linux/arch/cris/arch-v10/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/cris/arch-v10/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5 *  Copyright (C) 1999-2002 Axis Communications AB
   6 *
   7 */
   8
   9#include <linux/timex.h>
  10#include <linux/time.h>
  11#include <linux/jiffies.h>
  12#include <linux/interrupt.h>
  13#include <linux/swap.h>
  14#include <linux/sched.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <arch/svinto.h>
  18#include <asm/types.h>
  19#include <asm/signal.h>
  20#include <asm/io.h>
  21#include <asm/delay.h>
  22#include <asm/irq_regs.h>
  23
  24/* define this if you need to use print_timestamp */
  25/* it will make jiffies at 96 hz instead of 100 hz though */
  26#undef USE_CASCADE_TIMERS
  27
  28unsigned long get_ns_in_jiffie(void)
  29{
  30        unsigned char timer_count, t1;
  31        unsigned short presc_count;
  32        unsigned long ns;
  33        unsigned long flags;
  34
  35        local_irq_save(flags);
  36        timer_count = *R_TIMER0_DATA;
  37        presc_count = *R_TIM_PRESC_STATUS;  
  38        /* presc_count might be wrapped */
  39        t1 = *R_TIMER0_DATA;
  40
  41        if (timer_count != t1){
  42                /* it wrapped, read prescaler again...  */
  43                presc_count = *R_TIM_PRESC_STATUS;
  44                timer_count = t1;
  45        }
  46        local_irq_restore(flags);
  47        if (presc_count >= PRESCALE_VALUE/2 ){
  48                presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
  49        } else {
  50                presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
  51        }
  52
  53        ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + 
  54             ( (presc_count) * (1000000000/PRESCALE_FREQ));
  55        return ns;
  56}
  57
  58unsigned long do_slow_gettimeoffset(void)
  59{
  60        unsigned long count;
  61
  62        /* The timer interrupt comes from Etrax timer 0. In order to get
  63         * better precision, we check the current value. It might have
  64         * underflowed already though.
  65         */
  66        count = *R_TIMER0_DATA;
  67
  68        /* Convert timer value to usec */
  69        return (TIMER0_DIV - count) * ((NSEC_PER_SEC/1000)/HZ)/TIMER0_DIV;
  70}
  71
  72/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
  73 *
  74 * 3.10.4 Watchdog timer
  75
  76 * When the watchdog timer is started, it generates an NMI if the watchdog
  77 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
  78 * stopped after an additional 3.3 ms, the watchdog resets the chip.
  79 * The watchdog timer is stopped after reset. The watchdog timer is controlled
  80 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
  81 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
  82 * described in the table below:
  83 * 
  84 *   Watchdog    Value written:
  85 *   state:      To enable:  To key:      Operation:
  86 *   --------    ----------  -------      ----------
  87 *   stopped         0         X          No effect.
  88 *   stopped         1       key_val      Start watchdog with key = key_val.
  89 *   started         0       ~key         Stop watchdog
  90 *   started         1       ~key         Restart watchdog with key = ~key.
  91 *   started         X       new_key_val  Change key to new_key_val.
  92 * 
  93 * Note: '~' is the bitwise NOT operator.
  94 * 
  95 */
  96
  97/* right now, starting the watchdog is the same as resetting it */
  98#define start_watchdog reset_watchdog
  99
 100#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
 101static int watchdog_key = 0;  /* arbitrary number */
 102#endif
 103
 104/* number of pages to consider "out of memory". it is normal that the memory
 105 * is used though, so put this really low.
