicast applications WILL NOT work for
1727                         * (S,G), which have default multicast route pointing
1728                         * to wrong oif. In any case, it is not a good
1729                         * idea to use multicasting applications on router.
1730                         */
1731                        goto dont_forward;
1732                }
1733
1734                cache->mfc_un.res.wrong_if++;
1735                true_vifi = ipmr_find_vif(mrt, skb->dev);
1736
1737                if (true_vifi >= 0 && mrt->mroute_do_assert &&
1738                    /* pimsm uses asserts, when switching from RPT to SPT,
1739                     * so that we cannot check that packet arrived on an oif.
1740                     * It is bad, but otherwise we would need to move pretty
1741                     * large chunk of pimd to kernel. Ough... --ANK
1742                     */
1743                    (mrt->mroute_do_pim ||
1744                     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1745                    time_after(jiffies,
1746                               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1747                        cache->mfc_un.res.last_assert = jiffies;
1748                        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1749                }
1750                goto dont_forward;
1751        }
1752
1753        mrt->vif_table[vif].pkt_in++;
1754        mrt->vif_table[vif].bytes_in += skb->len;
1755
1756        /*
1757         *      Forward the frame
1758         */
1759        for (ct = cache->mfc_un.res.maxvif - 1;
1760             ct >= cache->mfc_un.res.minvif; ct--) {
1761                if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1762                        if (psend != -1) {
1763                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1764
1765                                if (skb2)
1766                                        ipmr_queue_xmit(net, mrt, skb2, cache,
1767                                                        psend);
1768                        }
1769                        psend = ct;
1770                }
1771        }
1772        if (psend != -1) {
1773                if (local) {
1774                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1775
1776                        if (skb2)
1777                                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1778                } else {
1779                        ipmr_queue_xmit(net, mrt, skb, cache, psend);
1780                        return 0;
1781                }
1782        }
1783
1784dont_forward:
1785        if (!local)
1786                kfree_skb(skb);
1787        return 0;
1788}
1789
1790static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1791{
1792        struct rtable *rt = skb_rtable(skb);
1793        struct iphdr *iph = ip_hdr(skb);
1794        struct flowi4 fl4 = {
1795                .daddr = iph->daddr,
1796                .saddr = iph->saddr,
1797                .flowi4_tos = RT_TOS(iph->tos),
1798                .flowi4_oif = rt->rt_oif,
1799                .flowi4_iif = rt->rt_iif,
1800                .flowi4_mark = rt->rt_mark,
1801        };
1802        struct mr_table *mrt;
1803        int err;
1804
1805        err = ipmr_fib_lookup(net, &fl4, &mrt);
1806        if (err)
1807                return ERR_PTR(err);
1808        return mrt;
1809}
1810
1811/*
1812 *      Multicast packets for forwarding arrive here
1813 *      Called with rcu_read_lock();
1814 */
1815
1816int ip_mr_input(struct sk_buff *skb)
1817{
1818        struct mfc_cache *cache;
1819        struct net *net = dev_net(skb->dev);
1820        int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1821        struct mr_table *mrt;
1822
1823        /* Packet is looped back after forward, it should not be
1824         * forwarded second time, but still can be delivered locally.
1825         */
1826        if (IPCB(skb)->flags & IPSKB_FORWARDED)
1827                goto dont_forward;
1828
1829        mrt = ipmr_rt_fib_lookup(net, skb);
1830        if (IS_ERR(mrt)) {
1831                kfree_skb(skb);
1832                return PTR_ERR(mrt);
1833        }
1834        if (!local) {
1835                if (IPCB(skb)->opt.router_alert) {
1836                        if (ip_call_ra_chain(skb))
1837                                return 0;
1838                } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1839                        /* IGMPv1 (and broken IGMPv2 implementations sort of
1840                         * Cisco IOS <= 11.2(8)) do not put router alert
1841                         * option to IGMP packets destined to routable
1842                         * groups. It is very bad, because it means
1843                         * that we can forward NO IGMP messages.
