linux/arch/s390/kernel/time.c
<<
>>
Prefs
   1/*
   2 *    Time of day based timer functions.
   3 *
   4 *  S390 version
   5 *    Copyright IBM Corp. 1999, 2008
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   9 *
  10 *  Derived from "arch/i386/kernel/time.c"
  11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  12 */
  13
  14#define KMSG_COMPONENT "time"
  15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  16
  17#include <linux/kernel_stat.h>
  18#include <linux/errno.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
  21#include <linux/kernel.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/cpu.h>
  27#include <linux/stop_machine.h>
  28#include <linux/time.h>
  29#include <linux/device.h>
  30#include <linux/delay.h>
  31#include <linux/init.h>
  32#include <linux/smp.h>
  33#include <linux/types.h>
  34#include <linux/profile.h>
  35#include <linux/timex.h>
  36#include <linux/notifier.h>
  37#include <linux/clocksource.h>
  38#include <linux/clockchips.h>
  39#include <linux/gfp.h>
  40#include <linux/kprobes.h>
  41#include <asm/uaccess.h>
  42#include <asm/delay.h>
  43#include <asm/div64.h>
  44#include <asm/vdso.h>
  45#include <asm/irq.h>
  46#include <asm/irq_regs.h>
  47#include <asm/vtimer.h>
  48#include <asm/etr.h>
  49#include <asm/cio.h>
  50#include "entry.h"
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
  55
  56u64 sched_clock_base_cc = -1;   /* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
  61/*
  62 * Scheduler clock - returns current time in nanosec units.
  63 */
  64unsigned long long notrace __kprobes sched_clock(void)
  65{
  66        return (get_clock_monotonic() * 125) >> 9;
  67}
  68
  69/*
  70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  71 */
  72unsigned long long monotonic_clock(void)
  73{
  74        return sched_clock();
  75}
  76EXPORT_SYMBOL(monotonic_clock);
  77
  78void tod_to_timeval(__u64 todval, struct timespec *xt)
  79{
  80        unsigned long long sec;
  81
  82        sec = todval >> 12;
  83        do_div(sec, 1000000);
  84        xt->tv_sec = sec;
  85        todval -= (sec * 1000000) << 12;
  86        xt->tv_nsec = ((todval * 1000) >> 12);
  87}
  88EXPORT_SYMBOL(tod_to_timeval);
  89
  90void clock_comparator_work(void)
  91{
  92        struct clock_event_device *cd;
  93
  94        S390_lowcore.clock_comparator = -1ULL;
  95        set_clock_comparator(S390_lowcore.clock_comparator);
  96        cd = &__get_cpu_var(comparators);
  97        cd->event_handler(cd);
  98}
  99
 100/*
 101 * Fixup the clock comparator.
 102 */
 103static void fixup_clock_comparator(unsigned long long delta)
 104{
 105        /* If nobody is waiting there's nothing to fix. */
 106        if (S390_lowcore.clock_comparator == -1ULL)
 107                return;
 108        S390_lowcore.clock_comparator += delta;
 109        set_clock_comparator(S390_lowcore.clock_comparator);
 110}
 111
 112static int s390_next_ktime(ktime_t expires,
 113                           struct clock_event_device *evt)
 114{
 115        struct timespec ts;
 116        u64 nsecs;
 117
 118        ts.tv_sec = ts.tv_nsec = 0;
 119        monotonic_to_bootbased(&ts);
 120        nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires));
 121        do_div(nsecs, 125);
 122        S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9);
 123        set_clock_comparator(S390_lowcore.clock_comparator);
 124        return 0;
 125}
 126
 127static void s390_set_mode(enum clock_event_mode mode,
 128                          struct clock_event_device *evt)
 129{
 130}
 131
 132/*
 133 * Set up lowcore and control register of the current cpu to
 134 * enable TOD clock and clock comparator interrupts.
 135 */
 136void init_cpu_timer(void)
 137{
 138        struct clock_event_device *cd;
 139        int cpu;
 140
 141        S390_lowcore.clock_comparator = -1ULL;
 142        set_clock_comparator(S390_lowcore.clock_comparator);
 143
 144        cpu = smp_processor_id();
 145        cd = &per_cpu(comparators, cpu);
 146        cd->name                = "comparator";
 147        cd->features            = CLOCK_EVT_FEAT_ONESHOT |
 148                                  CLOCK_EVT_FEAT_KTIME;
 149        cd->mult                = 16777;
 150        cd->shift               = 12;
 151        cd->min_delta_ns        = 1;
 152        cd->max_delta_ns        = LONG_MAX;
 153        cd->rating              = 400;
 154        cd->cpumask             = cpumask_of(cpu);
 155        cd->set_next_ktime      = s390_next_ktime;
 156        cd->set_mode            = s390_set_mode;
 157
 158        clockevents_register_device(cd);
 159
 160        /* Enable clock comparator timer interrupt. */
 161        __ctl_set_bit(0,11);
 162
 163        /* Always allow the timing alert external interrupt. */
 164        __ctl_set_bit(0, 4);
 165}
 166
 167static void clock_comparator_interrupt(struct ext_code ext_code,
 168                                       unsigned int param32,
 169                                       unsigned long param64)
 170{
 171        kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
 172        if (S390_lowcore.clock_comparator == -1ULL)
 173                set_clock_comparator(S390_lowcore.clock_comparator);
 174}
 175
 176static void etr_timing_alert(struct etr_irq_parm *);
 177static void stp_timing_alert(struct stp_irq_parm *);
 178
 179static void timing_alert_interrupt(struct ext_code ext_code,
 180                                   unsigned int param32, unsigned long param64)
 181{
 182        kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
 183        if (param32 & 0x00c40000)
 184                etr_timing_alert((struct etr_irq_parm *) &param32);
 185        if (param32 & 0x00038000)
 186                stp_timing_alert((struct stp_irq_parm *) &param32);
 187}
 188
 189static void etr_reset(void);
 190static void stp_reset(void);
 191
 192void read_persistent_clock(struct timespec *ts)
 193{
 194        tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
 195}
 196
 197void read_boot_clock(struct timespec *ts)
 198{
 199        tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 200}
 201
 202static cycle_t read_tod_clock(struct clocksource *cs)
 203{
 204        return get_clock();
 205}
 206
 207static struct clocksource clocksource_tod = {
 208        .name           = "tod",
 209        .rating         = 400,
 210        .read           = read_tod_clock,
 211        .mask           = -1ULL,
 212        .mult           = 1000,
 213        .shift          = 12,
 214        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 215};
 216
 217struct clocksource * __init clocksource_default_clock(void)
 218{
 219        return &clocksource_tod;
 220}
 221
 222void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 223                        struct clocksource *clock, u32 mult)
 224{
 225        if (clock != &clocksource_tod)
 226                return;
 227
 228        /* Make userspace gettimeofday spin until we're done. */
 229        ++vdso_data->tb_update_count;
 230        smp_wmb();
 231        vdso_data->xtime_tod_stamp = clock->cycle_last;
 232        vdso_data->xtime_clock_sec = wall_time->tv_sec;
 233        vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
 234        vdso_data->wtom_clock_sec = wtm->tv_sec;
 235        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 236        vdso_data->ntp_mult = mult;
 237        smp_wmb();
 238        ++vdso_data->tb_update_count;
 239}
 240
 241extern struct timezone sys_tz;
 242
 243void update_vsyscall_tz(void)
 244{
 245        /* Make userspace gettimeofday spin until we're done. */
 246        ++vdso_data->tb_update_count;
 247        smp_wmb();
 248        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 249        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 250        smp_wmb();
 251        ++vdso_data->tb_update_count;
 252}
 253
 254/*
 255 * Initialize the TOD clock and the CPU timer of
 256 * the boot cpu.
