linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45
  46#include <asm/errno.h>
  47#include <asm/intrinsics.h>
  48#include <asm/page.h>
  49#include <asm/perfmon.h>
  50#include <asm/processor.h>
  51#include <asm/signal.h>
  52#include <asm/uaccess.h>
  53#include <asm/delay.h>
  54
  55#ifdef CONFIG_PERFMON
  56/*
  57 * perfmon context state
  58 */
  59#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  60#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  61#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  62#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  63
  64#define PFM_INVALID_ACTIVATION  (~0UL)
  65
  66#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  67#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  68
  69/*
  70 * depth of message queue
  71 */
  72#define PFM_MAX_MSGS            32
  73#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  74
  75/*
  76 * type of a PMU register (bitmask).
  77 * bitmask structure:
  78 *      bit0   : register implemented
  79 *      bit1   : end marker
  80 *      bit2-3 : reserved
  81 *      bit4   : pmc has pmc.pm
  82 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  83 *      bit6-7 : register type
  84 *      bit8-31: reserved
  85 */
  86#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  87#define PFM_REG_IMPL            0x1 /* register implemented */
  88#define PFM_REG_END             0x2 /* end marker */
  89#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  90#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  91#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  92#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  93#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  94
  95#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  96#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  97
  98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
  99
 100/* i assumed unsigned */
 101#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 102#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 103
 104/* XXX: these assume that register i is implemented */
 105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 108#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 109
 110#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 111#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 112#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 113#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 114
 115#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 116#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 117
 118#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 119#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 120#define PFM_CTX_TASK(h)         (h)->ctx_task
 121
 122#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 123
 124/* XXX: does not support more than 64 PMDs */
 125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 127
 128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 129
 130#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 131#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 133#define PFM_CODE_RR     0       /* requesting code range restriction */
 134#define PFM_DATA_RR     1       /* requestion data range restriction */
 135
 136#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 137#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 138#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 139
 140#define RDEP(x) (1UL<<(x))
 141
 142/*
 143 * context protection macros
 144 * in SMP:
 145 *      - we need to protect against CPU concurrency (spin_lock)
 146 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 147 * in UP:
 148 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 149 *
 150 * spin_lock_irqsave()/spin_unlock_irqrestore():
 151 *      in SMP: local_irq_disable + spin_lock
 152 *      in UP : local_irq_disable
 153 *
 154 * spin_lock()/spin_lock():
 155 *      in UP : removed automatically
 156 *      in SMP: protect against context accesses from other CPU. interrupts
 157 *              are not masked. This is useful for the PMU interrupt handler
 158 *              because we know we will not get PMU concurrency in that code.
 159 */
 160#define PROTECT_CTX(c, f) \
 161        do {  \
 162                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 163                spin_lock_irqsave(&(c)->ctx_lock, f); \
 164                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 165        } while(0)
 166
 167#define UNPROTECT_CTX(c, f) \
 168        do { \
 169                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 170                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 171        } while(0)
 172
 173#define PROTECT_CTX_NOPRINT(c, f) \
 174        do {  \
 175                spin_lock_irqsave(&(c)->ctx_lock, f); \
 176        } while(0)
 177
 178
 179#define UNPROTECT_CTX_NOPRINT(c, f) \
 180        do { \
 181                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 182        } while(0)
 183
 184
 185#define PROTECT_CTX_NOIRQ(c) \
 186        do {  \
 187                spin_lock(&(c)->ctx_lock); \
 188        } while(0)
 189
 190#define UNPROTECT_CTX_NOIRQ(c) \
 191        do { \
 192                spin_unlock(&(c)->ctx_lock); \
 193        } while(0)
 194
 195
 196#ifdef CONFIG_SMP
 197
 198#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 199#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 200#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 201
 202#else /* !CONFIG_SMP */
 203#define SET_ACTIVATION(t)       do {} while(0)
 204#define GET_ACTIVATION(t)       do {} while(0)
 205#define INC_ACTIVATION(t)       do {} while(0)
 206#endif /* CONFIG_SMP */
 207
 208#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 209#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 210#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 211
 212#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 213#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 214
 215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 216
 217/*
 218 * cmp0 must be the value of pmc0
 219 */
 220#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 221
 222#define PFMFS_MAGIC 0xa0b4d889
 223
 224/*
 225 * debugging
 226 */
 227#define PFM_DEBUGGING 1
 228#ifdef PFM_DEBUGGING
 229#define DPRINT(a) \
 230        do { \
 231                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 232        } while (0)
 233
 234#define DPRINT_ovfl(a) \
 235        do { \
 236                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 237        } while (0)
 238#endif
 239
 240/*
 241 * 64-bit software counter structure
 242 *
 243 * the next_reset_type is applied to the next call to pfm_reset_regs()
 244 */
 245typedef struct {
 246        unsigned long   val;            /* virtual 64bit counter value */
 247        unsigned long   lval;           /* last reset value */
 248        unsigned long   long_reset;     /* reset value on sampling overflow */
 249        unsigned long   short_reset;    /* reset value on overflow */
 250        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 251        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 252        unsigned long   seed;           /* seed for random-number generator */
 253        unsigned long   mask;           /* mask for random-number generator */
 254        unsigned int    flags;          /* notify/do not notify */
 255        unsigned long   eventid;        /* overflow event identifier */
 256} pfm_counter_t;
 257
 258/*
 259 * context flags
 260 */
 261typedef struct {
 262        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 263        unsigned int system:1;          /* do system wide monitoring */
 264        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 265        unsigned int is_sampling:1;     /* true if using a custom format */
 266        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 267        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 268        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 269        unsigned int no_msg:1;          /* no message sent on overflow */
 270        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 271        unsigned int reserved:22;
 272} pfm_context_flags_t;
 273
 274#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 275#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 276#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 277
 278
 279/*
 280 * perfmon context: encapsulates all the state of a monitoring session
 281 */
 282
 283typedef struct pfm_context {
 284        spinlock_t              ctx_lock;               /* context protection */
 285
 286        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 287        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 288
 289        struct task_struct      *ctx_task;              /* task to which context is attached */
 290
 291        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 292
 293        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 294
 295        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 296        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 297        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 298
 299        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 300        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 301        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 302
 303        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 304
 305        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 306        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 307        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 308        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 309
 310        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 311
 312        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 313        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 314
 315        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 316
 317        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 318        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 319        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 320
 321        int                     ctx_fd;                 /* file descriptor used my this context */
 322        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 323
 324        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 325        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 326        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 327        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 328
 329        wait_queue_head_t       ctx_msgq_wait;
 330        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 331        int                     ctx_msgq_head;
 332        int                     ctx_msgq_tail;
 333        struct fasync_struct    *ctx_async_queue;
 334
 335        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 336} pfm_context_t;
 337
 338/*
 339 * magic number used to verify that structure is really
 340 * a perfmon context
 341 */
 342#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 343
 344#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 345
 346#ifdef CONFIG_SMP
 347#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 348#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 349#else
 350#define SET_LAST_CPU(ctx, v)    do {} while(0)
 351#define GET_LAST_CPU(ctx)       do {} while(0)
 352#endif
 353
 354
 355#define ctx_fl_block            ctx_flags.block
 356#define ctx_fl_system           ctx_flags.system
 357#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 358#define ctx_fl_is_sampling      ctx_flags.is_sampling
 359#define ctx_fl_excl_idle        ctx_flags.excl_idle
 360#define ctx_fl_going_zombie     ctx_flags.going_zombie
 361#define ctx_fl_trap_reason      ctx_flags.trap_reason
 362#define ctx_fl_no_msg           ctx_flags.no_msg
 363#define ctx_fl_can_restart      ctx_flags.can_restart
 364
 365#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 366#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 367
 368/*
 369 * global information about all sessions
 370 * mostly used to synchronize between system wide and per-process
 371 */
 372typedef struct {
 373        spinlock_t              pfs_lock;                  /* lock the structure */
 374
 375        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 376        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 377        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 378        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 379        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 380} pfm_session_t;
 381
 382/*
 383 * information about a PMC or PMD.
 384 * dep_pmd[]: a bitmask of dependent PMD registers
 385 * dep_pmc[]: a bitmask of dependent PMC registers
 386 */
 387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 388typedef struct {
 389        unsigned int            type;
 390        int                     pm_pos;
 391        unsigned long           default_value;  /* power-on default value */
 392        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 393        pfm_reg_check_t         read_check;
 394        pfm_reg_check_t         write_check;
 395        unsigned long           dep_pmd[4];
 396        unsigned long           dep_pmc[4];
 397} pfm_reg_desc_t;
 398
 399/* assume cnum is a valid monitor */
 400#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 401
 402/*
 403 * This structure is initialized at boot time and contains
 404 * a description of the PMU main characteristics.
 405 *
 406 * If the probe function is defined, detection is based
 407 * on its return value: 
 408 *      - 0 means recognized PMU
 409 *      - anything else means not supported
 410 * When the probe function is not defined, then the pmu_family field
 411 * is used and it must match the host CPU family such that:
 412 *      - cpu->family & config->pmu_family != 0
 413 */
 414typedef struct {
 415        unsigned long  ovfl_val;        /* overflow value for counters */
 416
 417        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 418        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 419
 420        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 421        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 422        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 423        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 424
 425        char          *pmu_name;        /* PMU family name */
 426        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 427        unsigned int  flags;            /* pmu specific flags */
 428        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 429        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 430        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 431        int           (*probe)(void);   /* customized probe routine */
 432        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 433} pmu_config_t;
 434/*
 435 * PMU specific flags
 436 */
 437#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 438
 439/*
 440 * debug register related type definitions
 441 */
 442typedef struct {
 443        unsigned long ibr_mask:56;
 444        unsigned long ibr_plm:4;
 445        unsigned long ibr_ig:3;
 446        unsigned long ibr_x:1;
 447} ibr_mask_reg_t;
 448
 449typedef struct {
 450        unsigned long dbr_mask:56;
 451        unsigned long dbr_plm:4;
 452        unsigned long dbr_ig:2;
 453        unsigned long dbr_w:1;
 454        unsigned long dbr_r:1;
 455} dbr_mask_reg_t;
 456
 457typedef union {
 458        unsigned long  val;
 459        ibr_mask_reg_t ibr;
 460        dbr_mask_reg_t dbr;
 461} dbreg_t;
 462
 463
 464/*
 465 * perfmon command descriptions
 466 */
 467typedef struct {
 468        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 469        char            *cmd_name;
 470        int             cmd_flags;
 471        unsigned int    cmd_narg;
 472        size_t          cmd_argsize;
 473        int             (*cmd_getsize)(void *arg, size_t *sz);
 474} pfm_cmd_desc_t;
 475
 476#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 477#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 478#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 479#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 480
 481
 482#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 483#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 484#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 485#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 486#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 487
 488#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 489
 490typedef struct {
 491        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 492        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 493        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 497        unsigned long pfm_smpl_handler_calls;
 498        unsigned long pfm_smpl_handler_cycles;
 499        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 500} pfm_stats_t;
 501
 502/*
 503 * perfmon internal variables
 504 */
 505static pfm_stats_t              pfm_stats[NR_CPUS];
 506static pfm_session_t            pfm_sessions;   /* global sessions information */
 507
 508static DEFINE_SPINLOCK(pfm_alt_install_check);
 509static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 510
 511static struct proc_dir_entry    *perfmon_dir;
 512static pfm_uuid_t               pfm_null_uuid = {0,};
 513
 514static spinlock_t               pfm_buffer_fmt_lock;
 515static LIST_HEAD(pfm_buffer_fmt_list);
 516
 517static pmu_config_t             *pmu_conf;
 518
 519/* sysctl() controls */
 520pfm_sysctl_t pfm_sysctl;
 521EXPORT_SYMBOL(pfm_sysctl);
 522
 523static ctl_table pfm_ctl_table[]={
 524        {
 525                .procname       = "debug",
 526                .data           = &pfm_sysctl.debug,
 527                .maxlen         = sizeof(int),
 528                .mode           = 0666,
 529                .proc_handler   = proc_dointvec,
 530        },
 531        {
 532                .procname       = "debug_ovfl",
 533                .data           = &pfm_sysctl.debug_ovfl,
 534                .maxlen         = sizeof(int),
 535                .mode           = 0666,
 536                .proc_handler   = proc_dointvec,
 537        },
 538        {
 539                .procname       = "fastctxsw",
 540                .data           = &pfm_sysctl.fastctxsw,
 541                .maxlen         = sizeof(int),
 542                .mode           = 0600,
 543                .proc_handler   = proc_dointvec,
 544        },
 545        {
 546                .procname       = "expert_mode",
 547                .data           = &pfm_sysctl.expert_mode,
 548                .maxlen         = sizeof(int),
 549                .mode           = 0600,
 550                .proc_handler   = proc_dointvec,
 551        },
 552        {}
 553};
 554static ctl_table pfm_sysctl_dir[] = {
 555        {
 556                .procname       = "perfmon",
 557                .mode           = 0555,
 558                .child          = pfm_ctl_table,
 559        },
 560        {}
 561};
 562static ctl_table pfm_sysctl_root[] = {
 563        {
 564                .procname       = "kernel",
 565                .mode           = 0555,
 566                .child          = pfm_sysctl_dir,
 567        },
 568        {}
 569};
 570static struct ctl_table_header *pfm_sysctl_header;
 571
 572static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 573
 574#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 575#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 576
 577static inline void
 578pfm_put_task(struct task_struct *task)
 579{
 580        if (task != current) put_task_struct(task);
 581}
 582
 583static inline void
 584pfm_reserve_page(unsigned long a)
 585{
 586        SetPageReserved(vmalloc_to_page((void *)a));
 587}
 588static inline void
 589pfm_unreserve_page(unsigned long a)
 590{
 591        ClearPageReserved(vmalloc_to_page((void*)a));
 592}
 593
 594static inline unsigned long
 595pfm_protect_ctx_ctxsw(pfm_context_t *x)
 596{
 597        spin_lock(&(x)->ctx_lock);
 598        return 0UL;
 599}
 600
 601static inline void
 602pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 603{
 604        spin_unlock(&(x)->ctx_lock);
 605}
 606
 607/* forward declaration */
 608static const struct dentry_operations pfmfs_dentry_operations;
 609
 610static struct dentry *
 611pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 612{
 613        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 614                        PFMFS_MAGIC);
 615}
 616
 617static struct file_system_type pfm_fs_type = {
 618        .name     = "pfmfs",
 619        .mount    = pfmfs_mount,
 620        .kill_sb  = kill_anon_super,
 621};
 622
 623DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 624DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 625DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 626DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 627EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 628
 629
 630/* forward declaration */
 631static const struct file_operations pfm_file_ops;
 632
 633/*
 634 * forward declarations
 635 */
 636#ifndef CONFIG_SMP
 637static void pfm_lazy_save_regs (struct task_struct *ta);
 638#endif
 639
 640void dump_pmu_state(const char *);
 641static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 642
 643#include "perfmon_itanium.h"
 644#include "perfmon_mckinley.h"
 645#include "perfmon_montecito.h"
 646#include "perfmon_generic.h"
 647
 648static pmu_config_t *pmu_confs[]={
 649        &pmu_conf_mont,
 650        &pmu_conf_mck,
 651        &pmu_conf_ita,
 652        &pmu_conf_gen, /* must be last */
 653        NULL
 654};
 655
 656
 657static int pfm_end_notify_user(pfm_context_t *ctx);
 658
 659static inline void
 660pfm_clear_psr_pp(void)
 661{
 662        ia64_rsm(IA64_PSR_PP);
 663        ia64_srlz_i();
 664}
 665
 666static inline void
 667pfm_set_psr_pp(void)
 668{
 669        ia64_ssm(IA64_PSR_PP);
 670        ia64_srlz_i();
 671}
 672
 673static inline void
 674pfm_clear_psr_up(void)
 675{
 676        ia64_rsm(IA64_PSR_UP);
 677        ia64_srlz_i();
 678}
 679
 680static inline void
 681pfm_set_psr_up(void)
 682{
 683        ia64_ssm(IA64_PSR_UP);
 684        ia64_srlz_i();
 685}
 686
 687static inline unsigned long
 688pfm_get_psr(void)
 689{
 690        unsigned long tmp;
 691        tmp = ia64_getreg(_IA64_REG_PSR);
 692        ia64_srlz_i();
 693        return tmp;
 694}
 695
 696static inline void
 697pfm_set_psr_l(unsigned long val)
 698{
 699        ia64_setreg(_IA64_REG_PSR_L, val);
 700        ia64_srlz_i();
 701}
 702
 703static inline void
 704pfm_freeze_pmu(void)
 705{
 706        ia64_set_pmc(0,1UL);
 707        ia64_srlz_d();
 708}
 709
 710static inline void
 711pfm_unfreeze_pmu(void)
 712{
 713        ia64_set_pmc(0,0UL);
 714        ia64_srlz_d();
 715}
 716
 717static inline void
 718pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 719{
 720        int i;
 721
 722        for (i=0; i < nibrs; i++) {
 723                ia64_set_ibr(i, ibrs[i]);
 724                ia64_dv_serialize_instruction();
 725        }
 726        ia64_srlz_i();
 727}
 728
 729static inline void
 730pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 731{
 732        int i;
 733
 734        for (i=0; i < ndbrs; i++) {
 735                ia64_set_dbr(i, dbrs[i]);
 736                ia64_dv_serialize_data();
 737        }
 738        ia64_srlz_d();
 739}
 740
 741/*
 742 * PMD[i] must be a counter. no check is made
 743 */
 744static inline unsigned long
 745pfm_read_soft_counter(pfm_context_t *ctx, int i)
 746{
 747        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 748}
 749
 750/*
 751 * PMD[i] must be a counter. no check is made
 752 */
 753static inline void
 754pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 755{
 756        unsigned long ovfl_val = pmu_conf->ovfl_val;
 757
 758        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 759        /*
 760         * writing to unimplemented part is ignore, so we do not need to
 761         * mask off top part
 762         */
 763        ia64_set_pmd(i, val & ovfl_val);
 764}
 765
 766static pfm_msg_t *
 767pfm_get_new_msg(pfm_context_t *ctx)
 768{
 769        int idx, next;
 770
 771        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 772
 773        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 774        if (next == ctx->ctx_msgq_head) return NULL;
 775
 776        idx =   ctx->ctx_msgq_tail;
 777        ctx->ctx_msgq_tail = next;
 778
 779        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 780
 781        return ctx->ctx_msgq+idx;
 782}
 783
 784static pfm_msg_t *
 785pfm_get_next_msg(pfm_context_t *ctx)
 786{
 787        pfm_msg_t *msg;
 788
 789        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 790
 791        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 792
 793        /*
 794         * get oldest message
 795         */
 796        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 797
 798        /*
 799         * and move forward
 800         */
 801        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 802
 803        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 804
 805        return msg;
 806}
 807
 808static void
 809pfm_reset_msgq(pfm_context_t *ctx)
 810{
 811        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 812        DPRINT(("ctx=%p msgq reset\n", ctx));
 813}
 814
 815static void *
 816pfm_rvmalloc(unsigned long size)
 817{
 818        void *mem;
 819        unsigned long addr;
 820
 821        size = PAGE_ALIGN(size);
 822        mem  = vzalloc(size);
 823        if (mem) {
 824                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 825                addr = (unsigned long)mem;
 826                while (size > 0) {
 827                        pfm_reserve_page(addr);
 828                        addr+=PAGE_SIZE;
 829                        size-=PAGE_SIZE;
 830                }
 831        }
 832        return mem;
 833}
 834
 835static void
 836pfm_rvfree(void *mem, unsigned long size)
 837{
 838        unsigned long addr;
 839
 840        if (mem) {
 841                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 842                addr = (unsigned long) mem;
 843                while ((long) size > 0) {
 844                        pfm_unreserve_page(addr);
 845                        addr+=PAGE_SIZE;
 846                        size-=PAGE_SIZE;
 847                }
 848                vfree(mem);
 849        }
 850        return;
 851}
 852
 853static pfm_context_t *
 854pfm_context_alloc(int ctx_flags)
 855{
 856        pfm_context_t *ctx;
 857
 858        /* 
 859         * allocate context descriptor 
 860         * must be able to free with interrupts disabled
 861         */
 862        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 863        if (ctx) {
 864                DPRINT(("alloc ctx @%p\n", ctx));
 865
 866                /*
 867                 * init context protection lock
 868                 */
 869                spin_lock_init(&ctx->ctx_lock);
 870
 871                /*
 872                 * context is unloaded
 873                 */
 874                ctx->ctx_state = PFM_CTX_UNLOADED;
 875
 876                /*
 877                 * initialization of context's flags
 878                 */
 879                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 880                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 881                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 882                /*
 883                 * will move to set properties
 884                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 885                 */
 886
 887                /*
 888                 * init restart semaphore to locked
 889                 */
 890                init_completion(&ctx->ctx_restart_done);
 891
 892                /*
 893                 * activation is used in SMP only
 894                 */
 895                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 896                SET_LAST_CPU(ctx, -1);
 897
 898                /*
 899                 * initialize notification message queue
 900                 */
 901                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 902                init_waitqueue_head(&ctx->ctx_msgq_wait);
 903                init_waitqueue_head(&ctx->ctx_zombieq);
 904
 905        }
 906        return ctx;
 907}
 908
 909static void
 910pfm_context_free(pfm_context_t *ctx)
 911{
 912        if (ctx) {
 913                DPRINT(("free ctx @%p\n", ctx));
 914                kfree(ctx);
 915        }
 916}
 917
 918static void
 919pfm_mask_monitoring(struct task_struct *task)
 920{
 921        pfm_context_t *ctx = PFM_GET_CTX(task);
 922        unsigned long mask, val, ovfl_mask;
 923        int i;
 924
 925        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 926
 927        ovfl_mask = pmu_conf->ovfl_val;
 928        /*
 929         * monitoring can only be masked as a result of a valid
 930         * counter overflow. In UP, it means that the PMU still
 931         * has an owner. Note that the owner can be different
 932         * from the current task. However the PMU state belongs
 933         * to the owner.
