linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/memblock.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/personality.h>
  18#include <linux/reboot.h>
  19#include <linux/slab.h>
  20#include <linux/swap.h>
  21#include <linux/proc_fs.h>
  22#include <linux/bitops.h>
  23#include <linux/kexec.h>
  24
  25#include <asm/dma.h>
  26#include <asm/io.h>
  27#include <asm/machvec.h>
  28#include <asm/numa.h>
  29#include <asm/patch.h>
  30#include <asm/pgalloc.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33#include <asm/tlb.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include <asm/mca.h>
  37#include <asm/paravirt.h>
  38
  39extern void ia64_tlb_init (void);
  40
  41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  42
  43#ifdef CONFIG_VIRTUAL_MEM_MAP
  44unsigned long VMALLOC_END = VMALLOC_END_INIT;
  45EXPORT_SYMBOL(VMALLOC_END);
  46struct page *vmem_map;
  47EXPORT_SYMBOL(vmem_map);
  48#endif
  49
  50struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  51EXPORT_SYMBOL(zero_page_memmap_ptr);
  52
  53void
  54__ia64_sync_icache_dcache (pte_t pte)
  55{
  56        unsigned long addr;
  57        struct page *page;
  58
  59        page = pte_page(pte);
  60        addr = (unsigned long) page_address(page);
  61
  62        if (test_bit(PG_arch_1, &page->flags))
  63                return;                         /* i-cache is already coherent with d-cache */
  64
  65        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  66        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  67}
  68
  69/*
  70 * Since DMA is i-cache coherent, any (complete) pages that were written via
  71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  72 * flush them when they get mapped into an executable vm-area.
  73 */
  74void
  75dma_mark_clean(void *addr, size_t size)
  76{
  77        unsigned long pg_addr, end;
  78
  79        pg_addr = PAGE_ALIGN((unsigned long) addr);
  80        end = (unsigned long) addr + size;
  81        while (pg_addr + PAGE_SIZE <= end) {
  82                struct page *page = virt_to_page(pg_addr);
  83                set_bit(PG_arch_1, &page->flags);
  84                pg_addr += PAGE_SIZE;
  85        }
  86}
  87
  88inline void
  89ia64_set_rbs_bot (void)
  90{
  91        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  92
  93        if (stack_size > MAX_USER_STACK_SIZE)
  94                stack_size = MAX_USER_STACK_SIZE;
  95        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  96}
  97
  98/*
  99 * This performs some platform-dependent address space initialization.
 100 * On IA-64, we want to setup the VM area for the register backing
 101 * store (which grows upwards) and install the gateway page which is
 102 * used for signal trampolines, etc.
 103 */
 104void
 105ia64_init_addr_space (void)
 106{
 107        struct vm_area_struct *vma;
 108
 109        ia64_set_rbs_bot();
 110
 111        /*
 112         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 113         * the problem.  When the process attempts to write to the register backing store
 114         * for the first time, it will get a SEGFAULT in this case.
 115         */
 116        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 117        if (vma) {
 118                INIT_LIST_HEAD(&vma->anon_vma_chain);
 119                vma->vm_mm = current->mm;
 120                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 121                vma->vm_end = vma->vm_start + PAGE_SIZE;
 122                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 123                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 124                down_write(&current->mm->mmap_sem);
 125                if (insert_vm_struct(current->mm, vma)) {
 126                        up_write(&current->mm->mmap_sem);
 127                        kmem_cache_free(vm_area_cachep, vma);
 128                        return;
 129                }
 130                up_write(&current->mm->mmap_sem);
 131        }
 132
 133        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 134        if (!(current->personality & MMAP_PAGE_ZERO)) {
 135                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 136                if (vma) {
 137                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 138                        vma->vm_mm = current->mm;
 139                        vma->vm_end = PAGE_SIZE;
 140                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 141                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
 142                        down_write(&current->mm->mmap_sem);
 143                        if (insert_vm_struct(current->mm, vma)) {
 144                                up_write(&current->mm->mmap_sem);
 145                                kmem_cache_free(vm_area_cachep, vma);
 146                                return;
 147                        }
 148                        up_write(&current->mm->mmap_sem);
 149                }
 150        }
 151}
 152
 153void
 154free_initmem (void)
 155{
 156        unsigned long addr, eaddr;
 157
 158        addr = (unsigned long) ia64_imva(__init_begin);
 159        eaddr = (unsigned long) ia64_imva(__init_end);
 160        while (addr < eaddr) {
 161                ClearPageReserved(virt_to_page(addr));
 162                init_page_count(virt_to_page(addr));
 163                free_page(addr);
 164                ++totalram_pages;
 165                addr += PAGE_SIZE;
 166        }
 167        printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
 168               (__init_end - __init_begin) >> 10);
 169}
 170
 171void __init
 172free_initrd_mem (unsigned long start, unsigned long end)
 173{
 174        struct page *page;
 175        /*
 176         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 177         * Thus EFI and the kernel may have different page sizes. It is
 178         * therefore possible to have the initrd share the same page as
 179         * the end of the kernel (given current setup).
