linux/arch/ia64/kernel/ptrace.c
<<
>>
Prefs
   1/*
   2 * Kernel support for the ptrace() and syscall tracing interfaces.
   3 *
   4 * Copyright (C) 1999-2005 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2006 Intel Co
   7 *  2006-08-12  - IA64 Native Utrace implementation support added by
   8 *      Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * Derived from the x86 and Alpha versions.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/sched.h>
  14#include <linux/mm.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/regset.h>
  22#include <linux/elf.h>
  23#include <linux/tracehook.h>
  24
  25#include <asm/pgtable.h>
  26#include <asm/processor.h>
  27#include <asm/ptrace_offsets.h>
  28#include <asm/rse.h>
  29#include <asm/uaccess.h>
  30#include <asm/unwind.h>
  31#ifdef CONFIG_PERFMON
  32#include <asm/perfmon.h>
  33#endif
  34
  35#include "entry.h"
  36
  37/*
  38 * Bits in the PSR that we allow ptrace() to change:
  39 *      be, up, ac, mfl, mfh (the user mask; five bits total)
  40 *      db (debug breakpoint fault; one bit)
  41 *      id (instruction debug fault disable; one bit)
  42 *      dd (data debug fault disable; one bit)
  43 *      ri (restart instruction; two bits)
  44 *      is (instruction set; one bit)
  45 */
  46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS      \
  47                   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  48
  49#define MASK(nbits)     ((1UL << (nbits)) - 1)  /* mask with NBITS bits set */
  50#define PFM_MASK        MASK(38)
  51
  52#define PTRACE_DEBUG    0
  53
  54#if PTRACE_DEBUG
  55# define dprintk(format...)     printk(format)
  56# define inline
  57#else
  58# define dprintk(format...)
  59#endif
  60
  61/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
  62
  63static inline int
  64in_syscall (struct pt_regs *pt)
  65{
  66        return (long) pt->cr_ifs >= 0;
  67}
  68
  69/*
  70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  71 * bitset where bit i is set iff the NaT bit of register i is set.
  72 */
  73unsigned long
  74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  75{
  76#       define GET_BITS(first, last, unat)                              \
  77        ({                                                              \
  78                unsigned long bit = ia64_unat_pos(&pt->r##first);       \
  79                unsigned long nbits = (last - first + 1);               \
  80                unsigned long mask = MASK(nbits) << first;              \
  81                unsigned long dist;                                     \
  82                if (bit < first)                                        \
  83                        dist = 64 + bit - first;                        \
  84                else                                                    \
  85                        dist = bit - first;                             \
  86                ia64_rotr(unat, dist) & mask;                           \
  87        })
  88        unsigned long val;
  89
  90        /*
  91         * Registers that are stored consecutively in struct pt_regs
  92         * can be handled in parallel.  If the register order in
  93         * struct_pt_regs changes, this code MUST be updated.
  94         */
  95        val  = GET_BITS( 1,  1, scratch_unat);
  96        val |= GET_BITS( 2,  3, scratch_unat);
  97        val |= GET_BITS(12, 13, scratch_unat);
  98        val |= GET_BITS(14, 14, scratch_unat);
  99        val |= GET_BITS(15, 15, scratch_unat);
 100        val |= GET_BITS( 8, 11, scratch_unat);
 101        val |= GET_BITS(16, 31, scratch_unat);
 102        return val;
 103
 104#       undef GET_BITS
 105}
 106
 107/*
 108 * Set the NaT bits for the scratch registers according to NAT and
 109 * return the resulting unat (assuming the scratch registers are
 110 * stored in PT).
 111 */
 112unsigned long
 113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 114{
 115#       define PUT_BITS(first, last, nat)                               \
 116        ({                                                              \
 117                unsigned long bit = ia64_unat_pos(&pt->r##first);       \
 118                unsigned long nbits = (last - first + 1);               \
 119                unsigned long mask = MASK(nbits) << first;              \
 120                long dist;                                              \
 121                if (bit < first)                                        \
 122                        dist = 64 + bit - first;                        \
 123                else                                                    \
 124                        dist = bit - first;                             \
 125                ia64_rotl(nat & mask, dist);                            \
 126        })
 127        unsigned long scratch_unat;
 128
 129        /*
 130         * Registers that are stored consecutively in struct pt_regs
 131         * can be handled in parallel.  If the register order in
 132         * struct_pt_regs changes, this code MUST be updated.
 133         */
 134        scratch_unat  = PUT_BITS( 1,  1, nat);
 135        scratch_unat |= PUT_BITS( 2,  3, nat);
 136        scratch_unat |= PUT_BITS(12, 13, nat);
 137        scratch_unat |= PUT_BITS(14, 14, nat);
 138        scratch_unat |= PUT_BITS(15, 15, nat);
 139        scratch_unat |= PUT_BITS( 8, 11, nat);
 140        scratch_unat |= PUT_BITS(16, 31, nat);
 141
 142        return scratch_unat;
 143
 144#       undef PUT_BITS
 145}
 146
 147#define IA64_MLX_TEMPLATE       0x2
 148#define IA64_MOVL_OPCODE        6
 149
 150void
 151ia64_increment_ip (struct pt_regs *regs)
 152{
 153        unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 154
 155        if (ri > 2) {
 156                ri = 0;
 157                regs->cr_iip += 16;
 158        } else if (ri == 2) {
 159                get_user(w0, (char __user *) regs->cr_iip + 0);
 160                if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 161                        /*
 162                         * rfi'ing to slot 2 of an MLX bundle causes
 163                         * an illegal operation fault.  We don't want
 164                         * that to happen...
 165                         */
 166                        ri = 0;
 167                        regs->cr_iip += 16;
 168                }
 169        }
 170        ia64_psr(regs)->ri = ri;
 171}
 172
 173void
 174ia64_decrement_ip (struct pt_regs *regs)
 175{
 176        unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 177
 178        if (ia64_psr(regs)->ri == 0) {
 179                regs->cr_iip -= 16;
 180                ri = 2;
 181                get_user(w0, (char __user *) regs->cr_iip + 0);
 182                if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 183                        /*
 184                         * rfi'ing to slot 2 of an MLX bundle causes
 185                         * an illegal operation fault.  We don't want
 186                         * that to happen...
 187                         */
 188                        ri = 1;
 189                }
 190        }
 191        ia64_psr(regs)->ri = ri;
 192}
 193
 194/*
 195 * This routine is used to read an rnat bits that are stored on the
 196 * kernel backing store.  Since, in general, the alignment of the user
 197 * and kernel are different, this is not completely trivial.  In
 198 * essence, we need to construct the user RNAT based on up to two
 199 * kernel RNAT values and/or the RNAT value saved in the child's
 200 * pt_regs.
 201 *
 202 * user rbs
 203 *
 204 * +--------+ <-- lowest address
 205 * | slot62 |
 206 * +--------+
 207 * |  rnat  | 0x....1f8
 208 * +--------+
 209 * | slot00 | \
 210 * +--------+ |
 211 * | slot01 | > child_regs->ar_rnat
 212 * +--------+ |
 213 * | slot02 | /                         kernel rbs
 214 * +--------+                           +--------+
 215 *          <- child_regs->ar_bspstore  | slot61 | <-- krbs
 216 * +- - - - +                           +--------+
 217 *                                      | slot62 |
 218 * +- - - - +                           +--------+
 219 *                                      |  rnat  |
 220 * +- - - - +                           +--------+
 221 *   vrnat                              | slot00 |
 222 * +- - - - +                           +--------+
 223 *                                      =        =
 224 *                                      +--------+
 225 *                                      | slot00 | \
 226 *                                      +--------+ |
 227 *                                      | slot01 | > child_stack->ar_rnat
 228 *                                      +--------+ |
 229 *                                      | slot02 | /
 230 *                                      +--------+
 231 *                                                <--- child_stack->ar_bspstore
 232 *
 233 * The way to think of this code is as follows: bit 0 in the user rnat
 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 235 * value.  The kernel rnat value holding this bit is stored in
 236 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 237 * form the upper bits of the user rnat value.
 238 *
 239 * Boundary cases:
 240 *
 241 * o when reading the rnat "below" the first rnat slot on the kernel
 242 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 243 *   merged in from pt->ar_rnat.
