linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/swiotlb.h>
  27#include <linux/initrd.h>
  28#include <linux/io.h>
  29#include <linux/highmem.h>
  30#include <linux/smp.h>
  31#include <linux/timex.h>
  32#include <linux/hugetlb.h>
  33#include <linux/start_kernel.h>
  34#include <asm/setup.h>
  35#include <asm/sections.h>
  36#include <asm/cacheflush.h>
  37#include <asm/pgalloc.h>
  38#include <asm/mmu_context.h>
  39#include <hv/hypervisor.h>
  40#include <arch/interrupts.h>
  41
  42/* <linux/smp.h> doesn't provide this definition. */
  43#ifndef CONFIG_SMP
  44#define setup_max_cpus 1
  45#endif
  46
  47static inline int ABS(int x) { return x >= 0 ? x : -x; }
  48
  49/* Chip information */
  50char chip_model[64] __write_once;
  51
  52struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  53EXPORT_SYMBOL(node_data);
  54
  55/* Information on the NUMA nodes that we compute early */
  56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  61
  62static unsigned long __initdata node_percpu[MAX_NUMNODES];
  63
  64/*
  65 * per-CPU stack and boot info.
  66 */
  67DEFINE_PER_CPU(unsigned long, boot_sp) =
  68        (unsigned long)init_stack + THREAD_SIZE;
  69
  70#ifdef CONFIG_SMP
  71DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
  72#else
  73/*
  74 * The variable must be __initdata since it references __init code.
  75 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
  76 */
  77unsigned long __initdata boot_pc = (unsigned long)start_kernel;
  78#endif
  79
  80#ifdef CONFIG_HIGHMEM
  81/* Page frame index of end of lowmem on each controller. */
  82unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  83
  84/* Number of pages that can be mapped into lowmem. */
  85static unsigned long __initdata mappable_physpages;
  86#endif
  87
  88/* Data on which physical memory controller corresponds to which NUMA node */
  89int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  90
  91#ifdef CONFIG_HIGHMEM
  92/* Map information from VAs to PAs */
  93unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  94  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  95EXPORT_SYMBOL(pbase_map);
  96
  97/* Map information from PAs to VAs */
  98void *vbase_map[NR_PA_HIGHBIT_VALUES]
  99  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 100EXPORT_SYMBOL(vbase_map);
 101#endif
 102
 103/* Node number as a function of the high PA bits */
 104int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 105EXPORT_SYMBOL(highbits_to_node);
 106
 107static unsigned int __initdata maxmem_pfn = -1U;
 108static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 109        [0 ... MAX_NUMNODES-1] = -1U
 110};
 111static nodemask_t __initdata isolnodes;
 112
 113#if defined(CONFIG_PCI) && !defined(__tilegx__)
 114enum { DEFAULT_PCI_RESERVE_MB = 64 };
 115static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 116unsigned long __initdata pci_reserve_start_pfn = -1U;
 117unsigned long __initdata pci_reserve_end_pfn = -1U;
 118#endif
 119
 120static int __init setup_maxmem(char *str)
 121{
 122        unsigned long long maxmem;
 123        if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 124                return -EINVAL;
 125
 126        maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 127        pr_info("Forcing RAM used to no more than %dMB\n",
 128               maxmem_pfn >> (20 - PAGE_SHIFT));
 129        return 0;
 130}
 131early_param("maxmem", setup_maxmem);
 132
 133static int __init setup_maxnodemem(char *str)
 134{
 135        char *endp;
 136        unsigned long long maxnodemem;
 137        long node;
 138
 139        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 140        if (node >= MAX_NUMNODES || *endp != ':')
 141                return -EINVAL;
 142
 143        maxnodemem = memparse(endp+1, NULL);
 144        maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 145                (HPAGE_SHIFT - PAGE_SHIFT);
 146        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 147               node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 148        return 0;
 149}
 150early_param("maxnodemem", setup_maxnodemem);
 151
 152static int __init setup_isolnodes(char *str)
 153{
 154        char buf[MAX_NUMNODES * 5];
 155        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 156                return -EINVAL;
 157
 158        nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 159        pr_info("Set isolnodes value to '%s'\n", buf);
 160        return 0;
 161}
 162early_param("isolnodes", setup_isolnodes);
 163
 164#if defined(CONFIG_PCI) && !defined(__tilegx__)
 165static int __init setup_pci_reserve(char* str)
 166{
 167        unsigned long mb;
 168
 169        if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 170            mb > 3 * 1024)
 171                return -EINVAL;
 172
 173        pci_reserve_mb = mb;
 174        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 175                pci_reserve_mb);
 176        return 0;
 177}
 178early_param("pci_reserve", setup_pci_reserve);
 179#endif
 180
 181#ifndef __tilegx__
 182/*
 183 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 184 * This can be used to increase (or decrease) the vmalloc area.
 185 */
 186static int __init parse_vmalloc(char *arg)
 187{
 188        if (!arg)
 189                return -EINVAL;
 190
 191        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 192
 193        /* See validate_va() for more on this test. */
 194        if ((long)_VMALLOC_START >= 0)
 195                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 196                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 197
 198        return 0;
 199}
 200early_param("vmalloc", parse_vmalloc);
 201#endif
 202
 203#ifdef CONFIG_HIGHMEM
 204/*
 205 * Determine for each controller where its lowmem is mapped and how much of
 206 * it is mapped there.  On controller zero, the first few megabytes are
 207 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 208 * start our data mappings higher up, but for now we don't bother, to avoid
 209 * additional confusion.
 210 *
 211 * One question is whether, on systems with more than 768 Mb and
 212 * controllers of different sizes, to map in a proportionate amount of
 213 * each one, or to try to map the same amount from each controller.
 214 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 215 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 216 * MB, and 128 MB respectively?)  For now we use a proportionate
 217 * solution like the latter.
 218 *
 219 * The VA/PA mapping demands that we align our decisions at 16 MB
 220 * boundaries so that we can rapidly convert VA to PA.