 257 */
 258void __init time_init(void)
 259{
 260        /* Reset time synchronization interfaces. */
 261        etr_reset();
 262        stp_reset();
 263
 264        /* request the clock comparator external interrupt */
 265        if (register_external_interrupt(0x1004, clock_comparator_interrupt))
 266                panic("Couldn't request external interrupt 0x1004");
 267
 268        /* request the timing alert external interrupt */
 269        if (register_external_interrupt(0x1406, timing_alert_interrupt))
 270                panic("Couldn't request external interrupt 0x1406");
 271
 272        if (clocksource_register(&clocksource_tod) != 0)
 273                panic("Could not register TOD clock source");
 274
 275        /* Enable TOD clock interrupts on the boot cpu. */
 276        init_cpu_timer();
 277
 278        /* Enable cpu timer interrupts on the boot cpu. */
 279        vtime_init();
 280}
 281
 282/*
 283 * The time is "clock". old is what we think the time is.
 284 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 285 * "delay" is an approximation how long the synchronization took. If
 286 * the time correction is positive, then "delay" is subtracted from
 287 * the time difference and only the remaining part is passed to ntp.
 288 */
 289static unsigned long long adjust_time(unsigned long long old,
 290                                      unsigned long long clock,
 291                                      unsigned long long delay)
 292{
 293        unsigned long long delta, ticks;
 294        struct timex adjust;
 295
 296        if (clock > old) {
 297                /* It is later than we thought. */
 298                delta = ticks = clock - old;
 299                delta = ticks = (delta < delay) ? 0 : delta - delay;
 300                delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 301                adjust.offset = ticks * (1000000 / HZ);
 302        } else {
 303                /* It is earlier than we thought. */
 304                delta = ticks = old - clock;
 305                delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 306                delta = -delta;
 307                adjust.offset = -ticks * (1000000 / HZ);
 308        }
 309        sched_clock_base_cc += delta;
 310        if (adjust.offset != 0) {
 311                pr_notice("The ETR interface has adjusted the clock "
 312                          "by %li microseconds\n", adjust.offset);
 313                adjust.modes = ADJ_OFFSET_SINGLESHOT;
 314                do_adjtimex(&adjust);
 315        }
 316        return delta;
 317}
 318
 319static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 320static DEFINE_MUTEX(clock_sync_mutex);
 321static unsigned long clock_sync_flags;
 322
 323#define CLOCK_SYNC_HAS_ETR      0
 324#define CLOCK_SYNC_HAS_STP      1
 325#define CLOCK_SYNC_ETR          2
 326#define CLOCK_SYNC_STP          3
 327
 328/*
 329 * The synchronous get_clock function. It will write the current clock
 330 * value to the clock pointer and return 0 if the clock is in sync with
 331 * the external time source. If the clock mode is local it will return
 332 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
 333 * reference.
 334 */
 335int get_sync_clock(unsigned long long *clock)
 336{
 337        atomic_t *sw_ptr;
 338        unsigned int sw0, sw1;
 339
 340        sw_ptr = &get_cpu_var(clock_sync_word);
 341        sw0 = atomic_read(sw_ptr);
 342        *clock = get_clock();
 343        sw1 = atomic_read(sw_ptr);
 344        put_cpu_var(clock_sync_word);
 345        if (sw0 == sw1 && (sw0 & 0x80000000U))
 346                /* Success: time is in sync. */
 347                return 0;
 348        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 349            !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 350                return -ENOSYS;
 351        if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 352            !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 353                return -EACCES;
 354        return -EAGAIN;
 355}
 356EXPORT_SYMBOL(get_sync_clock);
 357
 358/*
 359 * Make get_sync_clock return -EAGAIN.
 360 */
 361static void disable_sync_clock(void *dummy)
 362{
 363        atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 364        /*
 365         * Clear the in-sync bit 2^31. All get_sync_clock calls will
 366         * fail until the sync bit is turned back on. In addition
 367         * increase the "sequence" counter to avoid the race of an
 368         * etr event and the complete recovery against get_sync_clock.
 369         */
 370        atomic_clear_mask(0x80000000, sw_ptr);
 371        atomic_inc(sw_ptr);
 372}
 373
 374/*
 375 * Make get_sync_clock return 0 again.
 376 * Needs to be called from a context disabled for preemption.
 377 */
 378static void enable_sync_clock(void)
 379{
 380        atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 381        atomic_set_mask(0x80000000, sw_ptr);
 382}
 383
 384/*
 385 * Function to check if the clock is in sync.
 386 */
 387static inline int check_sync_clock(void)
 388{
 389        atomic_t *sw_ptr;
 390        int rc;
 391
 392        sw_ptr = &get_cpu_var(clock_sync_word);
 393        rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 394        put_cpu_var(clock_sync_word);
 395        return rc;
 396}
 397
 398/* Single threaded workqueue used for etr and stp sync events */
 399static struct workqueue_struct *time_sync_wq;
 400
 401static void __init time_init_wq(void)
 402{
 403        if (time_sync_wq)
 404                return;
 405        time_sync_wq = create_singlethread_workqueue("timesync");
 406}
 407
 408/*
 409 * External Time Reference (ETR) code.