 934         * In SMP, a valid overflow only happens when task is
 935         * current. Therefore if we come here, we know that
 936         * the PMU state belongs to the current task, therefore
 937         * we can access the live registers.
 938         *
 939         * So in both cases, the live register contains the owner's
 940         * state. We can ONLY touch the PMU registers and NOT the PSR.
 941         *
 942         * As a consequence to this call, the ctx->th_pmds[] array
 943         * contains stale information which must be ignored
 944         * when context is reloaded AND monitoring is active (see
 945         * pfm_restart).
 946         */
 947        mask = ctx->ctx_used_pmds[0];
 948        for (i = 0; mask; i++, mask>>=1) {
 949                /* skip non used pmds */
 950                if ((mask & 0x1) == 0) continue;
 951                val = ia64_get_pmd(i);
 952
 953                if (PMD_IS_COUNTING(i)) {
 954                        /*
 955                         * we rebuild the full 64 bit value of the counter
 956                         */
 957                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 958                } else {
 959                        ctx->ctx_pmds[i].val = val;
 960                }
 961                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 962                        i,
 963                        ctx->ctx_pmds[i].val,
 964                        val & ovfl_mask));
 965        }
 966        /*
 967         * mask monitoring by setting the privilege level to 0
 968         * we cannot use psr.pp/psr.up for this, it is controlled by
 969         * the user
 970         *
 971         * if task is current, modify actual registers, otherwise modify
 972         * thread save state, i.e., what will be restored in pfm_load_regs()
 973         */
 974        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 975        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 976                if ((mask & 0x1) == 0UL) continue;
 977                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 978                ctx->th_pmcs[i] &= ~0xfUL;
 979                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 980        }
 981        /*
 982         * make all of this visible
 983         */
 984        ia64_srlz_d();
 985}
 986
 987/*
 988 * must always be done with task == current
 989 *
 990 * context must be in MASKED state when calling
 991 */
 992static void
 993pfm_restore_monitoring(struct task_struct *task)
 994{
 995        pfm_context_t *ctx = PFM_GET_CTX(task);
 996        unsigned long mask, ovfl_mask;
 997        unsigned long psr, val;
 998        int i, is_system;
 999
1000        is_system = ctx->ctx_fl_system;
1001        ovfl_mask = pmu_conf->ovfl_val;
1002
1003        if (task != current) {
1004                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1005                return;
1006        }
1007        if (ctx->ctx_state != PFM_CTX_MASKED) {
1008                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1009                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1010                return;
1011        }
1012        psr = pfm_get_psr();
1013        /*
1014         * monitoring is masked via the PMC.
1015         * As we restore their value, we do not want each counter to
1016         * restart right away. We stop monitoring using the PSR,
1017         * restore the PMC (and PMD) and then re-establish the psr
1018         * as it was. Note that there can be no pending overflow at
1019         * this point, because monitoring was MASKED.
1020         *
1021         * system-wide session are pinned and self-monitoring
1022         */
1023        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024                /* disable dcr pp */
1025                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1026                pfm_clear_psr_pp();
1027        } else {
1028                pfm_clear_psr_up();
1029        }
1030        /*
1031         * first, we restore the PMD
1032         */
1033        mask = ctx->ctx_used_pmds[0];
1034        for (i = 0; mask; i++, mask>>=1) {
1035                /* skip non used pmds */
1036                if ((mask & 0x1) == 0) continue;
1037
1038                if (PMD_IS_COUNTING(i)) {
1039                        /*
1040                         * we split the 64bit value according to
1041                         * counter width
1042                         */
1043                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1044                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1045                } else {
1046                        val = ctx->ctx_pmds[i].val;
1047                }
1048                ia64_set_pmd(i, val);
1049
1050                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1051                        i,
1052                        ctx->ctx_pmds[i].val,
1053                        val));
1054        }
1055        /*
1056         * restore the PMCs
1057         */
1058        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1059        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1060                if ((mask & 0x1) == 0UL) continue;
1061                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1062                ia64_set_pmc(i, ctx->th_pmcs[i]);
1063                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1064                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1065        }
1066        ia64_srlz_d();
1067
1068        /*
1069         * must restore DBR/IBR because could be modified while masked
1070         * XXX: need to optimize 
1071         */
1072        if (ctx->ctx_fl_using_dbreg) {
1073                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1074                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1075        }
1076
1077        /*
1078         * now restore PSR
1079         */
1080        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1081                /* enable dcr pp */
1082                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1083                ia64_srlz_i();
1084        }
1085        pfm_set_psr_l(psr);
1086}
1087
1088static inline void
1089pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1090{
1091        int i;
1092
1093        ia64_srlz_d();
1094
1095        for (i=0; mask; i++, mask>>=1) {
1096                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1097        }
1098}
1099
1100/*
1101 * reload from thread state (used for ctxw only)
1102 */
1103static inline void
1104pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1105{
1106        int i;
1107        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1108
1109        for (i=0; mask; i++, mask>>=1) {
1110                if ((mask & 0x1) == 0) continue;
1111                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1112                ia64_set_pmd(i, val);
1113        }
1114        ia64_srlz_d();
1115}
1116
1117/*
1118 * propagate PMD from context to thread-state
1119 */
1120static inline void
1121pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1122{
1123        unsigned long ovfl_val = pmu_conf->ovfl_val;
1124        unsigned long mask = ctx->ctx_all_pmds[0];
1125        unsigned long val;
1126        int i;
1127
1128        DPRINT(("mask=0x%lx\n", mask));
1129
1130        for (i=0; mask; i++, mask>>=1) {
1131
1132                val = ctx->ctx_pmds[i].val;
1133
1134                /*
1135                 * We break up the 64 bit value into 2 pieces
1136                 * the lower bits go to the machine state in the
1137                 * thread (will be reloaded on ctxsw in).
1138                 * The upper part stays in the soft-counter.
1139                 */
1140                if (PMD_IS_COUNTING(i)) {
1141                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1142                         val &= ovfl_val;
1143                }
1144                ctx->th_pmds[i] = val;
1145
1146                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1147                        i,
1148                        ctx->th_pmds[i],
1149                        ctx->ctx_pmds[i].val));
1150        }
1151}
1152
1153/*
1154 * propagate PMC from context to thread-state
1155 */
1156static inline void
1157pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1158{
1159        unsigned long mask = ctx->ctx_all_pmcs[0];
1160        int i;
1161
1162        DPRINT(("mask=0x%lx\n", mask));
1163
1164        for (i=0; mask; i++, mask>>=1) {
1165                /* masking 0 with ovfl_val yields 0 */
1166                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1167                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1168        }
1169}
1170
1171
1172
1173static inline void
1174pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1175{
1176        int i;
1177
1178        for (i=0; mask; i++, mask>>=1) {
1179                if ((mask & 0x1) == 0) continue;
1180                ia64_set_pmc(i, pmcs[i]);
1181        }
1182        ia64_srlz_d();
1183}
1184
1185static inline int
1186pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1187{
1188        return memcmp(a, b, sizeof(pfm_uuid_t));
1189}
1190
1191static inline int
1192pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1193{
1194        int ret = 0;
1195        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1196        return ret;
1197}
1198
1199static inline int
1200pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1201{
1202        int ret = 0;
1203        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1204        return ret;
1205}
1206
1207
1208static inline int
1209pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1210                     int cpu, void *arg)
1211{
1212        int ret = 0;
1213        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1214        return ret;
1215}
1216
1217static inline int
1218pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1219                     int cpu, void *arg)
1220{
1221        int ret = 0;
1222        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1223        return ret;
1224}
1225
1226static inline int
1227pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1228{
1229        int ret = 0;
1230        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1231        return ret;
1232}
1233
1234static inline int
1235pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1236{
1237        int ret = 0;
1238        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1239        return ret;
1240}
1241
1242static pfm_buffer_fmt_t *
1243__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1244{
1245        struct list_head * pos;
1246        pfm_buffer_fmt_t * entry;
1247
1248        list_for_each(pos, &pfm_buffer_fmt_list) {
1249                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1250                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1251                        return entry;
1252        }
1253        return NULL;
1254}
1255 
1256/*
1257 * find a buffer format based on its uuid
1258 */
1259static pfm_buffer_fmt_t *
1260pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261{
1262        pfm_buffer_fmt_t * fmt;
1263        spin_lock(&pfm_buffer_fmt_lock);
1264        fmt = __pfm_find_buffer_fmt(uuid);
1265        spin_unlock(&pfm_buffer_fmt_lock);
1266        return fmt;
1267}
1268 
1269int
1270pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1271{
1272        int ret = 0;
1273
1274        /* some sanity checks */
1275        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1276
1277        /* we need at least a handler */
1278        if (fmt->fmt_handler == NULL) return -EINVAL;
1279
1280        /*
1281         * XXX: need check validity of fmt_arg_size
1282         */
1283
1284        spin_lock(&pfm_buffer_fmt_lock);
1285
1286        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1287                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1288                ret = -EBUSY;
1289                goto out;
1290        } 
1291        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1292        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1293
1294out:
1295        spin_unlock(&pfm_buffer_fmt_lock);
1296        return ret;
1297}
1298EXPORT_SYMBOL(pfm_register_buffer_fmt);
1299
1300int
1301pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1302{
1303        pfm_buffer_fmt_t *fmt;
1304        int ret = 0;
1305
1306        spin_lock(&pfm_buffer_fmt_lock);
1307
1308        fmt = __pfm_find_buffer_fmt(uuid);
1309        if (!fmt) {
1310                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1311                ret = -EINVAL;
1312                goto out;
1313        }
1314        list_del_init(&fmt->fmt_list);
1315        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1316
1317out:
1318        spin_unlock(&pfm_buffer_fmt_lock);
1319        return ret;
1320
1321}
1322EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1323
1324extern void update_pal_halt_status(int);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329        unsigned long flags;
1330        /*
1331         * validity checks on cpu_mask have been done upstream
1332         */
1333        LOCK_PFS(flags);
1334
1335        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336                pfm_sessions.pfs_sys_sessions,
1337                pfm_sessions.pfs_task_sessions,
1338                pfm_sessions.pfs_sys_use_dbregs,
1339                is_syswide,
1340                cpu));
1341
1342        if (is_syswide) {
1343                /*
1344                 * cannot mix system wide and per-task sessions
1345                 */
1346                if (pfm_sessions.pfs_task_sessions > 0UL) {
1347                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348                                pfm_sessions.pfs_task_sessions));
1349                        goto abort;
1350                }
1351
1352                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356                pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358                pfm_sessions.pfs_sys_sessions++ ;
1359
1360        } else {
1361                if (pfm_sessions.pfs_sys_sessions) goto abort;
1362                pfm_sessions.pfs_task_sessions++;
1363        }
1364
1365        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366                pfm_sessions.pfs_sys_sessions,
1367                pfm_sessions.pfs_task_sessions,
1368                pfm_sessions.pfs_sys_use_dbregs,
1369                is_syswide,
1370                cpu));
1371
1372        /*
1373         * disable default_idle() to go to PAL_HALT
1374         */
1375        update_pal_halt_status(0);
1376
1377        UNLOCK_PFS(flags);
1378
1379        return 0;
1380
1381error_conflict:
1382        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384                cpu));
1385abort:
1386        UNLOCK_PFS(flags);
1387
1388        return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395        unsigned long flags;
1396        /*
1397         * validity checks on cpu_mask have been done upstream
1398         */
1399        LOCK_PFS(flags);
1400
1401        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402                pfm_sessions.pfs_sys_sessions,
1403                pfm_sessions.pfs_task_sessions,
1404                pfm_sessions.pfs_sys_use_dbregs,
1405                is_syswide,
1406                cpu));
1407
1408
1409        if (is_syswide) {
1410                pfm_sessions.pfs_sys_session[cpu] = NULL;
1411                /*
1412                 * would not work with perfmon+more than one bit in cpu_mask
1413                 */
1414                if (ctx && ctx->ctx_fl_using_dbreg) {
1415                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417                        } else {
1418                                pfm_sessions.pfs_sys_use_dbregs--;
1419                        }
1420                }
1421                pfm_sessions.pfs_sys_sessions--;
1422        } else {
1423                pfm_sessions.pfs_task_sessions--;
1424        }
1425        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426                pfm_sessions.pfs_sys_sessions,
1427                pfm_sessions.pfs_task_sessions,
1428                pfm_sessions.pfs_sys_use_dbregs,
1429                is_syswide,
1430                cpu));
1431
1432        /*
1433         * if possible, enable default_idle() to go into PAL_HALT
1434         */
1435        if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1436                update_pal_halt_status(1);
1437
1438        UNLOCK_PFS(flags);
1439
1440        return 0;
1441}
1442
1443/*
1444 * removes virtual mapping of the sampling buffer.
1445 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1446 * a PROTECT_CTX() section.
1447 */
1448static int
1449pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1450{
1451        struct task_struct *task = current;
1452        int r;
1453
1454        /* sanity checks */
1455        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1456                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1457                return -EINVAL;
1458        }
1459
1460        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1461
1462        /*
1463         * does the actual unmapping
1464         */
1465        r = vm_munmap((unsigned long)vaddr, size);
1466
1467        if (r !=0) {
1468                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1469        }
1470
1471        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472
1473        return 0;
1474}
1475
1476/*
1477 * free actual physical storage used by sampling buffer
1478 */
1479#if 0
1480static int
1481pfm_free_smpl_buffer(pfm_context_t *ctx)
1482{
1483        pfm_buffer_fmt_t *fmt;
1484
1485        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1486
1487        /*
1488         * we won't use the buffer format anymore
1489         */
1490        fmt = ctx->ctx_buf_fmt;
1491
1492        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1493                ctx->ctx_smpl_hdr,
1494                ctx->ctx_smpl_size,
1495                ctx->ctx_smpl_vaddr));
1496
1497        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1498
1499        /*
1500         * free the buffer
1501         */
1502        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1503
1504        ctx->ctx_smpl_hdr  = NULL;
1505        ctx->ctx_smpl_size = 0UL;
1506
1507        return 0;
1508
1509invalid_free:
1510        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1511        return -EINVAL;
1512}
1513#endif
1514
1515static inline void
1516pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1517{
1518        if (fmt == NULL) return;
1519
1520        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1521
1522}
1523
1524/*
1525 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1526 * no real gain from having the whole whorehouse mounted. So we don't need
1527 * any operations on the root directory. However, we need a non-trivial
1528 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529 */
1530static struct vfsmount *pfmfs_mnt __read_mostly;
1531
1532static int __init
1533init_pfm_fs(void)
1534{
1535        int err = register_filesystem(&pfm_fs_type);
1536        if (!err) {
1537                pfmfs_mnt = kern_mount(&pfm_fs_type);
1538                err = PTR_ERR(pfmfs_mnt);
1539                if (IS_ERR(pfmfs_mnt))
1540                        unregister_filesystem(&pfm_fs_type);
1541                else
1542                        err = 0;
1543        }
1544        return err;
1545}
1546
1547static ssize_t
1548pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1549{
1550        pfm_context_t *ctx;
1551        pfm_msg_t *msg;
1552        ssize_t ret;
1553        unsigned long flags;
1554        DECLARE_WAITQUEUE(wait, current);
1555        if (PFM_IS_FILE(filp) == 0) {
1556                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1557                return -EINVAL;
1558        }
1559
1560        ctx = filp->private_data;
1561        if (ctx == NULL) {
1562                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1563                return -EINVAL;
1564        }
1565
1566        /*
1567         * check even when there is no message
1568         */
1569        if (size < sizeof(pfm_msg_t)) {
1570                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1571                return -EINVAL;
1572        }
1573
1574        PROTECT_CTX(ctx, flags);
1575
1576        /*
1577         * put ourselves on the wait queue
1578         */
1579        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1580
1581
1582        for(;;) {
1583                /*
1584                 * check wait queue
1585                 */
1586
1587                set_current_state(TASK_INTERRUPTIBLE);
1588
1589                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1590
1591                ret = 0;
1592                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1593
1594                UNPROTECT_CTX(ctx, flags);
1595
1596                /*
1597                 * check non-blocking read
1598                 */
1599                ret = -EAGAIN;
1600                if(filp->f_flags & O_NONBLOCK) break;
1601
1602                /*
1603                 * check pending signals
1604                 */
1605                if(signal_pending(current)) {
1606                        ret = -EINTR;
1607                        break;
1608                }
1609                /*
1610                 * no message, so wait
1611                 */
1612                schedule();
1613
1614                PROTECT_CTX(ctx, flags);
1615        }
1616        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1617        set_current_state(TASK_RUNNING);
1618        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1619
1620        if (ret < 0) goto abort;
1621
1622        ret = -EINVAL;
1623        msg = pfm_get_next_msg(ctx);
1624        if (msg == NULL) {
1625                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1626                goto abort_locked;
1627        }
1628
1629        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1630
1631        ret = -EFAULT;
1632        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1633
1634abort_locked:
1635        UNPROTECT_CTX(ctx, flags);
1636abort:
1637        return ret;
1638}
1639
1640static ssize_t
1641pfm_write(struct file *file, const char __user *ubuf,
1642                          size_t size, loff_t *ppos)
1643{
1644        DPRINT(("pfm_write called\n"));
1645        return -EINVAL;
1646}
1647
1648static unsigned int
1649pfm_poll(struct file *filp, poll_table * wait)
1650{
1651        pfm_context_t *ctx;
1652        unsigned long flags;
1653        unsigned int mask = 0;
1654
1655        if (PFM_IS_FILE(filp) == 0) {
1656                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1657                return 0;
1658        }
1659
1660        ctx = filp->private_data;
1661        if (ctx == NULL) {
1662                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1663                return 0;
1664        }
1665
1666
1667        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1668
1669        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1670
1671        PROTECT_CTX(ctx, flags);
1672
1673        if (PFM_CTXQ_EMPTY(ctx) == 0)
1674                mask =  POLLIN | POLLRDNORM;
1675
1676        UNPROTECT_CTX(ctx, flags);
1677
1678        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1679
1680        return mask;
1681}
1682
1683static long
1684pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1685{
1686        DPRINT(("pfm_ioctl called\n"));
1687        return -EINVAL;
1688}
1689
1690/*
1691 * interrupt cannot be masked when coming here
1692 */
1693static inline int
1694pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1695{
1696        int ret;
1697
1698        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1699
1700        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701                task_pid_nr(current),
1702                fd,
1703                on,
1704                ctx->ctx_async_queue, ret));
1705
1706        return ret;
1707}
1708
1709static int
1710pfm_fasync(int fd, struct file *filp, int on)
1711{
1712        pfm_context_t *ctx;
1713        int ret;
1714
1715        if (PFM_IS_FILE(filp) == 0) {
1716                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1717                return -EBADF;
1718        }
1719
1720        ctx = filp->private_data;
1721        if (ctx == NULL) {
1722                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1723                return -EBADF;
1724        }
1725        /*
1726         * we cannot mask interrupts during this call because this may
1727         * may go to sleep if memory is not readily avalaible.
1728         *
1729         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1730         * done in caller. Serialization of this function is ensured by caller.
1731         */
1732        ret = pfm_do_fasync(fd, filp, ctx, on);
1733
1734
1735        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1736                fd,
1737                on,
1738                ctx->ctx_async_queue, ret));
1739
1740        return ret;
1741}
1742
1743#ifdef CONFIG_SMP
1744/*
1745 * this function is exclusively called from pfm_close().
1746 * The context is not protected at that time, nor are interrupts
1747 * on the remote CPU. That's necessary to avoid deadlocks.
1748 */
1749static void
1750pfm_syswide_force_stop(void *info)
1751{
1752        pfm_context_t   *ctx = (pfm_context_t *)info;
1753        struct pt_regs *regs = task_pt_regs(current);
1754        struct task_struct *owner;
1755        unsigned long flags;
1756        int ret;
1757
1758        if (ctx->ctx_cpu != smp_processor_id()) {
1759                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1760                        ctx->ctx_cpu,
1761                        smp_processor_id());
1762                return;
1763        }
1764        owner = GET_PMU_OWNER();
1765        if (owner != ctx->ctx_task) {
1766                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767                        smp_processor_id(),
1768                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1769                return;
1770        }
1771        if (GET_PMU_CTX() != ctx) {
1772                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773                        smp_processor_id(),
1774                        GET_PMU_CTX(), ctx);
1775                return;
1776        }
1777
1778        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1779        /*
1780         * the context is already protected in pfm_close(), we simply
1781         * need to mask interrupts to avoid a PMU interrupt race on
1782         * this CPU
1783         */
1784        local_irq_save(flags);
1785
1786        ret = pfm_context_unload(ctx, NULL, 0, regs);
1787        if (ret) {
1788                DPRINT(("context_unload returned %d\n", ret));
1789        }
1790
1791        /*
1792         * unmask interrupts, PMU interrupts are now spurious here
1793         */
1794        local_irq_restore(flags);
1795}
1796
1797static void
1798pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1799{
1800        int ret;
1801
1802        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1803        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1804        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1805}
1806#endif /* CONFIG_SMP */
1807
1808/*
1809 * called for each close(). Partially free resources.
1810 * When caller is self-monitoring, the context is unloaded.
1811 */
1812static int
1813pfm_flush(struct file *filp, fl_owner_t id)
1814{
1815        pfm_context_t *ctx;
1816        struct task_struct *task;
1817        struct pt_regs *regs;
1818        unsigned long flags;
1819        unsigned long smpl_buf_size = 0UL;
1820        void *smpl_buf_vaddr = NULL;
1821        int state, is_system;
1822
1823        if (PFM_IS_FILE(filp) == 0) {
1824                DPRINT(("bad magic for\n"));
1825                return -EBADF;
1826        }
1827
1828        ctx = filp->private_data;
1829        if (ctx == NULL) {
1830                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1831                return -EBADF;
1832        }
1833
1834        /*
1835         * remove our file from the async queue, if we use this mode.
1836         * This can be done without the context being protected. We come
1837         * here when the context has become unreachable by other tasks.