 221 */
 222static void *__init setup_pa_va_mapping(void)
 223{
 224        unsigned long curr_pages = 0;
 225        unsigned long vaddr = PAGE_OFFSET;
 226        nodemask_t highonlynodes = isolnodes;
 227        int i, j;
 228
 229        memset(pbase_map, -1, sizeof(pbase_map));
 230        memset(vbase_map, -1, sizeof(vbase_map));
 231
 232        /* Node zero cannot be isolated for LOWMEM purposes. */
 233        node_clear(0, highonlynodes);
 234
 235        /* Count up the number of pages on non-highonlynodes controllers. */
 236        mappable_physpages = 0;
 237        for_each_online_node(i) {
 238                if (!node_isset(i, highonlynodes))
 239                        mappable_physpages +=
 240                                node_end_pfn[i] - node_start_pfn[i];
 241        }
 242
 243        for_each_online_node(i) {
 244                unsigned long start = node_start_pfn[i];
 245                unsigned long end = node_end_pfn[i];
 246                unsigned long size = end - start;
 247                unsigned long vaddr_end;
 248
 249                if (node_isset(i, highonlynodes)) {
 250                        /* Mark this controller as having no lowmem. */
 251                        node_lowmem_end_pfn[i] = start;
 252                        continue;
 253                }
 254
 255                curr_pages += size;
 256                if (mappable_physpages > MAXMEM_PFN) {
 257                        vaddr_end = PAGE_OFFSET +
 258                                (((u64)curr_pages * MAXMEM_PFN /
 259                                  mappable_physpages)
 260                                 << PAGE_SHIFT);
 261                } else {
 262                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 263                }
 264                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 265                        unsigned long this_pfn =
 266                                start + (j << HUGETLB_PAGE_ORDER);
 267                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 268                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 269                            (void *)-1)
 270                                vbase_map[__pfn_to_highbits(this_pfn)] =
 271                                        (void *)(vaddr & HPAGE_MASK);
 272                }
 273                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 274                BUG_ON(node_lowmem_end_pfn[i] > end);
 275        }
 276
 277        /* Return highest address of any mapped memory. */
 278        return (void *)vaddr;
 279}
 280#endif /* CONFIG_HIGHMEM */
 281
 282/*
 283 * Register our most important memory mappings with the debug stub.
 284 *
 285 * This is up to 4 mappings for lowmem, one mapping per memory
 286 * controller, plus one for our text segment.
 287 */
 288static void __cpuinit store_permanent_mappings(void)
 289{
 290        int i;
 291
 292        for_each_online_node(i) {
 293                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 294#ifdef CONFIG_HIGHMEM
 295                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 296#else
 297                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 298#endif
 299
 300                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 301                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 302                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 303        }
 304
 305        hv_store_mapping((HV_VirtAddr)_stext,
 306                         (uint32_t)(_einittext - _stext), 0);
 307}
 308
 309/*
 310 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 311 * and node_online_map, doing suitable sanity-checking.
 312 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 313 */
 314static void __init setup_memory(void)
 315{
 316        int i, j;
 317        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 318#ifdef CONFIG_HIGHMEM
 319        long highmem_pages;
 320#endif
 321#ifndef __tilegx__
 322        int cap;
 323#endif
 324#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 325        long lowmem_pages;
 326#endif
 327
 328        /* We are using a char to hold the cpu_2_node[] mapping */
 329        BUILD_BUG_ON(MAX_NUMNODES > 127);
 330
 331        /* Discover the ranges of memory available to us */
 332        for (i = 0; ; ++i) {
 333                unsigned long start, size, end, highbits;
 334                HV_PhysAddrRange range = hv_inquire_physical(i);
 335                if (range.size == 0)
 336                        break;
 337#ifdef CONFIG_FLATMEM
 338                if (i > 0) {
 339                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 340                               range.size, range.start + range.size);
 341                        continue;
 342                }
 343#endif
 344#ifndef __tilegx__
 345                if ((unsigned long)range.start) {
 346                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 347                               range.start, range.start + range.size);
 348                        continue;
 349                }
 350#endif
 351                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 352                    (range.size & (HPAGE_SIZE-1)) != 0) {
 353                        unsigned long long start_pa = range.start;
 354                        unsigned long long orig_size = range.size;
 355                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 356                        range.size -= (range.start - start_pa);
 357                        range.size &= HPAGE_MASK;
 358                        pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 359                               " now %#llx-%#llx\n",
 360                               start_pa, start_pa + orig_size,
 361                               range.start, range.start + range.size);
 362                }
 363                highbits = __pa_to_highbits(range.start);
 364                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 365                        pr_err("PA high bits too high: %#llx..%#llx\n",
 366                               range.start, range.start + range.size);
 367                        continue;
 368                }
 369                if (highbits_seen[highbits]) {
 370                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 371                               range.start, range.start + range.size);
 372                        continue;
 373                }
 374                highbits_seen[highbits] = 1;
 375                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 376                        int max_size = maxnodemem_pfn[i];
 377                        if (max_size > 0) {
 378                                pr_err("Maxnodemem reduced node %d to"
 379                                       " %d pages\n", i, max_size);
 380                                range.size = PFN_PHYS(max_size);
 381                        } else {
 382                                pr_err("Maxnodemem disabled node %d\n", i);
 383                                continue;
 384                        }
 385                }
 386                if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 387                        int max_size = maxmem_pfn - num_physpages;
 388                        if (max_size > 0) {
 389                                pr_err("Maxmem reduced node %d to %d pages\n",
 390                                       i, max_size);
 391                                range.size = PFN_PHYS(max_size);
 392                        } else {
 393                                pr_err("Maxmem disabled node %d\n", i);
 394                                continue;
 395                        }
 396                }
 397                if (i >= MAX_NUMNODES) {
 398                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 399                               i, range.size, range.size + range.start);
 400                        continue;
 401                }
 402
 403                start = range.start >> PAGE_SHIFT;
 404                size = range.size >> PAGE_SHIFT;
 405                end = start + size;
 406
 407#ifndef __tilegx__
 408                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 409                    (range.start + range.size)) {
 410                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 411                               range.start, range.start + range.size);
 412                        continue;
 413                }
 414#endif
 415#if defined(CONFIG_PCI) && !defined(__tilegx__)
 416                /*
 417                 * Blocks that overlap the pci reserved region must
 418                 * have enough space to hold the maximum percpu data
 419                 * region at the top of the range.  If there isn't
 420                 * enough space above the reserved region, just
 421                 * truncate the node.