 244 *
 245 * o when reading the rnat "above" the last rnat slot on the kernel
 246 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 247 */
 248static unsigned long
 249get_rnat (struct task_struct *task, struct switch_stack *sw,
 250          unsigned long *krbs, unsigned long *urnat_addr,
 251          unsigned long *urbs_end)
 252{
 253        unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 254        unsigned long umask = 0, mask, m;
 255        unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 256        long num_regs, nbits;
 257        struct pt_regs *pt;
 258
 259        pt = task_pt_regs(task);
 260        kbsp = (unsigned long *) sw->ar_bspstore;
 261        ubspstore = (unsigned long *) pt->ar_bspstore;
 262
 263        if (urbs_end < urnat_addr)
 264                nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 265        else
 266                nbits = 63;
 267        mask = MASK(nbits);
 268        /*
 269         * First, figure out which bit number slot 0 in user-land maps
 270         * to in the kernel rnat.  Do this by figuring out how many
 271         * register slots we're beyond the user's backingstore and
 272         * then computing the equivalent address in kernel space.
 273         */
 274        num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 275        slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 276        shift = ia64_rse_slot_num(slot0_kaddr);
 277        rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 278        rnat0_kaddr = rnat1_kaddr - 64;
 279
 280        if (ubspstore + 63 > urnat_addr) {
 281                /* some bits need to be merged in from pt->ar_rnat */
 282                umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 283                urnat = (pt->ar_rnat & umask);
 284                mask &= ~umask;
 285                if (!mask)
 286                        return urnat;
 287        }
 288
 289        m = mask << shift;
 290        if (rnat0_kaddr >= kbsp)
 291                rnat0 = sw->ar_rnat;
 292        else if (rnat0_kaddr > krbs)
 293                rnat0 = *rnat0_kaddr;
 294        urnat |= (rnat0 & m) >> shift;
 295
 296        m = mask >> (63 - shift);
 297        if (rnat1_kaddr >= kbsp)
 298                rnat1 = sw->ar_rnat;
 299        else if (rnat1_kaddr > krbs)
 300                rnat1 = *rnat1_kaddr;
 301        urnat |= (rnat1 & m) << (63 - shift);
 302        return urnat;
 303}
 304
 305/*
 306 * The reverse of get_rnat.
 307 */
 308static void
 309put_rnat (struct task_struct *task, struct switch_stack *sw,
 310          unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 311          unsigned long *urbs_end)
 312{
 313        unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 314        unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 315        long num_regs, nbits;
 316        struct pt_regs *pt;
 317        unsigned long cfm, *urbs_kargs;
 318
 319        pt = task_pt_regs(task);
 320        kbsp = (unsigned long *) sw->ar_bspstore;
 321        ubspstore = (unsigned long *) pt->ar_bspstore;
 322
 323        urbs_kargs = urbs_end;
 324        if (in_syscall(pt)) {
 325                /*
 326                 * If entered via syscall, don't allow user to set rnat bits
 327                 * for syscall args.
 328                 */
 329                cfm = pt->cr_ifs;
 330                urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 331        }
 332
 333        if (urbs_kargs >= urnat_addr)
 334                nbits = 63;
 335        else {
 336                if ((urnat_addr - 63) >= urbs_kargs)
 337                        return;
 338                nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 339        }
 340        mask = MASK(nbits);
 341
 342        /*
 343         * First, figure out which bit number slot 0 in user-land maps
 344         * to in the kernel rnat.  Do this by figuring out how many
 345         * register slots we're beyond the user's backingstore and
 346         * then computing the equivalent address in kernel space.
 347         */
 348        num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 349        slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 350        shift = ia64_rse_slot_num(slot0_kaddr);
 351        rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 352        rnat0_kaddr = rnat1_kaddr - 64;
 353
 354        if (ubspstore + 63 > urnat_addr) {
 355                /* some bits need to be place in pt->ar_rnat: */
 356                umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 357                pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 358                mask &= ~umask;
 359                if (!mask)
 360                        return;
 361        }
 362        /*
 363         * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 364         * rnat slot is ignored. so we don't have to clear it here.
 365         */
 366        rnat0 = (urnat << shift);
 367        m = mask << shift;
 368        if (rnat0_kaddr >= kbsp)
 369                sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 370        else if (rnat0_kaddr > krbs)
 371                *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 372
 373        rnat1 = (urnat >> (63 - shift));
 374        m = mask >> (63 - shift);
 375        if (rnat1_kaddr >= kbsp)
 376                sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 377        else if (rnat1_kaddr > krbs)
 378                *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 379}
 380
 381static inline int
 382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 383               unsigned long urbs_end)
 384{
 385        unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 386                                                      urbs_end);
 387        return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 388}
 389
 390/*
 391 * Read a word from the user-level backing store of task CHILD.  ADDR
 392 * is the user-level address to read the word from, VAL a pointer to
 393 * the return value, and USER_BSP gives the end of the user-level
 394 * backing store (i.e., it's the address that would be in ar.bsp after
 395 * the user executed a "cover" instruction).
 396 *
 397 * This routine takes care of accessing the kernel register backing
 398 * store for those registers that got spilled there.  It also takes
 399 * care of calculating the appropriate RNaT collection words.
 400 */
 401long
 402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 403           unsigned long user_rbs_end, unsigned long addr, long *val)
 404{
 405        unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 406        struct pt_regs *child_regs;
 407        size_t copied;
 408        long ret;
 409
 410        urbs_end = (long *) user_rbs_end;
 411        laddr = (unsigned long *) addr;
 412        child_regs = task_pt_regs(child);
 413        bspstore = (unsigned long *) child_regs->ar_bspstore;
 414        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 415        if (on_kernel_rbs(addr, (unsigned long) bspstore,
 416                          (unsigned long) urbs_end))
 417        {
 418                /*
 419                 * Attempt to read the RBS in an area that's actually
 420                 * on the kernel RBS => read the corresponding bits in
 421                 * the kernel RBS.
 422                 */
 423                rnat_addr = ia64_rse_rnat_addr(laddr);
 424                ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 425
 426                if (laddr == rnat_addr) {
 427                        /* return NaT collection word itself */
 428                        *val = ret;
 429                        return 0;
 430                }
 431
 432                if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 433                        /*
 434                         * It is implementation dependent whether the
 435                         * data portion of a NaT value gets saved on a
 436                         * st8.spill or RSE spill (e.g., see EAS 2.6,
 437                         * 4.4.4.6 Register Spill and Fill).  To get
 438                         * consistent behavior across all possible
 439                         * IA-64 implementations, we return zero in
 440                         * this case.
 441                         */
 442                        *val = 0;
 443                        return 0;
 444                }
 445
 446                if (laddr < urbs_end) {
 447                        /*
 448                         * The desired word is on the kernel RBS and
 449                         * is not a NaT.
 450                         */
 451                        regnum = ia64_rse_num_regs(bspstore, laddr);
 452                        *val = *ia64_rse_skip_regs(krbs, regnum);
 453                        return 0;
 454                }
 455        }
 456        copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
 457        if (copied != sizeof(ret))
 458                return -EIO;
 459        *val = ret;
 460        return 0;
 461}
 462
 463long
 464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 465           unsigned long user_rbs_end, unsigned long addr, long val)
 466{
 467        unsigned long *bspstore, *krbs, regnum, *laddr;
 468        unsigned long *urbs_end = (long *) user_rbs_end;
 469        struct pt_regs *child_regs;
 470
 471        laddr = (unsigned long *) addr;
 472        child_regs = task_pt_regs(child);
 473        bspstore = (unsigned long *) child_regs->ar_bspstore;
 474        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 475        if (on_kernel_rbs(addr, (unsigned long) bspstore,
 476                          (unsigned long) urbs_end))
 477        {
 478                /*
 479                 * Attempt to write the RBS in an area that's actually
 480                 * on the kernel RBS => write the corresponding bits
 481                 * in the kernel RBS.
 482                 */
 483                if (ia64_rse_is_rnat_slot(laddr))
 484                        put_rnat(child, child_stack, krbs, laddr, val,
 485                                 urbs_end);
 486                else {
 487                        if (laddr < urbs_end) {
 488                                regnum = ia64_rse_num_regs(bspstore, laddr);
 489                                *ia64_rse_skip_regs(krbs, regnum) = val;
 490                        }
 491                }
 492        } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
 493                   != sizeof(val))
 494                return -EIO;
 495        return 0;
 496}
 497
 498/*
 499 * Calculate the address of the end of the user-level register backing
 500 * store.  This is the address that would have been stored in ar.bsp
 501 * if the user had executed a "cover" instruction right before
 502 * entering the kernel.  If CFMP is not NULL, it is used to return the
 503 * "current frame mask" that was active at the time the kernel was
 504 * entered.