1844                         */
1845                        struct sock *mroute_sk;
1846
1847                        mroute_sk = rcu_dereference(mrt->mroute_sk);
1848                        if (mroute_sk) {
1849                                nf_reset(skb);
1850                                raw_rcv(mroute_sk, skb);
1851                                return 0;
1852                        }
1853                    }
1854        }
1855
1856        /* already under rcu_read_lock() */
1857        cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1858
1859        /*
1860         *      No usable cache entry
1861         */
1862        if (cache == NULL) {
1863                int vif;
1864
1865                if (local) {
1866                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1867                        ip_local_deliver(skb);
1868                        if (skb2 == NULL)
1869                                return -ENOBUFS;
1870                        skb = skb2;
1871                }
1872
1873                read_lock(&mrt_lock);
1874                vif = ipmr_find_vif(mrt, skb->dev);
1875                if (vif >= 0) {
1876                        int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1877                        read_unlock(&mrt_lock);
1878
1879                        return err2;
1880                }
1881                read_unlock(&mrt_lock);
1882                kfree_skb(skb);
1883                return -ENODEV;
1884        }
1885
1886        read_lock(&mrt_lock);
1887        ip_mr_forward(net, mrt, skb, cache, local);
1888        read_unlock(&mrt_lock);
1889
1890        if (local)
1891                return ip_local_deliver(skb);
1892
1893        return 0;
1894
1895dont_forward:
1896        if (local)
1897                return ip_local_deliver(skb);
1898        kfree_skb(skb);
1899        return 0;
1900}
1901
1902#ifdef CONFIG_IP_PIMSM
1903/* called with rcu_read_lock() */
1904static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1905                     unsigned int pimlen)
1906{
1907        struct net_device *reg_dev = NULL;
1908        struct iphdr *encap;
1909
1910        encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1911        /*
1912         * Check that:
1913         * a. packet is really sent to a multicast group
1914         * b. packet is not a NULL-REGISTER
1915         * c. packet is not truncated
1916         */
1917        if (!ipv4_is_multicast(encap->daddr) ||
1918            encap->tot_len == 0 ||
1919            ntohs(encap->tot_len) + pimlen > skb->len)
1920                return 1;
1921
1922        read_lock(&mrt_lock);
1923        if (mrt->mroute_reg_vif_num >= 0)
1924                reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1925        read_unlock(&mrt_lock);
1926
1927        if (reg_dev == NULL)
1928                return 1;
1929
1930        skb->mac_header = skb->network_header;
1931        skb_pull(skb, (u8 *)encap - skb->data);
1932        skb_reset_network_header(skb);
1933        skb->protocol = htons(ETH_P_IP);
1934        skb->ip_summed = CHECKSUM_NONE;
1935        skb->pkt_type = PACKET_HOST;
1936
1937        skb_tunnel_rx(skb, reg_dev);
1938
1939        netif_rx(skb);
1940
1941        return NET_RX_SUCCESS;
1942}
1943#endif
1944
1945#ifdef CONFIG_IP_PIMSM_V1
1946/*
1947 * Handle IGMP messages of PIMv1
1948 */
1949
1950int pim_rcv_v1(struct sk_buff *skb)
1951{
1952        struct igmphdr *pim;
1953        struct net *net = dev_net(skb->dev);
1954        struct mr_table *mrt;
1955
1956        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1957                goto drop;
1958
1959        pim = igmp_hdr(skb);
1960
1961        mrt = ipmr_rt_fib_lookup(net, skb);
1962        if (IS_ERR(mrt))
1963                goto drop;
1964        if (!mrt->mroute_do_pim ||
1965            pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1966                goto drop;
1967
1968        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1969drop:
1970                kfree_skb(skb);
1971        }
1972        return 0;
1973}
1974#endif
1975
1976#ifdef CONFIG_IP_PIMSM_V2
1977static int pim_rcv(struct sk_buff *skb)
1978{
1979        struct pimreghdr *pim;
1980        struct net *net = dev_net(skb->dev);
1981        struct mr_table *mrt;
1982
1983        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1984                goto drop;
1985
1986        pim = (struct pimreghdr *)skb_transport_header(skb);
1987        if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1988            (pim->flags & PIM_NULL_REGISTER) ||
1989            (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1990             csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1991                goto drop;
1992
1993        mrt = ipmr_rt_fib_lookup(net, skb);
1994        if (IS_ERR(mrt))
1995                goto drop;