 422                 */
 423                if (start <= pci_reserve_start_pfn &&
 424                    end > pci_reserve_start_pfn) {
 425                        unsigned int per_cpu_size =
 426                                __per_cpu_end - __per_cpu_start;
 427                        unsigned int percpu_pages =
 428                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 429                        if (end < pci_reserve_end_pfn + percpu_pages) {
 430                                end = pci_reserve_start_pfn;
 431                                pr_err("PCI mapping region reduced node %d to"
 432                                       " %ld pages\n", i, end - start);
 433                        }
 434                }
 435#endif
 436
 437                for (j = __pfn_to_highbits(start);
 438                     j <= __pfn_to_highbits(end - 1); j++)
 439                        highbits_to_node[j] = i;
 440
 441                node_start_pfn[i] = start;
 442                node_end_pfn[i] = end;
 443                node_controller[i] = range.controller;
 444                num_physpages += size;
 445                max_pfn = end;
 446
 447                /* Mark node as online */
 448                node_set(i, node_online_map);
 449                node_set(i, node_possible_map);
 450        }
 451
 452#ifndef __tilegx__
 453        /*
 454         * For 4KB pages, mem_map "struct page" data is 1% of the size
 455         * of the physical memory, so can be quite big (640 MB for
 456         * four 16G zones).  These structures must be mapped in
 457         * lowmem, and since we currently cap out at about 768 MB,
 458         * it's impractical to try to use this much address space.
 459         * For now, arbitrarily cap the amount of physical memory
 460         * we're willing to use at 8 million pages (32GB of 4KB pages).
 461         */
 462        cap = 8 * 1024 * 1024;  /* 8 million pages */
 463        if (num_physpages > cap) {
 464                int num_nodes = num_online_nodes();
 465                int cap_each = cap / num_nodes;
 466                unsigned long dropped_pages = 0;
 467                for (i = 0; i < num_nodes; ++i) {
 468                        int size = node_end_pfn[i] - node_start_pfn[i];
 469                        if (size > cap_each) {
 470                                dropped_pages += (size - cap_each);
 471                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 472                        }
 473                }
 474                num_physpages -= dropped_pages;
 475                pr_warning("Only using %ldMB memory;"
 476                       " ignoring %ldMB.\n",
 477                       num_physpages >> (20 - PAGE_SHIFT),
 478                       dropped_pages >> (20 - PAGE_SHIFT));
 479                pr_warning("Consider using a larger page size.\n");
 480        }
 481#endif
 482
 483        /* Heap starts just above the last loaded address. */
 484        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 485
 486#ifdef CONFIG_HIGHMEM
 487        /* Find where we map lowmem from each controller. */
 488        high_memory = setup_pa_va_mapping();
 489
 490        /* Set max_low_pfn based on what node 0 can directly address. */
 491        max_low_pfn = node_lowmem_end_pfn[0];
 492
 493        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 494                MAXMEM_PFN : mappable_physpages;
 495        highmem_pages = (long) (num_physpages - lowmem_pages);
 496
 497        pr_notice("%ldMB HIGHMEM available.\n",
 498               pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 499        pr_notice("%ldMB LOWMEM available.\n",
 500                        pages_to_mb(lowmem_pages));
 501#else
 502        /* Set max_low_pfn based on what node 0 can directly address. */
 503        max_low_pfn = node_end_pfn[0];
 504
 505#ifndef __tilegx__
 506        if (node_end_pfn[0] > MAXMEM_PFN) {
 507                pr_warning("Only using %ldMB LOWMEM.\n",
 508                       MAXMEM>>20);
 509                pr_warning("Use a HIGHMEM enabled kernel.\n");
 510                max_low_pfn = MAXMEM_PFN;
 511                max_pfn = MAXMEM_PFN;
 512                num_physpages = MAXMEM_PFN;
 513                node_end_pfn[0] = MAXMEM_PFN;
 514        } else {
 515                pr_notice("%ldMB memory available.\n",
 516                       pages_to_mb(node_end_pfn[0]));
 517        }
 518        for (i = 1; i < MAX_NUMNODES; ++i) {
 519                node_start_pfn[i] = 0;
 520                node_end_pfn[i] = 0;
 521        }
 522        high_memory = __va(node_end_pfn[0]);
 523#else
 524        lowmem_pages = 0;
 525        for (i = 0; i < MAX_NUMNODES; ++i) {
 526                int pages = node_end_pfn[i] - node_start_pfn[i];
 527                lowmem_pages += pages;
 528                if (pages)
 529                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 530        }
 531        pr_notice("%ldMB memory available.\n",
 532               pages_to_mb(lowmem_pages));
 533#endif
 534#endif
 535}
 536
 537/*
 538 * On 32-bit machines, we only put bootmem on the low controller,
 539 * since PAs > 4GB can't be used in bootmem.  In principle one could
 540 * imagine, e.g., multiple 1 GB controllers all of which could support
 541 * bootmem, but in practice using controllers this small isn't a
 542 * particularly interesting scenario, so we just keep it simple and
 543 * use only the first controller for bootmem on 32-bit machines.