 180         *
 181         * To avoid freeing/using the wrong page (kernel sized) we:
 182         *      - align up the beginning of initrd
 183         *      - align down the end of initrd
 184         *
 185         *  |             |
 186         *  |=============| a000
 187         *  |             |
 188         *  |             |
 189         *  |             | 9000
 190         *  |/////////////|
 191         *  |/////////////|
 192         *  |=============| 8000
 193         *  |///INITRD////|
 194         *  |/////////////|
 195         *  |/////////////| 7000
 196         *  |             |
 197         *  |KKKKKKKKKKKKK|
 198         *  |=============| 6000
 199         *  |KKKKKKKKKKKKK|
 200         *  |KKKKKKKKKKKKK|
 201         *  K=kernel using 8KB pages
 202         *
 203         * In this example, we must free page 8000 ONLY. So we must align up
 204         * initrd_start and keep initrd_end as is.
 205         */
 206        start = PAGE_ALIGN(start);
 207        end = end & PAGE_MASK;
 208
 209        if (start < end)
 210                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 211
 212        for (; start < end; start += PAGE_SIZE) {
 213                if (!virt_addr_valid(start))
 214                        continue;
 215                page = virt_to_page(start);
 216                ClearPageReserved(page);
 217                init_page_count(page);
 218                free_page(start);
 219                ++totalram_pages;
 220        }
 221}
 222
 223/*
 224 * This installs a clean page in the kernel's page table.
 225 */
 226static struct page * __init
 227put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 228{
 229        pgd_t *pgd;
 230        pud_t *pud;
 231        pmd_t *pmd;
 232        pte_t *pte;
 233
 234        if (!PageReserved(page))
 235                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 236                       page_address(page));
 237
 238        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 239
 240        {
 241                pud = pud_alloc(&init_mm, pgd, address);
 242                if (!pud)
 243                        goto out;
 244                pmd = pmd_alloc(&init_mm, pud, address);
 245                if (!pmd)
 246                        goto out;
 247                pte = pte_alloc_kernel(pmd, address);
 248                if (!pte)
 249                        goto out;
 250                if (!pte_none(*pte))
 251                        goto out;
 252                set_pte(pte, mk_pte(page, pgprot));
 253        }
 254  out:
 255        /* no need for flush_tlb */
 256        return page;
 257}
 258
 259static void __init
 260setup_gate (void)
 261{
 262        void *gate_section;
 263        struct page *page;
 264
 265        /*
 266         * Map the gate page twice: once read-only to export the ELF
 267         * headers etc. and once execute-only page to enable
 268         * privilege-promotion via "epc":
 269         */
 270        gate_section = paravirt_get_gate_section();
 271        page = virt_to_page(ia64_imva(gate_section));
 272        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 273#ifdef HAVE_BUGGY_SEGREL
 274        page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
 275        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 276#else
 277        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 278        /* Fill in the holes (if any) with read-only zero pages: */
 279        {
 280                unsigned long addr;
 281
 282                for (addr = GATE_ADDR + PAGE_SIZE;
 283                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 284                     addr += PAGE_SIZE)
 285                {
 286                        put_kernel_page(ZERO_PAGE(0), addr,
 287                                        PAGE_READONLY);
 288                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 289                                        PAGE_READONLY);
 290                }
 291        }
 292#endif
 293        ia64_patch_gate();
 294}
 295
 296void __devinit
 297ia64_mmu_init (void *my_cpu_data)
 298{
 299        unsigned long pta, impl_va_bits;
 300        extern void __devinit tlb_init (void);
 301
 302#ifdef CONFIG_DISABLE_VHPT
 303#       define VHPT_ENABLE_BIT  0
 304#else
 305#       define VHPT_ENABLE_BIT  1
 306#endif
 307
 308        /*
 309         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 310         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 311         * virtual address space are implemented but if we pick a large enough page size
 312         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 313         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 314         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 315         * problem in practice.  Alternatively, we could truncate the top of the mapped
 316         * address space to not permit mappings that would overlap with the VMLPT.