1996        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1997drop:
1998                kfree_skb(skb);
1999        }
2000        return 0;
2001}
2002#endif
2003
2004static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2005                              struct mfc_cache *c, struct rtmsg *rtm)
2006{
2007        int ct;
2008        struct rtnexthop *nhp;
2009        u8 *b = skb_tail_pointer(skb);
2010        struct rtattr *mp_head;
2011
2012        /* If cache is unresolved, don't try to parse IIF and OIF */
2013        if (c->mfc_parent >= MAXVIFS)
2014                return -ENOENT;
2015
2016        if (VIF_EXISTS(mrt, c->mfc_parent))
2017                RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2018
2019        mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2020
2021        for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2022                if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2023                        if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2024                                goto rtattr_failure;
2025                        nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2026                        nhp->rtnh_flags = 0;
2027                        nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2028                        nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2029                        nhp->rtnh_len = sizeof(*nhp);
2030                }
2031        }
2032        mp_head->rta_type = RTA_MULTIPATH;
2033        mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2034        rtm->rtm_type = RTN_MULTICAST;
2035        return 1;
2036
2037rtattr_failure:
2038        nlmsg_trim(skb, b);
2039        return -EMSGSIZE;
2040}
2041
2042int ipmr_get_route(struct net *net, struct sk_buff *skb,
2043                   __be32 saddr, __be32 daddr,
2044                   struct rtmsg *rtm, int nowait)
2045{
2046        struct mfc_cache *cache;
2047        struct mr_table *mrt;
2048        int err;
2049
2050        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2051        if (mrt == NULL)
2052                return -ENOENT;
2053
2054        rcu_read_lock();
2055        cache = ipmr_cache_find(mrt, saddr, daddr);
2056
2057        if (cache == NULL) {
2058                struct sk_buff *skb2;
2059                struct iphdr *iph;
2060                struct net_device *dev;
2061                int vif = -1;
2062
2063                if (nowait) {
2064                        rcu_read_unlock();
2065                        return -EAGAIN;
2066                }
2067
2068                dev = skb->dev;
2069                read_lock(&mrt_lock);
2070                if (dev)
2071                        vif = ipmr_find_vif(mrt, dev);
2072                if (vif < 0) {
2073                        read_unlock(&mrt_lock);
2074                        rcu_read_unlock();
2075                        return -ENODEV;
2076                }
2077                skb2 = skb_clone(skb, GFP_ATOMIC);
2078                if (!skb2) {
2079                        read_unlock(&mrt_lock);
2080                        rcu_read_unlock();
2081                        return -ENOMEM;
2082                }
2083
2084                skb_push(skb2, sizeof(struct iphdr));
2085                skb_reset_network_header(skb2);
2086                iph = ip_hdr(skb2);
2087                iph->ihl = sizeof(struct iphdr) >> 2;
2088                iph->saddr = saddr;
2089                iph->daddr = daddr;
2090                iph->version = 0;
2091                err = ipmr_cache_unresolved(mrt, vif, skb2);
2092                read_unlock(&mrt_lock);
2093                rcu_read_unlock();
2094                return err;
2095        }
2096
2097        read_lock(&mrt_lock);
2098        if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2099                cache->mfc_flags |= MFC_NOTIFY;
2100        err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2101        read_unlock(&mrt_lock);
2102        rcu_read_unlock();
2103        return err;
2104}
2105
2106static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2107                            u32 pid, u32 seq, struct mfc_cache *c)
2108{
2109        struct nlmsghdr *nlh;
2110        struct rtmsg *rtm;
2111
2112        nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2113        if (nlh == NULL)
2114                return -EMSGSIZE;
2115
2116        rtm = nlmsg_data(nlh);
2117        rtm->rtm_family   = RTNL_FAMILY_IPMR;
2118        rtm->rtm_dst_len  = 32;
2119        rtm->rtm_src_len  = 32;
2120        rtm->rtm_tos      = 0;
2121        rtm->rtm_table    = mrt->id;
2122        if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2123                goto nla_put_failure;
2124        rtm->rtm_type     = RTN_MULTICAST;
2125        rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2126        rtm->rtm_protocol = RTPROT_UNSPEC;