 410 */
 411static int etr_port0_online;
 412static int etr_port1_online;
 413static int etr_steai_available;
 414
 415static int __init early_parse_etr(char *p)
 416{
 417        if (strncmp(p, "off", 3) == 0)
 418                etr_port0_online = etr_port1_online = 0;
 419        else if (strncmp(p, "port0", 5) == 0)
 420                etr_port0_online = 1;
 421        else if (strncmp(p, "port1", 5) == 0)
 422                etr_port1_online = 1;
 423        else if (strncmp(p, "on", 2) == 0)
 424                etr_port0_online = etr_port1_online = 1;
 425        return 0;
 426}
 427early_param("etr", early_parse_etr);
 428
 429enum etr_event {
 430        ETR_EVENT_PORT0_CHANGE,
 431        ETR_EVENT_PORT1_CHANGE,
 432        ETR_EVENT_PORT_ALERT,
 433        ETR_EVENT_SYNC_CHECK,
 434        ETR_EVENT_SWITCH_LOCAL,
 435        ETR_EVENT_UPDATE,
 436};
 437
 438/*
 439 * Valid bit combinations of the eacr register are (x = don't care):
 440 * e0 e1 dp p0 p1 ea es sl
 441 *  0  0  x  0  0  0  0  0  initial, disabled state
 442 *  0  0  x  0  1  1  0  0  port 1 online
 443 *  0  0  x  1  0  1  0  0  port 0 online
 444 *  0  0  x  1  1  1  0  0  both ports online
 445 *  0  1  x  0  1  1  0  0  port 1 online and usable, ETR or PPS mode
 446 *  0  1  x  0  1  1  0  1  port 1 online, usable and ETR mode
 447 *  0  1  x  0  1  1  1  0  port 1 online, usable, PPS mode, in-sync
 448 *  0  1  x  0  1  1  1  1  port 1 online, usable, ETR mode, in-sync
 449 *  0  1  x  1  1  1  0  0  both ports online, port 1 usable
 450 *  0  1  x  1  1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 451 *  0  1  x  1  1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 452 *  1  0  x  1  0  1  0  0  port 0 online and usable, ETR or PPS mode
 453 *  1  0  x  1  0  1  0  1  port 0 online, usable and ETR mode
 454 *  1  0  x  1  0  1  1  0  port 0 online, usable, PPS mode, in-sync
 455 *  1  0  x  1  0  1  1  1  port 0 online, usable, ETR mode, in-sync
 456 *  1  0  x  1  1  1  0  0  both ports online, port 0 usable
 457 *  1  0  x  1  1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 458 *  1  0  x  1  1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 459 *  1  1  x  1  1  1  1  0  both ports online & usable, ETR, in-sync
 460 *  1  1  x  1  1  1  1  1  both ports online & usable, ETR, in-sync
 461 */
 462static struct etr_eacr etr_eacr;
 463static u64 etr_tolec;                   /* time of last eacr update */
 464static struct etr_aib etr_port0;
 465static int etr_port0_uptodate;
 466static struct etr_aib etr_port1;
 467static int etr_port1_uptodate;
 468static unsigned long etr_events;
 469static struct timer_list etr_timer;
 470
 471static void etr_timeout(unsigned long dummy);
 472static void etr_work_fn(struct work_struct *work);
 473static DEFINE_MUTEX(etr_work_mutex);
 474static DECLARE_WORK(etr_work, etr_work_fn);
 475
 476/*
 477 * Reset ETR attachment.
 478 */
 479static void etr_reset(void)
 480{
 481        etr_eacr =  (struct etr_eacr) {
 482                .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 483                .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 484                .es = 0, .sl = 0 };
 485        if (etr_setr(&etr_eacr) == 0) {
 486                etr_tolec = get_clock();
 487                set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 488                if (etr_port0_online && etr_port1_online)
 489                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 490        } else if (etr_port0_online || etr_port1_online) {
 491                pr_warning("The real or virtual hardware system does "
 492                           "not provide an ETR interface\n");
 493                etr_port0_online = etr_port1_online = 0;
 494        }
 495}
 496
 497static int __init etr_init(void)
 498{
 499        struct etr_aib aib;
 500
 501        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 502                return 0;
 503        time_init_wq();
 504        /* Check if this machine has the steai instruction. */
 505        if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 506                etr_steai_available = 1;
 507        setup_timer(&etr_timer, etr_timeout, 0UL);
 508        if (etr_port0_online) {
 509                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 510                queue_work(time_sync_wq, &etr_work);
 511        }
 512        if (etr_port1_online) {
 513                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 514                queue_work(time_sync_wq, &etr_work);
 515        }
 516        return 0;
 517}
 518
 519arch_initcall(etr_init);
 520
 521/*
 522 * Two sorts of ETR machine checks. The architecture reads:
 523 * "When a machine-check niterruption occurs and if a switch-to-local or
 524 *  ETR-sync-check interrupt request is pending but disabled, this pending
 525 *  disabled interruption request is indicated and is cleared".
 526 * Which means that we can get etr_switch_to_local events from the machine
 527 * check handler although the interruption condition is disabled. Lovely..
 528 */
 529
 530/*
 531 * Switch to local machine check. This is called when the last usable
 532 * ETR port goes inactive. After switch to local the clock is not in sync.
 533 */
 534void etr_switch_to_local(void)
 535{
 536        if (!etr_eacr.sl)
 537                return;
 538        disable_sync_clock(NULL);
 539        if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 540                etr_eacr.es = etr_eacr.sl = 0;
 541                etr_setr(&etr_eacr);
 542                queue_work(time_sync_wq, &etr_work);
 543        }
 544}
 545
 546/*
 547 * ETR sync check machine check. This is called when the ETR OTE and the
 548 * local clock OTE are farther apart than the ETR sync check tolerance.
 549 * After a ETR sync check the clock is not in sync. The machine check
 550 * is broadcasted to all cpus at the same time.
 551 */
 552void etr_sync_check(void)
 553{
 554        if (!etr_eacr.es)
 555                return;
 556        disable_sync_clock(NULL);
 557        if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 558                etr_eacr.es = 0;
 559                etr_setr(&etr_eacr);
 560                queue_work(time_sync_wq, &etr_work);
 561        }
 562}
 563
 564/*
 565 * ETR timing alert. There are two causes:
 566 * 1) port state change, check the usability of the port
 567 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 568 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 569 *    or ETR-data word 4 (edf4) has changed.
 570 */
 571static void etr_timing_alert(struct etr_irq_parm *intparm)
 572{
 573        if (intparm->pc0)
 574                /* ETR port 0 state change. */
 575                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 576        if (intparm->pc1)
 577                /* ETR port 1 state change. */
 578                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 579        if (intparm->eai)
 580                /*
 581                 * ETR port alert on either port 0, 1 or both.
 582                 * Both ports are not up-to-date now.
 583                 */
 584                set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 585        queue_work(time_sync_wq, &etr_work);
 586}
 587
 588static void etr_timeout(unsigned long dummy)
 589{
 590        set_bit(ETR_EVENT_UPDATE, &etr_events);
 591        queue_work(time_sync_wq, &etr_work);
 592}
 593
 594/*
 595 * Check if the etr mode is pss.
 596 */
 597static inline int etr_mode_is_pps(struct etr_eacr eacr)
 598{
 599        return eacr.es && !eacr.sl;
 600}
 601
 602/*
 603 * Check if the etr mode is etr.
 604 */
 605static inline int etr_mode_is_etr(struct etr_eacr eacr)
 606{
 607        return eacr.es && eacr.sl;
 608}
 609
 610/*
 611 * Check if the port can be used for TOD synchronization.
 612 * For PPS mode the port has to receive OTEs. For ETR mode
 613 * the port has to receive OTEs, the ETR stepping bit has to
 614 * be zero and the validity bits for data frame 1, 2, and 3
 615 * have to be 1.
 616 */
 617static int etr_port_valid(struct etr_aib *aib, int port)
 618{
 619        unsigned int psc;
 620
 621        /* Check that this port is receiving OTEs. */
 622        if (aib->tsp == 0)
 623                return 0;
 624
 625        psc = port ? aib->esw.psc1 : aib->esw.psc0;
 626        if (psc == etr_lpsc_pps_mode)
 627                return 1;
 628        if (psc == etr_lpsc_operational_step)
 629                return !aib->esw.y && aib->slsw.v1 &&
 630                        aib->slsw.v2 && aib->slsw.v3;
 631        return 0;
 632}
 633
 634/*
 635 * Check if two ports are on the same network.
 636 */
 637static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 638{
 639        // FIXME: any other fields we have to compare?
