linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
  22
  23#include <linux/sunrpc/clnt.h>
  24
  25#include "sunrpc.h"
  26
  27#ifdef RPC_DEBUG
  28#define RPCDBG_FACILITY         RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE      (2048)
  38#define RPC_BUFFER_POOLSIZE     (8)
  39#define RPC_TASK_POOLSIZE       (8)
  40static struct kmem_cache        *rpc_task_slabp __read_mostly;
  41static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  42static mempool_t        *rpc_task_mempool __read_mostly;
  43static mempool_t        *rpc_buffer_mempool __read_mostly;
  44
  45static void                     rpc_async_schedule(struct work_struct *);
  46static void                      rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(unsigned long ptr);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue;
  58
  59/*
  60 * Disable the timer for a given RPC task. Should be called with
  61 * queue->lock and bh_disabled in order to avoid races within
  62 * rpc_run_timer().
  63 */
  64static void
  65__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  66{
  67        if (task->tk_timeout == 0)
  68                return;
  69        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  70        task->tk_timeout = 0;
  71        list_del(&task->u.tk_wait.timer_list);
  72        if (list_empty(&queue->timer_list.list))
  73                del_timer(&queue->timer_list.timer);
  74}
  75
  76static void
  77rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  78{
  79        queue->timer_list.expires = expires;
  80        mod_timer(&queue->timer_list.timer, expires);
  81}
  82
  83/*
  84 * Set up a timer for the current task.
  85 */
  86static void
  87__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  88{
  89        if (!task->tk_timeout)
  90                return;
  91
  92        dprintk("RPC: %5u setting alarm for %lu ms\n",
  93                        task->tk_pid, task->tk_timeout * 1000 / HZ);
  94
  95        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  96        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  97                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  98        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  99}
 100
 101/*
 102 * Add new request to a priority queue.
 103 */
 104static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 105                struct rpc_task *task,
 106                unsigned char queue_priority)
 107{
 108        struct list_head *q;
 109        struct rpc_task *t;
 110
 111        INIT_LIST_HEAD(&task->u.tk_wait.links);
 112        q = &queue->tasks[queue_priority];
 113        if (unlikely(queue_priority > queue->maxpriority))
 114                q = &queue->tasks[queue->maxpriority];
 115        list_for_each_entry(t, q, u.tk_wait.list) {
 116                if (t->tk_owner == task->tk_owner) {
 117                        list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 118                        return;
 119                }
 120        }
 121        list_add_tail(&task->u.tk_wait.list, q);
 122}
 123
 124/*
 125 * Add new request to wait queue.
 126 *
 127 * Swapper tasks always get inserted at the head of the queue.
 128 * This should avoid many nasty memory deadlocks and hopefully
 129 * improve overall performance.
 130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 131 */
 132static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 133                struct rpc_task *task,
 134                unsigned char queue_priority)
 135{
 136        BUG_ON (RPC_IS_QUEUED(task));
 137
 138        if (RPC_IS_PRIORITY(queue))
 139                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 140        else if (RPC_IS_SWAPPER(task))
 141                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 142        else
 143                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 144        task->tk_waitqueue = queue;
 145        queue->qlen++;
 146        rpc_set_queued(task);
 147
 148        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 149                        task->tk_pid, queue, rpc_qname(queue));
 150}
 151
 152/*
 153 * Remove request from a priority queue.
 154 */
 155static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 156{
 157        struct rpc_task *t;
 158
 159        if (!list_empty(&task->u.tk_wait.links)) {
 160                t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 161                list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 162                list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 163        }
 164}
 165
 166/*
 167 * Remove request from queue.
 168 * Note: must be called with spin lock held.