 544 */
 545static inline int node_has_bootmem(int nid)
 546{
 547#ifdef CONFIG_64BIT
 548        return 1;
 549#else
 550        return nid == 0;
 551#endif
 552}
 553
 554static inline unsigned long alloc_bootmem_pfn(int nid,
 555                                              unsigned long size,
 556                                              unsigned long goal)
 557{
 558        void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 559                                         PAGE_SIZE, goal);
 560        unsigned long pfn = kaddr_to_pfn(kva);
 561        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 562        return pfn;
 563}
 564
 565static void __init setup_bootmem_allocator_node(int i)
 566{
 567        unsigned long start, end, mapsize, mapstart;
 568
 569        if (node_has_bootmem(i)) {
 570                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 571        } else {
 572                /* Share controller zero's bdata for now. */
 573                NODE_DATA(i)->bdata = &bootmem_node_data[0];
 574                return;
 575        }
 576
 577        /* Skip up to after the bss in node 0. */
 578        start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 579
 580        /* Only lowmem, if we're a HIGHMEM build. */
 581#ifdef CONFIG_HIGHMEM
 582        end = node_lowmem_end_pfn[i];
 583#else
 584        end = node_end_pfn[i];
 585#endif
 586
 587        /* No memory here. */
 588        if (end == start)
 589                return;
 590
 591        /* Figure out where the bootmem bitmap is located. */
 592        mapsize = bootmem_bootmap_pages(end - start);
 593        if (i == 0) {
 594                /* Use some space right before the heap on node 0. */
 595                mapstart = start;
 596                start += mapsize;
 597        } else {
 598                /* Allocate bitmap on node 0 to avoid page table issues. */
 599                mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 600        }
 601
 602        /* Initialize a node. */
 603        init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 604
 605        /* Free all the space back into the allocator. */
 606        free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 607
 608#if defined(CONFIG_PCI) && !defined(__tilegx__)
 609        /*
 610         * Throw away any memory aliased by the PCI region.
 611         */
 612        if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
 613                reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
 614                                PFN_PHYS(pci_reserve_end_pfn -
 615                                         pci_reserve_start_pfn),
 616                                BOOTMEM_EXCLUSIVE);
 617#endif
 618}
 619
 620static void __init setup_bootmem_allocator(void)
 621{
 622        int i;
 623        for (i = 0; i < MAX_NUMNODES; ++i)
 624                setup_bootmem_allocator_node(i);
 625
 626#ifdef CONFIG_KEXEC
 627        if (crashk_res.start != crashk_res.end)
 628                reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 629#endif
 630}
 631
 632void *__init alloc_remap(int nid, unsigned long size)
 633{
 634        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 635        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 636        BUG_ON(size != pages * sizeof(struct page));
 637        memset(map, 0, size);
 638        return map;
 639}
 640
 641static int __init percpu_size(void)
 642{
 643        int size = __per_cpu_end - __per_cpu_start;
 644        size += PERCPU_MODULE_RESERVE;
 645        size += PERCPU_DYNAMIC_EARLY_SIZE;
 646        if (size < PCPU_MIN_UNIT_SIZE)
 647                size = PCPU_MIN_UNIT_SIZE;
 648        size = roundup(size, PAGE_SIZE);
 649
 650        /* In several places we assume the per-cpu data fits on a huge page. */
 651        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 652        return size;
 653}
 654
 655static void __init zone_sizes_init(void)
 656{
 657        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 658        int size = percpu_size();
 659        int num_cpus = smp_height * smp_width;
 660        const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
 661
 662        int i;
 663
 664        for (i = 0; i < num_cpus; ++i)
 665                node_percpu[cpu_to_node(i)] += size;
 666
 667        for_each_online_node(i) {
 668                unsigned long start = node_start_pfn[i];
 669                unsigned long end = node_end_pfn[i];
 670#ifdef CONFIG_HIGHMEM
 671                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 672#else
 673                unsigned long lowmem_end = end;
 674#endif
 675                int memmap_size = (end - start) * sizeof(struct page);
 676                node_free_pfn[i] = start;
 677
 678                /*
 679                 * Set aside pages for per-cpu data and the mem_map array.
 680                 *
 681                 * Since the per-cpu data requires special homecaching,
 682                 * if we are in kdata_huge mode, we put it at the end of
 683                 * the lowmem region.  If we're not in kdata_huge mode,
 684                 * we take the per-cpu pages from the bottom of the
 685                 * controller, since that avoids fragmenting a huge page
 686                 * that users might want.  We always take the memmap
 687                 * from the bottom of the controller, since with
 688                 * kdata_huge that lets it be under a huge TLB entry.
 689                 *
 690                 * If the user has requested isolnodes for a controller,
 691                 * though, there'll be no lowmem, so we just alloc_bootmem
 692                 * the memmap.  There will be no percpu memory either.
 693                 */
 694                if (i != 0 && cpu_isset(i, isolnodes)) {
 695                        node_memmap_pfn[i] =
 696                                alloc_bootmem_pfn(0, memmap_size, 0);
 697                        BUG_ON(node_percpu[i] != 0);
 698                } else if (node_has_bootmem(start)) {
 699                        unsigned long goal = 0;
 700                        node_memmap_pfn[i] =
 701                                alloc_bootmem_pfn(i, memmap_size, 0);
 702                        if (kdata_huge)
 703                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 704                        if (node_percpu[i])
 705                                node_percpu_pfn[i] =
 706                                        alloc_bootmem_pfn(i, node_percpu[i],
 707                                                          goal);
 708                } else {
 709                        /* In non-bootmem zones, just reserve some pages. */
 710                        node_memmap_pfn[i] = node_free_pfn[i];
 711                        node_free_pfn[i] += PFN_UP(memmap_size);
 712                        if (!kdata_huge) {
 713                                node_percpu_pfn[i] = node_free_pfn[i];
 714                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 715                        } else {
 716                                node_percpu_pfn[i] =
 717                                        lowmem_end - PFN_UP(node_percpu[i]);
 718                        }
 719                }
 720
 721#ifdef CONFIG_HIGHMEM
 722                if (start > lowmem_end) {
 723                        zones_size[ZONE_NORMAL] = 0;
 724                        zones_size[ZONE_HIGHMEM] = end - start;
 725                } else {
 726                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 727                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 728                }
 729#else
 730                zones_size[ZONE_NORMAL] = end - start;
 731#endif
 732
 733                if (start < dma_end) {
 734                        zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
 735                                                   dma_end - start);
 736                        zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
 737                } else {
 738                        zones_size[ZONE_DMA] = 0;