 640        return aib1->edf1.net_id == aib2->edf1.net_id;
 641}
 642
 643/*
 644 * Wrapper for etr_stei that converts physical port states
 645 * to logical port states to be consistent with the output
 646 * of stetr (see etr_psc vs. etr_lpsc).
 647 */
 648static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 649{
 650        BUG_ON(etr_steai(aib, func) != 0);
 651        /* Convert port state to logical port state. */
 652        if (aib->esw.psc0 == 1)
 653                aib->esw.psc0 = 2;
 654        else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 655                aib->esw.psc0 = 1;
 656        if (aib->esw.psc1 == 1)
 657                aib->esw.psc1 = 2;
 658        else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 659                aib->esw.psc1 = 1;
 660}
 661
 662/*
 663 * Check if the aib a2 is still connected to the same attachment as
 664 * aib a1, the etv values differ by one and a2 is valid.
 665 */
 666static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 667{
 668        int state_a1, state_a2;
 669
 670        /* Paranoia check: e0/e1 should better be the same. */
 671        if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 672            a1->esw.eacr.e1 != a2->esw.eacr.e1)
 673                return 0;
 674
 675        /* Still connected to the same etr ? */
 676        state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 677        state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 678        if (state_a1 == etr_lpsc_operational_step) {
 679                if (state_a2 != etr_lpsc_operational_step ||
 680                    a1->edf1.net_id != a2->edf1.net_id ||
 681                    a1->edf1.etr_id != a2->edf1.etr_id ||
 682                    a1->edf1.etr_pn != a2->edf1.etr_pn)
 683                        return 0;
 684        } else if (state_a2 != etr_lpsc_pps_mode)
 685                return 0;
 686
 687        /* The ETV value of a2 needs to be ETV of a1 + 1. */
 688        if (a1->edf2.etv + 1 != a2->edf2.etv)
 689                return 0;
 690
 691        if (!etr_port_valid(a2, p))
 692                return 0;
 693
 694        return 1;
 695}
 696
 697struct clock_sync_data {
 698        atomic_t cpus;
 699        int in_sync;
 700        unsigned long long fixup_cc;
 701        int etr_port;
 702        struct etr_aib *etr_aib;
 703};
 704
 705static void clock_sync_cpu(struct clock_sync_data *sync)
 706{
 707        atomic_dec(&sync->cpus);
 708        enable_sync_clock();
 709        /*
 710         * This looks like a busy wait loop but it isn't. etr_sync_cpus
 711         * is called on all other cpus while the TOD clocks is stopped.
 712         * __udelay will stop the cpu on an enabled wait psw until the
 713         * TOD is running again.
 714         */
 715        while (sync->in_sync == 0) {
 716                __udelay(1);
 717                /*
 718                 * A different cpu changes *in_sync. Therefore use
 719                 * barrier() to force memory access.
 720                 */
 721                barrier();
 722        }
 723        if (sync->in_sync != 1)
 724                /* Didn't work. Clear per-cpu in sync bit again. */
 725                disable_sync_clock(NULL);
 726        /*
 727         * This round of TOD syncing is done. Set the clock comparator
 728         * to the next tick and let the processor continue.
 729         */
 730        fixup_clock_comparator(sync->fixup_cc);
 731}
 732
 733/*
 734 * Sync the TOD clock using the port referred to by aibp. This port
 735 * has to be enabled and the other port has to be disabled. The
 736 * last eacr update has to be more than 1.6 seconds in the past.
 737 */
 738static int etr_sync_clock(void *data)
 739{
 740        static int first;
 741        unsigned long long clock, old_clock, delay, delta;
 742        struct clock_sync_data *etr_sync;
 743        struct etr_aib *sync_port, *aib;
 744        int port;
 745        int rc;
 746
 747        etr_sync = data;
 748
 749        if (xchg(&first, 1) == 1) {
 750                /* Slave */
 751                clock_sync_cpu(etr_sync);
 752                return 0;
 753        }
 754
 755        /* Wait until all other cpus entered the sync function. */
 756        while (atomic_read(&etr_sync->cpus) != 0)
 757                cpu_relax();
 758
 759        port = etr_sync->etr_port;
 760        aib = etr_sync->etr_aib;
 761        sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 762        enable_sync_clock();
 763
 764        /* Set clock to next OTE. */
 765        __ctl_set_bit(14, 21);
 766        __ctl_set_bit(0, 29);
 767        clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 768        old_clock = get_clock();
 769        if (set_clock(clock) == 0) {
 770                __udelay(1);    /* Wait for the clock to start. */
 771                __ctl_clear_bit(0, 29);
 772                __ctl_clear_bit(14, 21);
 773                etr_stetr(aib);
 774                /* Adjust Linux timing variables. */
 775                delay = (unsigned long long)
 776                        (aib->edf2.etv - sync_port->edf2.etv) << 32;
 777                delta = adjust_time(old_clock, clock, delay);
 778                etr_sync->fixup_cc = delta;
 779                fixup_clock_comparator(delta);
 780                /* Verify that the clock is properly set. */
 781                if (!etr_aib_follows(sync_port, aib, port)) {
 782                        /* Didn't work. */
 783                        disable_sync_clock(NULL);
 784                        etr_sync->in_sync = -EAGAIN;
 785                        rc = -EAGAIN;
 786                } else {
 787                        etr_sync->in_sync = 1;
 788                        rc = 0;
 789                }
 790        } else {
 791                /* Could not set the clock ?!? */
 792                __ctl_clear_bit(0, 29);
 793                __ctl_clear_bit(14, 21);
 794                disable_sync_clock(NULL);
 795                etr_sync->in_sync = -EAGAIN;
 796                rc = -EAGAIN;
 797        }
 798        xchg(&first, 0);
 799        return rc;
 800}
 801
 802static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 803{
 804        struct clock_sync_data etr_sync;
 805        struct etr_aib *sync_port;
 806        int follows;
 807        int rc;
 808
 809        /* Check if the current aib is adjacent to the sync port aib. */
 810        sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 811        follows = etr_aib_follows(sync_port, aib, port);
 812        memcpy(sync_port, aib, sizeof(*aib));
 813        if (!follows)
 814                return -EAGAIN;
 815        memset(&etr_sync, 0, sizeof(etr_sync));
 816        etr_sync.etr_aib = aib;
 817        etr_sync.etr_port = port;
 818        get_online_cpus();
 819        atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 820        rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 821        put_online_cpus();
 822        return rc;
 823}
 824
 825/*
 826 * Handle the immediate effects of the different events.
 827 * The port change event is used for online/offline changes.
 828 */
 829static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 830{
 831        if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 832                eacr.es = 0;
 833        if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 834                eacr.es = eacr.sl = 0;
 835        if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 836                etr_port0_uptodate = etr_port1_uptodate = 0;
 837
 838        if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 839                if (eacr.e0)
 840                        /*
 841                         * Port change of an enabled port. We have to
 842                         * assume that this can have caused an stepping
 843                         * port switch.
 844                         */
 845                        etr_tolec = get_clock();
 846                eacr.p0 = etr_port0_online;
 847                if (!eacr.p0)
 848                        eacr.e0 = 0;
 849                etr_port0_uptodate = 0;
 850        }
 851        if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 852                if (eacr.e1)
 853                        /*
 854                         * Port change of an enabled port. We have to
 855                         * assume that this can have caused an stepping
 856                         * port switch.