 169 */
 170static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 171{
 172        __rpc_disable_timer(queue, task);
 173        if (RPC_IS_PRIORITY(queue))
 174                __rpc_remove_wait_queue_priority(task);
 175        list_del(&task->u.tk_wait.list);
 176        queue->qlen--;
 177        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 178                        task->tk_pid, queue, rpc_qname(queue));
 179}
 180
 181static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 182{
 183        queue->priority = priority;
 184        queue->count = 1 << (priority * 2);
 185}
 186
 187static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 188{
 189        queue->owner = pid;
 190        queue->nr = RPC_BATCH_COUNT;
 191}
 192
 193static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 194{
 195        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 196        rpc_set_waitqueue_owner(queue, 0);
 197}
 198
 199static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 200{
 201        int i;
 202
 203        spin_lock_init(&queue->lock);
 204        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 205                INIT_LIST_HEAD(&queue->tasks[i]);
 206        queue->maxpriority = nr_queues - 1;
 207        rpc_reset_waitqueue_priority(queue);
 208        queue->qlen = 0;
 209        setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 210        INIT_LIST_HEAD(&queue->timer_list.list);
 211        rpc_assign_waitqueue_name(queue, qname);
 212}
 213
 214void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 215{
 216        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 217}
 218EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 219
 220void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 221{
 222        __rpc_init_priority_wait_queue(queue, qname, 1);
 223}
 224EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 225
 226void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 227{
 228        del_timer_sync(&queue->timer_list.timer);
 229}
 230EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 231
 232static int rpc_wait_bit_killable(void *word)
 233{
 234        if (fatal_signal_pending(current))
 235                return -ERESTARTSYS;
 236        freezable_schedule();
 237        return 0;
 238}
 239
 240#ifdef RPC_DEBUG
 241static void rpc_task_set_debuginfo(struct rpc_task *task)
 242{
 243        static atomic_t rpc_pid;
 244
 245        task->tk_pid = atomic_inc_return(&rpc_pid);
 246}
 247#else
 248static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 249{
 250}
 251#endif
 252
 253static void rpc_set_active(struct rpc_task *task)
 254{
 255        trace_rpc_task_begin(task->tk_client, task, NULL);
 256
 257        rpc_task_set_debuginfo(task);
 258        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 259}
 260
 261/*
 262 * Mark an RPC call as having completed by clearing the 'active' bit
 263 * and then waking up all tasks that were sleeping.
 264 */
 265static int rpc_complete_task(struct rpc_task *task)
 266{
 267        void *m = &task->tk_runstate;
 268        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 269        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 270        unsigned long flags;
 271        int ret;
 272
 273        trace_rpc_task_complete(task->tk_client, task, NULL);
 274
 275        spin_lock_irqsave(&wq->lock, flags);
 276        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 277        ret = atomic_dec_and_test(&task->tk_count);
 278        if (waitqueue_active(wq))
 279                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 280        spin_unlock_irqrestore(&wq->lock, flags);
 281        return ret;
 282}
 283
 284/*
 285 * Allow callers to wait for completion of an RPC call
 286 *
 287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 288 * to enforce taking of the wq->lock and hence avoid races with
 289 * rpc_complete_task().
 290 */
 291int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
 292{
 293        if (action == NULL)
 294                action = rpc_wait_bit_killable;
 295        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 296                        action, TASK_KILLABLE);
 297}
 298EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 299
 300/*
 301 * Make an RPC task runnable.
 302 *
 303 * Note: If the task is ASYNC, this must be called with
 304 * the spinlock held to protect the wait queue operation.
 305 */
 306static void rpc_make_runnable(struct rpc_task *task)
 307{
 308        rpc_clear_queued(task);
 309        if (rpc_test_and_set_running(task))
 310                return;
 311        if (RPC_IS_ASYNC(task)) {
 312                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 313                queue_work(rpciod_workqueue, &task->u.tk_work);
 314        } else
 315                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 316}
 317
 318/*
 319 * Prepare for sleeping on a wait queue.
 320 * By always appending tasks to the list we ensure FIFO behavior.
 321 * NB: An RPC task will only receive interrupt-driven events as long
 322 * as it's on a wait queue.