2127        rtm->rtm_flags    = 0;
2128
2129        if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2130            nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2131                goto nla_put_failure;
2132        if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2133                goto nla_put_failure;
2134
2135        return nlmsg_end(skb, nlh);
2136
2137nla_put_failure:
2138        nlmsg_cancel(skb, nlh);
2139        return -EMSGSIZE;
2140}
2141
2142static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2143{
2144        struct net *net = sock_net(skb->sk);
2145        struct mr_table *mrt;
2146        struct mfc_cache *mfc;
2147        unsigned int t = 0, s_t;
2148        unsigned int h = 0, s_h;
2149        unsigned int e = 0, s_e;
2150
2151        s_t = cb->args[0];
2152        s_h = cb->args[1];
2153        s_e = cb->args[2];
2154
2155        rcu_read_lock();
2156        ipmr_for_each_table(mrt, net) {
2157                if (t < s_t)
2158                        goto next_table;
2159                if (t > s_t)
2160                        s_h = 0;
2161                for (h = s_h; h < MFC_LINES; h++) {
2162                        list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2163                                if (e < s_e)
2164                                        goto next_entry;
2165                                if (ipmr_fill_mroute(mrt, skb,
2166                                                     NETLINK_CB(cb->skb).pid,
2167                                                     cb->nlh->nlmsg_seq,
2168                                                     mfc) < 0)
2169                                        goto done;
2170next_entry:
2171                                e++;
2172                        }
2173                        e = s_e = 0;
2174                }
2175                s_h = 0;
2176next_table:
2177                t++;
2178        }
2179done:
2180        rcu_read_unlock();
2181
2182        cb->args[2] = e;
2183        cb->args[1] = h;
2184        cb->args[0] = t;
2185
2186        return skb->len;
2187}
2188
2189#ifdef CONFIG_PROC_FS
2190/*
2191 *      The /proc interfaces to multicast routing :
2192 *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2193 */
2194struct ipmr_vif_iter {
2195        struct seq_net_private p;
2196        struct mr_table *mrt;
2197        int ct;
2198};
2199
2200static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2201                                           struct ipmr_vif_iter *iter,
2202                                           loff_t pos)
2203{
2204        struct mr_table *mrt = iter->mrt;
2205
2206        for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2207                if (!VIF_EXISTS(mrt, iter->ct))
2208                        continue;
2209                if (pos-- == 0)
2210                        return &mrt->vif_table[iter->ct];
2211        }
2212        return NULL;
2213}
2214
2215static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2216        __acquires(mrt_lock)
2217{
2218        struct ipmr_vif_iter *iter = seq->private;
2219        struct net *net = seq_file_net(seq);
2220        struct mr_table *mrt;
2221
2222        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2223        if (mrt == NULL)
2224                return ERR_PTR(-ENOENT);
2225
2226        iter->mrt = mrt;
2227
2228        read_lock(&mrt_lock);
2229        return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2230                : SEQ_START_TOKEN;
2231}
2232
2233static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2234{
2235        struct ipmr_vif_iter *iter = seq->private;
2236        struct net *net = seq_file_net(seq);
2237        struct mr_table *mrt = iter->mrt;
2238
2239        ++*pos;
2240        if (v == SEQ_START_TOKEN)
2241                return ipmr_vif_seq_idx(net, iter, 0);
2242
2243        while (++iter->ct < mrt->maxvif) {
2244                if (!VIF_EXISTS(mrt, iter->ct))
2245                        continue;
2246                return &mrt->vif_table[iter->ct];
2247        }
2248        return NULL;
2249}
2250
2251static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2252        __releases(mrt_lock)
2253{
2254        read_unlock(&mrt_lock);
2255}
2256
2257static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2258{
2259        struct ipmr_vif_iter *iter = seq->private;
2260        struct mr_table *mrt = iter->mrt;
2261
2262        if (v == SEQ_START_TOKEN) {
2263                seq_puts(seq,
2264                         "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2265        } else {
2266                const struct vif_device *vif = v;
2267                const char *name =  vif->dev ? vif->dev->name : "none";
2268
2269                seq_printf(seq,
2270                           "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2271                           vif - mrt->vif_table,