 106 */
 107
 108#define WATCHDOG_MIN_FREE_PAGES 8
 109
 110void
 111reset_watchdog(void)
 112{
 113#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
 114        /* only keep watchdog happy as long as we have memory left! */
 115        if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
 116                /* reset the watchdog with the inverse of the old key */
 117                watchdog_key ^= 0x7; /* invert key, which is 3 bits */
 118                *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
 119                        IO_STATE(R_WATCHDOG, enable, start);
 120        }
 121#endif
 122}
 123
 124/* stop the watchdog - we still need the correct key */
 125
 126void 
 127stop_watchdog(void)
 128{
 129#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
 130        watchdog_key ^= 0x7; /* invert key, which is 3 bits */
 131        *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
 132                IO_STATE(R_WATCHDOG, enable, stop);
 133#endif  
 134}
 135
 136
 137/*
 138 * timer_interrupt() needs to keep up the real-time clock,
 139 * as well as call the "xtime_update()" routine every clocktick
 140 */
 141
 142//static unsigned short myjiff; /* used by our debug routine print_timestamp */
 143
 144extern void cris_do_profile(struct pt_regs *regs);
 145
 146static inline irqreturn_t
 147timer_interrupt(int irq, void *dev_id)
 148{
 149        struct pt_regs *regs = get_irq_regs();
 150        /* acknowledge the timer irq */
 151
 152#ifdef USE_CASCADE_TIMERS
 153        *R_TIMER_CTRL =
 154                IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
 155                IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
 156                IO_STATE( R_TIMER_CTRL, i1, clr) |
 157                IO_STATE( R_TIMER_CTRL, tm1, run) |
 158                IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
 159                IO_STATE( R_TIMER_CTRL, i0, clr) |
 160                IO_STATE( R_TIMER_CTRL, tm0, run) |
 161                IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
 162#else
 163        *R_TIMER_CTRL = r_timer_ctrl_shadow | 
 164                IO_STATE(R_TIMER_CTRL, i0, clr);
 165#endif
 166
 167        /* reset watchdog otherwise it resets us! */
 168        reset_watchdog();
 169        
 170        /* Update statistics. */
 171        update_process_times(user_mode(regs));
 172
 173        /* call the real timer interrupt handler */
 174
 175        xtime_update(1);
 176        
 177        cris_do_profile(regs); /* Save profiling information */
 178        return IRQ_HANDLED;
 179}
 180
 181/* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
 182 * it needs to be IRQF_DISABLED to make the jiffies update work properly
 183 */
 184
 185static struct irqaction irq2  = {
 186        .handler = timer_interrupt,
 187        .flags = IRQF_SHARED | IRQF_DISABLED,
 188        .name = "timer",
 189};
 190
 191void __init
 192time_init(void)
 193{       
 194        /* probe for the RTC and read it if it exists 
 195         * Before the RTC can be probed the loops_per_usec variable needs 
 196         * to be initialized to make usleep work. A better value for 
 197         * loops_per_usec is calculated by the kernel later once the 
 198         * clock has started.  
 199         */
 200        loops_per_usec = 50;
 201
 202        /* Setup the etrax timers
 203         * Base frequency is 25000 hz, divider 250 -> 100 HZ
 204         * In normal mode, we use timer0, so timer1 is free. In cascade
 205         * mode (which we sometimes use for debugging) both timers are used.
 206         * Remember that linux/timex.h contains #defines that rely on the
 207         * timer settings below (hz and divide factor) !!!
 208         */
 209        
 210#ifdef USE_CASCADE_TIMERS
 211        *R_TIMER_CTRL =
 212                IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
 213                IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
 214                IO_STATE( R_TIMER_CTRL, i1, nop) |
 215                IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
 216                IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
 217                IO_STATE( R_TIMER_CTRL, i0, nop) |
 218                IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
 219                IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
 220        
 221        *R_TIMER_CTRL = r_timer_ctrl_shadow = 
 222                IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
 223                IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
 224                IO_STATE( R_TIMER_CTRL, i1, nop) |
 225                IO_STATE( R_TIMER_CTRL, tm1, run) |
 226                IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
 227                IO_STATE( R_TIMER_CTRL, i0, nop) |
 228                IO_STATE( R_TIMER_CTRL, tm0, run) |
 229                IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
 230#else
 231        *R_TIMER_CTRL = 
 232                IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      | 
 233                IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
 234                IO_STATE(R_TIMER_CTRL, i1,        nop)      | 
 235                IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
 236                IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
 237                IO_STATE(R_TIMER_CTRL, i0,        nop)      |
 238                IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
 239                IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
 240        
 241        *R_TIMER_CTRL = r_timer_ctrl_shadow =
 242                IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      | 
 243                IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
 244                IO_STATE(R_TIMER_CTRL, i1,        nop)      |
 245                IO_STATE(R_TIMER_CTRL, tm1,       run)      |
 246                IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
 247                IO_STATE(R_TIMER_CTRL, i0,        nop)      |
 248                IO_STATE(R_TIMER_CTRL, tm0,       run)      |
 249                IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
 250
 251        *R_TIMER_PRESCALE = PRESCALE_VALUE;
 252#endif
 253
 254        *R_IRQ_MASK0_SET =
 255                IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
 256        
 257        /* now actually register the timer irq handler that calls timer_interrupt() */
 258        
 259        setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
 260
 261        /* enable watchdog if we should use one */
 262
 263#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
 264        printk("Enabling watchdog...\n");
 265        start_watchdog();
 266
 267        /* If we use the hardware watchdog, we want to trap it as an NMI
 268           and dump registers before it resets us.  For this to happen, we
 269           must set the "m" NMI enable flag (which once set, is unset only
 270           when an NMI is taken).
 271
 272           The same goes for the external NMI, but that doesn't have any
 273           driver or infrastructure support yet.  */
 274        asm ("setf m");
 275
 276        *R_IRQ_MASK0_SET =
 277                IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
 278        *R_VECT_MASK_SET =
 279                IO_STATE(R_VECT_MASK_SET, nmi, set);
 280#endif
 281}
 282