 739                }
 740
 741                /* Take zone metadata from controller 0 if we're isolnode. */
 742                if (node_isset(i, isolnodes))
 743                        NODE_DATA(i)->bdata = &bootmem_node_data[0];
 744
 745                free_area_init_node(i, zones_size, start, NULL);
 746                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 747                       PFN_UP(node_percpu[i]));
 748
 749                /* Track the type of memory on each node */
 750                if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
 751                        node_set_state(i, N_NORMAL_MEMORY);
 752#ifdef CONFIG_HIGHMEM
 753                if (end != start)
 754                        node_set_state(i, N_HIGH_MEMORY);
 755#endif
 756
 757                node_set_online(i);
 758        }
 759}
 760
 761#ifdef CONFIG_NUMA
 762
 763/* which logical CPUs are on which nodes */
 764struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 765EXPORT_SYMBOL(node_2_cpu_mask);
 766
 767/* which node each logical CPU is on */
 768char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 769EXPORT_SYMBOL(cpu_2_node);
 770
 771/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 772static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 773{
 774        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 775                return -1;
 776        else
 777                return cpu_to_node(cpu);
 778}
 779
 780/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 781static int __init node_neighbors(int node, int cpu,
 782                                 struct cpumask *unbound_cpus)
 783{
 784        int neighbors = 0;
 785        int w = smp_width;
 786        int h = smp_height;
 787        int x = cpu % w;
 788        int y = cpu / w;
 789        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 790                ++neighbors;
 791        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 792                ++neighbors;
 793        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 794                ++neighbors;
 795        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 796                ++neighbors;
 797        return neighbors;
 798}
 799
 800static void __init setup_numa_mapping(void)
 801{
 802        int distance[MAX_NUMNODES][NR_CPUS];
 803        HV_Coord coord;
 804        int cpu, node, cpus, i, x, y;
 805        int num_nodes = num_online_nodes();
 806        struct cpumask unbound_cpus;
 807        nodemask_t default_nodes;
 808
 809        cpumask_clear(&unbound_cpus);
 810
 811        /* Get set of nodes we will use for defaults */
 812        nodes_andnot(default_nodes, node_online_map, isolnodes);
 813        if (nodes_empty(default_nodes)) {
 814                BUG_ON(!node_isset(0, node_online_map));
 815                pr_err("Forcing NUMA node zero available as a default node\n");
 816                node_set(0, default_nodes);
 817        }
 818
 819        /* Populate the distance[] array */
 820        memset(distance, -1, sizeof(distance));
 821        cpu = 0;
 822        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 823                for (coord.x = 0; coord.x < smp_width;
 824                     ++coord.x, ++cpu) {
 825                        BUG_ON(cpu >= nr_cpu_ids);
 826                        if (!cpu_possible(cpu)) {
 827                                cpu_2_node[cpu] = -1;
 828                                continue;
 829                        }
 830                        for_each_node_mask(node, default_nodes) {
 831                                HV_MemoryControllerInfo info =
 832                                        hv_inquire_memory_controller(
 833                                                coord, node_controller[node]);
 834                                distance[node][cpu] =
 835                                        ABS(info.coord.x) + ABS(info.coord.y);
 836                        }
 837                        cpumask_set_cpu(cpu, &unbound_cpus);
 838                }
 839        }
 840        cpus = cpu;
 841
 842        /*
 843         * Round-robin through the NUMA nodes until all the cpus are
 844         * assigned.  We could be more clever here (e.g. create four
 845         * sorted linked lists on the same set of cpu nodes, and pull
 846         * off them in round-robin sequence, removing from all four
 847         * lists each time) but given the relatively small numbers
 848         * involved, O(n^2) seem OK for a one-time cost.
 849         */
 850        node = first_node(default_nodes);
 851        while (!cpumask_empty(&unbound_cpus)) {
 852                int best_cpu = -1;
 853                int best_distance = INT_MAX;
 854                for (cpu = 0; cpu < cpus; ++cpu) {
 855                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 856                                /*
 857                                 * Compute metric, which is how much
 858                                 * closer the cpu is to this memory
 859                                 * controller than the others, shifted
 860                                 * up, and then the number of
 861                                 * neighbors already in the node as an
 862                                 * epsilon adjustment to try to keep
 863                                 * the nodes compact.
 864                                 */
 865                                int d = distance[node][cpu] * num_nodes;
 866                                for_each_node_mask(i, default_nodes) {
 867                                        if (i != node)
 868                                                d -= distance[i][cpu];
 869                                }
 870                                d *= 8;  /* allow space for epsilon */
 871                                d -= node_neighbors(node, cpu, &unbound_cpus);
 872                                if (d < best_distance) {
 873                                        best_cpu = cpu;
 874                                        best_distance = d;
 875                                }
 876                        }
 877                }
 878                BUG_ON(best_cpu < 0);
 879                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 880                cpu_2_node[best_cpu] = node;
 881                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 882                node = next_node(node, default_nodes);
 883                if (node == MAX_NUMNODES)
 884                        node = first_node(default_nodes);
 885        }
 886
 887        /* Print out node assignments and set defaults for disabled cpus */
 888        cpu = 0;
 889        for (y = 0; y < smp_height; ++y) {
 890                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 891                for (x = 0; x < smp_width; ++x, ++cpu) {
 892                        if (cpu_to_node(cpu) < 0) {
 893                                pr_cont(" -");
 894                                cpu_2_node[cpu] = first_node(default_nodes);
 895                        } else {
 896                                pr_cont(" %d", cpu_to_node(cpu));
 897                        }
 898                }
 899                pr_cont("\n");
 900        }
 901}
 902
 903static struct cpu cpu_devices[NR_CPUS];
 904
 905static int __init topology_init(void)
 906{
 907        int i;
 908
 909        for_each_online_node(i)
 910                register_one_node(i);
 911
 912        for (i = 0; i < smp_height * smp_width; ++i)
 913                register_cpu(&cpu_devices[i], i);
 914
 915        return 0;
 916}
 917
 918subsys_initcall(topology_init);
 919
 920#else /* !CONFIG_NUMA */
 921
 922#define setup_numa_mapping() do { } while (0)
 923
 924#endif /* CONFIG_NUMA */
 925
 926/*
 927 * Initialize hugepage support on this cpu.  We do this on all cores
 928 * early in boot: before argument parsing for the boot cpu, and after
 929 * argument parsing but before the init functions run on the secondaries.
 930 * So the values we set up here in the hypervisor may be overridden on
 931 * the boot cpu as arguments are parsed.