1838         *
1839         * We may still have active monitoring at this point and we may
1840         * end up in pfm_overflow_handler(). However, fasync_helper()
1841         * operates with interrupts disabled and it cleans up the
1842         * queue. If the PMU handler is called prior to entering
1843         * fasync_helper() then it will send a signal. If it is
1844         * invoked after, it will find an empty queue and no
1845         * signal will be sent. In both case, we are safe
1846         */
1847        PROTECT_CTX(ctx, flags);
1848
1849        state     = ctx->ctx_state;
1850        is_system = ctx->ctx_fl_system;
1851
1852        task = PFM_CTX_TASK(ctx);
1853        regs = task_pt_regs(task);
1854
1855        DPRINT(("ctx_state=%d is_current=%d\n",
1856                state,
1857                task == current ? 1 : 0));
1858
1859        /*
1860         * if state == UNLOADED, then task is NULL
1861         */
1862
1863        /*
1864         * we must stop and unload because we are losing access to the context.
1865         */
1866        if (task == current) {
1867#ifdef CONFIG_SMP
1868                /*
1869                 * the task IS the owner but it migrated to another CPU: that's bad
1870                 * but we must handle this cleanly. Unfortunately, the kernel does
1871                 * not provide a mechanism to block migration (while the context is loaded).
1872                 *
1873                 * We need to release the resource on the ORIGINAL cpu.
1874                 */
1875                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876
1877                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878                        /*
1879                         * keep context protected but unmask interrupt for IPI
1880                         */
1881                        local_irq_restore(flags);
1882
1883                        pfm_syswide_cleanup_other_cpu(ctx);
1884
1885                        /*
1886                         * restore interrupt masking
1887                         */
1888                        local_irq_save(flags);
1889
1890                        /*
1891                         * context is unloaded at this point
1892                         */
1893                } else
1894#endif /* CONFIG_SMP */
1895                {
1896
1897                        DPRINT(("forcing unload\n"));
1898                        /*
1899                        * stop and unload, returning with state UNLOADED
1900                        * and session unreserved.
1901                        */
1902                        pfm_context_unload(ctx, NULL, 0, regs);
1903
1904                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1905                }
1906        }
1907
1908        /*
1909         * remove virtual mapping, if any, for the calling task.
1910         * cannot reset ctx field until last user is calling close().
1911         *
1912         * ctx_smpl_vaddr must never be cleared because it is needed
1913         * by every task with access to the context
1914         *
1915         * When called from do_exit(), the mm context is gone already, therefore
1916         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1917         * do anything here
1918         */
1919        if (ctx->ctx_smpl_vaddr && current->mm) {
1920                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921                smpl_buf_size  = ctx->ctx_smpl_size;
1922        }
1923
1924        UNPROTECT_CTX(ctx, flags);
1925
1926        /*
1927         * if there was a mapping, then we systematically remove it
1928         * at this point. Cannot be done inside critical section
1929         * because some VM function reenables interrupts.
1930         *
1931         */
1932        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1933
1934        return 0;
1935}
1936/*
1937 * called either on explicit close() or from exit_files(). 
1938 * Only the LAST user of the file gets to this point, i.e., it is
1939 * called only ONCE.
1940 *
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1942 * (fput()),i.e, last task to access the file. Nobody else can access the 
1943 * file at this point.
1944 *
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1947 *
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context. 
1950 */
1951static int
1952pfm_close(struct inode *inode, struct file *filp)
1953{
1954        pfm_context_t *ctx;
1955        struct task_struct *task;
1956        struct pt_regs *regs;
1957        DECLARE_WAITQUEUE(wait, current);
1958        unsigned long flags;
1959        unsigned long smpl_buf_size = 0UL;
1960        void *smpl_buf_addr = NULL;
1961        int free_possible = 1;
1962        int state, is_system;
1963
1964        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965
1966        if (PFM_IS_FILE(filp) == 0) {
1967                DPRINT(("bad magic\n"));
1968                return -EBADF;
1969        }
1970        
1971        ctx = filp->private_data;
1972        if (ctx == NULL) {
1973                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974                return -EBADF;
1975        }
1976
1977        PROTECT_CTX(ctx, flags);
1978
1979        state     = ctx->ctx_state;
1980        is_system = ctx->ctx_fl_system;
1981
1982        task = PFM_CTX_TASK(ctx);
1983        regs = task_pt_regs(task);
1984
1985        DPRINT(("ctx_state=%d is_current=%d\n", 
1986                state,
1987                task == current ? 1 : 0));
1988
1989        /*
1990         * if task == current, then pfm_flush() unloaded the context
1991         */
1992        if (state == PFM_CTX_UNLOADED) goto doit;
1993
1994        /*
1995         * context is loaded/masked and task != current, we need to
1996         * either force an unload or go zombie
1997         */
1998
1999        /*
2000         * The task is currently blocked or will block after an overflow.
2001         * we must force it to wakeup to get out of the
2002         * MASKED state and transition to the unloaded state by itself.
2003         *
2004         * This situation is only possible for per-task mode
2005         */
2006        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2007
2008                /*
2009                 * set a "partial" zombie state to be checked
2010                 * upon return from down() in pfm_handle_work().
2011                 *
2012                 * We cannot use the ZOMBIE state, because it is checked
2013                 * by pfm_load_regs() which is called upon wakeup from down().
2014                 * In such case, it would free the context and then we would
2015                 * return to pfm_handle_work() which would access the
2016                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017                 * but visible to pfm_handle_work().
2018                 *
2019                 * For some window of time, we have a zombie context with
2020                 * ctx_state = MASKED  and not ZOMBIE
2021                 */
2022                ctx->ctx_fl_going_zombie = 1;
2023
2024                /*
2025                 * force task to wake up from MASKED state
2026                 */
2027                complete(&ctx->ctx_restart_done);
2028
2029                DPRINT(("waking up ctx_state=%d\n", state));
2030
2031                /*
2032                 * put ourself to sleep waiting for the other
2033                 * task to report completion
2034                 *
2035                 * the context is protected by mutex, therefore there
2036                 * is no risk of being notified of completion before
2037                 * begin actually on the waitq.
2038                 */
2039                set_current_state(TASK_INTERRUPTIBLE);
2040                add_wait_queue(&ctx->ctx_zombieq, &wait);
2041
2042                UNPROTECT_CTX(ctx, flags);
2043
2044                /*
2045                 * XXX: check for signals :
2046                 *      - ok for explicit close
2047                 *      - not ok when coming from exit_files()
2048                 */
2049                schedule();
2050
2051
2052                PROTECT_CTX(ctx, flags);
2053
2054
2055                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2056                set_current_state(TASK_RUNNING);
2057
2058                /*
2059                 * context is unloaded at this point
2060                 */
2061                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062        }
2063        else if (task != current) {
2064#ifdef CONFIG_SMP
2065                /*
2066                 * switch context to zombie state
2067                 */
2068                ctx->ctx_state = PFM_CTX_ZOMBIE;
2069
2070                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2071                /*
2072                 * cannot free the context on the spot. deferred until
2073                 * the task notices the ZOMBIE state
2074                 */
2075                free_possible = 0;
2076#else
2077                pfm_context_unload(ctx, NULL, 0, regs);
2078#endif
2079        }
2080
2081doit:
2082        /* reload state, may have changed during  opening of critical section */
2083        state = ctx->ctx_state;
2084
2085        /*
2086         * the context is still attached to a task (possibly current)
2087         * we cannot destroy it right now
2088         */
2089
2090        /*
2091         * we must free the sampling buffer right here because
2092         * we cannot rely on it being cleaned up later by the
2093         * monitored task. It is not possible to free vmalloc'ed
2094         * memory in pfm_load_regs(). Instead, we remove the buffer
2095         * now. should there be subsequent PMU overflow originally
2096         * meant for sampling, the will be converted to spurious
2097         * and that's fine because the monitoring tools is gone anyway.
2098         */
2099        if (ctx->ctx_smpl_hdr) {
2100                smpl_buf_addr = ctx->ctx_smpl_hdr;
2101                smpl_buf_size = ctx->ctx_smpl_size;
2102                /* no more sampling */
2103                ctx->ctx_smpl_hdr = NULL;
2104                ctx->ctx_fl_is_sampling = 0;
2105        }
2106
2107        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108                state,
2109                free_possible,
2110                smpl_buf_addr,
2111                smpl_buf_size));
2112
2113        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2114
2115        /*
2116         * UNLOADED that the session has already been unreserved.
2117         */
2118        if (state == PFM_CTX_ZOMBIE) {
2119                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120        }
2121
2122        /*
2123         * disconnect file descriptor from context must be done
2124         * before we unlock.
2125         */
2126        filp->private_data = NULL;
2127
2128        /*
2129         * if we free on the spot, the context is now completely unreachable
2130         * from the callers side. The monitored task side is also cut, so we
2131         * can freely cut.
2132         *
2133         * If we have a deferred free, only the caller side is disconnected.
2134         */
2135        UNPROTECT_CTX(ctx, flags);
2136
2137        /*
2138         * All memory free operations (especially for vmalloc'ed memory)
2139         * MUST be done with interrupts ENABLED.
2140         */
2141        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2142
2143        /*
2144         * return the memory used by the context
2145         */
2146        if (free_possible) pfm_context_free(ctx);
2147
2148        return 0;
2149}
2150
2151static int
2152pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153{
2154        DPRINT(("pfm_no_open called\n"));
2155        return -ENXIO;
2156}
2157
2158
2159
2160static const struct file_operations pfm_file_ops = {
2161        .llseek         = no_llseek,
2162        .read           = pfm_read,
2163        .write          = pfm_write,
2164        .poll           = pfm_poll,
2165        .unlocked_ioctl = pfm_ioctl,
2166        .open           = pfm_no_open,  /* special open code to disallow open via /proc */
2167        .fasync         = pfm_fasync,
2168        .release        = pfm_close,
2169        .flush          = pfm_flush
2170};
2171
2172static int
2173pfmfs_delete_dentry(const struct dentry *dentry)
2174{
2175        return 1;
2176}
2177
2178static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2179{
2180        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2181                             dentry->d_inode->i_ino);
2182}
2183
2184static const struct dentry_operations pfmfs_dentry_operations = {
2185        .d_delete = pfmfs_delete_dentry,
2186        .d_dname = pfmfs_dname,
2187};
2188
2189
2190static struct file *
2191pfm_alloc_file(pfm_context_t *ctx)
2192{
2193        struct file *file;
2194        struct inode *inode;
2195        struct path path;
2196        struct qstr this = { .name = "" };
2197
2198        /*
2199         * allocate a new inode
2200         */
2201        inode = new_inode(pfmfs_mnt->mnt_sb);
2202        if (!inode)
2203                return ERR_PTR(-ENOMEM);
2204
2205        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2206
2207        inode->i_mode = S_IFCHR|S_IRUGO;
2208        inode->i_uid  = current_fsuid();
2209        inode->i_gid  = current_fsgid();
2210
2211        /*
2212         * allocate a new dcache entry
2213         */
2214        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2215        if (!path.dentry) {
2216                iput(inode);
2217                return ERR_PTR(-ENOMEM);
2218        }
2219        path.mnt = mntget(pfmfs_mnt);
2220
2221        d_add(path.dentry, inode);
2222
2223        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2224        if (!file) {
2225                path_put(&path);
2226                return ERR_PTR(-ENFILE);
2227        }
2228
2229        file->f_flags = O_RDONLY;
2230        file->private_data = ctx;
2231
2232        return file;
2233}
2234
2235static int
2236pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2237{
2238        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2239
2240        while (size > 0) {
2241                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2242
2243
2244                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245                        return -ENOMEM;
2246
2247                addr  += PAGE_SIZE;
2248                buf   += PAGE_SIZE;
2249                size  -= PAGE_SIZE;
2250        }
2251        return 0;
2252}
2253
2254/*
2255 * allocate a sampling buffer and remaps it into the user address space of the task
2256 */
2257static int
2258pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2259{
2260        struct mm_struct *mm = task->mm;
2261        struct vm_area_struct *vma = NULL;
2262        unsigned long size;
2263        void *smpl_buf;
2264
2265
2266        /*
2267         * the fixed header + requested size and align to page boundary
2268         */
2269        size = PAGE_ALIGN(rsize);
2270
2271        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2272
2273        /*
2274         * check requested size to avoid Denial-of-service attacks
2275         * XXX: may have to refine this test
2276         * Check against address space limit.
2277         *
2278         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279         *      return -ENOMEM;
2280         */
2281        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2282                return -ENOMEM;
2283
2284        /*
2285         * We do the easy to undo allocations first.
2286         *
2287         * pfm_rvmalloc(), clears the buffer, so there is no leak
2288         */
2289        smpl_buf = pfm_rvmalloc(size);
2290        if (smpl_buf == NULL) {
2291                DPRINT(("Can't allocate sampling buffer\n"));
2292                return -ENOMEM;
2293        }
2294
2295        DPRINT(("smpl_buf @%p\n", smpl_buf));
2296
2297        /* allocate vma */
2298        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2299        if (!vma) {
2300                DPRINT(("Cannot allocate vma\n"));
2301                goto error_kmem;
2302        }
2303        INIT_LIST_HEAD(&vma->anon_vma_chain);
2304
2305        /*
2306         * partially initialize the vma for the sampling buffer
2307         */
2308        vma->vm_mm           = mm;
2309        vma->vm_file         = filp;
2310        vma->vm_flags        = VM_READ| VM_MAYREAD |VM_RESERVED;
2311        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2312
2313        /*
2314         * Now we have everything we need and we can initialize
2315         * and connect all the data structures
2316         */
2317
2318        ctx->ctx_smpl_hdr   = smpl_buf;
2319        ctx->ctx_smpl_size  = size; /* aligned size */
2320
2321        /*
2322         * Let's do the difficult operations next.
2323         *
2324         * now we atomically find some area in the address space and
2325         * remap the buffer in it.
2326         */
2327        down_write(&task->mm->mmap_sem);
2328
2329        /* find some free area in address space, must have mmap sem held */
2330        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2331        if (IS_ERR_VALUE(vma->vm_start)) {
2332                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333                up_write(&task->mm->mmap_sem);
2334                goto error;
2335        }
2336        vma->vm_end = vma->vm_start + size;
2337        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338
2339        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340
2341        /* can only be applied to current task, need to have the mm semaphore held when called */
2342        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343                DPRINT(("Can't remap buffer\n"));
2344                up_write(&task->mm->mmap_sem);
2345                goto error;
2346        }
2347
2348        get_file(filp);
2349
2350        /*
2351         * now insert the vma in the vm list for the process, must be
2352         * done with mmap lock held
2353         */
2354        insert_vm_struct(mm, vma);
2355
2356        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2357                                                        vma_pages(vma));
2358        up_write(&task->mm->mmap_sem);
2359
2360        /*
2361         * keep track of user level virtual address
2362         */
2363        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2364        *(unsigned long *)user_vaddr = vma->vm_start;
2365
2366        return 0;
2367
2368error:
2369        kmem_cache_free(vm_area_cachep, vma);
2370error_kmem:
2371        pfm_rvfree(smpl_buf, size);
2372
2373        return -ENOMEM;
2374}
2375
2376/*
2377 * XXX: do something better here
2378 */
2379static int
2380pfm_bad_permissions(struct task_struct *task)
2381{
2382        const struct cred *tcred;
2383        uid_t uid = current_uid();
2384        gid_t gid = current_gid();
2385        int ret;
2386
2387        rcu_read_lock();
2388        tcred = __task_cred(task);
2389
2390        /* inspired by ptrace_attach() */
2391        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2392                uid,
2393                gid,
2394                tcred->euid,
2395                tcred->suid,
2396                tcred->uid,
2397                tcred->egid,
2398                tcred->sgid));
2399
2400        ret = ((uid != tcred->euid)
2401               || (uid != tcred->suid)
2402               || (uid != tcred->uid)
2403               || (gid != tcred->egid)
2404               || (gid != tcred->sgid)
2405               || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2406
2407        rcu_read_unlock();
2408        return ret;
2409}
2410
2411static int
2412pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2413{
2414        int ctx_flags;
2415
2416        /* valid signal */
2417
2418        ctx_flags = pfx->ctx_flags;
2419
2420        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2421
2422                /*
2423                 * cannot block in this mode
2424                 */
2425                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2426                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2427                        return -EINVAL;
2428                }
2429        } else {
2430        }
2431        /* probably more to add here */
2432
2433        return 0;
2434}
2435
2436static int
2437pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2438                     unsigned int cpu, pfarg_context_t *arg)
2439{
2440        pfm_buffer_fmt_t *fmt = NULL;
2441        unsigned long size = 0UL;
2442        void *uaddr = NULL;
2443        void *fmt_arg = NULL;
2444        int ret = 0;
2445#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2446
2447        /* invoke and lock buffer format, if found */
2448        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2449        if (fmt == NULL) {
2450                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2451                return -EINVAL;
2452        }
2453
2454        /*
2455         * buffer argument MUST be contiguous to pfarg_context_t
2456         */
2457        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2458
2459        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2460
2461        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2462
2463        if (ret) goto error;
2464
2465        /* link buffer format and context */
2466        ctx->ctx_buf_fmt = fmt;
2467        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2468
2469        /*
2470         * check if buffer format wants to use perfmon buffer allocation/mapping service
2471         */
2472        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2473        if (ret) goto error;
2474
2475        if (size) {
2476                /*
2477                 * buffer is always remapped into the caller's address space
2478                 */
2479                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2480                if (ret) goto error;
2481
2482                /* keep track of user address of buffer */
2483                arg->ctx_smpl_vaddr = uaddr;
2484        }
2485        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2486
2487error:
2488        return ret;
2489}
2490
2491static void
2492pfm_reset_pmu_state(pfm_context_t *ctx)
2493{
2494        int i;
2495
2496        /*
2497         * install reset values for PMC.
2498         */
2499        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2500                if (PMC_IS_IMPL(i) == 0) continue;
2501                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2502                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2503        }
2504        /*
2505         * PMD registers are set to 0UL when the context in memset()
2506         */
2507
2508        /*
2509         * On context switched restore, we must restore ALL pmc and ALL pmd even
2510         * when they are not actively used by the task. In UP, the incoming process
2511         * may otherwise pick up left over PMC, PMD state from the previous process.
2512         * As opposed to PMD, stale PMC can cause harm to the incoming
2513         * process because they may change what is being measured.
2514         * Therefore, we must systematically reinstall the entire
2515         * PMC state. In SMP, the same thing is possible on the
2516         * same CPU but also on between 2 CPUs.
2517         *
2518         * The problem with PMD is information leaking especially
2519         * to user level when psr.sp=0
2520         *
2521         * There is unfortunately no easy way to avoid this problem
2522         * on either UP or SMP. This definitively slows down the
2523         * pfm_load_regs() function.
2524         */
2525
2526         /*
2527          * bitmask of all PMCs accessible to this context
2528          *
2529          * PMC0 is treated differently.
2530          */
2531        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2532
2533        /*
2534         * bitmask of all PMDs that are accessible to this context
2535         */
2536        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2537
2538        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2539
2540        /*
2541         * useful in case of re-enable after disable
2542         */
2543        ctx->ctx_used_ibrs[0] = 0UL;
2544        ctx->ctx_used_dbrs[0] = 0UL;
2545}
2546
2547static int
2548pfm_ctx_getsize(void *arg, size_t *sz)
2549{
2550        pfarg_context_t *req = (pfarg_context_t *)arg;
2551        pfm_buffer_fmt_t *fmt;
2552
2553        *sz = 0;
2554
2555        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2556
2557        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2558        if (fmt == NULL) {
2559                DPRINT(("cannot find buffer format\n"));
2560                return -EINVAL;
2561        }
2562        /* get just enough to copy in user parameters */
2563        *sz = fmt->fmt_arg_size;
2564        DPRINT(("arg_size=%lu\n", *sz));
2565
2566        return 0;
2567}
2568
2569
2570
2571/*
2572 * cannot attach if :
2573 *      - kernel task
2574 *      - task not owned by caller
2575 *      - task incompatible with context mode
2576 */
2577static int
2578pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2579{
2580        /*
2581         * no kernel task or task not owner by caller
2582         */
2583        if (task->mm == NULL) {
2584                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2585                return -EPERM;
2586        }
2587        if (pfm_bad_permissions(task)) {
2588                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2589                return -EPERM;
2590        }
2591        /*
2592         * cannot block in self-monitoring mode
2593         */
2594        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2595                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2596                return -EINVAL;
2597        }
2598
2599        if (task->exit_state == EXIT_ZOMBIE) {
2600                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2601                return -EBUSY;
2602        }
2603
2604        /*
2605         * always ok for self
2606         */
2607        if (task == current) return 0;
2608
2609        if (!task_is_stopped_or_traced(task)) {
2610                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2611                return -EBUSY;
2612        }
2613        /*
2614         * make sure the task is off any CPU
2615         */
2616        wait_task_inactive(task, 0);
2617
2618        /* more to come... */
2619
2620        return 0;
2621}
2622
2623static int
2624pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2625{
2626        struct task_struct *p = current;
2627        int ret;
2628
2629        /* XXX: need to add more checks here */
2630        if (pid < 2) return -EPERM;
2631
2632        if (pid != task_pid_vnr(current)) {
2633
2634                read_lock(&tasklist_lock);
2635
2636                p = find_task_by_vpid(pid);
2637
2638                /* make sure task cannot go away while we operate on it */
2639                if (p) get_task_struct(p);
2640
2641                read_unlock(&tasklist_lock);
2642
2643                if (p == NULL) return -ESRCH;
2644        }
2645
2646        ret = pfm_task_incompatible(ctx, p);
2647        if (ret == 0) {
2648                *task = p;
2649        } else if (p != current) {
2650                pfm_put_task(p);
2651        }
2652        return ret;
2653}
2654
2655
2656
2657static int
2658pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2659{
2660        pfarg_context_t *req = (pfarg_context_t *)arg;
2661        struct file *filp;
2662        struct path path;
2663        int ctx_flags;
2664        int fd;
2665        int ret;
2666
2667        /* let's check the arguments first */
2668        ret = pfarg_is_sane(current, req);
2669        if (ret < 0)
2670                return ret;
2671
2672        ctx_flags = req->ctx_flags;
2673
2674        ret = -ENOMEM;
2675
2676        fd = get_unused_fd();
2677        if (fd < 0)
2678                return fd;
2679
2680        ctx = pfm_context_alloc(ctx_flags);
2681        if (!ctx)
2682                goto error;
2683
2684        filp = pfm_alloc_file(ctx);
2685        if (IS_ERR(filp)) {
2686                ret = PTR_ERR(filp);
2687                goto error_file;
2688        }
2689
2690        req->ctx_fd = ctx->ctx_fd = fd;
2691
2692        /*
2693         * does the user want to sample?