 505 */
 506unsigned long
 507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 508                       unsigned long *cfmp)
 509{
 510        unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 511        long ndirty;
 512
 513        krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 514        bspstore = (unsigned long *) pt->ar_bspstore;
 515        ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 516
 517        if (in_syscall(pt))
 518                ndirty += (cfm & 0x7f);
 519        else
 520                cfm &= ~(1UL << 63);    /* clear valid bit */
 521
 522        if (cfmp)
 523                *cfmp = cfm;
 524        return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 525}
 526
 527/*
 528 * Synchronize (i.e, write) the RSE backing store living in kernel
 529 * space to the VM of the CHILD task.  SW and PT are the pointers to
 530 * the switch_stack and pt_regs structures, respectively.
 531 * USER_RBS_END is the user-level address at which the backing store
 532 * ends.
 533 */
 534long
 535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 536                    unsigned long user_rbs_start, unsigned long user_rbs_end)
 537{
 538        unsigned long addr, val;
 539        long ret;
 540
 541        /* now copy word for word from kernel rbs to user rbs: */
 542        for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 543                ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 544                if (ret < 0)
 545                        return ret;
 546                if (access_process_vm(child, addr, &val, sizeof(val), 1)
 547                    != sizeof(val))
 548                        return -EIO;
 549        }
 550        return 0;
 551}
 552
 553static long
 554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 555                unsigned long user_rbs_start, unsigned long user_rbs_end)
 556{
 557        unsigned long addr, val;
 558        long ret;
 559
 560        /* now copy word for word from user rbs to kernel rbs: */
 561        for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 562                if (access_process_vm(child, addr, &val, sizeof(val), 0)
 563                                != sizeof(val))
 564                        return -EIO;
 565
 566                ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 567                if (ret < 0)
 568                        return ret;
 569        }
 570        return 0;
 571}
 572
 573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 574                            unsigned long, unsigned long);
 575
 576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 577{
 578        struct pt_regs *pt;
 579        unsigned long urbs_end;
 580        syncfunc_t fn = arg;
 581
 582        if (unw_unwind_to_user(info) < 0)
 583                return;
 584        pt = task_pt_regs(info->task);
 585        urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 586
 587        fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 588}
 589
 590/*
 591 * when a thread is stopped (ptraced), debugger might change thread's user
 592 * stack (change memory directly), and we must avoid the RSE stored in kernel
 593 * to override user stack (user space's RSE is newer than kernel's in the
 594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
 595 * task is stopped, so user RSE has updated data.  we then copy user RSE to
 596 * kernel after the task is resummed from traced stop and kernel will use the
 597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 598 * synchronize user RSE to kernel.
 599 */
 600void ia64_ptrace_stop(void)
 601{
 602        if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 603                return;
 604        set_notify_resume(current);
 605        unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 606}
 607
 608/*
 609 * This is called to read back the register backing store.
 610 */
 611void ia64_sync_krbs(void)
 612{
 613        clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 614
 615        unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 616}
 617
 618/*
 619 * After PTRACE_ATTACH, a thread's register backing store area in user
 620 * space is assumed to contain correct data whenever the thread is
 621 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 622 * But if the child was already stopped for job control when we attach
 623 * to it, then it might not ever get into ptrace_stop by the time we
 624 * want to examine the user memory containing the RBS.
 625 */
 626void
 627ptrace_attach_sync_user_rbs (struct task_struct *child)
 628{
 629        int stopped = 0;
 630        struct unw_frame_info info;
 631
 632        /*
 633         * If the child is in TASK_STOPPED, we need to change that to
 634         * TASK_TRACED momentarily while we operate on it.  This ensures
 635         * that the child won't be woken up and return to user mode while
 636         * we are doing the sync.  (It can only be woken up for SIGKILL.)
 637         */
 638
 639        read_lock(&tasklist_lock);
 640        if (child->sighand) {
 641                spin_lock_irq(&child->sighand->siglock);
 642                if (child->state == TASK_STOPPED &&
 643                    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 644                        set_notify_resume(child);
 645
 646                        child->state = TASK_TRACED;
 647                        stopped = 1;
 648                }
 649                spin_unlock_irq(&child->sighand->siglock);
 650        }
 651        read_unlock(&tasklist_lock);
 652
 653        if (!stopped)
 654                return;
 655
 656        unw_init_from_blocked_task(&info, child);
 657        do_sync_rbs(&info, ia64_sync_user_rbs);
 658
 659        /*
 660         * Now move the child back into TASK_STOPPED if it should be in a
 661         * job control stop, so that SIGCONT can be used to wake it up.
 662         */
 663        read_lock(&tasklist_lock);
 664        if (child->sighand) {
 665                spin_lock_irq(&child->sighand->siglock);
 666                if (child->state == TASK_TRACED &&
 667                    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 668                        child->state = TASK_STOPPED;
 669                }
 670                spin_unlock_irq(&child->sighand->siglock);
 671        }
 672        read_unlock(&tasklist_lock);
 673}
 674
 675static inline int
 676thread_matches (struct task_struct *thread, unsigned long addr)
 677{
 678        unsigned long thread_rbs_end;
 679        struct pt_regs *thread_regs;
 680
 681        if (ptrace_check_attach(thread, 0) < 0)
 682                /*
 683                 * If the thread is not in an attachable state, we'll
 684                 * ignore it.  The net effect is that if ADDR happens
 685                 * to overlap with the portion of the thread's
 686                 * register backing store that is currently residing
 687                 * on the thread's kernel stack, then ptrace() may end
 688                 * up accessing a stale value.  But if the thread
 689                 * isn't stopped, that's a problem anyhow, so we're
 690                 * doing as well as we can...
 691                 */
 692                return 0;
 693
 694        thread_regs = task_pt_regs(thread);
 695        thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
 696        if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
 697                return 0;
 698
 699        return 1;       /* looks like we've got a winner */
 700}
 701
 702/*
 703 * Write f32-f127 back to task->thread.fph if it has been modified.
 704 */
 705inline void
 706ia64_flush_fph (struct task_struct *task)
 707{
 708        struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 709
 710        /*
 711         * Prevent migrating this task while
 712         * we're fiddling with the FPU state
 713         */
 714        preempt_disable();
 715        if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 716                psr->mfh = 0;
 717                task->thread.flags |= IA64_THREAD_FPH_VALID;
 718                ia64_save_fpu(&task->thread.fph[0]);
 719        }
 720        preempt_enable();
 721}
 722
 723/*
 724 * Sync the fph state of the task so that it can be manipulated
 725 * through thread.fph.  If necessary, f32-f127 are written back to
 726 * thread.fph or, if the fph state hasn't been used before, thread.fph
 727 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 728 * ensure that the task picks up the state from thread.fph when it
 729 * executes again.
 730 */
 731void
 732ia64_sync_fph (struct task_struct *task)
 733{
 734        struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 735
 736        ia64_flush_fph(task);
 737        if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 738                task->thread.flags |= IA64_THREAD_FPH_VALID;
 739                memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 740        }
 741        ia64_drop_fpu(task);
 742        psr->dfh = 1;
 743}
 744
 745/*
 746 * Change the machine-state of CHILD such that it will return via the normal
 747 * kernel exit-path, rather than the syscall-exit path.
 748 */
 749static void
 750convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 751                        unsigned long cfm)
 752{
 753        struct unw_frame_info info, prev_info;
 754        unsigned long ip, sp, pr;
 755
 756        unw_init_from_blocked_task(&info, child);
 757        while (1) {
 758                prev_info = info;
 759                if (unw_unwind(&info) < 0)
 760                        return;
 761
 762                unw_get_sp(&info, &sp);
 763                if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 764                    < IA64_PT_REGS_SIZE) {
 765                        dprintk("ptrace.%s: ran off the top of the kernel "
 766                                "stack\n", __func__);
 767                        return;
 768                }
 769                if (unw_get_pr (&prev_info, &pr) < 0) {
 770                        unw_get_rp(&prev_info, &ip);
 771                        dprintk("ptrace.%s: failed to read "
 772                                "predicate register (ip=0x%lx)\n",
 773                                __func__, ip);
 774                        return;
 775                }
 776                if (unw_is_intr_frame(&info)
 777                    && (pr & (1UL << PRED_USER_STACK)))
 778                        break;
 779        }
 780
 781        /*
 782         * Note: at the time of this call, the target task is blocked
 783         * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 784         * (aka, "pLvSys") we redirect execution from
 785         * .work_pending_syscall_end to .work_processed_kernel.