 323 */
 324static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 325                struct rpc_task *task,
 326                rpc_action action,
 327                unsigned char queue_priority)
 328{
 329        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 330                        task->tk_pid, rpc_qname(q), jiffies);
 331
 332        trace_rpc_task_sleep(task->tk_client, task, q);
 333
 334        __rpc_add_wait_queue(q, task, queue_priority);
 335
 336        BUG_ON(task->tk_callback != NULL);
 337        task->tk_callback = action;
 338        __rpc_add_timer(q, task);
 339}
 340
 341void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 342                                rpc_action action)
 343{
 344        /* We shouldn't ever put an inactive task to sleep */
 345        BUG_ON(!RPC_IS_ACTIVATED(task));
 346
 347        /*
 348         * Protect the queue operations.
 349         */
 350        spin_lock_bh(&q->lock);
 351        __rpc_sleep_on_priority(q, task, action, task->tk_priority);
 352        spin_unlock_bh(&q->lock);
 353}
 354EXPORT_SYMBOL_GPL(rpc_sleep_on);
 355
 356void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 357                rpc_action action, int priority)
 358{
 359        /* We shouldn't ever put an inactive task to sleep */
 360        BUG_ON(!RPC_IS_ACTIVATED(task));
 361
 362        /*
 363         * Protect the queue operations.
 364         */
 365        spin_lock_bh(&q->lock);
 366        __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 367        spin_unlock_bh(&q->lock);
 368}
 369
 370/**
 371 * __rpc_do_wake_up_task - wake up a single rpc_task
 372 * @queue: wait queue
 373 * @task: task to be woken up
 374 *
 375 * Caller must hold queue->lock, and have cleared the task queued flag.
 376 */
 377static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 378{
 379        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 380                        task->tk_pid, jiffies);
 381
 382        /* Has the task been executed yet? If not, we cannot wake it up! */
 383        if (!RPC_IS_ACTIVATED(task)) {
 384                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 385                return;
 386        }
 387
 388        trace_rpc_task_wakeup(task->tk_client, task, queue);
 389
 390        __rpc_remove_wait_queue(queue, task);
 391
 392        rpc_make_runnable(task);
 393
 394        dprintk("RPC:       __rpc_wake_up_task done\n");
 395}
 396
 397/*
 398 * Wake up a queued task while the queue lock is being held
 399 */
 400static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 401{
 402        if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
 403                __rpc_do_wake_up_task(queue, task);
 404}
 405
 406/*
 407 * Tests whether rpc queue is empty
 408 */
 409int rpc_queue_empty(struct rpc_wait_queue *queue)
 410{
 411        int res;
 412
 413        spin_lock_bh(&queue->lock);
 414        res = queue->qlen;
 415        spin_unlock_bh(&queue->lock);
 416        return res == 0;
 417}
 418EXPORT_SYMBOL_GPL(rpc_queue_empty);
 419
 420/*
 421 * Wake up a task on a specific queue
 422 */
 423void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 424{
 425        spin_lock_bh(&queue->lock);
 426        rpc_wake_up_task_queue_locked(queue, task);
 427        spin_unlock_bh(&queue->lock);
 428}
 429EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 430
 431/*
 432 * Wake up the next task on a priority queue.
 433 */
 434static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 435{
 436        struct list_head *q;
 437        struct rpc_task *task;
 438
 439        /*
 440         * Service a batch of tasks from a single owner.
 441         */
 442        q = &queue->tasks[queue->priority];
 443        if (!list_empty(q)) {
 444                task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 445                if (queue->owner == task->tk_owner) {
 446                        if (--queue->nr)
 447                                goto out;
 448                        list_move_tail(&task->u.tk_wait.list, q);
 449                }
 450                /*
 451                 * Check if we need to switch queues.
 452                 */
 453                if (--queue->count)
 454                        goto new_owner;
 455        }
 456
 457        /*
 458         * Service the next queue.