2694         */
2695        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2696                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2697                if (ret)
2698                        goto buffer_error;
2699        }
2700
2701        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2702                ctx,
2703                ctx_flags,
2704                ctx->ctx_fl_system,
2705                ctx->ctx_fl_block,
2706                ctx->ctx_fl_excl_idle,
2707                ctx->ctx_fl_no_msg,
2708                ctx->ctx_fd));
2709
2710        /*
2711         * initialize soft PMU state
2712         */
2713        pfm_reset_pmu_state(ctx);
2714
2715        fd_install(fd, filp);
2716
2717        return 0;
2718
2719buffer_error:
2720        path = filp->f_path;
2721        put_filp(filp);
2722        path_put(&path);
2723
2724        if (ctx->ctx_buf_fmt) {
2725                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2726        }
2727error_file:
2728        pfm_context_free(ctx);
2729
2730error:
2731        put_unused_fd(fd);
2732        return ret;
2733}
2734
2735static inline unsigned long
2736pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2737{
2738        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2739        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2740        extern unsigned long carta_random32 (unsigned long seed);
2741
2742        if (reg->flags & PFM_REGFL_RANDOM) {
2743                new_seed = carta_random32(old_seed);
2744                val -= (old_seed & mask);       /* counter values are negative numbers! */
2745                if ((mask >> 32) != 0)
2746                        /* construct a full 64-bit random value: */
2747                        new_seed |= carta_random32(old_seed >> 32) << 32;
2748                reg->seed = new_seed;
2749        }
2750        reg->lval = val;
2751        return val;
2752}
2753
2754static void
2755pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2756{
2757        unsigned long mask = ovfl_regs[0];
2758        unsigned long reset_others = 0UL;
2759        unsigned long val;
2760        int i;
2761
2762        /*
2763         * now restore reset value on sampling overflowed counters
2764         */
2765        mask >>= PMU_FIRST_COUNTER;
2766        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2767
2768                if ((mask & 0x1UL) == 0UL) continue;
2769
2770                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2771                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2772
2773                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2774        }
2775
2776        /*
2777         * Now take care of resetting the other registers
2778         */
2779        for(i = 0; reset_others; i++, reset_others >>= 1) {
2780
2781                if ((reset_others & 0x1) == 0) continue;
2782
2783                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2784
2785                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2786                          is_long_reset ? "long" : "short", i, val));
2787        }
2788}
2789
2790static void
2791pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2792{
2793        unsigned long mask = ovfl_regs[0];
2794        unsigned long reset_others = 0UL;
2795        unsigned long val;
2796        int i;
2797
2798        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2799
2800        if (ctx->ctx_state == PFM_CTX_MASKED) {
2801                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2802                return;
2803        }
2804
2805        /*
2806         * now restore reset value on sampling overflowed counters
2807         */
2808        mask >>= PMU_FIRST_COUNTER;
2809        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2810
2811                if ((mask & 0x1UL) == 0UL) continue;
2812
2813                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2814                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2815
2816                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2817
2818                pfm_write_soft_counter(ctx, i, val);
2819        }
2820
2821        /*
2822         * Now take care of resetting the other registers
2823         */
2824        for(i = 0; reset_others; i++, reset_others >>= 1) {
2825
2826                if ((reset_others & 0x1) == 0) continue;
2827
2828                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2829
2830                if (PMD_IS_COUNTING(i)) {
2831                        pfm_write_soft_counter(ctx, i, val);
2832                } else {
2833                        ia64_set_pmd(i, val);
2834                }
2835                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2836                          is_long_reset ? "long" : "short", i, val));
2837        }
2838        ia64_srlz_d();
2839}
2840
2841static int
2842pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2843{
2844        struct task_struct *task;
2845        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2846        unsigned long value, pmc_pm;
2847        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2848        unsigned int cnum, reg_flags, flags, pmc_type;
2849        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2850        int is_monitor, is_counting, state;
2851        int ret = -EINVAL;
2852        pfm_reg_check_t wr_func;
2853#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2854
2855        state     = ctx->ctx_state;
2856        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2857        is_system = ctx->ctx_fl_system;
2858        task      = ctx->ctx_task;
2859        impl_pmds = pmu_conf->impl_pmds[0];
2860
2861        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2862
2863        if (is_loaded) {
2864                /*
2865                 * In system wide and when the context is loaded, access can only happen
2866                 * when the caller is running on the CPU being monitored by the session.
2867                 * It does not have to be the owner (ctx_task) of the context per se.
2868                 */
2869                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2870                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2871                        return -EBUSY;
2872                }
2873                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2874        }
2875        expert_mode = pfm_sysctl.expert_mode; 
2876
2877        for (i = 0; i < count; i++, req++) {
2878
2879                cnum       = req->reg_num;
2880                reg_flags  = req->reg_flags;
2881                value      = req->reg_value;
2882                smpl_pmds  = req->reg_smpl_pmds[0];
2883                reset_pmds = req->reg_reset_pmds[0];
2884                flags      = 0;
2885
2886
2887                if (cnum >= PMU_MAX_PMCS) {
2888                        DPRINT(("pmc%u is invalid\n", cnum));
2889                        goto error;
2890                }
2891
2892                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2893                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2894                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2895                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2896
2897                /*
2898                 * we reject all non implemented PMC as well
2899                 * as attempts to modify PMC[0-3] which are used
2900                 * as status registers by the PMU
2901                 */
2902                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2903                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2904                        goto error;
2905                }
2906                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2907                /*
2908                 * If the PMC is a monitor, then if the value is not the default:
2909                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2910                 *      - per-task           : PMCx.pm=0 (user monitor)
2911                 */
2912                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2913                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2914                                cnum,
2915                                pmc_pm,
2916                                is_system));
2917                        goto error;
2918                }
2919
2920                if (is_counting) {
2921                        /*
2922                         * enforce generation of overflow interrupt. Necessary on all
2923                         * CPUs.
2924                         */
2925                        value |= 1 << PMU_PMC_OI;
2926
2927                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2928                                flags |= PFM_REGFL_OVFL_NOTIFY;
2929                        }
2930
2931                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2932
2933                        /* verify validity of smpl_pmds */
2934                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2935                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2936                                goto error;
2937                        }
2938
2939                        /* verify validity of reset_pmds */
2940                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2941                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2942                                goto error;
2943                        }
2944                } else {
2945                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2946                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2947                                goto error;
2948                        }
2949                        /* eventid on non-counting monitors are ignored */
2950                }
2951
2952                /*
2953                 * execute write checker, if any
2954                 */
2955                if (likely(expert_mode == 0 && wr_func)) {
2956                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2957                        if (ret) goto error;
2958                        ret = -EINVAL;
2959                }
2960
2961                /*
2962                 * no error on this register
2963                 */
2964                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2965
2966                /*
2967                 * Now we commit the changes to the software state
2968                 */
2969
2970                /*
2971                 * update overflow information
2972                 */
2973                if (is_counting) {
2974                        /*
2975                         * full flag update each time a register is programmed
2976                         */
2977                        ctx->ctx_pmds[cnum].flags = flags;
2978
2979                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2980                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2981                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2982
2983                        /*
2984                         * Mark all PMDS to be accessed as used.
2985                         *
2986                         * We do not keep track of PMC because we have to
2987                         * systematically restore ALL of them.
2988                         *
2989                         * We do not update the used_monitors mask, because
2990                         * if we have not programmed them, then will be in
2991                         * a quiescent state, therefore we will not need to
2992                         * mask/restore then when context is MASKED.
2993                         */
2994                        CTX_USED_PMD(ctx, reset_pmds);
2995                        CTX_USED_PMD(ctx, smpl_pmds);
2996                        /*
2997                         * make sure we do not try to reset on
2998                         * restart because we have established new values
2999                         */
3000                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3001                }
3002                /*
3003                 * Needed in case the user does not initialize the equivalent
3004                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3005                 * possible leak here.
3006                 */
3007                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3008
3009                /*
3010                 * keep track of the monitor PMC that we are using.
3011                 * we save the value of the pmc in ctx_pmcs[] and if
3012                 * the monitoring is not stopped for the context we also
3013                 * place it in the saved state area so that it will be
3014                 * picked up later by the context switch code.
3015                 *
3016                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3017                 *
3018                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3019                 * monitoring needs to be stopped.
3020                 */
3021                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3022
3023                /*
3024                 * update context state
3025                 */
3026                ctx->ctx_pmcs[cnum] = value;
3027
3028                if (is_loaded) {
3029                        /*
3030                         * write thread state
3031                         */
3032                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3033
3034                        /*
3035                         * write hardware register if we can
3036                         */
3037                        if (can_access_pmu) {
3038                                ia64_set_pmc(cnum, value);
3039                        }
3040#ifdef CONFIG_SMP
3041                        else {
3042                                /*
3043                                 * per-task SMP only here
3044                                 *
3045                                 * we are guaranteed that the task is not running on the other CPU,
3046                                 * we indicate that this PMD will need to be reloaded if the task
3047                                 * is rescheduled on the CPU it ran last on.
3048                                 */
3049                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3050                        }
3051#endif
3052                }
3053
3054                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3055                          cnum,
3056                          value,
3057                          is_loaded,
3058                          can_access_pmu,
3059                          flags,
3060                          ctx->ctx_all_pmcs[0],
3061                          ctx->ctx_used_pmds[0],
3062                          ctx->ctx_pmds[cnum].eventid,
3063                          smpl_pmds,
3064                          reset_pmds,
3065                          ctx->ctx_reload_pmcs[0],
3066                          ctx->ctx_used_monitors[0],
3067                          ctx->ctx_ovfl_regs[0]));
3068        }
3069
3070        /*
3071         * make sure the changes are visible
3072         */
3073        if (can_access_pmu) ia64_srlz_d();
3074
3075        return 0;
3076error:
3077        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3078        return ret;
3079}
3080
3081static int
3082pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3083{
3084        struct task_struct *task;
3085        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3086        unsigned long value, hw_value, ovfl_mask;
3087        unsigned int cnum;
3088        int i, can_access_pmu = 0, state;
3089        int is_counting, is_loaded, is_system, expert_mode;
3090        int ret = -EINVAL;
3091        pfm_reg_check_t wr_func;
3092
3093
3094        state     = ctx->ctx_state;
3095        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3096        is_system = ctx->ctx_fl_system;
3097        ovfl_mask = pmu_conf->ovfl_val;
3098        task      = ctx->ctx_task;
3099
3100        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3101
3102        /*
3103         * on both UP and SMP, we can only write to the PMC when the task is
3104         * the owner of the local PMU.
3105         */
3106        if (likely(is_loaded)) {
3107                /*
3108                 * In system wide and when the context is loaded, access can only happen
3109                 * when the caller is running on the CPU being monitored by the session.
3110                 * It does not have to be the owner (ctx_task) of the context per se.
3111                 */
3112                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3113                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3114                        return -EBUSY;
3115                }
3116                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3117        }
3118        expert_mode = pfm_sysctl.expert_mode; 
3119
3120        for (i = 0; i < count; i++, req++) {
3121
3122                cnum  = req->reg_num;
3123                value = req->reg_value;
3124
3125                if (!PMD_IS_IMPL(cnum)) {
3126                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3127                        goto abort_mission;
3128                }
3129                is_counting = PMD_IS_COUNTING(cnum);
3130                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3131
3132                /*
3133                 * execute write checker, if any
3134                 */
3135                if (unlikely(expert_mode == 0 && wr_func)) {
3136                        unsigned long v = value;
3137
3138                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3139                        if (ret) goto abort_mission;
3140
3141                        value = v;
3142                        ret   = -EINVAL;
3143                }
3144
3145                /*
3146                 * no error on this register
3147                 */
3148                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3149
3150                /*
3151                 * now commit changes to software state
3152                 */
3153                hw_value = value;
3154
3155                /*
3156                 * update virtualized (64bits) counter
3157                 */
3158                if (is_counting) {
3159                        /*
3160                         * write context state
3161                         */
3162                        ctx->ctx_pmds[cnum].lval = value;
3163
3164                        /*
3165                         * when context is load we use the split value
3166                         */
3167                        if (is_loaded) {
3168                                hw_value = value &  ovfl_mask;
3169                                value    = value & ~ovfl_mask;
3170                        }
3171                }
3172                /*
3173                 * update reset values (not just for counters)
3174                 */
3175                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3176                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3177
3178                /*
3179                 * update randomization parameters (not just for counters)
3180                 */
3181                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3182                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3183
3184                /*
3185                 * update context value
3186                 */
3187                ctx->ctx_pmds[cnum].val  = value;
3188
3189                /*
3190                 * Keep track of what we use
3191                 *
3192                 * We do not keep track of PMC because we have to
3193                 * systematically restore ALL of them.
3194                 */
3195                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3196
3197                /*
3198                 * mark this PMD register used as well
3199                 */
3200                CTX_USED_PMD(ctx, RDEP(cnum));
3201
3202                /*
3203                 * make sure we do not try to reset on
3204                 * restart because we have established new values
3205                 */
3206                if (is_counting && state == PFM_CTX_MASKED) {
3207                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3208                }
3209
3210                if (is_loaded) {
3211                        /*
3212                         * write thread state
3213                         */
3214                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3215
3216                        /*
3217                         * write hardware register if we can
3218                         */
3219                        if (can_access_pmu) {
3220                                ia64_set_pmd(cnum, hw_value);
3221                        } else {
3222#ifdef CONFIG_SMP
3223                                /*
3224                                 * we are guaranteed that the task is not running on the other CPU,
3225                                 * we indicate that this PMD will need to be reloaded if the task
3226                                 * is rescheduled on the CPU it ran last on.
3227                                 */
3228                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3229#endif
3230                        }
3231                }
3232
3233                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3234                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3235                        cnum,
3236                        value,
3237                        is_loaded,
3238                        can_access_pmu,
3239                        hw_value,
3240                        ctx->ctx_pmds[cnum].val,
3241                        ctx->ctx_pmds[cnum].short_reset,
3242                        ctx->ctx_pmds[cnum].long_reset,
3243                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3244                        ctx->ctx_pmds[cnum].seed,
3245                        ctx->ctx_pmds[cnum].mask,
3246                        ctx->ctx_used_pmds[0],
3247                        ctx->ctx_pmds[cnum].reset_pmds[0],
3248                        ctx->ctx_reload_pmds[0],
3249                        ctx->ctx_all_pmds[0],
3250                        ctx->ctx_ovfl_regs[0]));
3251        }
3252
3253        /*
3254         * make changes visible
3255         */
3256        if (can_access_pmu) ia64_srlz_d();
3257
3258        return 0;
3259
3260abort_mission:
3261        /*
3262         * for now, we have only one possibility for error
3263         */
3264        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3265        return ret;
3266}
3267
3268/*
3269 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3270 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3271 * interrupt is delivered during the call, it will be kept pending until we leave, making
3272 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3273 * guaranteed to return consistent data to the user, it may simply be old. It is not
3274 * trivial to treat the overflow while inside the call because you may end up in
3275 * some module sampling buffer code causing deadlocks.
3276 */
3277static int
3278pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3279{
3280        struct task_struct *task;
3281        unsigned long val = 0UL, lval, ovfl_mask, sval;
3282        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3283        unsigned int cnum, reg_flags = 0;
3284        int i, can_access_pmu = 0, state;
3285        int is_loaded, is_system, is_counting, expert_mode;
3286        int ret = -EINVAL;
3287        pfm_reg_check_t rd_func;
3288
3289        /*
3290         * access is possible when loaded only for
3291         * self-monitoring tasks or in UP mode
3292         */
3293
3294        state     = ctx->ctx_state;
3295        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3296        is_system = ctx->ctx_fl_system;
3297        ovfl_mask = pmu_conf->ovfl_val;
3298        task      = ctx->ctx_task;
3299
3300        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3301
3302        if (likely(is_loaded)) {
3303                /*
3304                 * In system wide and when the context is loaded, access can only happen
3305                 * when the caller is running on the CPU being monitored by the session.
3306                 * It does not have to be the owner (ctx_task) of the context per se.
3307                 */
3308                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3309                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3310                        return -EBUSY;
3311                }
3312                /*
3313                 * this can be true when not self-monitoring only in UP
3314                 */
3315                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3316
3317                if (can_access_pmu) ia64_srlz_d();
3318        }
3319        expert_mode = pfm_sysctl.expert_mode; 
3320
3321        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3322                is_loaded,
3323                can_access_pmu,
3324                state));
3325
3326        /*
3327         * on both UP and SMP, we can only read the PMD from the hardware register when
3328         * the task is the owner of the local PMU.
3329         */
3330
3331        for (i = 0; i < count; i++, req++) {
3332
3333                cnum        = req->reg_num;
3334                reg_flags   = req->reg_flags;
3335
3336                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3337                /*
3338                 * we can only read the register that we use. That includes
3339                 * the one we explicitly initialize AND the one we want included
3340                 * in the sampling buffer (smpl_regs).
3341                 *
3342                 * Having this restriction allows optimization in the ctxsw routine
3343                 * without compromising security (leaks)
3344                 */
3345                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3346
3347                sval        = ctx->ctx_pmds[cnum].val;
3348                lval        = ctx->ctx_pmds[cnum].lval;
3349                is_counting = PMD_IS_COUNTING(cnum);
3350
3351                /*
3352                 * If the task is not the current one, then we check if the
3353                 * PMU state is still in the local live register due to lazy ctxsw.
3354                 * If true, then we read directly from the registers.
3355                 */
3356                if (can_access_pmu){
3357                        val = ia64_get_pmd(cnum);
3358                } else {
3359                        /*
3360                         * context has been saved
3361                         * if context is zombie, then task does not exist anymore.
3362                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3363                         */
3364                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3365                }
3366                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3367
3368                if (is_counting) {
3369                        /*
3370                         * XXX: need to check for overflow when loaded
3371                         */
3372                        val &= ovfl_mask;
3373                        val += sval;
3374                }
3375
3376                /*
3377                 * execute read checker, if any
3378                 */
3379                if (unlikely(expert_mode == 0 && rd_func)) {
3380                        unsigned long v = val;
3381                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3382                        if (ret) goto error;
3383                        val = v;
3384                        ret = -EINVAL;
3385                }
3386
3387                PFM_REG_RETFLAG_SET(reg_flags, 0);
3388
3389                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3390
3391                /*
3392                 * update register return value, abort all if problem during copy.
3393                 * we only modify the reg_flags field. no check mode is fine because
3394                 * access has been verified upfront in sys_perfmonctl().
3395                 */
3396                req->reg_value            = val;
3397                req->reg_flags            = reg_flags;
3398                req->reg_last_reset_val   = lval;
3399        }
3400
3401        return 0;
3402
3403error:
3404        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3405        return ret;
3406}
3407
3408int
3409pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3410{
3411        pfm_context_t *ctx;
3412
3413        if (req == NULL) return -EINVAL;
3414
3415        ctx = GET_PMU_CTX();
3416
3417        if (ctx == NULL) return -EINVAL;
3418
3419        /*
3420         * for now limit to current task, which is enough when calling
3421         * from overflow handler
3422         */
3423        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3424
3425        return pfm_write_pmcs(ctx, req, nreq, regs);
3426}
3427EXPORT_SYMBOL(pfm_mod_write_pmcs);
3428
3429int
3430pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3431{
3432        pfm_context_t *ctx;
3433
3434        if (req == NULL) return -EINVAL;
3435
3436        ctx = GET_PMU_CTX();
3437
3438        if (ctx == NULL) return -EINVAL;
3439
3440        /*
3441         * for now limit to current task, which is enough when calling
3442         * from overflow handler
3443         */
3444        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3445
3446        return pfm_read_pmds(ctx, req, nreq, regs);
3447}
3448EXPORT_SYMBOL(pfm_mod_read_pmds);
3449
3450/*
3451 * Only call this function when a process it trying to
3452 * write the debug registers (reading is always allowed)
3453 */
3454int
3455pfm_use_debug_registers(struct task_struct *task)
3456{
3457        pfm_context_t *ctx = task->thread.pfm_context;
3458        unsigned long flags;
3459        int ret = 0;
3460
3461        if (pmu_conf->use_rr_dbregs == 0) return 0;
3462
3463        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3464
3465        /*
3466         * do it only once
3467         */
3468        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3469
3470        /*
3471         * Even on SMP, we do not need to use an atomic here because
3472         * the only way in is via ptrace() and this is possible only when the
3473         * process is stopped. Even in the case where the ctxsw out is not totally
3474         * completed by the time we come here, there is no way the 'stopped' process
3475         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3476         * So this is always safe.
3477         */
3478        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3479
3480        LOCK_PFS(flags);
3481
3482        /*
3483         * We cannot allow setting breakpoints when system wide monitoring
3484         * sessions are using the debug registers.