 932 */
 933static __cpuinit void init_super_pages(void)
 934{
 935#ifdef CONFIG_HUGETLB_SUPER_PAGES
 936        int i;
 937        for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
 938                hv_set_pte_super_shift(i, huge_shift[i]);
 939#endif
 940}
 941
 942/**
 943 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 944 * @boot: Is this the boot cpu?
 945 *
 946 * Called from setup_arch() on the boot cpu, or online_secondary().
 947 */
 948void __cpuinit setup_cpu(int boot)
 949{
 950        /* The boot cpu sets up its permanent mappings much earlier. */
 951        if (!boot)
 952                store_permanent_mappings();
 953
 954        /* Allow asynchronous TLB interrupts. */
 955#if CHIP_HAS_TILE_DMA()
 956        arch_local_irq_unmask(INT_DMATLB_MISS);
 957        arch_local_irq_unmask(INT_DMATLB_ACCESS);
 958#endif
 959#if CHIP_HAS_SN_PROC()
 960        arch_local_irq_unmask(INT_SNITLB_MISS);
 961#endif
 962#ifdef __tilegx__
 963        arch_local_irq_unmask(INT_SINGLE_STEP_K);
 964#endif
 965
 966        /*
 967         * Allow user access to many generic SPRs, like the cycle
 968         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 969         */
 970        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 971
 972#if CHIP_HAS_SN()
 973        /* Static network is not restricted. */
 974        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 975#endif
 976#if CHIP_HAS_SN_PROC()
 977        __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 978        __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 979#endif
 980
 981        /*
 982         * Set the MPL for interrupt control 0 & 1 to the corresponding
 983         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 984         * SPRs, as well as the interrupt mask.
 985         */
 986        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 987        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 988
 989        /* Initialize IRQ support for this cpu. */
 990        setup_irq_regs();
 991
 992#ifdef CONFIG_HARDWALL
 993        /* Reset the network state on this cpu. */
 994        reset_network_state();
 995#endif
 996
 997        init_super_pages();
 998}
 999
1000#ifdef CONFIG_BLK_DEV_INITRD
1001
1002/*
1003 * Note that the kernel can potentially support other compression
1004 * techniques than gz, though we don't do so by default.  If we ever
1005 * decide to do so we can either look for other filename extensions,
1006 * or just allow a file with this name to be compressed with an
1007 * arbitrary compressor (somewhat counterintuitively).
1008 */
1009static int __initdata set_initramfs_file;
1010static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
1011
1012static int __init setup_initramfs_file(char *str)
1013{
1014        if (str == NULL)
1015                return -EINVAL;
1016        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1017        set_initramfs_file = 1;
1018
1019        return 0;
1020}
1021early_param("initramfs_file", setup_initramfs_file);
1022
1023/*
1024 * We look for an "initramfs.cpio.gz" file in the hvfs.
1025 * If there is one, we allocate some memory for it and it will be
1026 * unpacked to the initramfs.
1027 */
1028static void __init load_hv_initrd(void)
1029{
1030        HV_FS_StatInfo stat;
1031        int fd, rc;
1032        void *initrd;
1033
1034        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1035        if (fd == HV_ENOENT) {
1036                if (set_initramfs_file)
1037                        pr_warning("No such hvfs initramfs file '%s'\n",
1038                                   initramfs_file);
1039                return;
1040        }
1041        BUG_ON(fd < 0);
1042        stat = hv_fs_fstat(fd);
1043        BUG_ON(stat.size < 0);
1044        if (stat.flags & HV_FS_ISDIR) {
1045                pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1046                           initramfs_file);
1047                return;
1048        }
1049        initrd = alloc_bootmem_pages(stat.size);
1050        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1051        if (rc != stat.size) {
1052                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1053                       stat.size, initramfs_file, rc);
1054                free_initrd_mem((unsigned long) initrd, stat.size);
1055                return;
1056        }
1057        initrd_start = (unsigned long) initrd;
1058        initrd_end = initrd_start + stat.size;
1059}
1060
1061void __init free_initrd_mem(unsigned long begin, unsigned long end)
1062{
1063        free_bootmem(__pa(begin), end - begin);
1064}
1065
1066#else
1067static inline void load_hv_initrd(void) {}
1068#endif /* CONFIG_BLK_DEV_INITRD */
1069
1070static void __init validate_hv(void)
1071{
1072        /*
1073         * It may already be too late, but let's check our built-in
1074         * configuration against what the hypervisor is providing.
1075         */
1076        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1077        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1078        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1079        HV_ASIDRange asid_range;
1080
1081#ifndef CONFIG_SMP
1082        HV_Topology topology = hv_inquire_topology();
1083        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1084        if (topology.width != 1 || topology.height != 1) {
1085                pr_warning("Warning: booting UP kernel on %dx%d grid;"
1086                           " will ignore all but first tile.\n",
1087                           topology.width, topology.height);
1088        }
1089#endif
1090
1091        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1092                early_panic("Hypervisor glue size %ld is too big!\n",
1093                            glue_size);
1094        if (hv_page_size != PAGE_SIZE)
1095                early_panic("Hypervisor page size %#x != our %#lx\n",
1096                            hv_page_size, PAGE_SIZE);
1097        if (hv_hpage_size != HPAGE_SIZE)
1098                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1099                            hv_hpage_size, HPAGE_SIZE);
1100
1101#ifdef CONFIG_SMP
1102        /*
1103         * Some hypervisor APIs take a pointer to a bitmap array
1104         * whose size is at least the number of cpus on the chip.
1105         * We use a struct cpumask for this, so it must be big enough.
1106         */
1107        if ((smp_height * smp_width) > nr_cpu_ids)
1108                early_panic("Hypervisor %d x %d grid too big for Linux"
1109                            " NR_CPUS %d\n", smp_height, smp_width,
1110                            nr_cpu_ids);
1111#endif
1112
1113        /*
1114         * Check that we're using allowed ASIDs, and initialize the
1115         * various asid variables to their appropriate initial states.