 459         */
 460        do {
 461                if (q == &queue->tasks[0])
 462                        q = &queue->tasks[queue->maxpriority];
 463                else
 464                        q = q - 1;
 465                if (!list_empty(q)) {
 466                        task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 467                        goto new_queue;
 468                }
 469        } while (q != &queue->tasks[queue->priority]);
 470
 471        rpc_reset_waitqueue_priority(queue);
 472        return NULL;
 473
 474new_queue:
 475        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 476new_owner:
 477        rpc_set_waitqueue_owner(queue, task->tk_owner);
 478out:
 479        return task;
 480}
 481
 482static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 483{
 484        if (RPC_IS_PRIORITY(queue))
 485                return __rpc_find_next_queued_priority(queue);
 486        if (!list_empty(&queue->tasks[0]))
 487                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 488        return NULL;
 489}
 490
 491/*
 492 * Wake up the first task on the wait queue.
 493 */
 494struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 495                bool (*func)(struct rpc_task *, void *), void *data)
 496{
 497        struct rpc_task *task = NULL;
 498
 499        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 500                        queue, rpc_qname(queue));
 501        spin_lock_bh(&queue->lock);
 502        task = __rpc_find_next_queued(queue);
 503        if (task != NULL) {
 504                if (func(task, data))
 505                        rpc_wake_up_task_queue_locked(queue, task);
 506                else
 507                        task = NULL;
 508        }
 509        spin_unlock_bh(&queue->lock);
 510
 511        return task;
 512}
 513EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 514
 515static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 516{
 517        return true;
 518}
 519
 520/*
 521 * Wake up the next task on the wait queue.
 522*/
 523struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 524{
 525        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 526}
 527EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 528
 529/**
 530 * rpc_wake_up - wake up all rpc_tasks
 531 * @queue: rpc_wait_queue on which the tasks are sleeping
 532 *
 533 * Grabs queue->lock
 534 */
 535void rpc_wake_up(struct rpc_wait_queue *queue)
 536{
 537        struct list_head *head;
 538
 539        spin_lock_bh(&queue->lock);
 540        head = &queue->tasks[queue->maxpriority];
 541        for (;;) {
 542                while (!list_empty(head)) {
 543                        struct rpc_task *task;
 544                        task = list_first_entry(head,
 545                                        struct rpc_task,
 546                                        u.tk_wait.list);
 547                        rpc_wake_up_task_queue_locked(queue, task);
 548                }
 549                if (head == &queue->tasks[0])
 550                        break;
 551                head--;
 552        }
 553        spin_unlock_bh(&queue->lock);
 554}
 555EXPORT_SYMBOL_GPL(rpc_wake_up);
 556
 557/**
 558 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 559 * @queue: rpc_wait_queue on which the tasks are sleeping
 560 * @status: status value to set
 561 *
 562 * Grabs queue->lock
 563 */
 564void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 565{
 566        struct list_head *head;
 567
 568        spin_lock_bh(&queue->lock);
 569        head = &queue->tasks[queue->maxpriority];
 570        for (;;) {
 571                while (!list_empty(head)) {
 572                        struct rpc_task *task;
 573                        task = list_first_entry(head,
 574                                        struct rpc_task,
 575                                        u.tk_wait.list);
 576                        task->tk_status = status;
 577                        rpc_wake_up_task_queue_locked(queue, task);
 578                }
 579                if (head == &queue->tasks[0])
 580                        break;
 581                head--;
 582        }
 583        spin_unlock_bh(&queue->lock);
 584}
 585EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 586
 587static void __rpc_queue_timer_fn(unsigned long ptr)
 588{
 589        struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 590        struct rpc_task *task, *n;
 591        unsigned long expires, now, timeo;
 592