3485         */
3486        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3487                ret = -1;
3488        else
3489                pfm_sessions.pfs_ptrace_use_dbregs++;
3490
3491        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3492                  pfm_sessions.pfs_ptrace_use_dbregs,
3493                  pfm_sessions.pfs_sys_use_dbregs,
3494                  task_pid_nr(task), ret));
3495
3496        UNLOCK_PFS(flags);
3497
3498        return ret;
3499}
3500
3501/*
3502 * This function is called for every task that exits with the
3503 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3504 * able to use the debug registers for debugging purposes via
3505 * ptrace(). Therefore we know it was not using them for
3506 * performance monitoring, so we only decrement the number
3507 * of "ptraced" debug register users to keep the count up to date
3508 */
3509int
3510pfm_release_debug_registers(struct task_struct *task)
3511{
3512        unsigned long flags;
3513        int ret;
3514
3515        if (pmu_conf->use_rr_dbregs == 0) return 0;
3516
3517        LOCK_PFS(flags);
3518        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3519                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3520                ret = -1;
3521        }  else {
3522                pfm_sessions.pfs_ptrace_use_dbregs--;
3523                ret = 0;
3524        }
3525        UNLOCK_PFS(flags);
3526
3527        return ret;
3528}
3529
3530static int
3531pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3532{
3533        struct task_struct *task;
3534        pfm_buffer_fmt_t *fmt;
3535        pfm_ovfl_ctrl_t rst_ctrl;
3536        int state, is_system;
3537        int ret = 0;
3538
3539        state     = ctx->ctx_state;
3540        fmt       = ctx->ctx_buf_fmt;
3541        is_system = ctx->ctx_fl_system;
3542        task      = PFM_CTX_TASK(ctx);
3543
3544        switch(state) {
3545                case PFM_CTX_MASKED:
3546                        break;
3547                case PFM_CTX_LOADED: 
3548                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3549                        /* fall through */
3550                case PFM_CTX_UNLOADED:
3551                case PFM_CTX_ZOMBIE:
3552                        DPRINT(("invalid state=%d\n", state));
3553                        return -EBUSY;
3554                default:
3555                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3556                        return -EINVAL;
3557        }
3558
3559        /*
3560         * In system wide and when the context is loaded, access can only happen
3561         * when the caller is running on the CPU being monitored by the session.
3562         * It does not have to be the owner (ctx_task) of the context per se.
3563         */
3564        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3565                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3566                return -EBUSY;
3567        }
3568
3569        /* sanity check */
3570        if (unlikely(task == NULL)) {
3571                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3572                return -EINVAL;
3573        }
3574
3575        if (task == current || is_system) {
3576
3577                fmt = ctx->ctx_buf_fmt;
3578
3579                DPRINT(("restarting self %d ovfl=0x%lx\n",
3580                        task_pid_nr(task),
3581                        ctx->ctx_ovfl_regs[0]));
3582
3583                if (CTX_HAS_SMPL(ctx)) {
3584
3585                        prefetch(ctx->ctx_smpl_hdr);
3586
3587                        rst_ctrl.bits.mask_monitoring = 0;
3588                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3589
3590                        if (state == PFM_CTX_LOADED)
3591                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3592                        else
3593                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3594                } else {
3595                        rst_ctrl.bits.mask_monitoring = 0;
3596                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3597                }
3598
3599                if (ret == 0) {
3600                        if (rst_ctrl.bits.reset_ovfl_pmds)
3601                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3602
3603                        if (rst_ctrl.bits.mask_monitoring == 0) {
3604                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3605
3606                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3607                        } else {
3608                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3609
3610                                // cannot use pfm_stop_monitoring(task, regs);
3611                        }
3612                }
3613                /*
3614                 * clear overflowed PMD mask to remove any stale information
3615                 */
3616                ctx->ctx_ovfl_regs[0] = 0UL;
3617
3618                /*
3619                 * back to LOADED state
3620                 */
3621                ctx->ctx_state = PFM_CTX_LOADED;
3622
3623                /*
3624                 * XXX: not really useful for self monitoring
3625                 */
3626                ctx->ctx_fl_can_restart = 0;
3627
3628                return 0;
3629        }
3630
3631        /* 
3632         * restart another task
3633         */
3634
3635        /*
3636         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3637         * one is seen by the task.
3638         */
3639        if (state == PFM_CTX_MASKED) {
3640                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3641                /*
3642                 * will prevent subsequent restart before this one is
3643                 * seen by other task
3644                 */
3645                ctx->ctx_fl_can_restart = 0;
3646        }
3647
3648        /*
3649         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3650         * the task is blocked or on its way to block. That's the normal
3651         * restart path. If the monitoring is not masked, then the task
3652         * can be actively monitoring and we cannot directly intervene.
3653         * Therefore we use the trap mechanism to catch the task and
3654         * force it to reset the buffer/reset PMDs.
3655         *
3656         * if non-blocking, then we ensure that the task will go into
3657         * pfm_handle_work() before returning to user mode.
3658         *
3659         * We cannot explicitly reset another task, it MUST always
3660         * be done by the task itself. This works for system wide because
3661         * the tool that is controlling the session is logically doing 
3662         * "self-monitoring".
3663         */
3664        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3665                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3666                complete(&ctx->ctx_restart_done);
3667        } else {
3668                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3669
3670                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3671
3672                PFM_SET_WORK_PENDING(task, 1);
3673
3674                set_notify_resume(task);
3675
3676                /*
3677                 * XXX: send reschedule if task runs on another CPU
3678                 */
3679        }
3680        return 0;
3681}
3682
3683static int
3684pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3685{
3686        unsigned int m = *(unsigned int *)arg;
3687
3688        pfm_sysctl.debug = m == 0 ? 0 : 1;
3689
3690        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3691
3692        if (m == 0) {
3693                memset(pfm_stats, 0, sizeof(pfm_stats));
3694                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3695        }
3696        return 0;
3697}
3698
3699/*
3700 * arg can be NULL and count can be zero for this function
3701 */
3702static int
3703pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3704{
3705        struct thread_struct *thread = NULL;
3706        struct task_struct *task;
3707        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3708        unsigned long flags;
3709        dbreg_t dbreg;
3710        unsigned int rnum;
3711        int first_time;
3712        int ret = 0, state;
3713        int i, can_access_pmu = 0;
3714        int is_system, is_loaded;
3715
3716        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3717
3718        state     = ctx->ctx_state;
3719        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3720        is_system = ctx->ctx_fl_system;
3721        task      = ctx->ctx_task;
3722
3723        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3724
3725        /*
3726         * on both UP and SMP, we can only write to the PMC when the task is
3727         * the owner of the local PMU.
3728         */
3729        if (is_loaded) {
3730                thread = &task->thread;
3731                /*
3732                 * In system wide and when the context is loaded, access can only happen
3733                 * when the caller is running on the CPU being monitored by the session.
3734                 * It does not have to be the owner (ctx_task) of the context per se.
3735                 */
3736                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3737                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3738                        return -EBUSY;
3739                }
3740                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3741        }
3742
3743        /*
3744         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3745         * ensuring that no real breakpoint can be installed via this call.
3746         *
3747         * IMPORTANT: regs can be NULL in this function
3748         */
3749
3750        first_time = ctx->ctx_fl_using_dbreg == 0;
3751
3752        /*
3753         * don't bother if we are loaded and task is being debugged
3754         */
3755        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3756                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3757                return -EBUSY;
3758        }
3759
3760        /*
3761         * check for debug registers in system wide mode
3762         *
3763         * If though a check is done in pfm_context_load(),
3764         * we must repeat it here, in case the registers are
3765         * written after the context is loaded
3766         */
3767        if (is_loaded) {
3768                LOCK_PFS(flags);
3769
3770                if (first_time && is_system) {
3771                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3772                                ret = -EBUSY;
3773                        else
3774                                pfm_sessions.pfs_sys_use_dbregs++;
3775                }
3776                UNLOCK_PFS(flags);
3777        }
3778
3779        if (ret != 0) return ret;
3780
3781        /*
3782         * mark ourself as user of the debug registers for
3783         * perfmon purposes.
3784         */
3785        ctx->ctx_fl_using_dbreg = 1;
3786
3787        /*
3788         * clear hardware registers to make sure we don't
3789         * pick up stale state.
3790         *
3791         * for a system wide session, we do not use
3792         * thread.dbr, thread.ibr because this process
3793         * never leaves the current CPU and the state
3794         * is shared by all processes running on it
3795         */
3796        if (first_time && can_access_pmu) {
3797                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3798                for (i=0; i < pmu_conf->num_ibrs; i++) {
3799                        ia64_set_ibr(i, 0UL);
3800                        ia64_dv_serialize_instruction();
3801                }
3802                ia64_srlz_i();
3803                for (i=0; i < pmu_conf->num_dbrs; i++) {
3804                        ia64_set_dbr(i, 0UL);
3805                        ia64_dv_serialize_data();
3806                }
3807                ia64_srlz_d();
3808        }
3809
3810        /*
3811         * Now install the values into the registers
3812         */
3813        for (i = 0; i < count; i++, req++) {
3814
3815                rnum      = req->dbreg_num;
3816                dbreg.val = req->dbreg_value;
3817
3818                ret = -EINVAL;
3819
3820                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3821                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3822                                  rnum, dbreg.val, mode, i, count));
3823
3824                        goto abort_mission;
3825                }
3826
3827                /*
3828                 * make sure we do not install enabled breakpoint
3829                 */
3830                if (rnum & 0x1) {
3831                        if (mode == PFM_CODE_RR)
3832                                dbreg.ibr.ibr_x = 0;
3833                        else
3834                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3835                }
3836
3837                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3838
3839                /*
3840                 * Debug registers, just like PMC, can only be modified
3841                 * by a kernel call. Moreover, perfmon() access to those
3842                 * registers are centralized in this routine. The hardware
3843                 * does not modify the value of these registers, therefore,
3844                 * if we save them as they are written, we can avoid having
3845                 * to save them on context switch out. This is made possible
3846                 * by the fact that when perfmon uses debug registers, ptrace()
3847                 * won't be able to modify them concurrently.
3848                 */
3849                if (mode == PFM_CODE_RR) {
3850                        CTX_USED_IBR(ctx, rnum);
3851
3852                        if (can_access_pmu) {
3853                                ia64_set_ibr(rnum, dbreg.val);
3854                                ia64_dv_serialize_instruction();
3855                        }
3856
3857                        ctx->ctx_ibrs[rnum] = dbreg.val;
3858
3859                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3860                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3861                } else {
3862                        CTX_USED_DBR(ctx, rnum);
3863
3864                        if (can_access_pmu) {
3865                                ia64_set_dbr(rnum, dbreg.val);
3866                                ia64_dv_serialize_data();
3867                        }
3868                        ctx->ctx_dbrs[rnum] = dbreg.val;
3869
3870                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3871                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3872                }
3873        }
3874
3875        return 0;
3876
3877abort_mission:
3878        /*
3879         * in case it was our first attempt, we undo the global modifications
3880         */
3881        if (first_time) {
3882                LOCK_PFS(flags);
3883                if (ctx->ctx_fl_system) {
3884                        pfm_sessions.pfs_sys_use_dbregs--;
3885                }
3886                UNLOCK_PFS(flags);
3887                ctx->ctx_fl_using_dbreg = 0;
3888        }
3889        /*
3890         * install error return flag
3891         */
3892        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3893
3894        return ret;
3895}
3896
3897static int
3898pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3899{
3900        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3901}
3902
3903static int
3904pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3905{
3906        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3907}
3908
3909int
3910pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3911{
3912        pfm_context_t *ctx;
3913
3914        if (req == NULL) return -EINVAL;
3915
3916        ctx = GET_PMU_CTX();
3917
3918        if (ctx == NULL) return -EINVAL;
3919
3920        /*
3921         * for now limit to current task, which is enough when calling
3922         * from overflow handler
3923         */
3924        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3925
3926        return pfm_write_ibrs(ctx, req, nreq, regs);
3927}
3928EXPORT_SYMBOL(pfm_mod_write_ibrs);
3929
3930int
3931pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3932{
3933        pfm_context_t *ctx;
3934
3935        if (req == NULL) return -EINVAL;
3936
3937        ctx = GET_PMU_CTX();
3938
3939        if (ctx == NULL) return -EINVAL;
3940
3941        /*
3942         * for now limit to current task, which is enough when calling
3943         * from overflow handler
3944         */
3945        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3946
3947        return pfm_write_dbrs(ctx, req, nreq, regs);
3948}
3949EXPORT_SYMBOL(pfm_mod_write_dbrs);
3950
3951
3952static int
3953pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3954{
3955        pfarg_features_t *req = (pfarg_features_t *)arg;
3956
3957        req->ft_version = PFM_VERSION;
3958        return 0;
3959}
3960
3961static int
3962pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3963{
3964        struct pt_regs *tregs;
3965        struct task_struct *task = PFM_CTX_TASK(ctx);
3966        int state, is_system;
3967
3968        state     = ctx->ctx_state;
3969        is_system = ctx->ctx_fl_system;
3970
3971        /*
3972         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3973         */
3974        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3975
3976        /*
3977         * In system wide and when the context is loaded, access can only happen
3978         * when the caller is running on the CPU being monitored by the session.
3979         * It does not have to be the owner (ctx_task) of the context per se.
3980         */
3981        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3982                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3983                return -EBUSY;
3984        }
3985        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3986                task_pid_nr(PFM_CTX_TASK(ctx)),
3987                state,
3988                is_system));
3989        /*
3990         * in system mode, we need to update the PMU directly
3991         * and the user level state of the caller, which may not
3992         * necessarily be the creator of the context.
3993         */
3994        if (is_system) {
3995                /*
3996                 * Update local PMU first
3997                 *
3998                 * disable dcr pp
3999                 */
4000                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4001                ia64_srlz_i();
4002
4003                /*
4004                 * update local cpuinfo
4005                 */
4006                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4007
4008                /*
4009                 * stop monitoring, does srlz.i
4010                 */
4011                pfm_clear_psr_pp();
4012
4013                /*
4014                 * stop monitoring in the caller
4015                 */
4016                ia64_psr(regs)->pp = 0;
4017
4018                return 0;
4019        }
4020        /*
4021         * per-task mode
4022         */
4023
4024        if (task == current) {
4025                /* stop monitoring  at kernel level */
4026                pfm_clear_psr_up();
4027
4028                /*
4029                 * stop monitoring at the user level
4030                 */
4031                ia64_psr(regs)->up = 0;
4032        } else {
4033                tregs = task_pt_regs(task);
4034
4035                /*
4036                 * stop monitoring at the user level
4037                 */
4038                ia64_psr(tregs)->up = 0;
4039
4040                /*
4041                 * monitoring disabled in kernel at next reschedule
4042                 */
4043                ctx->ctx_saved_psr_up = 0;
4044                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4045        }
4046        return 0;
4047}
4048
4049
4050static int
4051pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4052{
4053        struct pt_regs *tregs;
4054        int state, is_system;
4055
4056        state     = ctx->ctx_state;
4057        is_system = ctx->ctx_fl_system;
4058
4059        if (state != PFM_CTX_LOADED) return -EINVAL;
4060
4061        /*
4062         * In system wide and when the context is loaded, access can only happen
4063         * when the caller is running on the CPU being monitored by the session.
4064         * It does not have to be the owner (ctx_task) of the context per se.
4065         */
4066        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4067                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4068                return -EBUSY;
4069        }
4070
4071        /*
4072         * in system mode, we need to update the PMU directly
4073         * and the user level state of the caller, which may not
4074         * necessarily be the creator of the context.
4075         */
4076        if (is_system) {
4077
4078                /*
4079                 * set user level psr.pp for the caller
4080                 */
4081                ia64_psr(regs)->pp = 1;
4082
4083                /*
4084                 * now update the local PMU and cpuinfo
4085                 */
4086                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4087
4088                /*
4089                 * start monitoring at kernel level
4090                 */
4091                pfm_set_psr_pp();
4092
4093                /* enable dcr pp */
4094                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4095                ia64_srlz_i();
4096
4097                return 0;
4098        }
4099
4100        /*
4101         * per-process mode
4102         */
4103
4104        if (ctx->ctx_task == current) {
4105
4106                /* start monitoring at kernel level */
4107                pfm_set_psr_up();
4108
4109                /*
4110                 * activate monitoring at user level
4111                 */
4112                ia64_psr(regs)->up = 1;
4113
4114        } else {
4115                tregs = task_pt_regs(ctx->ctx_task);
4116
4117                /*
4118                 * start monitoring at the kernel level the next
4119                 * time the task is scheduled
4120                 */
4121                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4122
4123                /*
4124                 * activate monitoring at user level
4125                 */
4126                ia64_psr(tregs)->up = 1;
4127        }
4128        return 0;
4129}
4130
4131static int
4132pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4133{
4134        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4135        unsigned int cnum;
4136        int i;
4137        int ret = -EINVAL;
4138
4139        for (i = 0; i < count; i++, req++) {
4140
4141                cnum = req->reg_num;
4142
4143                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4144
4145                req->reg_value = PMC_DFL_VAL(cnum);
4146
4147                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4148
4149                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4150        }
4151        return 0;
4152
4153abort_mission:
4154        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4155        return ret;
4156}
4157
4158static int
4159pfm_check_task_exist(pfm_context_t *ctx)
4160{
4161        struct task_struct *g, *t;
4162        int ret = -ESRCH;
4163
4164        read_lock(&tasklist_lock);
4165
4166        do_each_thread (g, t) {
4167                if (t->thread.pfm_context == ctx) {
4168                        ret = 0;
4169                        goto out;
4170                }
4171        } while_each_thread (g, t);
4172out:
4173        read_unlock(&tasklist_lock);
4174
4175        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4176
4177        return ret;
4178}
4179
4180static int
4181pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4182{
4183        struct task_struct *task;
4184        struct thread_struct *thread;
4185        struct pfm_context_t *old;
4186        unsigned long flags;
4187#ifndef CONFIG_SMP
4188        struct task_struct *owner_task = NULL;
4189#endif
4190        pfarg_load_t *req = (pfarg_load_t *)arg;
4191        unsigned long *pmcs_source, *pmds_source;
4192        int the_cpu;
4193        int ret = 0;
4194        int state, is_system, set_dbregs = 0;
4195
4196        state     = ctx->ctx_state;
4197        is_system = ctx->ctx_fl_system;
4198        /*
4199         * can only load from unloaded or terminated state
4200         */
4201        if (state != PFM_CTX_UNLOADED) {
4202                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4203                        req->load_pid,
4204                        ctx->ctx_state));
4205                return -EBUSY;
4206        }
4207
4208        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4209
4210        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4211                DPRINT(("cannot use blocking mode on self\n"));
4212                return -EINVAL;
4213        }
4214
4215        ret = pfm_get_task(ctx, req->load_pid, &task);
4216        if (ret) {
4217                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4218                return ret;
4219        }
4220
4221        ret = -EINVAL;
4222
4223        /*
4224         * system wide is self monitoring only
4225         */
4226        if (is_system && task != current) {
4227                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4228                        req->load_pid));
4229                goto error;
4230        }
4231
4232        thread = &task->thread;
4233
4234        ret = 0;
4235        /*
4236         * cannot load a context which is using range restrictions,
4237         * into a task that is being debugged.
4238         */
4239        if (ctx->ctx_fl_using_dbreg) {
4240                if (thread->flags & IA64_THREAD_DBG_VALID) {
4241                        ret = -EBUSY;
4242                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4243                        goto error;
4244                }
4245                LOCK_PFS(flags);
4246
4247                if (is_system) {
4248                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4249                                DPRINT(("cannot load [%d] dbregs in use\n",
4250                                                        task_pid_nr(task)));
4251                                ret = -EBUSY;
4252                        } else {
4253                                pfm_sessions.pfs_sys_use_dbregs++;
4254                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4255                                set_dbregs = 1;
4256                        }
4257                }
4258
4259                UNLOCK_PFS(flags);
4260
4261                if (ret) goto error;
4262        }
4263
4264        /*
4265         * SMP system-wide monitoring implies self-monitoring.
4266         *
4267         * The programming model expects the task to
4268         * be pinned on a CPU throughout the session.
4269         * Here we take note of the current CPU at the
4270         * time the context is loaded. No call from
4271         * another CPU will be allowed.
4272         *
4273         * The pinning via shed_setaffinity()
4274         * must be done by the calling task prior
4275         * to this call.
4276         *
4277         * systemwide: keep track of CPU this session is supposed to run on
4278         */
4279        the_cpu = ctx->ctx_cpu = smp_processor_id();
4280
4281        ret = -EBUSY;
4282        /*
4283         * now reserve the session
4284         */
4285        ret = pfm_reserve_session(current, is_system, the_cpu);
4286        if (ret) goto error;
4287
4288        /*
4289         * task is necessarily stopped at this point.
4290         *
4291         * If the previous context was zombie, then it got removed in
4292         * pfm_save_regs(). Therefore we should not see it here.