 786         */
 787        unw_get_pr(&prev_info, &pr);
 788        pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 789        pr |=  (1UL << PRED_NON_SYSCALL);
 790        unw_set_pr(&prev_info, pr);
 791
 792        pt->cr_ifs = (1UL << 63) | cfm;
 793        /*
 794         * Clear the memory that is NOT written on syscall-entry to
 795         * ensure we do not leak kernel-state to user when execution
 796         * resumes.
 797         */
 798        pt->r2 = 0;
 799        pt->r3 = 0;
 800        pt->r14 = 0;
 801        memset(&pt->r16, 0, 16*8);      /* clear r16-r31 */
 802        memset(&pt->f6, 0, 6*16);       /* clear f6-f11 */
 803        pt->b7 = 0;
 804        pt->ar_ccv = 0;
 805        pt->ar_csd = 0;
 806        pt->ar_ssd = 0;
 807}
 808
 809static int
 810access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 811                 struct unw_frame_info *info,
 812                 unsigned long *data, int write_access)
 813{
 814        unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 815        char nat = 0;
 816
 817        if (write_access) {
 818                nat_bits = *data;
 819                scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 820                if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 821                        dprintk("ptrace: failed to set ar.unat\n");
 822                        return -1;
 823                }
 824                for (regnum = 4; regnum <= 7; ++regnum) {
 825                        unw_get_gr(info, regnum, &dummy, &nat);
 826                        unw_set_gr(info, regnum, dummy,
 827                                   (nat_bits >> regnum) & 1);
 828                }
 829        } else {
 830                if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 831                        dprintk("ptrace: failed to read ar.unat\n");
 832                        return -1;
 833                }
 834                nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 835                for (regnum = 4; regnum <= 7; ++regnum) {
 836                        unw_get_gr(info, regnum, &dummy, &nat);
 837                        nat_bits |= (nat != 0) << regnum;
 838                }
 839                *data = nat_bits;
 840        }
 841        return 0;
 842}
 843
 844static int
 845access_uarea (struct task_struct *child, unsigned long addr,
 846              unsigned long *data, int write_access);
 847
 848static long
 849ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 850{
 851        unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 852        struct unw_frame_info info;
 853        struct ia64_fpreg fpval;
 854        struct switch_stack *sw;
 855        struct pt_regs *pt;
 856        long ret, retval = 0;
 857        char nat = 0;
 858        int i;
 859
 860        if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
 861                return -EIO;
 862
 863        pt = task_pt_regs(child);
 864        sw = (struct switch_stack *) (child->thread.ksp + 16);
 865        unw_init_from_blocked_task(&info, child);
 866        if (unw_unwind_to_user(&info) < 0) {
 867                return -EIO;
 868        }
 869
 870        if (((unsigned long) ppr & 0x7) != 0) {
 871                dprintk("ptrace:unaligned register address %p\n", ppr);
 872                return -EIO;
 873        }
 874
 875        if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 876            || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 877            || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 878            || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 879            || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 880            || access_uarea(child, PT_CFM, &cfm, 0)
 881            || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 882                return -EIO;
 883
 884        /* control regs */
 885
 886        retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 887        retval |= __put_user(psr, &ppr->cr_ipsr);
 888
 889        /* app regs */
 890
 891        retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 892        retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 893        retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 894        retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 895        retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 896        retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 897
 898        retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 899        retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 900        retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 901        retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 902        retval |= __put_user(cfm, &ppr->cfm);
 903
 904        /* gr1-gr3 */
 905
 906        retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 907        retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 908
 909        /* gr4-gr7 */
 910
 911        for (i = 4; i < 8; i++) {
 912                if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 913                        return -EIO;
 914                retval |= __put_user(val, &ppr->gr[i]);
 915        }
 916
 917        /* gr8-gr11 */
 918
 919        retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 920
 921        /* gr12-gr15 */
 922
 923        retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 924        retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 925        retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 926
 927        /* gr16-gr31 */
 928
 929        retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 930
 931        /* b0 */
 932
 933        retval |= __put_user(pt->b0, &ppr->br[0]);
 934
 935        /* b1-b5 */
 936
 937        for (i = 1; i < 6; i++) {
 938                if (unw_access_br(&info, i, &val, 0) < 0)
 939                        return -EIO;
 940                __put_user(val, &ppr->br[i]);
 941        }
 942
 943        /* b6-b7 */
 944
 945        retval |= __put_user(pt->b6, &ppr->br[6]);
 946        retval |= __put_user(pt->b7, &ppr->br[7]);
 947
 948        /* fr2-fr5 */
 949
 950        for (i = 2; i < 6; i++) {
 951                if (unw_get_fr(&info, i, &fpval) < 0)
 952                        return -EIO;
 953                retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 954        }
 955
 956        /* fr6-fr11 */
 957
 958        retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 959                                 sizeof(struct ia64_fpreg) * 6);
 960
 961        /* fp scratch regs(12-15) */
 962
 963        retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 964                                 sizeof(struct ia64_fpreg) * 4);
 965
 966        /* fr16-fr31 */
 967
 968        for (i = 16; i < 32; i++) {
 969                if (unw_get_fr(&info, i, &fpval) < 0)
 970                        return -EIO;
 971                retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 972        }
 973
 974        /* fph */
 975
 976        ia64_flush_fph(child);
 977        retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 978                                 sizeof(ppr->fr[32]) * 96);
 979
 980        /*  preds */
 981
 982        retval |= __put_user(pt->pr, &ppr->pr);
 983
 984        /* nat bits */
 985
 986        retval |= __put_user(nat_bits, &ppr->nat);
 987
 988        ret = retval ? -EIO : 0;
 989        return ret;
 990}
 991
 992static long
 993ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 994{
 995        unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 996        struct unw_frame_info info;
 997        struct switch_stack *sw;
 998        struct ia64_fpreg fpval;
 999        struct pt_regs *pt;
1000        long ret, retval = 0;
1001        int i;
1002
1003        memset(&fpval, 0, sizeof(fpval));
1004
1005        if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1006                return -EIO;
1007
1008        pt = task_pt_regs(child);
1009        sw = (struct switch_stack *) (child->thread.ksp + 16);
1010        unw_init_from_blocked_task(&info, child);
1011        if (unw_unwind_to_user(&info) < 0) {
1012                return -EIO;
1013        }
1014
1015        if (((unsigned long) ppr & 0x7) != 0) {
1016                dprintk("ptrace:unaligned register address %p\n", ppr);
1017                return -EIO;
1018        }
1019
1020        /* control regs */
1021
1022        retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1023        retval |= __get_user(psr, &ppr->cr_ipsr);
1024
1025        /* app regs */
1026
1027        retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1028        retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1029        retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1030        retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1031        retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1032        retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1033
1034        retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1035        retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1036        retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1037        retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1038        retval |= __get_user(cfm, &ppr->cfm);
1039
1040        /* gr1-gr3 */
1041
1042        retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1043        retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1044
1045        /* gr4-gr7 */
1046
1047        for (i = 4; i < 8; i++) {
1048                retval |= __get_user(val, &ppr->gr[i]);
1049                /* NaT bit will be set via PT_NAT_BITS: */
1050                if (unw_set_gr(&info, i, val, 0) < 0)
1051                        return -EIO;
1052        }
1053
1054        /* gr8-gr11 */
1055
1056        retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1057
1058        /* gr12-gr15 */
1059
1060        retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1061        retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1062        retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1063
1064        /* gr16-gr31 */
1065
1066        retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1067
1068        /* b0 */
1069
1070        retval |= __get_user(pt->b0, &ppr->br[0]);
1071
1072        /* b1-b5 */
1073
1074        for (i = 1; i < 6; i++) {
1075                retval |= __get_user(val, &ppr->br[i]);
1076                unw_set_br(&info, i, val);
1077        }
1078
1079        /* b6-b7 */
1080
1081        retval |= __get_user(pt->b6, &ppr->br[6]);
1082        retval |= __get_user(pt->b7, &ppr->br[7]);
1083
1084        /* fr2-fr5 */
1085
1086        for (i = 2; i < 6; i++) {
1087                retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1088                if (unw_set_fr(&info, i, fpval) < 0)
1089                        return -EIO;
1090        }
1091
1092        /* fr6-fr11 */
1093
1094        retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1095                                   sizeof(ppr->fr[6]) * 6);
1096
1097        /* fp scratch regs(12-15) */
1098
1099        retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1100                                   sizeof(ppr->fr[12]) * 4);
1101
1102        /* fr16-fr31 */
1103
1104        for (i = 16; i < 32; i++) {
1105                retval |= __copy_from_user(&fpval, &ppr->fr[i],
1106                                           sizeof(fpval));
1107                if (unw_set_fr(&info, i, fpval) < 0)
1108                        return -EIO;
1109        }
1110
1111        /* fph */
1112
1113        ia64_sync_fph(child);
1114        retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1115                                   sizeof(ppr->fr[32]) * 96);
1116
1117        /* preds */
1118
1119        retval |= __get_user(pt->pr, &ppr->pr);
1120
1121        /* nat bits */
1122
1123        retval |= __get_user(nat_bits, &ppr->nat);
1124
1125        retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1126        retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1127        retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1128        retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1129        retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1130        retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1131        retval |= access_uarea(child, PT_CFM, &cfm, 1);
1132        retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1133
1134        ret = retval ? -EIO : 0;
1135        return ret;
1136}
1137
1138void
1139user_enable_single_step (struct task_struct *child)
1140{
1141        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1142
1143        set_tsk_thread_flag(child, TIF_SINGLESTEP);
1144        child_psr->ss = 1;
1145}
1146
1147void
1148user_enable_block_step (struct task_struct *child)
1149{
1150        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1151
1152        set_tsk_thread_flag(child, TIF_SINGLESTEP);
1153        child_psr->tb = 1;
1154}
1155
1156void
1157user_disable_single_step (struct task_struct *child)
1158{
1159        struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1160
1161        /* make sure the single step/taken-branch trap bits are not set: */
1162        clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1163        child_psr->ss = 0;
1164        child_psr->tb = 0;
1165}
1166
1167/*
1168 * Called by kernel/ptrace.c when detaching..