 593        spin_lock(&queue->lock);
 594        expires = now = jiffies;
 595        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 596                timeo = task->u.tk_wait.expires;
 597                if (time_after_eq(now, timeo)) {
 598                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 599                        task->tk_status = -ETIMEDOUT;
 600                        rpc_wake_up_task_queue_locked(queue, task);
 601                        continue;
 602                }
 603                if (expires == now || time_after(expires, timeo))
 604                        expires = timeo;
 605        }
 606        if (!list_empty(&queue->timer_list.list))
 607                rpc_set_queue_timer(queue, expires);
 608        spin_unlock(&queue->lock);
 609}
 610
 611static void __rpc_atrun(struct rpc_task *task)
 612{
 613        task->tk_status = 0;
 614}
 615
 616/*
 617 * Run a task at a later time
 618 */
 619void rpc_delay(struct rpc_task *task, unsigned long delay)
 620{
 621        task->tk_timeout = delay;
 622        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 623}
 624EXPORT_SYMBOL_GPL(rpc_delay);
 625
 626/*
 627 * Helper to call task->tk_ops->rpc_call_prepare
 628 */
 629void rpc_prepare_task(struct rpc_task *task)
 630{
 631        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 632}
 633
 634static void
 635rpc_init_task_statistics(struct rpc_task *task)
 636{
 637        /* Initialize retry counters */
 638        task->tk_garb_retry = 2;
 639        task->tk_cred_retry = 2;
 640        task->tk_rebind_retry = 2;
 641
 642        /* starting timestamp */
 643        task->tk_start = ktime_get();
 644}
 645
 646static void
 647rpc_reset_task_statistics(struct rpc_task *task)
 648{
 649        task->tk_timeouts = 0;
 650        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 651
 652        rpc_init_task_statistics(task);
 653}
 654
 655/*
 656 * Helper that calls task->tk_ops->rpc_call_done if it exists
 657 */
 658void rpc_exit_task(struct rpc_task *task)
 659{
 660        task->tk_action = NULL;
 661        if (task->tk_ops->rpc_call_done != NULL) {
 662                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 663                if (task->tk_action != NULL) {
 664                        WARN_ON(RPC_ASSASSINATED(task));
 665                        /* Always release the RPC slot and buffer memory */
 666                        xprt_release(task);
 667                        rpc_reset_task_statistics(task);
 668                }
 669        }
 670}
 671
 672void rpc_exit(struct rpc_task *task, int status)
 673{
 674        task->tk_status = status;
 675        task->tk_action = rpc_exit_task;
 676        if (RPC_IS_QUEUED(task))
 677                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 678}
 679EXPORT_SYMBOL_GPL(rpc_exit);
 680
 681void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 682{
 683        if (ops->rpc_release != NULL)
 684                ops->rpc_release(calldata);
 685}
 686
 687/*
 688 * This is the RPC `scheduler' (or rather, the finite state machine).
 689 */
 690static void __rpc_execute(struct rpc_task *task)
 691{
 692        struct rpc_wait_queue *queue;
 693        int task_is_async = RPC_IS_ASYNC(task);
 694        int status = 0;
 695
 696        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 697                        task->tk_pid, task->tk_flags);
 698
 699        BUG_ON(RPC_IS_QUEUED(task));
 700
 701        for (;;) {
 702                void (*do_action)(struct rpc_task *);
 703
 704                /*
 705                 * Execute any pending callback first.
 706                 */
 707                do_action = task->tk_callback;
 708                task->tk_callback = NULL;
 709                if (do_action == NULL) {
 710                        /*
 711                         * Perform the next FSM step.
 712                         * tk_action may be NULL if the task has been killed.
 713                         * In particular, note that rpc_killall_tasks may
 714                         * do this at any time, so beware when dereferencing.
 715                         */
 716                        do_action = task->tk_action;
 717                        if (do_action == NULL)
 718                                break;
 719                }
 720                trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
 721                do_action(task);
 722
 723                /*
 724                 * Lockless check for whether task is sleeping or not.