 857                         */
 858                        etr_tolec = get_clock();
 859                eacr.p1 = etr_port1_online;
 860                if (!eacr.p1)
 861                        eacr.e1 = 0;
 862                etr_port1_uptodate = 0;
 863        }
 864        clear_bit(ETR_EVENT_UPDATE, &etr_events);
 865        return eacr;
 866}
 867
 868/*
 869 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 870 * one of the ports needs an update.
 871 */
 872static void etr_set_tolec_timeout(unsigned long long now)
 873{
 874        unsigned long micros;
 875
 876        if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 877            (!etr_eacr.p1 || etr_port1_uptodate))
 878                return;
 879        micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 880        micros = (micros > 1600000) ? 0 : 1600000 - micros;
 881        mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 882}
 883
 884/*
 885 * Set up a time that expires after 1/2 second.
 886 */
 887static void etr_set_sync_timeout(void)
 888{
 889        mod_timer(&etr_timer, jiffies + HZ/2);
 890}
 891
 892/*
 893 * Update the aib information for one or both ports.
 894 */
 895static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 896                                         struct etr_eacr eacr)
 897{
 898        /* With both ports disabled the aib information is useless. */
 899        if (!eacr.e0 && !eacr.e1)
 900                return eacr;
 901
 902        /* Update port0 or port1 with aib stored in etr_work_fn. */
 903        if (aib->esw.q == 0) {
 904                /* Information for port 0 stored. */
 905                if (eacr.p0 && !etr_port0_uptodate) {
 906                        etr_port0 = *aib;
 907                        if (etr_port0_online)
 908                                etr_port0_uptodate = 1;
 909                }
 910        } else {
 911                /* Information for port 1 stored. */
 912                if (eacr.p1 && !etr_port1_uptodate) {
 913                        etr_port1 = *aib;
 914                        if (etr_port0_online)
 915                                etr_port1_uptodate = 1;
 916                }
 917        }
 918
 919        /*
 920         * Do not try to get the alternate port aib if the clock
 921         * is not in sync yet.
 922         */
 923        if (!eacr.es || !check_sync_clock())
 924                return eacr;
 925
 926        /*
 927         * If steai is available we can get the information about
 928         * the other port immediately. If only stetr is available the
 929         * data-port bit toggle has to be used.
 930         */
 931        if (etr_steai_available) {
 932                if (eacr.p0 && !etr_port0_uptodate) {
 933                        etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 934                        etr_port0_uptodate = 1;
 935                }
 936                if (eacr.p1 && !etr_port1_uptodate) {
 937                        etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 938                        etr_port1_uptodate = 1;
 939                }
 940        } else {
 941                /*
 942                 * One port was updated above, if the other
 943                 * port is not uptodate toggle dp bit.
 944                 */
 945                if ((eacr.p0 && !etr_port0_uptodate) ||
 946                    (eacr.p1 && !etr_port1_uptodate))
 947                        eacr.dp ^= 1;
 948                else
 949                        eacr.dp = 0;
 950        }
 951        return eacr;
 952}
 953
 954/*
 955 * Write new etr control register if it differs from the current one.
 956 * Return 1 if etr_tolec has been updated as well.
 957 */
 958static void etr_update_eacr(struct etr_eacr eacr)
 959{
 960        int dp_changed;
 961
 962        if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 963                /* No change, return. */
 964                return;
 965        /*
 966         * The disable of an active port of the change of the data port
 967         * bit can/will cause a change in the data port.
 968         */
 969        dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 970                (etr_eacr.dp ^ eacr.dp) != 0;
 971        etr_eacr = eacr;
 972        etr_setr(&etr_eacr);
 973        if (dp_changed)
 974                etr_tolec = get_clock();
 975}
 976
 977/*
 978 * ETR work. In this function you'll find the main logic. In
 979 * particular this is the only function that calls etr_update_eacr(),
 980 * it "controls" the etr control register.
 981 */
 982static void etr_work_fn(struct work_struct *work)
 983{
 984        unsigned long long now;
 985        struct etr_eacr eacr;
 986        struct etr_aib aib;
 987        int sync_port;
 988
 989        /* prevent multiple execution. */
 990        mutex_lock(&etr_work_mutex);
 991
 992        /* Create working copy of etr_eacr. */
 993        eacr = etr_eacr;
 994
 995        /* Check for the different events and their immediate effects. */
 996        eacr = etr_handle_events(eacr);
 997
 998        /* Check if ETR is supposed to be active. */
 999        eacr.ea = eacr.p0 || eacr.p1;
1000        if (!eacr.ea) {
1001                /* Both ports offline. Reset everything. */
1002                eacr.dp = eacr.es = eacr.sl = 0;
1003                on_each_cpu(disable_sync_clock, NULL, 1);
1004                del_timer_sync(&etr_timer);
1005                etr_update_eacr(eacr);
1006                goto out_unlock;
1007        }
1008
1009        /* Store aib to get the current ETR status word. */
1010        BUG_ON(etr_stetr(&aib) != 0);
1011        etr_port0.esw = etr_port1.esw = aib.esw;        /* Copy status word. */
1012        now = get_clock();
1013
1014        /*
1015         * Update the port information if the last stepping port change
1016         * or data port change is older than 1.6 seconds.
1017         */
1018        if (now >= etr_tolec + (1600000 << 12))
1019                eacr = etr_handle_update(&aib, eacr);
1020
1021        /*
1022         * Select ports to enable. The preferred synchronization mode is PPS.
1023         * If a port can be enabled depends on a number of things:
1024         * 1) The port needs to be online and uptodate. A port is not
1025         *    disabled just because it is not uptodate, but it is only
1026         *    enabled if it is uptodate.
1027         * 2) The port needs to have the same mode (pps / etr).
1028         * 3) The port needs to be usable -> etr_port_valid() == 1
1029         * 4) To enable the second port the clock needs to be in sync.
1030         * 5) If both ports are useable and are ETR ports, the network id
1031         *    has to be the same.
1032         * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033         */
1034        if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035                eacr.sl = 0;
1036                eacr.e0 = 1;
1037                if (!etr_mode_is_pps(etr_eacr))
1038                        eacr.es = 0;
1039                if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040                        eacr.e1 = 0;
1041                // FIXME: uptodate checks ?
1042                else if (etr_port0_uptodate && etr_port1_uptodate)
1043                        eacr.e1 = 1;
1044                sync_port = (etr_port0_uptodate &&
1045                             etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046        } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047                eacr.sl = 0;
1048                eacr.e0 = 0;
1049                eacr.e1 = 1;
1050                if (!etr_mode_is_pps(etr_eacr))
1051                        eacr.es = 0;
1052                sync_port = (etr_port1_uptodate &&
1053                             etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054        } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055                eacr.sl = 1;
1056                eacr.e0 = 1;
1057                if (!etr_mode_is_etr(etr_eacr))
1058                        eacr.es = 0;
1059                if (!eacr.es || !eacr.p1 ||
1060                    aib.esw.psc1 != etr_lpsc_operational_alt)
1061                        eacr.e1 = 0;
1062                else if (etr_port0_uptodate && etr_port1_uptodate &&
1063                         etr_compare_network(&etr_port0, &etr_port1))
1064                        eacr.e1 = 1;
1065                sync_port = (etr_port0_uptodate &&
1066                             etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067        } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068                eacr.sl = 1;
1069                eacr.e0 = 0;
1070                eacr.e1 = 1;
1071                if (!etr_mode_is_etr(etr_eacr))
1072                        eacr.es = 0;
1073                sync_port = (etr_port1_uptodate &&
1074                             etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075        } else {
1076                /* Both ports not usable. */
1077                eacr.es = eacr.sl = 0;
1078                sync_port = -1;
1079        }
1080
1081        /*
1082         * If the clock is in sync just update the eacr and return.