4293         * If we see a context, then this is an active context
4294         *
4295         * XXX: needs to be atomic
4296         */
4297        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4298                thread->pfm_context, ctx));
4299
4300        ret = -EBUSY;
4301        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4302        if (old != NULL) {
4303                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4304                goto error_unres;
4305        }
4306
4307        pfm_reset_msgq(ctx);
4308
4309        ctx->ctx_state = PFM_CTX_LOADED;
4310
4311        /*
4312         * link context to task
4313         */
4314        ctx->ctx_task = task;
4315
4316        if (is_system) {
4317                /*
4318                 * we load as stopped
4319                 */
4320                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4321                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4322
4323                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4324        } else {
4325                thread->flags |= IA64_THREAD_PM_VALID;
4326        }
4327
4328        /*
4329         * propagate into thread-state
4330         */
4331        pfm_copy_pmds(task, ctx);
4332        pfm_copy_pmcs(task, ctx);
4333
4334        pmcs_source = ctx->th_pmcs;
4335        pmds_source = ctx->th_pmds;
4336
4337        /*
4338         * always the case for system-wide
4339         */
4340        if (task == current) {
4341
4342                if (is_system == 0) {
4343
4344                        /* allow user level control */
4345                        ia64_psr(regs)->sp = 0;
4346                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4347
4348                        SET_LAST_CPU(ctx, smp_processor_id());
4349                        INC_ACTIVATION();
4350                        SET_ACTIVATION(ctx);
4351#ifndef CONFIG_SMP
4352                        /*
4353                         * push the other task out, if any
4354                         */
4355                        owner_task = GET_PMU_OWNER();
4356                        if (owner_task) pfm_lazy_save_regs(owner_task);
4357#endif
4358                }
4359                /*
4360                 * load all PMD from ctx to PMU (as opposed to thread state)
4361                 * restore all PMC from ctx to PMU
4362                 */
4363                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4364                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4365
4366                ctx->ctx_reload_pmcs[0] = 0UL;
4367                ctx->ctx_reload_pmds[0] = 0UL;
4368
4369                /*
4370                 * guaranteed safe by earlier check against DBG_VALID
4371                 */
4372                if (ctx->ctx_fl_using_dbreg) {
4373                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4374                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4375                }
4376                /*
4377                 * set new ownership
4378                 */
4379                SET_PMU_OWNER(task, ctx);
4380
4381                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4382        } else {
4383                /*
4384                 * when not current, task MUST be stopped, so this is safe
4385                 */
4386                regs = task_pt_regs(task);
4387
4388                /* force a full reload */
4389                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4390                SET_LAST_CPU(ctx, -1);
4391
4392                /* initial saved psr (stopped) */
4393                ctx->ctx_saved_psr_up = 0UL;
4394                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4395        }
4396
4397        ret = 0;
4398
4399error_unres:
4400        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4401error:
4402        /*
4403         * we must undo the dbregs setting (for system-wide)
4404         */
4405        if (ret && set_dbregs) {
4406                LOCK_PFS(flags);
4407                pfm_sessions.pfs_sys_use_dbregs--;
4408                UNLOCK_PFS(flags);
4409        }
4410        /*
4411         * release task, there is now a link with the context
4412         */
4413        if (is_system == 0 && task != current) {
4414                pfm_put_task(task);
4415
4416                if (ret == 0) {
4417                        ret = pfm_check_task_exist(ctx);
4418                        if (ret) {
4419                                ctx->ctx_state = PFM_CTX_UNLOADED;
4420                                ctx->ctx_task  = NULL;
4421                        }
4422                }
4423        }
4424        return ret;
4425}
4426
4427/*
4428 * in this function, we do not need to increase the use count
4429 * for the task via get_task_struct(), because we hold the
4430 * context lock. If the task were to disappear while having
4431 * a context attached, it would go through pfm_exit_thread()
4432 * which also grabs the context lock  and would therefore be blocked
4433 * until we are here.
4434 */
4435static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4436
4437static int
4438pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4439{
4440        struct task_struct *task = PFM_CTX_TASK(ctx);
4441        struct pt_regs *tregs;
4442        int prev_state, is_system;
4443        int ret;
4444
4445        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4446
4447        prev_state = ctx->ctx_state;
4448        is_system  = ctx->ctx_fl_system;
4449
4450        /*
4451         * unload only when necessary
4452         */
4453        if (prev_state == PFM_CTX_UNLOADED) {
4454                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4455                return 0;
4456        }
4457
4458        /*
4459         * clear psr and dcr bits
4460         */
4461        ret = pfm_stop(ctx, NULL, 0, regs);
4462        if (ret) return ret;
4463
4464        ctx->ctx_state = PFM_CTX_UNLOADED;
4465
4466        /*
4467         * in system mode, we need to update the PMU directly
4468         * and the user level state of the caller, which may not
4469         * necessarily be the creator of the context.
4470         */
4471        if (is_system) {
4472
4473                /*
4474                 * Update cpuinfo
4475                 *
4476                 * local PMU is taken care of in pfm_stop()
4477                 */
4478                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4479                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4480
4481                /*
4482                 * save PMDs in context
4483                 * release ownership
4484                 */
4485                pfm_flush_pmds(current, ctx);
4486
4487                /*
4488                 * at this point we are done with the PMU
4489                 * so we can unreserve the resource.
4490                 */
4491                if (prev_state != PFM_CTX_ZOMBIE) 
4492                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4493
4494                /*
4495                 * disconnect context from task
4496                 */
4497                task->thread.pfm_context = NULL;
4498                /*
4499                 * disconnect task from context
4500                 */
4501                ctx->ctx_task = NULL;
4502
4503                /*
4504                 * There is nothing more to cleanup here.
4505                 */
4506                return 0;
4507        }
4508
4509        /*
4510         * per-task mode
4511         */
4512        tregs = task == current ? regs : task_pt_regs(task);
4513
4514        if (task == current) {
4515                /*
4516                 * cancel user level control
4517                 */
4518                ia64_psr(regs)->sp = 1;
4519
4520                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4521        }
4522        /*
4523         * save PMDs to context
4524         * release ownership
4525         */
4526        pfm_flush_pmds(task, ctx);
4527
4528        /*
4529         * at this point we are done with the PMU
4530         * so we can unreserve the resource.
4531         *
4532         * when state was ZOMBIE, we have already unreserved.
4533         */
4534        if (prev_state != PFM_CTX_ZOMBIE) 
4535                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4536
4537        /*
4538         * reset activation counter and psr
4539         */
4540        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4541        SET_LAST_CPU(ctx, -1);
4542
4543        /*
4544         * PMU state will not be restored
4545         */
4546        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4547
4548        /*
4549         * break links between context and task
4550         */
4551        task->thread.pfm_context  = NULL;
4552        ctx->ctx_task             = NULL;
4553
4554        PFM_SET_WORK_PENDING(task, 0);
4555
4556        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4557        ctx->ctx_fl_can_restart  = 0;
4558        ctx->ctx_fl_going_zombie = 0;
4559
4560        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4561
4562        return 0;
4563}
4564
4565
4566/*
4567 * called only from exit_thread(): task == current
4568 * we come here only if current has a context attached (loaded or masked)
4569 */
4570void
4571pfm_exit_thread(struct task_struct *task)
4572{
4573        pfm_context_t *ctx;
4574        unsigned long flags;
4575        struct pt_regs *regs = task_pt_regs(task);
4576        int ret, state;
4577        int free_ok = 0;
4578
4579        ctx = PFM_GET_CTX(task);
4580
4581        PROTECT_CTX(ctx, flags);
4582
4583        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4584
4585        state = ctx->ctx_state;
4586        switch(state) {
4587                case PFM_CTX_UNLOADED:
4588                        /*
4589                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4590                         * be in unloaded state
4591                         */
4592                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4593                        break;
4594                case PFM_CTX_LOADED:
4595                case PFM_CTX_MASKED:
4596                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4597                        if (ret) {
4598                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4599                        }
4600                        DPRINT(("ctx unloaded for current state was %d\n", state));
4601
4602                        pfm_end_notify_user(ctx);
4603                        break;
4604                case PFM_CTX_ZOMBIE:
4605                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4606                        if (ret) {
4607                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4608                        }
4609                        free_ok = 1;
4610                        break;
4611                default:
4612                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4613                        break;
4614        }
4615        UNPROTECT_CTX(ctx, flags);
4616
4617        { u64 psr = pfm_get_psr();
4618          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4619          BUG_ON(GET_PMU_OWNER());
4620          BUG_ON(ia64_psr(regs)->up);
4621          BUG_ON(ia64_psr(regs)->pp);
4622        }
4623
4624        /*
4625         * All memory free operations (especially for vmalloc'ed memory)
4626         * MUST be done with interrupts ENABLED.
4627         */
4628        if (free_ok) pfm_context_free(ctx);
4629}
4630
4631/*
4632 * functions MUST be listed in the increasing order of their index (see permfon.h)
4633 */
4634#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4635#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4636#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4637#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4638#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4639
4640static pfm_cmd_desc_t pfm_cmd_tab[]={
4641/* 0  */PFM_CMD_NONE,
4642/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4643/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4644/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4645/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4646/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4647/* 6  */PFM_CMD_NONE,
4648/* 7  */PFM_CMD_NONE,
4649/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4650/* 9  */PFM_CMD_NONE,
4651/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4652/* 11 */PFM_CMD_NONE,
4653/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4654/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4655/* 14 */PFM_CMD_NONE,
4656/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4657/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4658/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4659/* 18 */PFM_CMD_NONE,
4660/* 19 */PFM_CMD_NONE,
4661/* 20 */PFM_CMD_NONE,
4662/* 21 */PFM_CMD_NONE,
4663/* 22 */PFM_CMD_NONE,
4664/* 23 */PFM_CMD_NONE,
4665/* 24 */PFM_CMD_NONE,
4666/* 25 */PFM_CMD_NONE,
4667/* 26 */PFM_CMD_NONE,
4668/* 27 */PFM_CMD_NONE,
4669/* 28 */PFM_CMD_NONE,
4670/* 29 */PFM_CMD_NONE,
4671/* 30 */PFM_CMD_NONE,
4672/* 31 */PFM_CMD_NONE,
4673/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4674/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4675};
4676#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4677
4678static int
4679pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4680{
4681        struct task_struct *task;
4682        int state, old_state;
4683
4684recheck:
4685        state = ctx->ctx_state;
4686        task  = ctx->ctx_task;
4687
4688        if (task == NULL) {
4689                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4690                return 0;
4691        }
4692
4693        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4694                ctx->ctx_fd,
4695                state,
4696                task_pid_nr(task),
4697                task->state, PFM_CMD_STOPPED(cmd)));
4698
4699        /*
4700         * self-monitoring always ok.
4701         *
4702         * for system-wide the caller can either be the creator of the
4703         * context (to one to which the context is attached to) OR
4704         * a task running on the same CPU as the session.
4705         */
4706        if (task == current || ctx->ctx_fl_system) return 0;
4707
4708        /*
4709         * we are monitoring another thread
4710         */
4711        switch(state) {
4712                case PFM_CTX_UNLOADED:
4713                        /*
4714                         * if context is UNLOADED we are safe to go
4715                         */
4716                        return 0;
4717                case PFM_CTX_ZOMBIE:
4718                        /*
4719                         * no command can operate on a zombie context
4720                         */
4721                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4722                        return -EINVAL;
4723                case PFM_CTX_MASKED:
4724                        /*
4725                         * PMU state has been saved to software even though
4726                         * the thread may still be running.
4727                         */
4728                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4729        }
4730
4731        /*
4732         * context is LOADED or MASKED. Some commands may need to have 
4733         * the task stopped.
4734         *
4735         * We could lift this restriction for UP but it would mean that
4736         * the user has no guarantee the task would not run between
4737         * two successive calls to perfmonctl(). That's probably OK.
4738         * If this user wants to ensure the task does not run, then
4739         * the task must be stopped.
4740         */
4741        if (PFM_CMD_STOPPED(cmd)) {
4742                if (!task_is_stopped_or_traced(task)) {
4743                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4744                        return -EBUSY;
4745                }
4746                /*
4747                 * task is now stopped, wait for ctxsw out
4748                 *
4749                 * This is an interesting point in the code.
4750                 * We need to unprotect the context because
4751                 * the pfm_save_regs() routines needs to grab
4752                 * the same lock. There are danger in doing
4753                 * this because it leaves a window open for
4754                 * another task to get access to the context
4755                 * and possibly change its state. The one thing
4756                 * that is not possible is for the context to disappear
4757                 * because we are protected by the VFS layer, i.e.,
4758                 * get_fd()/put_fd().
4759                 */
4760                old_state = state;
4761
4762                UNPROTECT_CTX(ctx, flags);
4763
4764                wait_task_inactive(task, 0);
4765
4766                PROTECT_CTX(ctx, flags);
4767
4768                /*
4769                 * we must recheck to verify if state has changed
4770                 */
4771                if (ctx->ctx_state != old_state) {
4772                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4773                        goto recheck;
4774                }
4775        }
4776        return 0;
4777}
4778
4779/*
4780 * system-call entry point (must return long)
4781 */
4782asmlinkage long
4783sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4784{
4785        struct file *file = NULL;
4786        pfm_context_t *ctx = NULL;
4787        unsigned long flags = 0UL;
4788        void *args_k = NULL;
4789        long ret; /* will expand int return types */
4790        size_t base_sz, sz, xtra_sz = 0;
4791        int narg, completed_args = 0, call_made = 0, cmd_flags;
4792        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4793        int (*getsize)(void *arg, size_t *sz);
4794#define PFM_MAX_ARGSIZE 4096
4795
4796        /*
4797         * reject any call if perfmon was disabled at initialization
4798         */
4799        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4800
4801        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4802                DPRINT(("invalid cmd=%d\n", cmd));
4803                return -EINVAL;
4804        }
4805
4806        func      = pfm_cmd_tab[cmd].cmd_func;
4807        narg      = pfm_cmd_tab[cmd].cmd_narg;
4808        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4809        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4810        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4811
4812        if (unlikely(func == NULL)) {
4813                DPRINT(("invalid cmd=%d\n", cmd));
4814                return -EINVAL;
4815        }
4816
4817        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4818                PFM_CMD_NAME(cmd),
4819                cmd,
4820                narg,
4821                base_sz,
4822                count));
4823
4824        /*
4825         * check if number of arguments matches what the command expects
4826         */
4827        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4828                return -EINVAL;
4829
4830restart_args:
4831        sz = xtra_sz + base_sz*count;
4832        /*
4833         * limit abuse to min page size
4834         */
4835        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4836                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4837                return -E2BIG;
4838        }
4839
4840        /*
4841         * allocate default-sized argument buffer
4842         */
4843        if (likely(count && args_k == NULL)) {
4844                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4845                if (args_k == NULL) return -ENOMEM;
4846        }
4847
4848        ret = -EFAULT;
4849
4850        /*
4851         * copy arguments
4852         *
4853         * assume sz = 0 for command without parameters
4854         */
4855        if (sz && copy_from_user(args_k, arg, sz)) {
4856                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4857                goto error_args;
4858        }
4859
4860        /*
4861         * check if command supports extra parameters
4862         */
4863        if (completed_args == 0 && getsize) {
4864                /*
4865                 * get extra parameters size (based on main argument)
4866                 */
4867                ret = (*getsize)(args_k, &xtra_sz);
4868                if (ret) goto error_args;
4869
4870                completed_args = 1;
4871
4872                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4873
4874                /* retry if necessary */
4875                if (likely(xtra_sz)) goto restart_args;
4876        }
4877
4878        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4879
4880        ret = -EBADF;
4881
4882        file = fget(fd);
4883        if (unlikely(file == NULL)) {
4884                DPRINT(("invalid fd %d\n", fd));
4885                goto error_args;
4886        }
4887        if (unlikely(PFM_IS_FILE(file) == 0)) {
4888                DPRINT(("fd %d not related to perfmon\n", fd));
4889                goto error_args;
4890        }
4891
4892        ctx = file->private_data;
4893        if (unlikely(ctx == NULL)) {
4894                DPRINT(("no context for fd %d\n", fd));
4895                goto error_args;
4896        }
4897        prefetch(&ctx->ctx_state);
4898
4899        PROTECT_CTX(ctx, flags);
4900
4901        /*
4902         * check task is stopped
4903         */
4904        ret = pfm_check_task_state(ctx, cmd, flags);
4905        if (unlikely(ret)) goto abort_locked;
4906
4907skip_fd:
4908        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4909
4910        call_made = 1;
4911
4912abort_locked:
4913        if (likely(ctx)) {
4914                DPRINT(("context unlocked\n"));
4915                UNPROTECT_CTX(ctx, flags);
4916        }
4917
4918        /* copy argument back to user, if needed */
4919        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4920
4921error_args:
4922        if (file)
4923                fput(file);
4924
4925        kfree(args_k);
4926
4927        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4928
4929        return ret;
4930}
4931
4932static void
4933pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4934{
4935        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4936        pfm_ovfl_ctrl_t rst_ctrl;
4937        int state;
4938        int ret = 0;
4939
4940        state = ctx->ctx_state;
4941        /*
4942         * Unlock sampling buffer and reset index atomically
4943         * XXX: not really needed when blocking
4944         */
4945        if (CTX_HAS_SMPL(ctx)) {
4946
4947                rst_ctrl.bits.mask_monitoring = 0;
4948                rst_ctrl.bits.reset_ovfl_pmds = 0;
4949
4950                if (state == PFM_CTX_LOADED)
4951                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4952                else
4953                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4954        } else {
4955                rst_ctrl.bits.mask_monitoring = 0;
4956                rst_ctrl.bits.reset_ovfl_pmds = 1;
4957        }
4958
4959        if (ret == 0) {
4960                if (rst_ctrl.bits.reset_ovfl_pmds) {
4961                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4962                }
4963                if (rst_ctrl.bits.mask_monitoring == 0) {
4964                        DPRINT(("resuming monitoring\n"));
4965                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4966                } else {
4967                        DPRINT(("stopping monitoring\n"));
4968                        //pfm_stop_monitoring(current, regs);
4969                }
4970                ctx->ctx_state = PFM_CTX_LOADED;
4971        }
4972}
4973
4974/*
4975 * context MUST BE LOCKED when calling
4976 * can only be called for current
4977 */
4978static void
4979pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4980{
4981        int ret;
4982
4983        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4984
4985        ret = pfm_context_unload(ctx, NULL, 0, regs);
4986        if (ret) {
4987                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4988        }
4989
4990        /*
4991         * and wakeup controlling task, indicating we are now disconnected
4992         */
4993        wake_up_interruptible(&ctx->ctx_zombieq);
4994
4995        /*
4996         * given that context is still locked, the controlling
4997         * task will only get access when we return from
4998         * pfm_handle_work().
4999         */
5000}
5001
5002static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5003
5004 /*
5005  * pfm_handle_work() can be called with interrupts enabled
5006  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5007  * call may sleep, therefore we must re-enable interrupts
5008  * to avoid deadlocks. It is safe to do so because this function
5009  * is called ONLY when returning to user level (pUStk=1), in which case
5010  * there is no risk of kernel stack overflow due to deep
5011  * interrupt nesting.
5012  */
5013void
5014pfm_handle_work(void)
5015{
5016        pfm_context_t *ctx;
5017        struct pt_regs *regs;
5018        unsigned long flags, dummy_flags;
5019        unsigned long ovfl_regs;
5020        unsigned int reason;
5021        int ret;
5022
5023        ctx = PFM_GET_CTX(current);
5024        if (ctx == NULL) {
5025                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5026                        task_pid_nr(current));
5027                return;
5028        }
5029
5030        PROTECT_CTX(ctx, flags);
5031
5032        PFM_SET_WORK_PENDING(current, 0);
5033
5034        regs = task_pt_regs(current);
5035
5036        /*
5037         * extract reason for being here and clear
5038         */
5039        reason = ctx->ctx_fl_trap_reason;
5040        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5041        ovfl_regs = ctx->ctx_ovfl_regs[0];
5042
5043        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5044
5045        /*
5046         * must be done before we check for simple-reset mode
5047         */
5048        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5049                goto do_zombie;
5050
5051        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5052        if (reason == PFM_TRAP_REASON_RESET)
5053                goto skip_blocking;
5054
5055        /*
5056         * restore interrupt mask to what it was on entry.
5057         * Could be enabled/diasbled.
5058         */
5059        UNPROTECT_CTX(ctx, flags);
5060
5061        /*
5062         * force interrupt enable because of down_interruptible()
5063         */
5064        local_irq_enable();
5065
5066        DPRINT(("before block sleeping\n"));
5067
5068        /*
5069         * may go through without blocking on SMP systems
5070         * if restart has been received already by the time we call down()
5071         */
5072        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5073
5074        DPRINT(("after block sleeping ret=%d\n", ret));
5075
5076        /*
5077         * lock context and mask interrupts again
5078         * We save flags into a dummy because we may have
5079         * altered interrupts mask compared to entry in this
5080         * function.
5081         */
5082        PROTECT_CTX(ctx, dummy_flags);
5083
5084        /*
5085         * we need to read the ovfl_regs only after wake-up
5086         * because we may have had pfm_write_pmds() in between
5087         * and that can changed PMD values and therefore 
5088         * ovfl_regs is reset for these new PMD values.
5089         */
5090        ovfl_regs = ctx->ctx_ovfl_regs[0];
5091
5092        if (ctx->ctx_fl_going_zombie) {
5093do_zombie:
5094                DPRINT(("context is zombie, bailing out\n"));
5095                pfm_context_force_terminate(ctx, regs);
5096                goto nothing_to_do;
5097        }
5098        /*
5099         * in case of interruption of down() we don't restart anything
5100         */
5101        if (ret < 0)
5102                goto nothing_to_do;
5103
5104skip_blocking:
5105        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5106        ctx->ctx_ovfl_regs[0] = 0UL;
5107
5108nothing_to_do:
5109        /*
5110         * restore flags as they were upon entry
5111         */
5112        UNPROTECT_CTX(ctx, flags);
5113}
5114
5115static int
5116pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5117{
5118        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5119                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5120                return 0;
5121        }
5122
5123        DPRINT(("waking up somebody\n"));
5124
5125        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5126
5127        /*
5128         * safe, we are not in intr handler, nor in ctxsw when
5129         * we come here
5130         */
5131        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5132
5133        return 0;
5134}
5135
5136static int
5137pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5138{
5139        pfm_msg_t *msg = NULL;
5140
5141        if (ctx->ctx_fl_no_msg == 0) {
5142                msg = pfm_get_new_msg(ctx);
5143                if (msg == NULL) {
5144                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5145                        return -1;
5146                }
5147
5148                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5149                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5150                msg->pfm_ovfl_msg.msg_active_set   = 0;
5151                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5152                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5153                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5154                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5155                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5156        }
5157
5158        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5159                msg,
5160                ctx->ctx_fl_no_msg,
5161                ctx->ctx_fd,
5162                ovfl_pmds));
5163
5164        return pfm_notify_user(ctx, msg);
5165}
5166
5167static int
5168pfm_end_notify_user(pfm_context_t *ctx)
5169{
5170        pfm_msg_t *msg;
5171
5172        msg = pfm_get_new_msg(ctx);
5173        if (msg == NULL) {
5174                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5175                return -1;
5176        }
5177        /* no leak */
5178        memset(msg, 0, sizeof(*msg));
5179
5180        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5181        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5182        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5183
5184        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5185                msg,
5186                ctx->ctx_fl_no_msg,
5187                ctx->ctx_fd));
5188
5189        return pfm_notify_user(ctx, msg);
5190}
5191
5192/*
5193 * main overflow processing routine.