1116         */
1117        asid_range = hv_inquire_asid(0);
1118        __get_cpu_var(current_asid) = min_asid = asid_range.start;
1119        max_asid = asid_range.start + asid_range.size - 1;
1120
1121        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1122                       sizeof(chip_model)) < 0) {
1123                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1124                strlcpy(chip_model, "unknown", sizeof(chip_model));
1125        }
1126}
1127
1128static void __init validate_va(void)
1129{
1130#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1131        /*
1132         * Similarly, make sure we're only using allowed VAs.
1133         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1134         * and 0 .. KERNEL_HIGH_VADDR.
1135         * In addition, make sure we CAN'T use the end of memory, since
1136         * we use the last chunk of each pgd for the pgd_list.
1137         */
1138        int i, user_kernel_ok = 0;
1139        unsigned long max_va = 0;
1140        unsigned long list_va =
1141                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1142
1143        for (i = 0; ; ++i) {
1144                HV_VirtAddrRange range = hv_inquire_virtual(i);
1145                if (range.size == 0)
1146                        break;
1147                if (range.start <= MEM_USER_INTRPT &&
1148                    range.start + range.size >= MEM_HV_INTRPT)
1149                        user_kernel_ok = 1;
1150                if (range.start == 0)
1151                        max_va = range.size;
1152                BUG_ON(range.start + range.size > list_va);
1153        }
1154        if (!user_kernel_ok)
1155                early_panic("Hypervisor not configured for user/kernel VAs\n");
1156        if (max_va == 0)
1157                early_panic("Hypervisor not configured for low VAs\n");
1158        if (max_va < KERNEL_HIGH_VADDR)
1159                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1160                            max_va, KERNEL_HIGH_VADDR);
1161
1162        /* Kernel PCs must have their high bit set; see intvec.S. */
1163        if ((long)VMALLOC_START >= 0)
1164                early_panic(
1165                        "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1166                        "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1167                        "or smaller VMALLOC_RESERVE.\n",
1168                        VMALLOC_START);
1169#endif
1170}
1171
1172/*
1173 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1174 * to cache data on at a page level, i.e. what cpus can be placed in
1175 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1176 * cpus plus any other cpus that are willing to share their cache.
1177 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1178 */
1179struct cpumask __write_once cpu_lotar_map;
1180EXPORT_SYMBOL(cpu_lotar_map);
1181
1182#if CHIP_HAS_CBOX_HOME_MAP()
1183/*
1184 * hash_for_home_map lists all the tiles that hash-for-home data
1185 * will be cached on.  Note that this may includes tiles that are not
1186 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1187 * device is being shared between multiple supervisors).
1188 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1189 */
1190struct cpumask hash_for_home_map;
1191EXPORT_SYMBOL(hash_for_home_map);
1192#endif
1193
1194/*
1195 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1196 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1197 * hash_for_home_map, and it is what should be passed to
1198 * hv_flush_remote() to flush all caches.  Note that if there are
1199 * dedicated hypervisor driver tiles that have authorized use of their
1200 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1201 * cpu_cacheable_map, as they are a special case.
1202 */
1203struct cpumask __write_once cpu_cacheable_map;
1204EXPORT_SYMBOL(cpu_cacheable_map);
1205
1206static __initdata struct cpumask disabled_map;
1207
1208static int __init disabled_cpus(char *str)
1209{
1210        int boot_cpu = smp_processor_id();
1211
1212        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1213                return -EINVAL;
1214        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1215                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1216                cpumask_clear_cpu(boot_cpu, &disabled_map);
1217        }
1218        return 0;
1219}
1220
1221early_param("disabled_cpus", disabled_cpus);
1222
1223void __init print_disabled_cpus(void)
1224{
1225        if (!cpumask_empty(&disabled_map)) {
1226                char buf[100];
1227                cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1228                pr_info("CPUs not available for Linux: %s\n", buf);
1229        }
1230}
1231
1232static void __init setup_cpu_maps(void)
1233{
1234        struct cpumask hv_disabled_map, cpu_possible_init;
1235        int boot_cpu = smp_processor_id();
1236        int cpus, i, rc;
1237
1238        /* Learn which cpus are allowed by the hypervisor. */
1239        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1240                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1241                              sizeof(cpu_cacheable_map));
1242        if (rc < 0)
1243                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1244        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1245                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1246
1247        /* Compute the cpus disabled by the hvconfig file. */
1248        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1249
1250        /* Include them with the cpus disabled by "disabled_cpus". */
1251        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1252
1253        /*
1254         * Disable every cpu after "setup_max_cpus".  But don't mark
1255         * as disabled the cpus that are outside of our initial rectangle,
1256         * since that turns out to be confusing.
1257         */
1258        cpus = 1;                          /* this cpu */
1259        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1260        for (i = 0; cpus < setup_max_cpus; ++i)
1261                if (!cpumask_test_cpu(i, &disabled_map))
1262                        ++cpus;
1263        for (; i < smp_height * smp_width; ++i)
1264                cpumask_set_cpu(i, &disabled_map);
1265        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1266        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1267                cpumask_clear_cpu(i, &disabled_map);
1268
1269        /*
1270         * Setup cpu_possible map as every cpu allocated to us, minus
1271         * the results of any "disabled_cpus" settings.