 725                 */
 726                if (!RPC_IS_QUEUED(task))
 727                        continue;
 728                /*
 729                 * The queue->lock protects against races with
 730                 * rpc_make_runnable().
 731                 *
 732                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 733                 * rpc_task, rpc_make_runnable() can assign it to a
 734                 * different workqueue. We therefore cannot assume that the
 735                 * rpc_task pointer may still be dereferenced.
 736                 */
 737                queue = task->tk_waitqueue;
 738                spin_lock_bh(&queue->lock);
 739                if (!RPC_IS_QUEUED(task)) {
 740                        spin_unlock_bh(&queue->lock);
 741                        continue;
 742                }
 743                rpc_clear_running(task);
 744                spin_unlock_bh(&queue->lock);
 745                if (task_is_async)
 746                        return;
 747
 748                /* sync task: sleep here */
 749                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 750                status = out_of_line_wait_on_bit(&task->tk_runstate,
 751                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 752                                TASK_KILLABLE);
 753                if (status == -ERESTARTSYS) {
 754                        /*
 755                         * When a sync task receives a signal, it exits with
 756                         * -ERESTARTSYS. In order to catch any callbacks that
 757                         * clean up after sleeping on some queue, we don't
 758                         * break the loop here, but go around once more.
 759                         */
 760                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 761                        task->tk_flags |= RPC_TASK_KILLED;
 762                        rpc_exit(task, -ERESTARTSYS);
 763                }
 764                rpc_set_running(task);
 765                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 766        }
 767
 768        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 769                        task->tk_status);
 770        /* Release all resources associated with the task */
 771        rpc_release_task(task);
 772}
 773
 774/*
 775 * User-visible entry point to the scheduler.
 776 *
 777 * This may be called recursively if e.g. an async NFS task updates
 778 * the attributes and finds that dirty pages must be flushed.
 779 * NOTE: Upon exit of this function the task is guaranteed to be
 780 *       released. In particular note that tk_release() will have
 781 *       been called, so your task memory may have been freed.
 782 */
 783void rpc_execute(struct rpc_task *task)
 784{
 785        rpc_set_active(task);
 786        rpc_make_runnable(task);
 787        if (!RPC_IS_ASYNC(task))
 788                __rpc_execute(task);
 789}
 790
 791static void rpc_async_schedule(struct work_struct *work)
 792{
 793        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 794}
 795
 796/**
 797 * rpc_malloc - allocate an RPC buffer
 798 * @task: RPC task that will use this buffer
 799 * @size: requested byte size
 800 *
 801 * To prevent rpciod from hanging, this allocator never sleeps,
 802 * returning NULL if the request cannot be serviced immediately.
 803 * The caller can arrange to sleep in a way that is safe for rpciod.
 804 *
 805 * Most requests are 'small' (under 2KiB) and can be serviced from a
 806 * mempool, ensuring that NFS reads and writes can always proceed,
 807 * and that there is good locality of reference for these buffers.
 808 *
 809 * In order to avoid memory starvation triggering more writebacks of
 810 * NFS requests, we avoid using GFP_KERNEL.