 317         * --davidm 00/12/06
 318         */
 319#       define pte_bits                 3
 320#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 321        /*
 322         * The virtual page table has to cover the entire implemented address space within
 323         * a region even though not all of this space may be mappable.  The reason for
 324         * this is that the Access bit and Dirty bit fault handlers perform
 325         * non-speculative accesses to the virtual page table, so the address range of the
 326         * virtual page table itself needs to be covered by virtual page table.
 327         */
 328#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 329#       define POW2(n)                  (1ULL << (n))
 330
 331        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 332
 333        if (impl_va_bits < 51 || impl_va_bits > 61)
 334                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 335        /*
 336         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 337         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 338         * the test makes sure that our mapped space doesn't overlap the
 339         * unimplemented hole in the middle of the region.
 340         */
 341        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 342            (mapped_space_bits > impl_va_bits - 1))
 343                panic("Cannot build a big enough virtual-linear page table"
 344                      " to cover mapped address space.\n"
 345                      " Try using a smaller page size.\n");
 346
 347
 348        /* place the VMLPT at the end of each page-table mapped region: */
 349        pta = POW2(61) - POW2(vmlpt_bits);
 350
 351        /*
 352         * Set the (virtually mapped linear) page table address.  Bit
 353         * 8 selects between the short and long format, bits 2-7 the
 354         * size of the table, and bit 0 whether the VHPT walker is
 355         * enabled.
 356         */
 357        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 358
 359        ia64_tlb_init();
 360
 361#ifdef  CONFIG_HUGETLB_PAGE
 362        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 363        ia64_srlz_d();
 364#endif
 365}
 366
 367#ifdef CONFIG_VIRTUAL_MEM_MAP
 368int vmemmap_find_next_valid_pfn(int node, int i)
 369{
 370        unsigned long end_address, hole_next_pfn;
 371        unsigned long stop_address;
 372        pg_data_t *pgdat = NODE_DATA(node);
 373
 374        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 375        end_address = PAGE_ALIGN(end_address);
 376
 377        stop_address = (unsigned long) &vmem_map[
 378                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 379
 380        do {
 381                pgd_t *pgd;
 382                pud_t *pud;
 383                pmd_t *pmd;
 384                pte_t *pte;
 385
 386                pgd = pgd_offset_k(end_address);
 387                if (pgd_none(*pgd)) {
 388                        end_address += PGDIR_SIZE;
 389                        continue;
 390                }
 391
 392                pud = pud_offset(pgd, end_address);
 393                if (pud_none(*pud)) {
 394                        end_address += PUD_SIZE;
 395                        continue;
 396                }
 397
 398                pmd = pmd_offset(pud, end_address);
 399                if (pmd_none(*pmd)) {
 400                        end_address += PMD_SIZE;
 401                        continue;
 402                }
 403
 404                pte = pte_offset_kernel(pmd, end_address);
 405retry_pte:
 406                if (pte_none(*pte)) {
 407                        end_address += PAGE_SIZE;
 408                        pte++;
 409                        if ((end_address < stop_address) &&
 410                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 411                                goto retry_pte;
 412                        continue;
 413                }
 414                /* Found next valid vmem_map page */
 415                break;
 416        } while (end_address < stop_address);
 417
 418        end_address = min(end_address, stop_address);
 419        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 420        hole_next_pfn = end_address / sizeof(struct page);
 421        return hole_next_pfn - pgdat->node_start_pfn;
 422}
 423
 424int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 425{
 426        unsigned long address, start_page, end_page;
 427        struct page *map_start, *map_end;
 428        int node;
 429        pgd_t *pgd;
 430        pud_t *pud;
 431        pmd_t *pmd;
 432        pte_t *pte;
 433
 434        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 435        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 436
 437        start_page = (unsigned long) map_start & PAGE_MASK;
 438        end_page = PAGE_ALIGN((unsigned long) map_end);
 439        node = paddr_to_nid(__pa(start));
 440
 441        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 442                pgd = pgd_offset_k(address);
 443                if (pgd_none(*pgd))
 444                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 445                pud = pud_offset(pgd, address);
 446