5194 * it can be called from the interrupt path or explicitly during the context switch code
5195 */
5196static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5197                                unsigned long pmc0, struct pt_regs *regs)
5198{
5199        pfm_ovfl_arg_t *ovfl_arg;
5200        unsigned long mask;
5201        unsigned long old_val, ovfl_val, new_val;
5202        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5203        unsigned long tstamp;
5204        pfm_ovfl_ctrl_t ovfl_ctrl;
5205        unsigned int i, has_smpl;
5206        int must_notify = 0;
5207
5208        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5209
5210        /*
5211         * sanity test. Should never happen
5212         */
5213        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5214
5215        tstamp   = ia64_get_itc();
5216        mask     = pmc0 >> PMU_FIRST_COUNTER;
5217        ovfl_val = pmu_conf->ovfl_val;
5218        has_smpl = CTX_HAS_SMPL(ctx);
5219
5220        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5221                     "used_pmds=0x%lx\n",
5222                        pmc0,
5223                        task ? task_pid_nr(task): -1,
5224                        (regs ? regs->cr_iip : 0),
5225                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5226                        ctx->ctx_used_pmds[0]));
5227
5228
5229        /*
5230         * first we update the virtual counters
5231         * assume there was a prior ia64_srlz_d() issued
5232         */
5233        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5234
5235                /* skip pmd which did not overflow */
5236                if ((mask & 0x1) == 0) continue;
5237
5238                /*
5239                 * Note that the pmd is not necessarily 0 at this point as qualified events
5240                 * may have happened before the PMU was frozen. The residual count is not
5241                 * taken into consideration here but will be with any read of the pmd via
5242                 * pfm_read_pmds().
5243                 */
5244                old_val              = new_val = ctx->ctx_pmds[i].val;
5245                new_val             += 1 + ovfl_val;
5246                ctx->ctx_pmds[i].val = new_val;
5247
5248                /*
5249                 * check for overflow condition
5250                 */
5251                if (likely(old_val > new_val)) {
5252                        ovfl_pmds |= 1UL << i;
5253                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5254                }
5255
5256                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5257                        i,
5258                        new_val,
5259                        old_val,
5260                        ia64_get_pmd(i) & ovfl_val,
5261                        ovfl_pmds,
5262                        ovfl_notify));
5263        }
5264
5265        /*
5266         * there was no 64-bit overflow, nothing else to do
5267         */
5268        if (ovfl_pmds == 0UL) return;
5269
5270        /* 
5271         * reset all control bits
5272         */
5273        ovfl_ctrl.val = 0;
5274        reset_pmds    = 0UL;
5275
5276        /*
5277         * if a sampling format module exists, then we "cache" the overflow by 
5278         * calling the module's handler() routine.
5279         */
5280        if (has_smpl) {
5281                unsigned long start_cycles, end_cycles;
5282                unsigned long pmd_mask;
5283                int j, k, ret = 0;
5284                int this_cpu = smp_processor_id();
5285
5286                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5287                ovfl_arg = &ctx->ctx_ovfl_arg;
5288
5289                prefetch(ctx->ctx_smpl_hdr);
5290
5291                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5292
5293                        mask = 1UL << i;
5294
5295                        if ((pmd_mask & 0x1) == 0) continue;
5296
5297                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5298                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5299                        ovfl_arg->active_set    = 0;
5300                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5301                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5302
5303                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5304                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5305                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5306
5307                        /*
5308                         * copy values of pmds of interest. Sampling format may copy them
5309                         * into sampling buffer.
5310                         */
5311                        if (smpl_pmds) {
5312                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5313                                        if ((smpl_pmds & 0x1) == 0) continue;
5314                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5315                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5316                                }
5317                        }
5318
5319                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5320
5321                        start_cycles = ia64_get_itc();
5322
5323                        /*
5324                         * call custom buffer format record (handler) routine
5325                         */
5326                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5327
5328                        end_cycles = ia64_get_itc();
5329
5330                        /*
5331                         * For those controls, we take the union because they have
5332                         * an all or nothing behavior.
5333                         */
5334                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5335                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5336                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5337                        /*
5338                         * build the bitmask of pmds to reset now
5339                         */
5340                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5341
5342                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5343                }
5344                /*
5345                 * when the module cannot handle the rest of the overflows, we abort right here
5346                 */
5347                if (ret && pmd_mask) {
5348                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5349                                pmd_mask<<PMU_FIRST_COUNTER));
5350                }
5351                /*
5352                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5353                 */
5354                ovfl_pmds &= ~reset_pmds;
5355        } else {
5356                /*
5357                 * when no sampling module is used, then the default
5358                 * is to notify on overflow if requested by user
5359                 */
5360                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5361                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5362                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5363                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5364                /*
5365                 * if needed, we reset all overflowed pmds
5366                 */
5367                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5368        }
5369
5370        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5371
5372        /*
5373         * reset the requested PMD registers using the short reset values
5374         */
5375        if (reset_pmds) {
5376                unsigned long bm = reset_pmds;
5377                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5378        }
5379
5380        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5381                /*
5382                 * keep track of what to reset when unblocking
5383                 */
5384                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5385
5386                /*
5387                 * check for blocking context 
5388                 */
5389                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5390
5391                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5392
5393                        /*
5394                         * set the perfmon specific checking pending work for the task
5395                         */
5396                        PFM_SET_WORK_PENDING(task, 1);
5397
5398                        /*
5399                         * when coming from ctxsw, current still points to the
5400                         * previous task, therefore we must work with task and not current.
5401                         */
5402                        set_notify_resume(task);
5403                }
5404                /*
5405                 * defer until state is changed (shorten spin window). the context is locked
5406                 * anyway, so the signal receiver would come spin for nothing.
5407                 */
5408                must_notify = 1;
5409        }
5410
5411        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5412                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5413                        PFM_GET_WORK_PENDING(task),
5414                        ctx->ctx_fl_trap_reason,
5415                        ovfl_pmds,
5416                        ovfl_notify,
5417                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5418        /*
5419         * in case monitoring must be stopped, we toggle the psr bits
5420         */
5421        if (ovfl_ctrl.bits.mask_monitoring) {
5422                pfm_mask_monitoring(task);
5423                ctx->ctx_state = PFM_CTX_MASKED;
5424                ctx->ctx_fl_can_restart = 1;
5425        }
5426
5427        /*
5428         * send notification now
5429         */
5430        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5431
5432        return;
5433
5434sanity_check:
5435        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5436                        smp_processor_id(),
5437                        task ? task_pid_nr(task) : -1,
5438                        pmc0);
5439        return;
5440
5441stop_monitoring:
5442        /*
5443         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5444         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5445         * come here as zombie only if the task is the current task. In which case, we
5446         * can access the PMU  hardware directly.
5447         *
5448         * Note that zombies do have PM_VALID set. So here we do the minimal.
5449         *
5450         * In case the context was zombified it could not be reclaimed at the time
5451         * the monitoring program exited. At this point, the PMU reservation has been
5452         * returned, the sampiing buffer has been freed. We must convert this call
5453         * into a spurious interrupt. However, we must also avoid infinite overflows
5454         * by stopping monitoring for this task. We can only come here for a per-task
5455         * context. All we need to do is to stop monitoring using the psr bits which
5456         * are always task private. By re-enabling secure montioring, we ensure that
5457         * the monitored task will not be able to re-activate monitoring.
5458         * The task will eventually be context switched out, at which point the context
5459         * will be reclaimed (that includes releasing ownership of the PMU).
5460         *
5461         * So there might be a window of time where the number of per-task session is zero
5462         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5463         * context. This is safe because if a per-task session comes in, it will push this one
5464         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5465         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5466         * also push our zombie context out.
5467         *
5468         * Overall pretty hairy stuff....
5469         */
5470        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5471        pfm_clear_psr_up();
5472        ia64_psr(regs)->up = 0;
5473        ia64_psr(regs)->sp = 1;
5474        return;
5475}
5476
5477static int
5478pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5479{
5480        struct task_struct *task;
5481        pfm_context_t *ctx;
5482        unsigned long flags;
5483        u64 pmc0;
5484        int this_cpu = smp_processor_id();
5485        int retval = 0;
5486
5487        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5488
5489        /*
5490         * srlz.d done before arriving here
5491         */
5492        pmc0 = ia64_get_pmc(0);
5493
5494        task = GET_PMU_OWNER();
5495        ctx  = GET_PMU_CTX();
5496
5497        /*
5498         * if we have some pending bits set
5499         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5500         */
5501        if (PMC0_HAS_OVFL(pmc0) && task) {
5502                /*
5503                 * we assume that pmc0.fr is always set here
5504                 */
5505
5506                /* sanity check */
5507                if (!ctx) goto report_spurious1;
5508
5509                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5510                        goto report_spurious2;
5511
5512                PROTECT_CTX_NOPRINT(ctx, flags);
5513
5514                pfm_overflow_handler(task, ctx, pmc0, regs);
5515
5516                UNPROTECT_CTX_NOPRINT(ctx, flags);
5517
5518        } else {
5519                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5520                retval = -1;
5521        }
5522        /*
5523         * keep it unfrozen at all times
5524         */
5525        pfm_unfreeze_pmu();
5526
5527        return retval;
5528
5529report_spurious1:
5530        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5531                this_cpu, task_pid_nr(task));
5532        pfm_unfreeze_pmu();
5533        return -1;
5534report_spurious2:
5535        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5536                this_cpu, 
5537                task_pid_nr(task));
5538        pfm_unfreeze_pmu();
5539        return -1;
5540}
5541
5542static irqreturn_t
5543pfm_interrupt_handler(int irq, void *arg)
5544{
5545        unsigned long start_cycles, total_cycles;
5546        unsigned long min, max;
5547        int this_cpu;
5548        int ret;
5549        struct pt_regs *regs = get_irq_regs();
5550
5551        this_cpu = get_cpu();
5552        if (likely(!pfm_alt_intr_handler)) {
5553                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5554                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5555
5556                start_cycles = ia64_get_itc();
5557
5558                ret = pfm_do_interrupt_handler(arg, regs);
5559
5560                total_cycles = ia64_get_itc();
5561
5562                /*
5563                 * don't measure spurious interrupts
5564                 */
5565                if (likely(ret == 0)) {
5566                        total_cycles -= start_cycles;
5567
5568                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5569                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5570
5571                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5572                }
5573        }
5574        else {
5575                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5576        }
5577
5578        put_cpu();
5579        return IRQ_HANDLED;
5580}
5581
5582/*
5583 * /proc/perfmon interface, for debug only
5584 */
5585
5586#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5587
5588static void *
5589pfm_proc_start(struct seq_file *m, loff_t *pos)
5590{
5591        if (*pos == 0) {
5592                return PFM_PROC_SHOW_HEADER;
5593        }
5594
5595        while (*pos <= nr_cpu_ids) {
5596                if (cpu_online(*pos - 1)) {
5597                        return (void *)*pos;
5598                }
5599                ++*pos;
5600        }
5601        return NULL;
5602}
5603
5604static void *
5605pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5606{
5607        ++*pos;
5608        return pfm_proc_start(m, pos);
5609}
5610
5611static void
5612pfm_proc_stop(struct seq_file *m, void *v)
5613{
5614}
5615
5616static void
5617pfm_proc_show_header(struct seq_file *m)
5618{
5619        struct list_head * pos;
5620        pfm_buffer_fmt_t * entry;
5621        unsigned long flags;
5622
5623        seq_printf(m,
5624                "perfmon version           : %u.%u\n"
5625                "model                     : %s\n"
5626                "fastctxsw                 : %s\n"
5627                "expert mode               : %s\n"
5628                "ovfl_mask                 : 0x%lx\n"
5629                "PMU flags                 : 0x%x\n",
5630                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5631                pmu_conf->pmu_name,
5632                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5633                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5634                pmu_conf->ovfl_val,
5635                pmu_conf->flags);
5636
5637        LOCK_PFS(flags);
5638
5639        seq_printf(m,
5640                "proc_sessions             : %u\n"
5641                "sys_sessions              : %u\n"
5642                "sys_use_dbregs            : %u\n"
5643                "ptrace_use_dbregs         : %u\n",
5644                pfm_sessions.pfs_task_sessions,
5645                pfm_sessions.pfs_sys_sessions,
5646                pfm_sessions.pfs_sys_use_dbregs,
5647                pfm_sessions.pfs_ptrace_use_dbregs);
5648
5649        UNLOCK_PFS(flags);
5650
5651        spin_lock(&pfm_buffer_fmt_lock);
5652
5653        list_for_each(pos, &pfm_buffer_fmt_list) {
5654                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5655                seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5656                        entry->fmt_uuid[0],
5657                        entry->fmt_uuid[1],
5658                        entry->fmt_uuid[2],
5659                        entry->fmt_uuid[3],
5660                        entry->fmt_uuid[4],
5661                        entry->fmt_uuid[5],
5662                        entry->fmt_uuid[6],
5663                        entry->fmt_uuid[7],
5664                        entry->fmt_uuid[8],
5665                        entry->fmt_uuid[9],
5666                        entry->fmt_uuid[10],
5667                        entry->fmt_uuid[11],
5668                        entry->fmt_uuid[12],
5669                        entry->fmt_uuid[13],
5670                        entry->fmt_uuid[14],
5671                        entry->fmt_uuid[15],
5672                        entry->fmt_name);
5673        }
5674        spin_unlock(&pfm_buffer_fmt_lock);
5675
5676}
5677
5678static int
5679pfm_proc_show(struct seq_file *m, void *v)
5680{
5681        unsigned long psr;
5682        unsigned int i;
5683        int cpu;
5684
5685        if (v == PFM_PROC_SHOW_HEADER) {
5686                pfm_proc_show_header(m);
5687                return 0;
5688        }
5689
5690        /* show info for CPU (v - 1) */
5691
5692        cpu = (long)v - 1;
5693        seq_printf(m,
5694                "CPU%-2d overflow intrs      : %lu\n"
5695                "CPU%-2d overflow cycles     : %lu\n"
5696                "CPU%-2d overflow min        : %lu\n"
5697                "CPU%-2d overflow max        : %lu\n"
5698                "CPU%-2d smpl handler calls  : %lu\n"
5699                "CPU%-2d smpl handler cycles : %lu\n"
5700                "CPU%-2d spurious intrs      : %lu\n"
5701                "CPU%-2d replay   intrs      : %lu\n"
5702                "CPU%-2d syst_wide           : %d\n"
5703                "CPU%-2d dcr_pp              : %d\n"
5704                "CPU%-2d exclude idle        : %d\n"
5705                "CPU%-2d owner               : %d\n"
5706                "CPU%-2d context             : %p\n"
5707                "CPU%-2d activations         : %lu\n",
5708                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5709                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5710                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5711                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5712                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5713                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5714                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5715                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5716                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5717                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5718                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5719                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5720                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5721                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5722
5723        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5724
5725                psr = pfm_get_psr();
5726
5727                ia64_srlz_d();
5728
5729                seq_printf(m, 
5730                        "CPU%-2d psr                 : 0x%lx\n"
5731                        "CPU%-2d pmc0                : 0x%lx\n", 
5732                        cpu, psr,
5733                        cpu, ia64_get_pmc(0));
5734
5735                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5736                        if (PMC_IS_COUNTING(i) == 0) continue;
5737                        seq_printf(m, 
5738                                "CPU%-2d pmc%u                : 0x%lx\n"
5739                                "CPU%-2d pmd%u                : 0x%lx\n", 
5740                                cpu, i, ia64_get_pmc(i),
5741                                cpu, i, ia64_get_pmd(i));
5742                }
5743        }
5744        return 0;
5745}
5746
5747const struct seq_operations pfm_seq_ops = {
5748        .start =        pfm_proc_start,
5749        .next =         pfm_proc_next,
5750        .stop =         pfm_proc_stop,
5751        .show =         pfm_proc_show
5752};
5753
5754static int
5755pfm_proc_open(struct inode *inode, struct file *file)
5756{
5757        return seq_open(file, &pfm_seq_ops);
5758}
5759
5760
5761/*
5762 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5763 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5764 * is active or inactive based on mode. We must rely on the value in
5765 * local_cpu_data->pfm_syst_info
5766 */
5767void
5768pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5769{
5770        struct pt_regs *regs;
5771        unsigned long dcr;
5772        unsigned long dcr_pp;
5773
5774        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5775
5776        /*
5777         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5778         * on every CPU, so we can rely on the pid to identify the idle task.
5779         */
5780        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5781                regs = task_pt_regs(task);
5782                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5783                return;
5784        }
5785        /*
5786         * if monitoring has started
5787         */
5788        if (dcr_pp) {
5789                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5790                /*
5791                 * context switching in?
5792                 */
5793                if (is_ctxswin) {
5794                        /* mask monitoring for the idle task */
5795                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5796                        pfm_clear_psr_pp();
5797                        ia64_srlz_i();
5798                        return;
5799                }
5800                /*
5801                 * context switching out
5802                 * restore monitoring for next task
5803                 *
5804                 * Due to inlining this odd if-then-else construction generates
5805                 * better code.
5806                 */
5807                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5808                pfm_set_psr_pp();
5809                ia64_srlz_i();
5810        }
5811}
5812
5813#ifdef CONFIG_SMP
5814
5815static void
5816pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5817{
5818        struct task_struct *task = ctx->ctx_task;
5819
5820        ia64_psr(regs)->up = 0;
5821        ia64_psr(regs)->sp = 1;
5822
5823        if (GET_PMU_OWNER() == task) {
5824                DPRINT(("cleared ownership for [%d]\n",
5825                                        task_pid_nr(ctx->ctx_task)));
5826                SET_PMU_OWNER(NULL, NULL);
5827        }
5828
5829        /*
5830         * disconnect the task from the context and vice-versa
5831         */
5832        PFM_SET_WORK_PENDING(task, 0);
5833
5834        task->thread.pfm_context  = NULL;
5835        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5836
5837        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5838}
5839
5840
5841/*
5842 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5843 */
5844void
5845pfm_save_regs(struct task_struct *task)
5846{
5847        pfm_context_t *ctx;
5848        unsigned long flags;
5849        u64 psr;
5850
5851
5852        ctx = PFM_GET_CTX(task);
5853        if (ctx == NULL) return;
5854
5855        /*
5856         * we always come here with interrupts ALREADY disabled by
5857         * the scheduler. So we simply need to protect against concurrent
5858         * access, not CPU concurrency.
5859         */
5860        flags = pfm_protect_ctx_ctxsw(ctx);
5861
5862        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5863                struct pt_regs *regs = task_pt_regs(task);
5864
5865                pfm_clear_psr_up();
5866
5867                pfm_force_cleanup(ctx, regs);
5868
5869                BUG_ON(ctx->ctx_smpl_hdr);
5870
5871                pfm_unprotect_ctx_ctxsw(ctx, flags);
5872
5873                pfm_context_free(ctx);
5874                return;
5875        }
5876
5877        /*
5878         * save current PSR: needed because we modify it
5879         */
5880        ia64_srlz_d();
5881        psr = pfm_get_psr();
5882
5883        BUG_ON(psr & (IA64_PSR_I));
5884
5885        /*
5886         * stop monitoring:
5887         * This is the last instruction which may generate an overflow
5888         *
5889         * We do not need to set psr.sp because, it is irrelevant in kernel.
5890         * It will be restored from ipsr when going back to user level
5891         */
5892        pfm_clear_psr_up();
5893
5894        /*
5895         * keep a copy of psr.up (for reload)
5896         */
5897        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5898
5899        /*
5900         * release ownership of this PMU.
5901         * PM interrupts are masked, so nothing
5902         * can happen.
5903         */
5904        SET_PMU_OWNER(NULL, NULL);
5905
5906        /*
5907         * we systematically save the PMD as we have no
5908         * guarantee we will be schedule at that same
5909         * CPU again.
5910         */
5911        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5912
5913        /*
5914         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5915         * we will need it on the restore path to check
5916         * for pending overflow.
5917         */
5918        ctx->th_pmcs[0] = ia64_get_pmc(0);
5919
5920        /*
5921         * unfreeze PMU if had pending overflows
5922         */
5923        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5924
5925        /*
5926         * finally, allow context access.
5927         * interrupts will still be masked after this call.
5928         */
5929        pfm_unprotect_ctx_ctxsw(ctx, flags);
5930}
5931
5932#else /* !CONFIG_SMP */
5933void
5934pfm_save_regs(struct task_struct *task)
5935{
5936        pfm_context_t *ctx;
5937        u64 psr;
5938
5939        ctx = PFM_GET_CTX(task);
5940        if (ctx == NULL) return;
5941
5942        /*
5943         * save current PSR: needed because we modify it
5944         */
5945        psr = pfm_get_psr();
5946
5947        BUG_ON(psr & (IA64_PSR_I));
5948
5949        /*
5950         * stop monitoring:
5951         * This is the last instruction which may generate an overflow
5952         *
5953         * We do not need to set psr.sp because, it is irrelevant in kernel.
5954         * It will be restored from ipsr when going back to user level
5955         */
5956        pfm_clear_psr_up();
5957
5958        /*
5959         * keep a copy of psr.up (for reload)
5960         */
5961        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5962}
5963
5964static void
5965pfm_lazy_save_regs (struct task_struct *task)
5966{
5967        pfm_context_t *ctx;
5968        unsigned long flags;
5969
5970        { u64 psr  = pfm_get_psr();
5971          BUG_ON(psr & IA64_PSR_UP);
5972        }
5973
5974        ctx = PFM_GET_CTX(task);
5975
5976        /*
5977         * we need to mask PMU overflow here to
5978         * make sure that we maintain pmc0 until
5979         * we save it. overflow interrupts are
5980         * treated as spurious if there is no
5981         * owner.
5982         *
5983         * XXX: I don't think this is necessary
5984         */
5985        PROTECT_CTX(ctx,flags);
5986
5987        /*
5988         * release ownership of this PMU.
5989         * must be done before we save the registers.
5990         *
5991         * after this call any PMU interrupt is treated
5992         * as spurious.