1083         * If there is no valid sync port wait for a port update.
1084         */
1085        if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086                etr_update_eacr(eacr);
1087                etr_set_tolec_timeout(now);
1088                goto out_unlock;
1089        }
1090
1091        /*
1092         * Prepare control register for clock syncing
1093         * (reset data port bit, set sync check control.
1094         */
1095        eacr.dp = 0;
1096        eacr.es = 1;
1097
1098        /*
1099         * Update eacr and try to synchronize the clock. If the update
1100         * of eacr caused a stepping port switch (or if we have to
1101         * assume that a stepping port switch has occurred) or the
1102         * clock syncing failed, reset the sync check control bit
1103         * and set up a timer to try again after 0.5 seconds
1104         */
1105        etr_update_eacr(eacr);
1106        if (now < etr_tolec + (1600000 << 12) ||
1107            etr_sync_clock_stop(&aib, sync_port) != 0) {
1108                /* Sync failed. Try again in 1/2 second. */
1109                eacr.es = 0;
1110                etr_update_eacr(eacr);
1111                etr_set_sync_timeout();
1112        } else
1113                etr_set_tolec_timeout(now);
1114out_unlock:
1115        mutex_unlock(&etr_work_mutex);
1116}
1117
1118/*
1119 * Sysfs interface functions
1120 */
1121static struct bus_type etr_subsys = {
1122        .name           = "etr",
1123        .dev_name       = "etr",
1124};
1125
1126static struct device etr_port0_dev = {
1127        .id     = 0,
1128        .bus    = &etr_subsys,
1129};
1130
1131static struct device etr_port1_dev = {
1132        .id     = 1,
1133        .bus    = &etr_subsys,
1134};
1135
1136/*
1137 * ETR subsys attributes
1138 */
1139static ssize_t etr_stepping_port_show(struct device *dev,
1140                                        struct device_attribute *attr,
1141                                        char *buf)
1142{
1143        return sprintf(buf, "%i\n", etr_port0.esw.p);
1144}
1145
1146static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147
1148static ssize_t etr_stepping_mode_show(struct device *dev,
1149                                        struct device_attribute *attr,
1150                                        char *buf)
1151{
1152        char *mode_str;
1153
1154        if (etr_mode_is_pps(etr_eacr))
1155                mode_str = "pps";
1156        else if (etr_mode_is_etr(etr_eacr))
1157                mode_str = "etr";
1158        else
1159                mode_str = "local";
1160        return sprintf(buf, "%s\n", mode_str);
1161}
1162
1163static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164
1165/*
1166 * ETR port attributes
1167 */
1168static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169{
1170        if (dev == &etr_port0_dev)
1171                return etr_port0_online ? &etr_port0 : NULL;
1172        else
1173                return etr_port1_online ? &etr_port1 : NULL;
1174}
1175
1176static ssize_t etr_online_show(struct device *dev,
1177                                struct device_attribute *attr,
1178                                char *buf)
1179{
1180        unsigned int online;
1181
1182        online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183        return sprintf(buf, "%i\n", online);
1184}
1185
1186static ssize_t etr_online_store(struct device *dev,
1187                                struct device_attribute *attr,
1188                                const char *buf, size_t count)
1189{
1190        unsigned int value;
1191
1192        value = simple_strtoul(buf, NULL, 0);
1193        if (value != 0 && value != 1)
1194                return -EINVAL;
1195        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196                return -EOPNOTSUPP;
1197        mutex_lock(&clock_sync_mutex);
1198        if (dev == &etr_port0_dev) {
1199                if (etr_port0_online == value)
1200                        goto out;       /* Nothing to do. */
1201                etr_port0_online = value;
1202                if (etr_port0_online && etr_port1_online)
1203                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204                else
1205                        clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207                queue_work(time_sync_wq, &etr_work);
1208        } else {
1209                if (etr_port1_online == value)
1210                        goto out;       /* Nothing to do. */
1211                etr_port1_online = value;
1212                if (etr_port0_online && etr_port1_online)
1213                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214                else
1215                        clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217                queue_work(time_sync_wq, &etr_work);
1218        }
1219out:
1220        mutex_unlock(&clock_sync_mutex);
1221        return count;
1222}
1223
1224static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225
1226static ssize_t etr_stepping_control_show(struct device *dev,
1227                                        struct device_attribute *attr,
1228                                        char *buf)
1229{
1230        return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231                       etr_eacr.e0 : etr_eacr.e1);
1232}
1233
1234static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235
1236static ssize_t etr_mode_code_show(struct device *dev,
1237                                struct device_attribute *attr, char *buf)
1238{
1239        if (!etr_port0_online && !etr_port1_online)
1240                /* Status word is not uptodate if both ports are offline. */
1241                return -ENODATA;
1242        return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243                       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244}
1245
1246static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247
1248static ssize_t etr_untuned_show(struct device *dev,
1249                                struct device_attribute *attr, char *buf)
1250{
1251        struct etr_aib *aib = etr_aib_from_dev(dev);
1252
1253        if (!aib || !aib->slsw.v1)
1254                return -ENODATA;
1255        return sprintf(buf, "%i\n", aib->edf1.u);
1256}
1257
1258static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259
1260static ssize_t etr_network_id_show(struct device *dev,
1261                                struct device_attribute *attr, char *buf)
1262{
1263        struct etr_aib *aib = etr_aib_from_dev(dev);
1264
1265        if (!aib || !aib->slsw.v1)
1266                return -ENODATA;
1267        return sprintf(buf, "%i\n", aib->edf1.net_id);
1268}
1269
1270static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271
1272static ssize_t etr_id_show(struct device *dev,
1273                        struct device_attribute *attr, char *buf)
1274{
1275        struct etr_aib *aib = etr_aib_from_dev(dev);
1276
1277        if (!aib || !aib->slsw.v1)
1278                return -ENODATA;
1279        return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280}
1281
1282static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283
1284static ssize_t etr_port_number_show(struct device *dev,
1285                        struct device_attribute *attr, char *buf)
1286{
1287        struct etr_aib *aib = etr_aib_from_dev(dev);
1288
1289        if (!aib || !aib->slsw.v1)
1290                return -ENODATA;
1291        return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292}
1293
1294static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295
1296static ssize_t etr_coupled_show(struct device *dev,
1297                        struct device_attribute *attr, char *buf)
1298{
1299        struct etr_aib *aib = etr_aib_from_dev(dev);
1300
1301        if (!aib || !aib->slsw.v3)
1302                return -ENODATA;
1303        return sprintf(buf, "%i\n", aib->edf3.c);
1304}
1305
1306static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307