1169 *
1170 * Make sure the single step bit is not set.
1171 */
1172void
1173ptrace_disable (struct task_struct *child)
1174{
1175        user_disable_single_step(child);
1176}
1177
1178long
1179arch_ptrace (struct task_struct *child, long request,
1180             unsigned long addr, unsigned long data)
1181{
1182        switch (request) {
1183        case PTRACE_PEEKTEXT:
1184        case PTRACE_PEEKDATA:
1185                /* read word at location addr */
1186                if (access_process_vm(child, addr, &data, sizeof(data), 0)
1187                    != sizeof(data))
1188                        return -EIO;
1189                /* ensure return value is not mistaken for error code */
1190                force_successful_syscall_return();
1191                return data;
1192
1193        /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1194         * by the generic ptrace_request().
1195         */
1196
1197        case PTRACE_PEEKUSR:
1198                /* read the word at addr in the USER area */
1199                if (access_uarea(child, addr, &data, 0) < 0)
1200                        return -EIO;
1201                /* ensure return value is not mistaken for error code */
1202                force_successful_syscall_return();
1203                return data;
1204
1205        case PTRACE_POKEUSR:
1206                /* write the word at addr in the USER area */
1207                if (access_uarea(child, addr, &data, 1) < 0)
1208                        return -EIO;
1209                return 0;
1210
1211        case PTRACE_OLD_GETSIGINFO:
1212                /* for backwards-compatibility */
1213                return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1214
1215        case PTRACE_OLD_SETSIGINFO:
1216                /* for backwards-compatibility */
1217                return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1218
1219        case PTRACE_GETREGS:
1220                return ptrace_getregs(child,
1221                                      (struct pt_all_user_regs __user *) data);
1222
1223        case PTRACE_SETREGS:
1224                return ptrace_setregs(child,
1225                                      (struct pt_all_user_regs __user *) data);
1226
1227        default:
1228                return ptrace_request(child, request, addr, data);
1229        }
1230}
1231
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage long
1236syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1237                     long arg4, long arg5, long arg6, long arg7,
1238                     struct pt_regs regs)
1239{
1240        if (test_thread_flag(TIF_SYSCALL_TRACE))
1241                if (tracehook_report_syscall_entry(&regs))
1242                        return -ENOSYS;
1243
1244        /* copy user rbs to kernel rbs */
1245        if (test_thread_flag(TIF_RESTORE_RSE))
1246                ia64_sync_krbs();
1247
1248
1249        audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1250
1251        return 0;
1252}
1253
1254/* "asmlinkage" so the input arguments are preserved... */
1255
1256asmlinkage void
1257syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1258                     long arg4, long arg5, long arg6, long arg7,
1259                     struct pt_regs regs)
1260{
1261        int step;
1262
1263        audit_syscall_exit(&regs);
1264
1265        step = test_thread_flag(TIF_SINGLESTEP);
1266        if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1267                tracehook_report_syscall_exit(&regs, step);
1268
1269        /* copy user rbs to kernel rbs */
1270        if (test_thread_flag(TIF_RESTORE_RSE))
1271                ia64_sync_krbs();
1272}
1273
1274/* Utrace implementation starts here */
1275struct regset_get {
1276        void *kbuf;
1277        void __user *ubuf;
1278};
1279
1280struct regset_set {
1281        const void *kbuf;
1282        const void __user *ubuf;
1283};
1284
1285struct regset_getset {
1286        struct task_struct *target;
1287        const struct user_regset *regset;
1288        union {
1289                struct regset_get get;
1290                struct regset_set set;
1291        } u;
1292        unsigned int pos;
1293        unsigned int count;
1294        int ret;
1295};
1296
1297static int
1298access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1299                unsigned long addr, unsigned long *data, int write_access)
1300{
1301        struct pt_regs *pt;
1302        unsigned long *ptr = NULL;
1303        int ret;
1304        char nat = 0;
1305
1306        pt = task_pt_regs(target);
1307        switch (addr) {
1308        case ELF_GR_OFFSET(1):
1309                ptr = &pt->r1;
1310                break;
1311        case ELF_GR_OFFSET(2):
1312        case ELF_GR_OFFSET(3):
1313                ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1314                break;
1315        case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1316                if (write_access) {
1317                        /* read NaT bit first: */
1318                        unsigned long dummy;
1319
1320                        ret = unw_get_gr(info, addr/8, &dummy, &nat);
1321                        if (ret < 0)
1322                                return ret;
1323                }
1324                return unw_access_gr(info, addr/8, data, &nat, write_access);
1325        case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1326                ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1327                break;
1328        case ELF_GR_OFFSET(12):
1329        case ELF_GR_OFFSET(13):
1330                ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1331                break;
1332        case ELF_GR_OFFSET(14):
1333                ptr = &pt->r14;
1334                break;
1335        case ELF_GR_OFFSET(15):
1336                ptr = &pt->r15;
1337        }
1338        if (write_access)
1339                *ptr = *data;
1340        else
1341                *data = *ptr;
1342        return 0;
1343}
1344
1345static int
1346access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1347                unsigned long addr, unsigned long *data, int write_access)
1348{
1349        struct pt_regs *pt;
1350        unsigned long *ptr = NULL;
1351
1352        pt = task_pt_regs(target);
1353        switch (addr) {
1354        case ELF_BR_OFFSET(0):
1355                ptr = &pt->b0;
1356                break;
1357        case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1358                return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1359                                     data, write_access);
1360        case ELF_BR_OFFSET(6):
1361                ptr = &pt->b6;
1362                break;
1363        case ELF_BR_OFFSET(7):
1364                ptr = &pt->b7;
1365        }
1366        if (write_access)
1367                *ptr = *data;
1368        else
1369                *data = *ptr;
1370        return 0;
1371}
1372
1373static int
1374access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1375                unsigned long addr, unsigned long *data, int write_access)
1376{
1377        struct pt_regs *pt;
1378        unsigned long cfm, urbs_end;
1379        unsigned long *ptr = NULL;
1380
1381        pt = task_pt_regs(target);
1382        if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1383                switch (addr) {
1384                case ELF_AR_RSC_OFFSET:
1385                        /* force PL3 */
1386                        if (write_access)
1387                                pt->ar_rsc = *data | (3 << 2);
1388                        else
1389                                *data = pt->ar_rsc;
1390                        return 0;
1391                case ELF_AR_BSP_OFFSET:
1392                        /*
1393                         * By convention, we use PT_AR_BSP to refer to
1394                         * the end of the user-level backing store.