 811 */
 812void *rpc_malloc(struct rpc_task *task, size_t size)
 813{
 814        struct rpc_buffer *buf;
 815        gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
 816
 817        size += sizeof(struct rpc_buffer);
 818        if (size <= RPC_BUFFER_MAXSIZE)
 819                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 820        else
 821                buf = kmalloc(size, gfp);
 822
 823        if (!buf)
 824                return NULL;
 825
 826        buf->len = size;
 827        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 828                        task->tk_pid, size, buf);
 829        return &buf->data;
 830}
 831EXPORT_SYMBOL_GPL(rpc_malloc);
 832
 833/**
 834 * rpc_free - free buffer allocated via rpc_malloc
 835 * @buffer: buffer to free
 836 *
 837 */
 838void rpc_free(void *buffer)
 839{
 840        size_t size;
 841        struct rpc_buffer *buf;
 842
 843        if (!buffer)
 844                return;
 845
 846        buf = container_of(buffer, struct rpc_buffer, data);
 847        size = buf->len;
 848
 849        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 850                        size, buf);
 851
 852        if (size <= RPC_BUFFER_MAXSIZE)
 853                mempool_free(buf, rpc_buffer_mempool);
 854        else
 855                kfree(buf);
 856}
 857EXPORT_SYMBOL_GPL(rpc_free);
 858
 859/*
 860 * Creation and deletion of RPC task structures
 861 */
 862static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 863{
 864        memset(task, 0, sizeof(*task));
 865        atomic_set(&task->tk_count, 1);
 866        task->tk_flags  = task_setup_data->flags;
 867        task->tk_ops = task_setup_data->callback_ops;
 868        task->tk_calldata = task_setup_data->callback_data;
 869        INIT_LIST_HEAD(&task->tk_task);
 870
 871        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 872        task->tk_owner = current->tgid;
 873
 874        /* Initialize workqueue for async tasks */
 875        task->tk_workqueue = task_setup_data->workqueue;
 876
 877        if (task->tk_ops->rpc_call_prepare != NULL)
 878                task->tk_action = rpc_prepare_task;
 879
 880        rpc_init_task_statistics(task);
 881
 882        dprintk("RPC:       new task initialized, procpid %u\n",
 883                                task_pid_nr(current));
 884}
 885
 886static struct rpc_task *
 887rpc_alloc_task(void)
 888{
 889        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 890}
 891
 892/*
 893 * Create a new task for the specified client.
 894 */
 895struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 896{
 897        struct rpc_task *task = setup_data->task;
 898        unsigned short flags = 0;
 899
 900        if (task == NULL) {
 901                task = rpc_alloc_task();
 902                if (task == NULL) {
 903                        rpc_release_calldata(setup_data->callback_ops,
 904                                        setup_data->callback_data);
 905                        return ERR_PTR(-ENOMEM);
 906                }
 907                flags = RPC_TASK_DYNAMIC;
 908        }
 909
 910        rpc_init_task(task, setup_data);
 911        task->tk_flags |= flags;
 912        dprintk("RPC:       allocated task %p\n", task);
 913        return task;
 914}
 915
 916static void rpc_free_task(struct rpc_task *task)
 917{
 918        const struct rpc_call_ops *tk_ops = task->tk_ops;
 919        void *calldata = task->tk_calldata;
 920
 921        if (task->tk_flags & RPC_TASK_DYNAMIC) {
 922                dprintk("RPC: %5u freeing task\n", task->tk_pid);
 923                mempool_free(task, rpc_task_mempool);
 924        }
 925        rpc_release_calldata(tk_ops, calldata);
 926}
 927
 928static void rpc_async_release(struct work_struct *work)
 929{
 930        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 931}
 932
 933static void rpc_release_resources_task(struct rpc_task *task)
 934{
 935        if (task->tk_rqstp)
 936                xprt_release(task);
 937        if (task->tk_msg.rpc_cred) {
 938                put_rpccred(task->tk_msg.rpc_cred);
 939                task->tk_msg.rpc_cred = NULL;
 940        }
 941        rpc_task_release_client(task);
 942}
 943
 944static void rpc_final_put_task(struct rpc_task *task,
 945                struct workqueue_struct *q)
 946{
 947        if (q != NULL) {
 948                INIT_WORK(&task->u.tk_work, rpc_async_release);
 949                queue_work(q, &task->u.tk_work);
 950        } else
 951                rpc_free_task(task);
 952}
 953
 954static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
 955{
 956        if (atomic_dec_and_test(&task->tk_count)) {
 957                rpc_release_resources_task(task);
 958                rpc_final_put_task(task, q);
 959        }
 960}
 961
 962void rpc_put_task(struct rpc_task *task)
 963{
 964        rpc_do_put_task(task, NULL);
 965}
 966EXPORT_SYMBOL_GPL(rpc_put_task);
 967
 968void rpc_put_task_async(struct rpc_task *task)
 969{
 970        rpc_do_put_task(task, task->tk_workqueue);
 971}
 972EXPORT_SYMBOL_GPL(rpc_put_task_async);
 973
 974static void rpc_release_task(struct rpc_task *task)
 975{
 976        dprintk("RPC: %5u release task\n", task->tk_pid);
 977
 978        BUG_ON (RPC_IS_QUEUED(task));
 979
 980        rpc_release_resources_task(task);
 981
 982        /*
 983         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
 984         * so it should be safe to use task->tk_count as a test for whether
 985         * or not any other processes still hold references to our rpc_task.