1308static ssize_t etr_local_time_show(struct device *dev,
1309                        struct device_attribute *attr, char *buf)
1310{
1311        struct etr_aib *aib = etr_aib_from_dev(dev);
1312
1313        if (!aib || !aib->slsw.v3)
1314                return -ENODATA;
1315        return sprintf(buf, "%i\n", aib->edf3.blto);
1316}
1317
1318static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319
1320static ssize_t etr_utc_offset_show(struct device *dev,
1321                        struct device_attribute *attr, char *buf)
1322{
1323        struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325        if (!aib || !aib->slsw.v3)
1326                return -ENODATA;
1327        return sprintf(buf, "%i\n", aib->edf3.buo);
1328}
1329
1330static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332static struct device_attribute *etr_port_attributes[] = {
1333        &dev_attr_online,
1334        &dev_attr_stepping_control,
1335        &dev_attr_state_code,
1336        &dev_attr_untuned,
1337        &dev_attr_network,
1338        &dev_attr_id,
1339        &dev_attr_port,
1340        &dev_attr_coupled,
1341        &dev_attr_local_time,
1342        &dev_attr_utc_offset,
1343        NULL
1344};
1345
1346static int __init etr_register_port(struct device *dev)
1347{
1348        struct device_attribute **attr;
1349        int rc;
1350
1351        rc = device_register(dev);
1352        if (rc)
1353                goto out;
1354        for (attr = etr_port_attributes; *attr; attr++) {
1355                rc = device_create_file(dev, *attr);
1356                if (rc)
1357                        goto out_unreg;
1358        }
1359        return 0;
1360out_unreg:
1361        for (; attr >= etr_port_attributes; attr--)
1362                device_remove_file(dev, *attr);
1363        device_unregister(dev);
1364out:
1365        return rc;
1366}
1367
1368static void __init etr_unregister_port(struct device *dev)
1369{
1370        struct device_attribute **attr;
1371
1372        for (attr = etr_port_attributes; *attr; attr++)
1373                device_remove_file(dev, *attr);
1374        device_unregister(dev);
1375}
1376
1377static int __init etr_init_sysfs(void)
1378{
1379        int rc;
1380
1381        rc = subsys_system_register(&etr_subsys, NULL);
1382        if (rc)
1383                goto out;
1384        rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385        if (rc)
1386                goto out_unreg_subsys;
1387        rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388        if (rc)
1389                goto out_remove_stepping_port;
1390        rc = etr_register_port(&etr_port0_dev);
1391        if (rc)
1392                goto out_remove_stepping_mode;
1393        rc = etr_register_port(&etr_port1_dev);
1394        if (rc)
1395                goto out_remove_port0;
1396        return 0;
1397
1398out_remove_port0:
1399        etr_unregister_port(&etr_port0_dev);
1400out_remove_stepping_mode:
1401        device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402out_remove_stepping_port:
1403        device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404out_unreg_subsys:
1405        bus_unregister(&etr_subsys);
1406out:
1407        return rc;
1408}
1409
1410device_initcall(etr_init_sysfs);
1411
1412/*
1413 * Server Time Protocol (STP) code.
1414 */
1415static int stp_online;
1416static struct stp_sstpi stp_info;
1417static void *stp_page;
1418
1419static void stp_work_fn(struct work_struct *work);
1420static DEFINE_MUTEX(stp_work_mutex);
1421static DECLARE_WORK(stp_work, stp_work_fn);
1422static struct timer_list stp_timer;
1423
1424static int __init early_parse_stp(char *p)
1425{
1426        if (strncmp(p, "off", 3) == 0)
1427                stp_online = 0;
1428        else if (strncmp(p, "on", 2) == 0)
1429                stp_online = 1;
1430        return 0;
1431}
1432early_param("stp", early_parse_stp);
1433
1434/*
1435 * Reset STP attachment.
1436 */
1437static void __init stp_reset(void)
1438{
1439        int rc;
1440
1441        stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443        if (rc == 0)
1444                set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445        else if (stp_online) {
1446                pr_warning("The real or virtual hardware system does "
1447                           "not provide an STP interface\n");
1448                free_page((unsigned long) stp_page);
1449                stp_page = NULL;
1450                stp_online = 0;
1451        }
1452}
1453
1454static void stp_timeout(unsigned long dummy)
1455{
1456        queue_work(time_sync_wq, &stp_work);
1457}
1458
1459static int __init stp_init(void)
1460{
1461        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462                return 0;
1463        setup_timer(&stp_timer, stp_timeout, 0UL);
1464        time_init_wq();
1465        if (!stp_online)
1466                return 0;
1467        queue_work(time_sync_wq, &stp_work);
1468        return 0;
1469}
1470
1471arch_initcall(stp_init);
1472
1473/*
1474 * STP timing alert. There are three causes:
1475 * 1) timing status change
1476 * 2) link availability change
1477 * 3) time control parameter change
1478 * In all three cases we are only interested in the clock source state.
1479 * If a STP clock source is now available use it.
1480 */
1481static void stp_timing_alert(struct stp_irq_parm *intparm)
1482{
1483        if (intparm->tsc || intparm->lac || intparm->tcpc)
1484                queue_work(time_sync_wq, &stp_work);
1485}
1486
1487/*
1488 * STP sync check machine check. This is called when the timing state
1489 * changes from the synchronized state to the unsynchronized state.
1490 * After a STP sync check the clock is not in sync. The machine check
1491 * is broadcasted to all cpus at the same time.
1492 */
1493void stp_sync_check(void)
1494{
1495        disable_sync_clock(NULL);
1496        queue_work(time_sync_wq, &stp_work);
1497}
1498
1499/*
1500 * STP island condition machine check. This is called when an attached
1501 * server  attempts to communicate over an STP link and the servers
1502 * have matching CTN ids and have a valid stratum-1 configuration
1503 * but the configurations do not match.
1504 */
1505void stp_island_check(void)
1506{
1507        disable_sync_clock(NULL);
1508        queue_work(time_sync_wq, &stp_work);
1509}
1510
1511
1512static int stp_sync_clock(void *data)
1513{
1514        static int first;
1515        unsigned long long old_clock, delta;
1516        struct clock_sync_data *stp_sync;
1517        int rc;
1518
1519        stp_sync = data;
1520
1521        if (xchg(&first, 1) == 1) {
1522                /* Slave */
1523                clock_sync_cpu(stp_sync);
1524                return 0;
1525        }
1526
1527        /* Wait until all other cpus entered the sync function. */
1528        while (atomic_read(&stp_sync->cpus) != 0)
1529                cpu_relax();
1530
1531        enable_sync_clock();
1532
1533        rc = 0;
1534        if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535            stp_info.todoff[2] || stp_info.todoff[3] ||
1536            stp_info.tmd != 2) {
1537                old_clock = get_clock();
1538                rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539                if (rc == 0) {
1540                        delta = adjust_time(old_clock, get_clock(), 0);
1541                        fixup_clock_comparator(delta);
1542                        rc = chsc_sstpi(stp_page, &stp_info,
1543                                        sizeof(struct stp_sstpi));
1544                        if (rc == 0 && stp_info.tmd != 2)
1545                                rc = -EAGAIN;
1546                }
1547        }
1548        if (rc) {
1549                disable_sync_clock(NULL);
1550                stp_sync->in_sync = -EAGAIN;
1551        } else
1552                stp_sync->in_sync = 1;
1553        xchg(&first, 0);
1554        return 0;
1555}
1556
1557/*
1558 * STP work. Check for the STP state and take over the clock
1559 * synchronization if the STP clock source is usable.