 447                if (pud_none(*pud))
 448                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 449                pmd = pmd_offset(pud, address);
 450
 451                if (pmd_none(*pmd))
 452                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 453                pte = pte_offset_kernel(pmd, address);
 454
 455                if (pte_none(*pte))
 456                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 457                                             PAGE_KERNEL));
 458        }
 459        return 0;
 460}
 461
 462struct memmap_init_callback_data {
 463        struct page *start;
 464        struct page *end;
 465        int nid;
 466        unsigned long zone;
 467};
 468
 469static int __meminit
 470virtual_memmap_init(u64 start, u64 end, void *arg)
 471{
 472        struct memmap_init_callback_data *args;
 473        struct page *map_start, *map_end;
 474
 475        args = (struct memmap_init_callback_data *) arg;
 476        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 477        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 478
 479        if (map_start < args->start)
 480                map_start = args->start;
 481        if (map_end > args->end)
 482                map_end = args->end;
 483
 484        /*
 485         * We have to initialize "out of bounds" struct page elements that fit completely
 486         * on the same pages that were allocated for the "in bounds" elements because they
 487         * may be referenced later (and found to be "reserved").
 488         */
 489        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 490        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 491                    / sizeof(struct page));
 492
 493        if (map_start < map_end)
 494                memmap_init_zone((unsigned long)(map_end - map_start),
 495                                 args->nid, args->zone, page_to_pfn(map_start),
 496                                 MEMMAP_EARLY);
 497        return 0;
 498}
 499
 500void __meminit
 501memmap_init (unsigned long size, int nid, unsigned long zone,
 502             unsigned long start_pfn)
 503{
 504        if (!vmem_map)
 505                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 506        else {
 507                struct page *start;
 508                struct memmap_init_callback_data args;
 509
 510                start = pfn_to_page(start_pfn);
 511                args.start = start;
 512                args.end = start + size;
 513                args.nid = nid;
 514                args.zone = zone;
 515
 516                efi_memmap_walk(virtual_memmap_init, &args);
 517        }
 518}
 519
 520int
 521ia64_pfn_valid (unsigned long pfn)
 522{
 523        char byte;
 524        struct page *pg = pfn_to_page(pfn);
 525
 526        return     (__get_user(byte, (char __user *) pg) == 0)
 527                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 528                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 529}
 530EXPORT_SYMBOL(ia64_pfn_valid);
 531
 532int __init find_largest_hole(u64 start, u64 end, void *arg)
 533{
 534        u64 *max_gap = arg;
 535
 536        static u64 last_end = PAGE_OFFSET;
 537
 538        /* NOTE: this algorithm assumes efi memmap table is ordered */
 539
 540        if (*max_gap < (start - last_end))
 541                *max_gap = start - last_end;
 542        last_end = end;
 543        return 0;
 544}
 545
 546#endif /* CONFIG_VIRTUAL_MEM_MAP */
 547
 548int __init register_active_ranges(u64 start, u64 len, int nid)
 549{
 550        u64 end = start + len;
 551
 552#ifdef CONFIG_KEXEC
 553        if (start > crashk_res.start && start < crashk_res.end)
 554                start = crashk_res.end;
 555        if (end > crashk_res.start && end < crashk_res.end)
 556                end = crashk_res.start;
 557#endif
 558
 559        if (start < end)
 560                memblock_add_node(__pa(start), end - start, nid);
 561        return 0;
 562}
 563
 564static int __init
 565count_reserved_pages(u64 start, u64 end, void *arg)
 566{
 567        unsigned long num_reserved = 0;
 568        unsigned long *count = arg;
 569
 570        for (; start < end; start += PAGE_SIZE)
 571                if (PageReserved(virt_to_page(start)))
 572                        ++num_reserved;
 573        *count += num_reserved;
 574        return 0;
 575}
 576
 577int
 578find_max_min_low_pfn (u64 start, u64 end, void *arg)
 579{
 580        unsigned long pfn_start, pfn_end;
 581#ifdef CONFIG_FLATMEM
 582        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 583        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 584#else
 585        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 586        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 587#endif
 588        min_low_pfn = min(min_low_pfn, pfn_start);
 589        max_low_pfn = max(max_low_pfn, pfn_end);
 590        return 0;
 591}
 592
 593/*
 594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 595 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 596 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 597 * useful for performance testing, but conceivably could also come in handy for debugging
 598 * purposes.