1395                         * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1396                         * to get the real value of ar.bsp at the time
1397                         * the kernel was entered.
1398                         *
1399                         * Furthermore, when changing the contents of
1400                         * PT_AR_BSP (or PT_CFM) while the task is
1401                         * blocked in a system call, convert the state
1402                         * so that the non-system-call exit
1403                         * path is used.  This ensures that the proper
1404                         * state will be picked up when resuming
1405                         * execution.  However, it *also* means that
1406                         * once we write PT_AR_BSP/PT_CFM, it won't be
1407                         * possible to modify the syscall arguments of
1408                         * the pending system call any longer.  This
1409                         * shouldn't be an issue because modifying
1410                         * PT_AR_BSP/PT_CFM generally implies that
1411                         * we're either abandoning the pending system
1412                         * call or that we defer it's re-execution
1413                         * (e.g., due to GDB doing an inferior
1414                         * function call).
1415                         */
1416                        urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1417                        if (write_access) {
1418                                if (*data != urbs_end) {
1419                                        if (in_syscall(pt))
1420                                                convert_to_non_syscall(target,
1421                                                                       pt,
1422                                                                       cfm);
1423                                        /*
1424                                         * Simulate user-level write
1425                                         * of ar.bsp:
1426                                         */
1427                                        pt->loadrs = 0;
1428                                        pt->ar_bspstore = *data;
1429                                }
1430                        } else
1431                                *data = urbs_end;
1432                        return 0;
1433                case ELF_AR_BSPSTORE_OFFSET:
1434                        ptr = &pt->ar_bspstore;
1435                        break;
1436                case ELF_AR_RNAT_OFFSET:
1437                        ptr = &pt->ar_rnat;
1438                        break;
1439                case ELF_AR_CCV_OFFSET:
1440                        ptr = &pt->ar_ccv;
1441                        break;
1442                case ELF_AR_UNAT_OFFSET:
1443                        ptr = &pt->ar_unat;
1444                        break;
1445                case ELF_AR_FPSR_OFFSET:
1446                        ptr = &pt->ar_fpsr;
1447                        break;
1448                case ELF_AR_PFS_OFFSET:
1449                        ptr = &pt->ar_pfs;
1450                        break;
1451                case ELF_AR_LC_OFFSET:
1452                        return unw_access_ar(info, UNW_AR_LC, data,
1453                                             write_access);
1454                case ELF_AR_EC_OFFSET:
1455                        return unw_access_ar(info, UNW_AR_EC, data,
1456                                             write_access);
1457                case ELF_AR_CSD_OFFSET:
1458                        ptr = &pt->ar_csd;
1459                        break;
1460                case ELF_AR_SSD_OFFSET:
1461                        ptr = &pt->ar_ssd;
1462                }
1463        } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1464                switch (addr) {
1465                case ELF_CR_IIP_OFFSET:
1466                        ptr = &pt->cr_iip;
1467                        break;
1468                case ELF_CFM_OFFSET:
1469                        urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1470                        if (write_access) {
1471                                if (((cfm ^ *data) & PFM_MASK) != 0) {
1472                                        if (in_syscall(pt))
1473                                                convert_to_non_syscall(target,
1474                                                                       pt,
1475                                                                       cfm);
1476                                        pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1477                                                      | (*data & PFM_MASK));
1478                                }
1479                        } else
1480                                *data = cfm;
1481                        return 0;
1482                case ELF_CR_IPSR_OFFSET:
1483                        if (write_access) {
1484                                unsigned long tmp = *data;
1485                                /* psr.ri==3 is a reserved value: SDM 2:25 */
1486                                if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1487                                        tmp &= ~IA64_PSR_RI;
1488                                pt->cr_ipsr = ((tmp & IPSR_MASK)
1489                                               | (pt->cr_ipsr & ~IPSR_MASK));
1490                        } else
1491                                *data = (pt->cr_ipsr & IPSR_MASK);
1492                        return 0;
1493                }
1494        } else if (addr == ELF_NAT_OFFSET)
1495                return access_nat_bits(target, pt, info,
1496                                       data, write_access);
1497        else if (addr == ELF_PR_OFFSET)
1498                ptr = &pt->pr;
1499        else
1500                return -1;
1501
1502        if (write_access)
1503                *ptr = *data;
1504        else
1505                *data = *ptr;
1506
1507        return 0;
1508}
1509
1510static int
1511access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1512                unsigned long addr, unsigned long *data, int write_access)
1513{
1514        if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1515                return access_elf_gpreg(target, info, addr, data, write_access);
1516        else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1517                return access_elf_breg(target, info, addr, data, write_access);
1518        else
1519                return access_elf_areg(target, info, addr, data, write_access);
1520}
1521
1522void do_gpregs_get(struct unw_frame_info *info, void *arg)
1523{
1524        struct pt_regs *pt;
1525        struct regset_getset *dst = arg;
1526        elf_greg_t tmp[16];
1527        unsigned int i, index, min_copy;
1528
1529        if (unw_unwind_to_user(info) < 0)
1530                return;
1531
1532        /*
1533         * coredump format:
1534         *      r0-r31
1535         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1536         *      predicate registers (p0-p63)
1537         *      b0-b7
1538         *      ip cfm user-mask
1539         *      ar.rsc ar.bsp ar.bspstore ar.rnat
1540         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1541         */
1542
1543
1544        /* Skip r0 */
1545        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1546                dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1547                                                      &dst->u.get.kbuf,
1548                                                      &dst->u.get.ubuf,
1549                                                      0, ELF_GR_OFFSET(1));
1550                if (dst->ret || dst->count == 0)
1551                        return;
1552        }
1553
1554        /* gr1 - gr15 */
1555        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1556                index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1557                min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1558                         (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1559                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1560                                index++)
1561                        if (access_elf_reg(dst->target, info, i,
1562                                                &tmp[index], 0) < 0) {
1563                                dst->ret = -EIO;
1564                                return;
1565                        }
1566                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1567                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1568                                ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1569                if (dst->ret || dst->count == 0)
1570                        return;
1571        }
1572
1573        /* r16-r31 */
1574        if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1575                pt = task_pt_regs(dst->target);
1576                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1577                                &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1578                                ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1579                if (dst->ret || dst->count == 0)
1580                        return;
1581        }
1582
1583        /* nat, pr, b0 - b7 */
1584        if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1585                index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1586                min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1587                         (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1588                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1589                                index++)
1590                        if (access_elf_reg(dst->target, info, i,
1591                                                &tmp[index], 0) < 0) {
1592                                dst->ret = -EIO;
1593                                return;
1594                        }
1595                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1596                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1597                                ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1598                if (dst->ret || dst->count == 0)
1599                        return;
1600        }
1601
1602        /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1603         * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1604         */
1605        if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1606                index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1607                min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1608                         (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1609                for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610                                index++)
1611                        if (access_elf_reg(dst->target, info, i,
1612                                                &tmp[index], 0) < 0) {
1613                                dst->ret = -EIO;
1614                                return;
1615                        }
1616                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618                                ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1619        }
1620}
1621
1622void do_gpregs_set(struct unw_frame_info *info, void *arg)
1623{
1624        struct pt_regs *pt;
1625        struct regset_getset *dst = arg;
1626        elf_greg_t tmp[16];
1627        unsigned int i, index;
1628
1629        if (unw_unwind_to_user(info) < 0)
1630                return;
1631
1632        /* Skip r0 */
1633        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1634                dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1635                                                       &dst->u.set.kbuf,