1560 */
1561static void stp_work_fn(struct work_struct *work)
1562{
1563        struct clock_sync_data stp_sync;
1564        int rc;
1565
1566        /* prevent multiple execution. */
1567        mutex_lock(&stp_work_mutex);
1568
1569        if (!stp_online) {
1570                chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571                del_timer_sync(&stp_timer);
1572                goto out_unlock;
1573        }
1574
1575        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576        if (rc)
1577                goto out_unlock;
1578
1579        rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580        if (rc || stp_info.c == 0)
1581                goto out_unlock;
1582
1583        /* Skip synchronization if the clock is already in sync. */
1584        if (check_sync_clock())
1585                goto out_unlock;
1586
1587        memset(&stp_sync, 0, sizeof(stp_sync));
1588        get_online_cpus();
1589        atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590        stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591        put_online_cpus();
1592
1593        if (!check_sync_clock())
1594                /*
1595                 * There is a usable clock but the synchonization failed.
1596                 * Retry after a second.
1597                 */
1598                mod_timer(&stp_timer, jiffies + HZ);
1599
1600out_unlock:
1601        mutex_unlock(&stp_work_mutex);
1602}
1603
1604/*
1605 * STP subsys sysfs interface functions
1606 */
1607static struct bus_type stp_subsys = {
1608        .name           = "stp",
1609        .dev_name       = "stp",
1610};
1611
1612static ssize_t stp_ctn_id_show(struct device *dev,
1613                                struct device_attribute *attr,
1614                                char *buf)
1615{
1616        if (!stp_online)
1617                return -ENODATA;
1618        return sprintf(buf, "%016llx\n",
1619                       *(unsigned long long *) stp_info.ctnid);
1620}
1621
1622static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623
1624static ssize_t stp_ctn_type_show(struct device *dev,
1625                                struct device_attribute *attr,
1626                                char *buf)
1627{
1628        if (!stp_online)
1629                return -ENODATA;
1630        return sprintf(buf, "%i\n", stp_info.ctn);
1631}
1632
1633static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634
1635static ssize_t stp_dst_offset_show(struct device *dev,
1636                                   struct device_attribute *attr,
1637                                   char *buf)
1638{
1639        if (!stp_online || !(stp_info.vbits & 0x2000))
1640                return -ENODATA;
1641        return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642}
1643
1644static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645
1646static ssize_t stp_leap_seconds_show(struct device *dev,
1647                                        struct device_attribute *attr,
1648                                        char *buf)
1649{
1650        if (!stp_online || !(stp_info.vbits & 0x8000))
1651                return -ENODATA;
1652        return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653}
1654
1655static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656
1657static ssize_t stp_stratum_show(struct device *dev,
1658                                struct device_attribute *attr,
1659                                char *buf)
1660{
1661        if (!stp_online)
1662                return -ENODATA;
1663        return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664}
1665
1666static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667
1668static ssize_t stp_time_offset_show(struct device *dev,
1669                                struct device_attribute *attr,
1670                                char *buf)
1671{
1672        if (!stp_online || !(stp_info.vbits & 0x0800))
1673                return -ENODATA;
1674        return sprintf(buf, "%i\n", (int) stp_info.tto);
1675}
1676
1677static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678
1679static ssize_t stp_time_zone_offset_show(struct device *dev,
1680                                struct device_attribute *attr,
1681                                char *buf)
1682{
1683        if (!stp_online || !(stp_info.vbits & 0x4000))
1684                return -ENODATA;
1685        return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686}
1687
1688static DEVICE_ATTR(time_zone_offset, 0400,
1689                         stp_time_zone_offset_show, NULL);
1690
1691static ssize_t stp_timing_mode_show(struct device *dev,
1692                                struct device_attribute *attr,
1693                                char *buf)
1694{
1695        if (!stp_online)
1696                return -ENODATA;
1697        return sprintf(buf, "%i\n", stp_info.tmd);
1698}
1699
1700static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701
1702static ssize_t stp_timing_state_show(struct device *dev,
1703                                struct device_attribute *attr,
1704                                char *buf)
1705{
1706        if (!stp_online)
1707                return -ENODATA;
1708        return sprintf(buf, "%i\n", stp_info.tst);
1709}
1710
1711static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712
1713static ssize_t stp_online_show(struct device *dev,
1714                                struct device_attribute *attr,
1715                                char *buf)
1716{
1717        return sprintf(buf, "%i\n", stp_online);
1718}
1719
1720static ssize_t stp_online_store(struct device *dev,
1721                                struct device_attribute *attr,
1722                                const char *buf, size_t count)
1723{
1724        unsigned int value;
1725
1726        value = simple_strtoul(buf, NULL, 0);
1727        if (value != 0 && value != 1)
1728                return -EINVAL;
1729        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730                return -EOPNOTSUPP;
1731        mutex_lock(&clock_sync_mutex);
1732        stp_online = value;
1733        if (stp_online)
1734                set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735        else
1736                clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737        queue_work(time_sync_wq, &stp_work);
1738        mutex_unlock(&clock_sync_mutex);
1739        return count;
1740}
1741
1742/*
1743 * Can't use DEVICE_ATTR because the attribute should be named
1744 * stp/online but dev_attr_online already exists in this file ..
1745 */
1746static struct device_attribute dev_attr_stp_online = {
1747        .attr = { .name = "online", .mode = 0600 },
1748        .show   = stp_online_show,
1749        .store  = stp_online_store,
1750};
1751
1752static struct device_attribute *stp_attributes[] = {
1753        &dev_attr_ctn_id,
1754        &dev_attr_ctn_type,
1755        &dev_attr_dst_offset,
1756        &dev_attr_leap_seconds,
1757        &dev_attr_stp_online,
1758        &dev_attr_stratum,
1759        &dev_attr_time_offset,
1760        &dev_attr_time_zone_offset,
1761        &dev_attr_timing_mode,
1762        &dev_attr_timing_state,
1763        NULL
1764};
1765
1766static int __init stp_init_sysfs(void)
1767{
1768        struct device_attribute **attr;
1769        int rc;
1770
1771        rc = subsys_system_register(&stp_subsys, NULL);
1772        if (rc)
1773                goto out;
1774        for (attr = stp_attributes; *attr; attr++) {
1775                rc = device_create_file(stp_subsys.dev_root, *attr);
1776                if (rc)
1777                        goto out_unreg;
1778        }
1779        return 0;
1780out_unreg:
1781        for (; attr >= stp_attributes; attr--)
1782                device_remove_file(stp_subsys.dev_root, *attr);
1783        bus_unregister(&stp_subsys);
1784out:
1785        return rc;
1786}
1787
1788device_initcall(stp_init_sysfs);
1789