 599 */
 600
 601static int nolwsys __initdata;
 602
 603static int __init
 604nolwsys_setup (char *s)
 605{
 606        nolwsys = 1;
 607        return 1;
 608}
 609
 610__setup("nolwsys", nolwsys_setup);
 611
 612void __init
 613mem_init (void)
 614{
 615        long reserved_pages, codesize, datasize, initsize;
 616        pg_data_t *pgdat;
 617        int i;
 618
 619        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 620        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 621        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 622
 623#ifdef CONFIG_PCI
 624        /*
 625         * This needs to be called _after_ the command line has been parsed but _before_
 626         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 627         * been freed.
 628         */
 629        platform_dma_init();
 630#endif
 631
 632#ifdef CONFIG_FLATMEM
 633        BUG_ON(!mem_map);
 634        max_mapnr = max_low_pfn;
 635#endif
 636
 637        high_memory = __va(max_low_pfn * PAGE_SIZE);
 638
 639        for_each_online_pgdat(pgdat)
 640                if (pgdat->bdata->node_bootmem_map)
 641                        totalram_pages += free_all_bootmem_node(pgdat);
 642
 643        reserved_pages = 0;
 644        efi_memmap_walk(count_reserved_pages, &reserved_pages);
 645
 646        codesize =  (unsigned long) _etext - (unsigned long) _stext;
 647        datasize =  (unsigned long) _edata - (unsigned long) _etext;
 648        initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
 649
 650        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
 651               "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
 652               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
 653               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
 654
 655
 656        /*
 657         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 658         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 659         * code can tell them apart.
 660         */
 661        for (i = 0; i < NR_syscalls; ++i) {
 662                extern unsigned long sys_call_table[NR_syscalls];
 663                unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
 664
 665                if (!fsyscall_table[i] || nolwsys)
 666                        fsyscall_table[i] = sys_call_table[i] | 1;
 667        }
 668        setup_gate();
 669}
 670
 671#ifdef CONFIG_MEMORY_HOTPLUG
 672int arch_add_memory(int nid, u64 start, u64 size)
 673{
 674        pg_data_t *pgdat;
 675        struct zone *zone;
 676        unsigned long start_pfn = start >> PAGE_SHIFT;
 677        unsigned long nr_pages = size >> PAGE_SHIFT;
 678        int ret;
 679
 680        pgdat = NODE_DATA(nid);
 681
 682        zone = pgdat->node_zones + ZONE_NORMAL;
 683        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 684
 685        if (ret)
 686                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 687                       __func__,  ret);
 688
 689        return ret;
 690}
 691#endif
 692
 693/*
 694 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 695 * useful to have the Linux/x86 domain registered to
 696 * avoid an attempted module load when emulators call
 697 * personality(PER_LINUX32). This saves several milliseconds
 698 * on each such call.
 699 */
 700static struct exec_domain ia32_exec_domain;
 701
 702static int __init
 703per_linux32_init(void)
 704{
 705        ia32_exec_domain.name = "Linux/x86";
 706        ia32_exec_domain.handler = NULL;
 707        ia32_exec_domain.pers_low = PER_LINUX32;
 708        ia32_exec_domain.pers_high = PER_LINUX32;
 709        ia32_exec_domain.signal_map = default_exec_domain.signal_map;
 710        ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
 711        register_exec_domain(&ia32_exec_domain);
 712
 713        return 0;
 714}
 715
 716__initcall(per_linux32_init);
 717