 986         */
 987        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
 988                /* Wake up anyone who may be waiting for task completion */
 989                if (!rpc_complete_task(task))
 990                        return;
 991        } else {
 992                if (!atomic_dec_and_test(&task->tk_count))
 993                        return;
 994        }
 995        rpc_final_put_task(task, task->tk_workqueue);
 996}
 997
 998int rpciod_up(void)
 999{
1000        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1001}
1002
1003void rpciod_down(void)
1004{
1005        module_put(THIS_MODULE);
1006}
1007
1008/*
1009 * Start up the rpciod workqueue.
1010 */
1011static int rpciod_start(void)
1012{
1013        struct workqueue_struct *wq;
1014
1015        /*
1016         * Create the rpciod thread and wait for it to start.
1017         */
1018        dprintk("RPC:       creating workqueue rpciod\n");
1019        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1020        rpciod_workqueue = wq;
1021        return rpciod_workqueue != NULL;
1022}
1023
1024static void rpciod_stop(void)
1025{
1026        struct workqueue_struct *wq = NULL;
1027
1028        if (rpciod_workqueue == NULL)
1029                return;
1030        dprintk("RPC:       destroying workqueue rpciod\n");
1031
1032        wq = rpciod_workqueue;
1033        rpciod_workqueue = NULL;
1034        destroy_workqueue(wq);
1035}
1036
1037void
1038rpc_destroy_mempool(void)
1039{
1040        rpciod_stop();
1041        if (rpc_buffer_mempool)
1042                mempool_destroy(rpc_buffer_mempool);
1043        if (rpc_task_mempool)
1044                mempool_destroy(rpc_task_mempool);
1045        if (rpc_task_slabp)
1046                kmem_cache_destroy(rpc_task_slabp);
1047        if (rpc_buffer_slabp)
1048                kmem_cache_destroy(rpc_buffer_slabp);
1049        rpc_destroy_wait_queue(&delay_queue);
1050}
1051
1052int
1053rpc_init_mempool(void)
1054{
1055        /*
1056         * The following is not strictly a mempool initialisation,
1057         * but there is no harm in doing it here
1058         */
1059        rpc_init_wait_queue(&delay_queue, "delayq");
1060        if (!rpciod_start())
1061                goto err_nomem;
1062
1063        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1064                                             sizeof(struct rpc_task),
1065                                             0, SLAB_HWCACHE_ALIGN,
1066                                             NULL);
1067        if (!rpc_task_slabp)
1068                goto err_nomem;
1069        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1070                                             RPC_BUFFER_MAXSIZE,
1071                                             0, SLAB_HWCACHE_ALIGN,
1072                                             NULL);
1073        if (!rpc_buffer_slabp)
1074                goto err_nomem;
1075        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1076                                                    rpc_task_slabp);
1077        if (!rpc_task_mempool)
1078                goto err_nomem;
1079        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1080                                                      rpc_buffer_slabp);
1081        if (!rpc_buffer_mempool)
1082                goto err_nomem;
1083        return 0;
1084err_nomem:
1085        rpc_destroy_mempool();
1086        return -ENOMEM;
1087}
1088