1636                                                       &dst->u.set.ubuf,
1637                                                       0, ELF_GR_OFFSET(1));
1638                if (dst->ret || dst->count == 0)
1639                        return;
1640        }
1641
1642        /* gr1-gr15 */
1643        if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1644                i = dst->pos;
1645                index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1646                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1647                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1648                                ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1649                if (dst->ret)
1650                        return;
1651                for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1652                        if (access_elf_reg(dst->target, info, i,
1653                                                &tmp[index], 1) < 0) {
1654                                dst->ret = -EIO;
1655                                return;
1656                        }
1657                if (dst->count == 0)
1658                        return;
1659        }
1660
1661        /* gr16-gr31 */
1662        if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1663                pt = task_pt_regs(dst->target);
1664                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1665                                &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1666                                ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1667                if (dst->ret || dst->count == 0)
1668                        return;
1669        }
1670
1671        /* nat, pr, b0 - b7 */
1672        if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1673                i = dst->pos;
1674                index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1675                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1676                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1677                                ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1678                if (dst->ret)
1679                        return;
1680                for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1681                        if (access_elf_reg(dst->target, info, i,
1682                                                &tmp[index], 1) < 0) {
1683                                dst->ret = -EIO;
1684                                return;
1685                        }
1686                if (dst->count == 0)
1687                        return;
1688        }
1689
1690        /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1691         * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1692         */
1693        if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1694                i = dst->pos;
1695                index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1696                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698                                ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1699                if (dst->ret)
1700                        return;
1701                for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702                        if (access_elf_reg(dst->target, info, i,
1703                                                &tmp[index], 1) < 0) {
1704                                dst->ret = -EIO;
1705                                return;
1706                        }
1707        }
1708}
1709
1710#define ELF_FP_OFFSET(i)        (i * sizeof(elf_fpreg_t))
1711
1712void do_fpregs_get(struct unw_frame_info *info, void *arg)
1713{
1714        struct regset_getset *dst = arg;
1715        struct task_struct *task = dst->target;
1716        elf_fpreg_t tmp[30];
1717        int index, min_copy, i;
1718
1719        if (unw_unwind_to_user(info) < 0)
1720                return;
1721
1722        /* Skip pos 0 and 1 */
1723        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1724                dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1725                                                      &dst->u.get.kbuf,
1726                                                      &dst->u.get.ubuf,
1727                                                      0, ELF_FP_OFFSET(2));
1728                if (dst->count == 0 || dst->ret)
1729                        return;
1730        }
1731
1732        /* fr2-fr31 */
1733        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1734                index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1735
1736                min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1737                                dst->pos + dst->count);
1738                for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1739                                index++)
1740                        if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1741                                         &tmp[index])) {
1742                                dst->ret = -EIO;
1743                                return;
1744                        }
1745                dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1746                                &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1747                                ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1748                if (dst->count == 0 || dst->ret)
1749                        return;
1750        }
1751
1752        /* fph */
1753        if (dst->count > 0) {
1754                ia64_flush_fph(dst->target);
1755                if (task->thread.flags & IA64_THREAD_FPH_VALID)
1756                        dst->ret = user_regset_copyout(
1757                                &dst->pos, &dst->count,
1758                                &dst->u.get.kbuf, &dst->u.get.ubuf,
1759                                &dst->target->thread.fph,
1760                                ELF_FP_OFFSET(32), -1);
1761                else
1762                        /* Zero fill instead.  */
1763                        dst->ret = user_regset_copyout_zero(
1764                                &dst->pos, &dst->count,
1765                                &dst->u.get.kbuf, &dst->u.get.ubuf,
1766                                ELF_FP_OFFSET(32), -1);
1767        }
1768}
1769
1770void do_fpregs_set(struct unw_frame_info *info, void *arg)
1771{
1772        struct regset_getset *dst = arg;
1773        elf_fpreg_t fpreg, tmp[30];
1774        int index, start, end;
1775
1776        if (unw_unwind_to_user(info) < 0)
1777                return;
1778
1779        /* Skip pos 0 and 1 */
1780        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1781                dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1782                                                       &dst->u.set.kbuf,
1783                                                       &dst->u.set.ubuf,
1784                                                       0, ELF_FP_OFFSET(2));
1785                if (dst->count == 0 || dst->ret)
1786                        return;
1787        }
1788
1789        /* fr2-fr31 */
1790        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1791                start = dst->pos;
1792                end = min(((unsigned int)ELF_FP_OFFSET(32)),
1793                         dst->pos + dst->count);
1794                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1795                                &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1796                                ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1797                if (dst->ret)
1798                        return;
1799
1800                if (start & 0xF) { /* only write high part */
1801                        if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1802                                         &fpreg)) {
1803                                dst->ret = -EIO;
1804                                return;
1805                        }
1806                        tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1807                                = fpreg.u.bits[0];
1808                        start &= ~0xFUL;
1809                }
1810                if (end & 0xF) { /* only write low part */
1811                        if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1812                                        &fpreg)) {
1813                                dst->ret = -EIO;
1814                                return;
1815                        }
1816                        tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1817                                = fpreg.u.bits[1];
1818                        end = (end + 0xF) & ~0xFUL;
1819                }
1820
1821                for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1822                        index = start / sizeof(elf_fpreg_t);
1823                        if (unw_set_fr(info, index, tmp[index - 2])) {
1824                                dst->ret = -EIO;
1825                                return;
1826                        }
1827                }
1828                if (dst->ret || dst->count == 0)
1829                        return;
1830        }
1831
1832        /* fph */
1833        if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1834                ia64_sync_fph(dst->target);
1835                dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1836                                                &dst->u.set.kbuf,
1837                                                &dst->u.set.ubuf,
1838                                                &dst->target->thread.fph,
1839                                                ELF_FP_OFFSET(32), -1);
1840        }
1841}
1842
1843static int
1844do_regset_call(void (*call)(struct unw_frame_info *, void *),
1845               struct task_struct *target,
1846               const struct user_regset *regset,
1847               unsigned int pos, unsigned int count,
1848               const void *kbuf, const void __user *ubuf)
1849{
1850        struct regset_getset info = { .target = target, .regset = regset,
1851                                 .pos = pos, .count = count,
1852                                 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1853                                 .ret = 0 };
1854
1855        if (target == current)
1856                unw_init_running(call, &info);
1857        else {
1858                struct unw_frame_info ufi;
1859                memset(&ufi, 0, sizeof(ufi));
1860                unw_init_from_blocked_task(&ufi, target);
1861                (*call)(&ufi, &info);
1862        }
1863
1864        return info.ret;
1865}
1866
1867static int
1868gpregs_get(struct task_struct *target,
1869           const struct user_regset *regset,
1870           unsigned int pos, unsigned int count,
1871           void *kbuf, void __user *ubuf)
1872{
1873        return do_regset_call(do_gpregs_get, target, regset, pos, count,
1874                kbuf, ubuf);
1875}
1876
1877static int gpregs_set(struct task_struct *target,
1878                const struct user_regset *regset,
1879                unsigned int pos, unsigned int count,
1880                const void *kbuf, const void __user *ubuf)
1881{
1882        return do_regset_call(do_gpregs_set, target, regset, pos, count,
1883                kbuf, ubuf);
1884}
1885
1886static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1887{
1888        do_sync_rbs(info, ia64_sync_user_rbs);
1889}
1890
1891/*
1892 * This is called to write back the register backing store.
1893 * ptrace does this before it stops, so that a tracer reading the user
1894 * memory after the thread stops will get the current register data.