2272                           name, vif->bytes_in, vif->pkt_in,
2273                           vif->bytes_out, vif->pkt_out,
2274                           vif->flags, vif->local, vif->remote);
2275        }
2276        return 0;
2277}
2278
2279static const struct seq_operations ipmr_vif_seq_ops = {
2280        .start = ipmr_vif_seq_start,
2281        .next  = ipmr_vif_seq_next,
2282        .stop  = ipmr_vif_seq_stop,
2283        .show  = ipmr_vif_seq_show,
2284};
2285
2286static int ipmr_vif_open(struct inode *inode, struct file *file)
2287{
2288        return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2289                            sizeof(struct ipmr_vif_iter));
2290}
2291
2292static const struct file_operations ipmr_vif_fops = {
2293        .owner   = THIS_MODULE,
2294        .open    = ipmr_vif_open,
2295        .read    = seq_read,
2296        .llseek  = seq_lseek,
2297        .release = seq_release_net,
2298};
2299
2300struct ipmr_mfc_iter {
2301        struct seq_net_private p;
2302        struct mr_table *mrt;
2303        struct list_head *cache;
2304        int ct;
2305};
2306
2307
2308static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2309                                          struct ipmr_mfc_iter *it, loff_t pos)
2310{
2311        struct mr_table *mrt = it->mrt;
2312        struct mfc_cache *mfc;
2313
2314        rcu_read_lock();
2315        for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2316                it->cache = &mrt->mfc_cache_array[it->ct];
2317                list_for_each_entry_rcu(mfc, it->cache, list)
2318                        if (pos-- == 0)
2319                                return mfc;
2320        }
2321        rcu_read_unlock();
2322
2323        spin_lock_bh(&mfc_unres_lock);
2324        it->cache = &mrt->mfc_unres_queue;
2325        list_for_each_entry(mfc, it->cache, list)
2326                if (pos-- == 0)
2327                        return mfc;
2328        spin_unlock_bh(&mfc_unres_lock);
2329
2330        it->cache = NULL;
2331        return NULL;
2332}
2333
2334
2335static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2336{
2337        struct ipmr_mfc_iter *it = seq->private;
2338        struct net *net = seq_file_net(seq);
2339        struct mr_table *mrt;
2340
2341        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2342        if (mrt == NULL)
2343                return ERR_PTR(-ENOENT);
2344
2345        it->mrt = mrt;
2346        it->cache = NULL;
2347        it->ct = 0;
2348        return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2349                : SEQ_START_TOKEN;
2350}
2351
2352static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2353{
2354        struct mfc_cache *mfc = v;
2355        struct ipmr_mfc_iter *it = seq->private;
2356        struct net *net = seq_file_net(seq);
2357        struct mr_table *mrt = it->mrt;
2358
2359        ++*pos;
2360
2361        if (v == SEQ_START_TOKEN)
2362                return ipmr_mfc_seq_idx(net, seq->private, 0);
2363
2364        if (mfc->list.next != it->cache)
2365                return list_entry(mfc->list.next, struct mfc_cache, list);
2366
2367        if (it->cache == &mrt->mfc_unres_queue)
2368                goto end_of_list;
2369
2370        BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2371
2372        while (++it->ct < MFC_LINES) {
2373                it->cache = &mrt->mfc_cache_array[it->ct];
2374                if (list_empty(it->cache))
2375                        continue;
2376                return list_first_entry(it->cache, struct mfc_cache, list);
2377        }
2378
2379        /* exhausted cache_array, show unresolved */
2380        rcu_read_unlock();
2381        it->cache = &mrt->mfc_unres_queue;
2382        it->ct = 0;
2383
2384        spin_lock_bh(&mfc_unres_lock);
2385        if (!list_empty(it->cache))
2386                return list_first_entry(it->cache, struct mfc_cache, list);
2387
2388end_of_list:
2389        spin_unlock_bh(&mfc_unres_lock);
2390        it->cache = NULL;
2391
2392        return NULL;
2393}
2394
2395static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2396{
2397        struct ipmr_mfc_iter *it = seq->private;
2398        struct mr_table *mrt = it->mrt;
2399
2400        if (it->cache == &mrt->mfc_unres_queue)
2401                spin_unlock_bh(&mfc_unres_lock);
2402        else if (it->cache == &mrt->mfc_cache_array[it->ct])
2403                rcu_read_unlock();
2404}
2405
2406static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2407{
2408        int n;
2409
2410        if (v == SEQ_START_TOKEN) {
2411                seq_puts(seq,
2412                 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2413        } else {
2414                const struct mfc_cache *mfc = v;
2415                const struct ipmr_mfc_iter *it = seq->private;