5993         */
5994        SET_PMU_OWNER(NULL, NULL);
5995
5996        /*
5997         * save all the pmds we use
5998         */
5999        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6000
6001        /*
6002         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6003         * it is needed to check for pended overflow
6004         * on the restore path
6005         */
6006        ctx->th_pmcs[0] = ia64_get_pmc(0);
6007
6008        /*
6009         * unfreeze PMU if had pending overflows
6010         */
6011        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6012
6013        /*
6014         * now get can unmask PMU interrupts, they will
6015         * be treated as purely spurious and we will not
6016         * lose any information
6017         */
6018        UNPROTECT_CTX(ctx,flags);
6019}
6020#endif /* CONFIG_SMP */
6021
6022#ifdef CONFIG_SMP
6023/*
6024 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6025 */
6026void
6027pfm_load_regs (struct task_struct *task)
6028{
6029        pfm_context_t *ctx;
6030        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6031        unsigned long flags;
6032        u64 psr, psr_up;
6033        int need_irq_resend;
6034
6035        ctx = PFM_GET_CTX(task);
6036        if (unlikely(ctx == NULL)) return;
6037
6038        BUG_ON(GET_PMU_OWNER());
6039
6040        /*
6041         * possible on unload
6042         */
6043        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6044
6045        /*
6046         * we always come here with interrupts ALREADY disabled by
6047         * the scheduler. So we simply need to protect against concurrent
6048         * access, not CPU concurrency.
6049         */
6050        flags = pfm_protect_ctx_ctxsw(ctx);
6051        psr   = pfm_get_psr();
6052
6053        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6054
6055        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6056        BUG_ON(psr & IA64_PSR_I);
6057
6058        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6059                struct pt_regs *regs = task_pt_regs(task);
6060
6061                BUG_ON(ctx->ctx_smpl_hdr);
6062
6063                pfm_force_cleanup(ctx, regs);
6064
6065                pfm_unprotect_ctx_ctxsw(ctx, flags);
6066
6067                /*
6068                 * this one (kmalloc'ed) is fine with interrupts disabled
6069                 */
6070                pfm_context_free(ctx);
6071
6072                return;
6073        }
6074
6075        /*
6076         * we restore ALL the debug registers to avoid picking up
6077         * stale state.
6078         */
6079        if (ctx->ctx_fl_using_dbreg) {
6080                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6081                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6082        }
6083        /*
6084         * retrieve saved psr.up
6085         */
6086        psr_up = ctx->ctx_saved_psr_up;
6087
6088        /*
6089         * if we were the last user of the PMU on that CPU,
6090         * then nothing to do except restore psr
6091         */
6092        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6093
6094                /*
6095                 * retrieve partial reload masks (due to user modifications)
6096                 */
6097                pmc_mask = ctx->ctx_reload_pmcs[0];
6098                pmd_mask = ctx->ctx_reload_pmds[0];
6099
6100        } else {
6101                /*
6102                 * To avoid leaking information to the user level when psr.sp=0,
6103                 * we must reload ALL implemented pmds (even the ones we don't use).
6104                 * In the kernel we only allow PFM_READ_PMDS on registers which
6105                 * we initialized or requested (sampling) so there is no risk there.
6106                 */
6107                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6108
6109                /*
6110                 * ALL accessible PMCs are systematically reloaded, unused registers
6111                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6112                 * up stale configuration.
6113                 *
6114                 * PMC0 is never in the mask. It is always restored separately.
6115                 */
6116                pmc_mask = ctx->ctx_all_pmcs[0];
6117        }
6118        /*
6119         * when context is MASKED, we will restore PMC with plm=0
6120         * and PMD with stale information, but that's ok, nothing
6121         * will be captured.
6122         *
6123         * XXX: optimize here
6124         */
6125        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6126        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6127
6128        /*
6129         * check for pending overflow at the time the state
6130         * was saved.
6131         */
6132        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6133                /*
6134                 * reload pmc0 with the overflow information
6135                 * On McKinley PMU, this will trigger a PMU interrupt
6136                 */
6137                ia64_set_pmc(0, ctx->th_pmcs[0]);
6138                ia64_srlz_d();
6139                ctx->th_pmcs[0] = 0UL;
6140
6141                /*
6142                 * will replay the PMU interrupt
6143                 */
6144                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6145
6146                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6147        }
6148
6149        /*
6150         * we just did a reload, so we reset the partial reload fields
6151         */
6152        ctx->ctx_reload_pmcs[0] = 0UL;
6153        ctx->ctx_reload_pmds[0] = 0UL;
6154
6155        SET_LAST_CPU(ctx, smp_processor_id());
6156
6157        /*
6158         * dump activation value for this PMU
6159         */
6160        INC_ACTIVATION();
6161        /*
6162         * record current activation for this context
6163         */
6164        SET_ACTIVATION(ctx);
6165
6166        /*
6167         * establish new ownership. 
6168         */
6169        SET_PMU_OWNER(task, ctx);
6170
6171        /*
6172         * restore the psr.up bit. measurement
6173         * is active again.
6174         * no PMU interrupt can happen at this point
6175         * because we still have interrupts disabled.
6176         */
6177        if (likely(psr_up)) pfm_set_psr_up();
6178
6179        /*
6180         * allow concurrent access to context
6181         */
6182        pfm_unprotect_ctx_ctxsw(ctx, flags);
6183}
6184#else /*  !CONFIG_SMP */
6185/*
6186 * reload PMU state for UP kernels
6187 * in 2.5 we come here with interrupts disabled
6188 */
6189void
6190pfm_load_regs (struct task_struct *task)
6191{
6192        pfm_context_t *ctx;
6193        struct task_struct *owner;
6194        unsigned long pmd_mask, pmc_mask;
6195        u64 psr, psr_up;
6196        int need_irq_resend;
6197
6198        owner = GET_PMU_OWNER();
6199        ctx   = PFM_GET_CTX(task);
6200        psr   = pfm_get_psr();
6201
6202        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6203        BUG_ON(psr & IA64_PSR_I);
6204
6205        /*
6206         * we restore ALL the debug registers to avoid picking up
6207         * stale state.
6208         *
6209         * This must be done even when the task is still the owner
6210         * as the registers may have been modified via ptrace()
6211         * (not perfmon) by the previous task.
6212         */
6213        if (ctx->ctx_fl_using_dbreg) {
6214                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6215                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6216        }
6217
6218        /*
6219         * retrieved saved psr.up
6220         */
6221        psr_up = ctx->ctx_saved_psr_up;
6222        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6223
6224        /*
6225         * short path, our state is still there, just
6226         * need to restore psr and we go
6227         *
6228         * we do not touch either PMC nor PMD. the psr is not touched
6229         * by the overflow_handler. So we are safe w.r.t. to interrupt
6230         * concurrency even without interrupt masking.
6231         */
6232        if (likely(owner == task)) {
6233                if (likely(psr_up)) pfm_set_psr_up();
6234                return;
6235        }
6236
6237        /*
6238         * someone else is still using the PMU, first push it out and
6239         * then we'll be able to install our stuff !
6240         *
6241         * Upon return, there will be no owner for the current PMU
6242         */
6243        if (owner) pfm_lazy_save_regs(owner);
6244
6245        /*
6246         * To avoid leaking information to the user level when psr.sp=0,
6247         * we must reload ALL implemented pmds (even the ones we don't use).
6248         * In the kernel we only allow PFM_READ_PMDS on registers which
6249         * we initialized or requested (sampling) so there is no risk there.
6250         */
6251        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6252
6253        /*
6254         * ALL accessible PMCs are systematically reloaded, unused registers
6255         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6256         * up stale configuration.
6257         *
6258         * PMC0 is never in the mask. It is always restored separately
6259         */
6260        pmc_mask = ctx->ctx_all_pmcs[0];
6261
6262        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6263        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6264
6265        /*
6266         * check for pending overflow at the time the state
6267         * was saved.
6268         */
6269        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6270                /*
6271                 * reload pmc0 with the overflow information
6272                 * On McKinley PMU, this will trigger a PMU interrupt
6273                 */
6274                ia64_set_pmc(0, ctx->th_pmcs[0]);
6275                ia64_srlz_d();
6276
6277                ctx->th_pmcs[0] = 0UL;
6278
6279                /*
6280                 * will replay the PMU interrupt
6281                 */
6282                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6283
6284                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6285        }
6286
6287        /*
6288         * establish new ownership. 
6289         */
6290        SET_PMU_OWNER(task, ctx);
6291
6292        /*
6293         * restore the psr.up bit. measurement
6294         * is active again.
6295         * no PMU interrupt can happen at this point
6296         * because we still have interrupts disabled.
6297         */
6298        if (likely(psr_up)) pfm_set_psr_up();
6299}
6300#endif /* CONFIG_SMP */
6301
6302/*
6303 * this function assumes monitoring is stopped
6304 */
6305static void
6306pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6307{
6308        u64 pmc0;
6309        unsigned long mask2, val, pmd_val, ovfl_val;
6310        int i, can_access_pmu = 0;
6311        int is_self;
6312
6313        /*
6314         * is the caller the task being monitored (or which initiated the
6315         * session for system wide measurements)
6316         */
6317        is_self = ctx->ctx_task == task ? 1 : 0;
6318
6319        /*
6320         * can access PMU is task is the owner of the PMU state on the current CPU
6321         * or if we are running on the CPU bound to the context in system-wide mode
6322         * (that is not necessarily the task the context is attached to in this mode).
6323         * In system-wide we always have can_access_pmu true because a task running on an
6324         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6325         */
6326        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6327        if (can_access_pmu) {
6328                /*
6329                 * Mark the PMU as not owned
6330                 * This will cause the interrupt handler to do nothing in case an overflow
6331                 * interrupt was in-flight
6332                 * This also guarantees that pmc0 will contain the final state
6333                 * It virtually gives us full control on overflow processing from that point
6334                 * on.
6335                 */
6336                SET_PMU_OWNER(NULL, NULL);
6337                DPRINT(("releasing ownership\n"));
6338
6339                /*
6340                 * read current overflow status:
6341                 *
6342                 * we are guaranteed to read the final stable state
6343                 */
6344                ia64_srlz_d();
6345                pmc0 = ia64_get_pmc(0); /* slow */
6346
6347                /*
6348                 * reset freeze bit, overflow status information destroyed
6349                 */
6350                pfm_unfreeze_pmu();
6351        } else {
6352                pmc0 = ctx->th_pmcs[0];
6353                /*
6354                 * clear whatever overflow status bits there were
6355                 */
6356                ctx->th_pmcs[0] = 0;
6357        }
6358        ovfl_val = pmu_conf->ovfl_val;
6359        /*
6360         * we save all the used pmds
6361         * we take care of overflows for counting PMDs
6362         *
6363         * XXX: sampling situation is not taken into account here
6364         */
6365        mask2 = ctx->ctx_used_pmds[0];
6366
6367        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6368
6369        for (i = 0; mask2; i++, mask2>>=1) {
6370
6371                /* skip non used pmds */
6372                if ((mask2 & 0x1) == 0) continue;
6373
6374                /*
6375                 * can access PMU always true in system wide mode
6376                 */
6377                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6378
6379                if (PMD_IS_COUNTING(i)) {
6380                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6381                                task_pid_nr(task),
6382                                i,
6383                                ctx->ctx_pmds[i].val,
6384                                val & ovfl_val));
6385
6386                        /*
6387                         * we rebuild the full 64 bit value of the counter
6388                         */
6389                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6390
6391                        /*
6392                         * now everything is in ctx_pmds[] and we need
6393                         * to clear the saved context from save_regs() such that
6394                         * pfm_read_pmds() gets the correct value
6395                         */
6396                        pmd_val = 0UL;
6397
6398                        /*
6399                         * take care of overflow inline
6400                         */
6401                        if (pmc0 & (1UL << i)) {
6402                                val += 1 + ovfl_val;
6403                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6404                        }
6405                }
6406
6407                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6408
6409                if (is_self) ctx->th_pmds[i] = pmd_val;
6410
6411                ctx->ctx_pmds[i].val = val;
6412        }
6413}
6414
6415static struct irqaction perfmon_irqaction = {
6416        .handler = pfm_interrupt_handler,
6417        .flags   = IRQF_DISABLED,
6418        .name    = "perfmon"
6419};
6420
6421static void
6422pfm_alt_save_pmu_state(void *data)
6423{
6424        struct pt_regs *regs;
6425
6426        regs = task_pt_regs(current);
6427
6428        DPRINT(("called\n"));
6429
6430        /*
6431         * should not be necessary but
6432         * let's take not risk
6433         */
6434        pfm_clear_psr_up();
6435        pfm_clear_psr_pp();
6436        ia64_psr(regs)->pp = 0;
6437
6438        /*
6439         * This call is required
6440         * May cause a spurious interrupt on some processors
6441         */
6442        pfm_freeze_pmu();
6443
6444        ia64_srlz_d();
6445}
6446
6447void
6448pfm_alt_restore_pmu_state(void *data)
6449{
6450        struct pt_regs *regs;
6451
6452        regs = task_pt_regs(current);
6453
6454        DPRINT(("called\n"));
6455
6456        /*
6457         * put PMU back in state expected
6458         * by perfmon
6459         */
6460        pfm_clear_psr_up();
6461        pfm_clear_psr_pp();
6462        ia64_psr(regs)->pp = 0;
6463
6464        /*
6465         * perfmon runs with PMU unfrozen at all times
6466         */
6467        pfm_unfreeze_pmu();
6468
6469        ia64_srlz_d();
6470}
6471
6472int
6473pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6474{
6475        int ret, i;
6476        int reserve_cpu;
6477
6478        /* some sanity checks */
6479        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6480
6481        /* do the easy test first */
6482        if (pfm_alt_intr_handler) return -EBUSY;
6483
6484        /* one at a time in the install or remove, just fail the others */
6485        if (!spin_trylock(&pfm_alt_install_check)) {
6486                return -EBUSY;
6487        }
6488
6489        /* reserve our session */
6490        for_each_online_cpu(reserve_cpu) {
6491                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6492                if (ret) goto cleanup_reserve;
6493        }
6494
6495        /* save the current system wide pmu states */
6496        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6497        if (ret) {
6498                DPRINT(("on_each_cpu() failed: %d\n", ret));
6499                goto cleanup_reserve;
6500        }
6501
6502        /* officially change to the alternate interrupt handler */
6503        pfm_alt_intr_handler = hdl;
6504
6505        spin_unlock(&pfm_alt_install_check);
6506
6507        return 0;
6508
6509cleanup_reserve:
6510        for_each_online_cpu(i) {
6511                /* don't unreserve more than we reserved */
6512                if (i >= reserve_cpu) break;
6513
6514                pfm_unreserve_session(NULL, 1, i);
6515        }
6516
6517        spin_unlock(&pfm_alt_install_check);
6518
6519        return ret;
6520}
6521EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6522
6523int
6524pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6525{
6526        int i;
6527        int ret;
6528
6529        if (hdl == NULL) return -EINVAL;
6530
6531        /* cannot remove someone else's handler! */
6532        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6533
6534        /* one at a time in the install or remove, just fail the others */
6535        if (!spin_trylock(&pfm_alt_install_check)) {
6536                return -EBUSY;
6537        }
6538
6539        pfm_alt_intr_handler = NULL;
6540
6541        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6542        if (ret) {
6543                DPRINT(("on_each_cpu() failed: %d\n", ret));
6544        }
6545
6546        for_each_online_cpu(i) {
6547                pfm_unreserve_session(NULL, 1, i);
6548        }
6549
6550        spin_unlock(&pfm_alt_install_check);
6551
6552        return 0;
6553}
6554EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6555
6556/*
6557 * perfmon initialization routine, called from the initcall() table
6558 */
6559static int init_pfm_fs(void);
6560
6561static int __init
6562pfm_probe_pmu(void)
6563{
6564        pmu_config_t **p;
6565        int family;
6566
6567        family = local_cpu_data->family;
6568        p      = pmu_confs;
6569
6570        while(*p) {
6571                if ((*p)->probe) {
6572                        if ((*p)->probe() == 0) goto found;
6573                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6574                        goto found;
6575                }
6576                p++;
6577        }
6578        return -1;
6579found:
6580        pmu_conf = *p;
6581        return 0;
6582}
6583
6584static const struct file_operations pfm_proc_fops = {
6585        .open           = pfm_proc_open,
6586        .read           = seq_read,
6587        .llseek         = seq_lseek,
6588        .release        = seq_release,
6589};
6590
6591int __init
6592pfm_init(void)
6593{
6594        unsigned int n, n_counters, i;
6595
6596        printk("perfmon: version %u.%u IRQ %u\n",
6597                PFM_VERSION_MAJ,
6598                PFM_VERSION_MIN,
6599                IA64_PERFMON_VECTOR);
6600
6601        if (pfm_probe_pmu()) {
6602                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6603                                local_cpu_data->family);
6604                return -ENODEV;
6605        }
6606
6607        /*
6608         * compute the number of implemented PMD/PMC from the
6609         * description tables
6610         */
6611        n = 0;
6612        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6613                if (PMC_IS_IMPL(i) == 0) continue;
6614                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6615                n++;
6616        }
6617        pmu_conf->num_pmcs = n;
6618
6619        n = 0; n_counters = 0;
6620        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6621                if (PMD_IS_IMPL(i) == 0) continue;
6622                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6623                n++;
6624                if (PMD_IS_COUNTING(i)) n_counters++;
6625        }
6626        pmu_conf->num_pmds      = n;
6627        pmu_conf->num_counters  = n_counters;
6628
6629        /*
6630         * sanity checks on the number of debug registers
6631         */
6632        if (pmu_conf->use_rr_dbregs) {
6633                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6634                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6635                        pmu_conf = NULL;
6636                        return -1;
6637                }
6638                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6639                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6640                        pmu_conf = NULL;
6641                        return -1;
6642                }
6643        }
6644
6645        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6646               pmu_conf->pmu_name,
6647               pmu_conf->num_pmcs,
6648               pmu_conf->num_pmds,
6649               pmu_conf->num_counters,
6650               ffz(pmu_conf->ovfl_val));
6651
6652        /* sanity check */
6653        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6654                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6655                pmu_conf = NULL;
6656                return -1;
6657        }
6658
6659        /*
6660         * create /proc/perfmon (mostly for debugging purposes)
6661         */
6662        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6663        if (perfmon_dir == NULL) {
6664                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6665                pmu_conf = NULL;
6666                return -1;
6667        }
6668
6669        /*
6670         * create /proc/sys/kernel/perfmon (for debugging purposes)
6671         */
6672        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6673
6674        /*
6675         * initialize all our spinlocks
6676         */
6677        spin_lock_init(&pfm_sessions.pfs_lock);
6678        spin_lock_init(&pfm_buffer_fmt_lock);
6679
6680        init_pfm_fs();
6681
6682        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6683
6684        return 0;
6685}
6686
6687__initcall(pfm_init);
6688
6689/*
6690 * this function is called before pfm_init()
6691 */
6692void
6693pfm_init_percpu (void)
6694{
6695        static int first_time=1;
6696        /*
6697         * make sure no measurement is active
6698         * (may inherit programmed PMCs from EFI).
6699         */
6700        pfm_clear_psr_pp();
6701        pfm_clear_psr_up();
6702
6703        /*
6704         * we run with the PMU not frozen at all times
6705         */
6706        pfm_unfreeze_pmu();
6707
6708        if (first_time) {
6709                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6710                first_time=0;
6711        }
6712
6713        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6714        ia64_srlz_d();
6715}
6716
6717/*
6718 * used for debug purposes only
6719 */
6720void
6721dump_pmu_state(const char *from)
6722{
6723        struct task_struct *task;
6724        struct pt_regs *regs;
6725        pfm_context_t *ctx;
6726        unsigned long psr, dcr, info, flags;
6727        int i, this_cpu;
6728
6729        local_irq_save(flags);
6730
6731        this_cpu = smp_processor_id();
6732        regs     = task_pt_regs(current);
6733        info     = PFM_CPUINFO_GET();
6734        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6735
6736        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6737                local_irq_restore(flags);
6738                return;
6739        }
6740
6741        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6742                this_cpu, 
6743                from, 
6744                task_pid_nr(current),
6745                regs->cr_iip,
6746                current->comm);
6747
6748        task = GET_PMU_OWNER();
6749        ctx  = GET_PMU_CTX();
6750
6751        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6752
6753        psr = pfm_get_psr();
6754
6755        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6756                this_cpu,
6757                ia64_get_pmc(0),
6758                psr & IA64_PSR_PP ? 1 : 0,
6759                psr & IA64_PSR_UP ? 1 : 0,
6760                dcr & IA64_DCR_PP ? 1 : 0,
6761                info,
6762                ia64_psr(regs)->up,
6763                ia64_psr(regs)->pp);
6764
6765        ia64_psr(regs)->up = 0;
6766        ia64_psr(regs)->pp = 0;
6767
6768        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6769                if (PMC_IS_IMPL(i) == 0) continue;
6770                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6771        }
6772
6773        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6774                if (PMD_IS_IMPL(i) == 0) continue;
6775                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6776        }
6777
6778        if (ctx) {
6779                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6780                                this_cpu,
6781                                ctx->ctx_state,
6782                                ctx->ctx_smpl_vaddr,
6783                                ctx->ctx_smpl_hdr,
6784                                ctx->ctx_msgq_head,
6785                                ctx->ctx_msgq_tail,
6786                                ctx->ctx_saved_psr_up);
6787        }
6788        local_irq_restore(flags);
6789}
6790
6791/*
6792 * called from process.c:copy_thread(). task is new child.
6793 */
6794void
6795pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6796{
6797        struct thread_struct *thread;
6798
6799        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6800
6801        thread = &task->thread;
6802
6803        /*
6804         * cut links inherited from parent (current)
6805         */
6806        thread->pfm_context = NULL;
6807
6808        PFM_SET_WORK_PENDING(task, 0);
6809
6810        /*
6811         * the psr bits are already set properly in copy_threads()
6812         */
6813}
6814#else  /* !CONFIG_PERFMON */
6815asmlinkage long
6816sys_perfmonctl (int fd, int cmd, void *arg, int count)
6817{
6818        return -ENOSYS;
6819}
6820#endif /* CONFIG_PERFMON */
6821