1895 */
1896static int
1897gpregs_writeback(struct task_struct *target,
1898                 const struct user_regset *regset,
1899                 int now)
1900{
1901        if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1902                return 0;
1903        set_notify_resume(target);
1904        return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1905                NULL, NULL);
1906}
1907
1908static int
1909fpregs_active(struct task_struct *target, const struct user_regset *regset)
1910{
1911        return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1912}
1913
1914static int fpregs_get(struct task_struct *target,
1915                const struct user_regset *regset,
1916                unsigned int pos, unsigned int count,
1917                void *kbuf, void __user *ubuf)
1918{
1919        return do_regset_call(do_fpregs_get, target, regset, pos, count,
1920                kbuf, ubuf);
1921}
1922
1923static int fpregs_set(struct task_struct *target,
1924                const struct user_regset *regset,
1925                unsigned int pos, unsigned int count,
1926                const void *kbuf, const void __user *ubuf)
1927{
1928        return do_regset_call(do_fpregs_set, target, regset, pos, count,
1929                kbuf, ubuf);
1930}
1931
1932static int
1933access_uarea(struct task_struct *child, unsigned long addr,
1934              unsigned long *data, int write_access)
1935{
1936        unsigned int pos = -1; /* an invalid value */
1937        int ret;
1938        unsigned long *ptr, regnum;
1939
1940        if ((addr & 0x7) != 0) {
1941                dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1942                return -1;
1943        }
1944        if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1945                (addr >= PT_R7 + 8 && addr < PT_B1) ||
1946                (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1947                (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1948                dprintk("ptrace: rejecting access to register "
1949                                        "address 0x%lx\n", addr);
1950                return -1;
1951        }
1952
1953        switch (addr) {
1954        case PT_F32 ... (PT_F127 + 15):
1955                pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1956                break;
1957        case PT_F2 ... (PT_F5 + 15):
1958                pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1959                break;
1960        case PT_F10 ... (PT_F31 + 15):
1961                pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1962                break;
1963        case PT_F6 ... (PT_F9 + 15):
1964                pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1965                break;
1966        }
1967
1968        if (pos != -1) {
1969                if (write_access)
1970                        ret = fpregs_set(child, NULL, pos,
1971                                sizeof(unsigned long), data, NULL);
1972                else
1973                        ret = fpregs_get(child, NULL, pos,
1974                                sizeof(unsigned long), data, NULL);
1975                if (ret != 0)
1976                        return -1;
1977                return 0;
1978        }
1979
1980        switch (addr) {
1981        case PT_NAT_BITS:
1982                pos = ELF_NAT_OFFSET;
1983                break;
1984        case PT_R4 ... PT_R7:
1985                pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1986                break;
1987        case PT_B1 ... PT_B5:
1988                pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1989                break;
1990        case PT_AR_EC:
1991                pos = ELF_AR_EC_OFFSET;
1992                break;
1993        case PT_AR_LC:
1994                pos = ELF_AR_LC_OFFSET;
1995                break;
1996        case PT_CR_IPSR:
1997                pos = ELF_CR_IPSR_OFFSET;
1998                break;
1999        case PT_CR_IIP:
2000                pos = ELF_CR_IIP_OFFSET;
2001                break;
2002        case PT_CFM:
2003                pos = ELF_CFM_OFFSET;
2004                break;
2005        case PT_AR_UNAT:
2006                pos = ELF_AR_UNAT_OFFSET;
2007                break;
2008        case PT_AR_PFS:
2009                pos = ELF_AR_PFS_OFFSET;
2010                break;
2011        case PT_AR_RSC:
2012                pos = ELF_AR_RSC_OFFSET;
2013                break;
2014        case PT_AR_RNAT:
2015                pos = ELF_AR_RNAT_OFFSET;
2016                break;
2017        case PT_AR_BSPSTORE:
2018                pos = ELF_AR_BSPSTORE_OFFSET;
2019                break;
2020        case PT_PR:
2021                pos = ELF_PR_OFFSET;
2022                break;
2023        case PT_B6:
2024                pos = ELF_BR_OFFSET(6);
2025                break;
2026        case PT_AR_BSP:
2027                pos = ELF_AR_BSP_OFFSET;
2028                break;
2029        case PT_R1 ... PT_R3:
2030                pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2031                break;
2032        case PT_R12 ... PT_R15:
2033                pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2034                break;
2035        case PT_R8 ... PT_R11:
2036                pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2037                break;
2038        case PT_R16 ... PT_R31:
2039                pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2040                break;
2041        case PT_AR_CCV:
2042                pos = ELF_AR_CCV_OFFSET;
2043                break;
2044        case PT_AR_FPSR:
2045                pos = ELF_AR_FPSR_OFFSET;
2046                break;
2047        case PT_B0:
2048                pos = ELF_BR_OFFSET(0);
2049                break;
2050        case PT_B7:
2051                pos = ELF_BR_OFFSET(7);
2052                break;
2053        case PT_AR_CSD:
2054                pos = ELF_AR_CSD_OFFSET;
2055                break;
2056        case PT_AR_SSD:
2057                pos = ELF_AR_SSD_OFFSET;
2058                break;
2059        }
2060
2061        if (pos != -1) {
2062                if (write_access)
2063                        ret = gpregs_set(child, NULL, pos,
2064                                sizeof(unsigned long), data, NULL);
2065                else
2066                        ret = gpregs_get(child, NULL, pos,
2067                                sizeof(unsigned long), data, NULL);
2068                if (ret != 0)
2069                        return -1;
2070                return 0;
2071        }
2072
2073        /* access debug registers */
2074        if (addr >= PT_IBR) {
2075                regnum = (addr - PT_IBR) >> 3;
2076                ptr = &child->thread.ibr[0];
2077        } else {
2078                regnum = (addr - PT_DBR) >> 3;
2079                ptr = &child->thread.dbr[0];
2080        }
2081
2082        if (regnum >= 8) {
2083                dprintk("ptrace: rejecting access to register "
2084                                "address 0x%lx\n", addr);
2085                return -1;
2086        }
2087#ifdef CONFIG_PERFMON
2088        /*
2089         * Check if debug registers are used by perfmon. This
2090         * test must be done once we know that we can do the
2091         * operation, i.e. the arguments are all valid, but
2092         * before we start modifying the state.
2093         *
2094         * Perfmon needs to keep a count of how many processes
2095         * are trying to modify the debug registers for system
2096         * wide monitoring sessions.
2097         *
2098         * We also include read access here, because they may
2099         * cause the PMU-installed debug register state
2100         * (dbr[], ibr[]) to be reset. The two arrays are also
2101         * used by perfmon, but we do not use
2102         * IA64_THREAD_DBG_VALID. The registers are restored
2103         * by the PMU context switch code.
2104         */
2105        if (pfm_use_debug_registers(child))
2106                return -1;
2107#endif
2108
2109        if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2110                child->thread.flags |= IA64_THREAD_DBG_VALID;
2111                memset(child->thread.dbr, 0,
2112                                sizeof(child->thread.dbr));
2113                memset(child->thread.ibr, 0,
2114                                sizeof(child->thread.ibr));
2115        }
2116
2117        ptr += regnum;
2118
2119        if ((regnum & 1) && write_access) {
2120                /* don't let the user set kernel-level breakpoints: */
2121                *ptr = *data & ~(7UL << 56);
2122                return 0;
2123        }
2124        if (write_access)
2125                *ptr = *data;
2126        else
2127                *data = *ptr;
2128        return 0;
2129}
2130
2131static const struct user_regset native_regsets[] = {
2132        {
2133                .core_note_type = NT_PRSTATUS,
2134                .n = ELF_NGREG,
2135                .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2136                .get = gpregs_get, .set = gpregs_set,
2137                .writeback = gpregs_writeback
2138        },
2139        {
2140                .core_note_type = NT_PRFPREG,
2141                .n = ELF_NFPREG,
2142                .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2143                .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2144        },
2145};
2146
2147static const struct user_regset_view user_ia64_view = {
2148        .name = "ia64",
2149        .e_machine = EM_IA_64,
2150        .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2151};
2152
2153const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2154{
2155        return &user_ia64_view;
2156}
2157
2158struct syscall_get_set_args {
2159        unsigned int i;
2160        unsigned int n;
2161        unsigned long *args;
2162        struct pt_regs *regs;
2163        int rw;
2164};
2165
2166static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2167{
2168        struct syscall_get_set_args *args = data;
2169        struct pt_regs *pt = args->regs;
2170        unsigned long *krbs, cfm, ndirty;
2171        int i, count;
2172
2173        if (unw_unwind_to_user(info) < 0)
2174                return;
2175
2176        cfm = pt->cr_ifs;
2177        krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2178        ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2179
2180        count = 0;
2181        if (in_syscall(pt))
2182                count = min_t(int, args->n, cfm & 0x7f);
2183
2184        for (i = 0; i < count; i++) {
2185                if (args->rw)
2186                        *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2187                                args->args[i];
2188                else
2189                        args->args[i] = *ia64_rse_skip_regs(krbs,
2190                                ndirty + i + args->i);
2191        }
2192
2193        if (!args->rw) {
2194                while (i < args->n) {
2195                        args->args[i] = 0;
2196                        i++;
2197                }
2198        }
2199}
2200
2201void ia64_syscall_get_set_arguments(struct task_struct *task,
2202        struct pt_regs *regs, unsigned int i, unsigned int n,
2203        unsigned long *args, int rw)
2204{
2205        struct syscall_get_set_args data = {
2206                .i = i,
2207                .n = n,
2208                .args = args,
2209                .regs = regs,
2210                .rw = rw,
2211        };
2212
2213        if (task == current)
2214                unw_init_running(syscall_get_set_args_cb, &data);
2215        else {
2216                struct unw_frame_info ufi;
2217                memset(&ufi, 0, sizeof(ufi));
2218                unw_init_from_blocked_task(&ufi, task);
2219                syscall_get_set_args_cb(&ufi, &data);
2220        }
2221}
2222