2416                const struct mr_table *mrt = it->mrt;
2417
2418                seq_printf(seq, "%08X %08X %-3hd",
2419                           (__force u32) mfc->mfc_mcastgrp,
2420                           (__force u32) mfc->mfc_origin,
2421                           mfc->mfc_parent);
2422
2423                if (it->cache != &mrt->mfc_unres_queue) {
2424                        seq_printf(seq, " %8lu %8lu %8lu",
2425                                   mfc->mfc_un.res.pkt,
2426                                   mfc->mfc_un.res.bytes,
2427                                   mfc->mfc_un.res.wrong_if);
2428                        for (n = mfc->mfc_un.res.minvif;
2429                             n < mfc->mfc_un.res.maxvif; n++) {
2430                                if (VIF_EXISTS(mrt, n) &&
2431                                    mfc->mfc_un.res.ttls[n] < 255)
2432                                        seq_printf(seq,
2433                                           " %2d:%-3d",
2434                                           n, mfc->mfc_un.res.ttls[n]);
2435                        }
2436                } else {
2437                        /* unresolved mfc_caches don't contain
2438                         * pkt, bytes and wrong_if values
2439                         */
2440                        seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2441                }
2442                seq_putc(seq, '\n');
2443        }
2444        return 0;
2445}
2446
2447static const struct seq_operations ipmr_mfc_seq_ops = {
2448        .start = ipmr_mfc_seq_start,
2449        .next  = ipmr_mfc_seq_next,
2450        .stop  = ipmr_mfc_seq_stop,
2451        .show  = ipmr_mfc_seq_show,
2452};
2453
2454static int ipmr_mfc_open(struct inode *inode, struct file *file)
2455{
2456        return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2457                            sizeof(struct ipmr_mfc_iter));
2458}
2459
2460static const struct file_operations ipmr_mfc_fops = {
2461        .owner   = THIS_MODULE,
2462        .open    = ipmr_mfc_open,
2463        .read    = seq_read,
2464        .llseek  = seq_lseek,
2465        .release = seq_release_net,
2466};
2467#endif
2468
2469#ifdef CONFIG_IP_PIMSM_V2
2470static const struct net_protocol pim_protocol = {
2471        .handler        =       pim_rcv,
2472        .netns_ok       =       1,
2473};
2474#endif
2475
2476
2477/*
2478 *      Setup for IP multicast routing
2479 */
2480static int __net_init ipmr_net_init(struct net *net)
2481{
2482        int err;
2483
2484        err = ipmr_rules_init(net);
2485        if (err < 0)
2486                goto fail;
2487
2488#ifdef CONFIG_PROC_FS
2489        err = -ENOMEM;
2490        if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2491                goto proc_vif_fail;
2492        if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2493                goto proc_cache_fail;
2494#endif
2495        return 0;
2496
2497#ifdef CONFIG_PROC_FS
2498proc_cache_fail:
2499        proc_net_remove(net, "ip_mr_vif");
2500proc_vif_fail:
2501        ipmr_rules_exit(net);
2502#endif
2503fail:
2504        return err;
2505}
2506
2507static void __net_exit ipmr_net_exit(struct net *net)
2508{
2509#ifdef CONFIG_PROC_FS
2510        proc_net_remove(net, "ip_mr_cache");
2511        proc_net_remove(net, "ip_mr_vif");
2512#endif
2513        ipmr_rules_exit(net);
2514}
2515
2516static struct pernet_operations ipmr_net_ops = {
2517        .init = ipmr_net_init,
2518        .exit = ipmr_net_exit,
2519};
2520
2521int __init ip_mr_init(void)
2522{
2523        int err;
2524
2525        mrt_cachep = kmem_cache_create("ip_mrt_cache",
2526                                       sizeof(struct mfc_cache),
2527                                       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2528                                       NULL);
2529        if (!mrt_cachep)
2530                return -ENOMEM;
2531
2532        err = register_pernet_subsys(&ipmr_net_ops);
2533        if (err)
2534                goto reg_pernet_fail;
2535
2536        err = register_netdevice_notifier(&ip_mr_notifier);
2537        if (err)
2538                goto reg_notif_fail;
2539#ifdef CONFIG_IP_PIMSM_V2
2540        if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2541                pr_err("%s: can't add PIM protocol\n", __func__);
2542                err = -EAGAIN;
2543                goto add_proto_fail;
2544        }
2545#endif
2546        rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2547                      NULL, ipmr_rtm_dumproute, NULL);
2548        return 0;
2549
2550#ifdef CONFIG_IP_PIMSM_V2
2551add_proto_fail:
2552        unregister_netdevice_notifier(&ip_mr_notifier);
2553#endif
2554reg_notif_fail:
2555        unregister_pernet_subsys(&ipmr_net_ops);
2556reg_pernet_fail:
2557        kmem_cache_destroy(mrt_cachep);
2558        return err;
2559}
2560