1272         */
1273        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1274        init_cpu_possible(&cpu_possible_init);
1275
1276        /* Learn which cpus are valid for LOTAR caching. */
1277        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1278                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1279                              sizeof(cpu_lotar_map));
1280        if (rc < 0) {
1281                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1282                cpu_lotar_map = *cpu_possible_mask;
1283        }
1284
1285#if CHIP_HAS_CBOX_HOME_MAP()
1286        /* Retrieve set of CPUs used for hash-for-home caching */
1287        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1288                              (HV_VirtAddr) hash_for_home_map.bits,
1289                              sizeof(hash_for_home_map));
1290        if (rc < 0)
1291                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1292        cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1293#else
1294        cpu_cacheable_map = *cpu_possible_mask;
1295#endif
1296}
1297
1298
1299static int __init dataplane(char *str)
1300{
1301        pr_warning("WARNING: dataplane support disabled in this kernel\n");
1302        return 0;
1303}
1304
1305early_param("dataplane", dataplane);
1306
1307#ifdef CONFIG_CMDLINE_BOOL
1308static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1309#endif
1310
1311void __init setup_arch(char **cmdline_p)
1312{
1313        int len;
1314
1315#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1316        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1317                                  COMMAND_LINE_SIZE);
1318        if (boot_command_line[0])
1319                pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1320                           boot_command_line);
1321        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1322#else
1323        char *hv_cmdline;
1324#if defined(CONFIG_CMDLINE_BOOL)
1325        if (builtin_cmdline[0]) {
1326                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1327                                          COMMAND_LINE_SIZE);
1328                if (builtin_len < COMMAND_LINE_SIZE-1)
1329                        boot_command_line[builtin_len++] = ' ';
1330                hv_cmdline = &boot_command_line[builtin_len];
1331                len = COMMAND_LINE_SIZE - builtin_len;
1332        } else
1333#endif
1334        {
1335                hv_cmdline = boot_command_line;
1336                len = COMMAND_LINE_SIZE;
1337        }
1338        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1339        if (len < 0 || len > COMMAND_LINE_SIZE)
1340                early_panic("hv_get_command_line failed: %d\n", len);
1341#endif
1342
1343        *cmdline_p = boot_command_line;
1344
1345        /* Set disabled_map and setup_max_cpus very early */
1346        parse_early_param();
1347
1348        /* Make sure the kernel is compatible with the hypervisor. */
1349        validate_hv();
1350        validate_va();
1351
1352        setup_cpu_maps();
1353
1354
1355#if defined(CONFIG_PCI) && !defined(__tilegx__)
1356        /*
1357         * Initialize the PCI structures.  This is done before memory
1358         * setup so that we know whether or not a pci_reserve region
1359         * is necessary.
1360         */
1361        if (tile_pci_init() == 0)
1362                pci_reserve_mb = 0;
1363
1364        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1365        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1366        pci_reserve_start_pfn = pci_reserve_end_pfn -
1367                (pci_reserve_mb << (20 - PAGE_SHIFT));
1368#endif
1369
1370        init_mm.start_code = (unsigned long) _text;
1371        init_mm.end_code = (unsigned long) _etext;
1372        init_mm.end_data = (unsigned long) _edata;
1373        init_mm.brk = (unsigned long) _end;
1374
1375        setup_memory();
1376        store_permanent_mappings();
1377        setup_bootmem_allocator();
1378
1379        /*
1380         * NOTE: before this point _nobody_ is allowed to allocate
1381         * any memory using the bootmem allocator.
1382         */
1383
1384#ifdef CONFIG_SWIOTLB
1385        swiotlb_init(0);
1386#endif
1387
1388        paging_init();
1389        setup_numa_mapping();
1390        zone_sizes_init();
1391        set_page_homes();
1392        setup_cpu(1);
1393        setup_clock();
1394        load_hv_initrd();
1395}
1396
1397
1398/*
1399 * Set up per-cpu memory.
1400 */
1401
1402unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1403EXPORT_SYMBOL(__per_cpu_offset);
1404
1405static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1406static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1407
1408/*
1409 * As the percpu code allocates pages, we return the pages from the
1410 * end of the node for the specified cpu.
1411 */
1412static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1413{
1414        int nid = cpu_to_node(cpu);
1415        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1416
1417        BUG_ON(size % PAGE_SIZE != 0);
1418        pfn_offset[nid] += size / PAGE_SIZE;
1419        BUG_ON(node_percpu[nid] < size);
1420        node_percpu[nid] -= size;
1421        if (percpu_pfn[cpu] == 0)
1422                percpu_pfn[cpu] = pfn;
1423        return pfn_to_kaddr(pfn);
1424}
1425
1426/*
1427 * Pages reserved for percpu memory are not freeable, and in any case we are
1428 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1429 */
1430static void __init pcpu_fc_free(void *ptr, size_t size)
1431{
1432}
1433
1434/*
1435 * Set up vmalloc page tables using bootmem for the percpu code.
1436 */
1437static void __init pcpu_fc_populate_pte(unsigned long addr)
1438{
1439        pgd_t *pgd;
1440        pud_t *pud;
1441        pmd_t *pmd;
1442        pte_t *pte;
1443
1444        BUG_ON(pgd_addr_invalid(addr));
1445        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1446                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1447                      " try increasing CONFIG_VMALLOC_RESERVE\n",
1448                      addr, VMALLOC_START, VMALLOC_END);
1449
1450        pgd = swapper_pg_dir + pgd_index(addr);
1451        pud = pud_offset(pgd, addr);
1452        BUG_ON(!pud_present(*pud));
1453        pmd = pmd_offset(pud, addr);
1454        if (pmd_present(*pmd)) {
1455                BUG_ON(pmd_huge_page(*pmd));
1456        } else {
1457                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1458                                      HV_PAGE_TABLE_ALIGN, 0);
1459                pmd_populate_kernel(&init_mm, pmd, pte);
1460        }
1461}
1462
1463void __init setup_per_cpu_areas(void)
1464{
1465        struct page *pg;
1466        unsigned long delta, pfn, lowmem_va;
1467        unsigned long size = percpu_size();
1468        char *ptr;
1469        int rc, cpu, i;
1470
1471        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1472                                   pcpu_fc_free, pcpu_fc_populate_pte);
1473        if (rc < 0)
1474                panic("Cannot initialize percpu area (err=%d)", rc);
1475
1476        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1477        for_each_possible_cpu(cpu) {
1478                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1479
1480                /* finv the copy out of cache so we can change homecache */
1481                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1482                __finv_buffer(ptr, size);
1483                pfn = percpu_pfn[cpu];
1484
1485                /* Rewrite the page tables to cache on that cpu */
1486                pg = pfn_to_page(pfn);
1487                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1488
1489                        /* Update the vmalloc mapping and page home. */
1490                        unsigned long addr = (unsigned long)ptr + i;
1491                        pte_t *ptep = virt_to_pte(NULL, addr);
1492                        pte_t pte = *ptep;
1493                        BUG_ON(pfn != pte_pfn(pte));
1494                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1495                        pte = set_remote_cache_cpu(pte, cpu);
1496                        set_pte_at(&init_mm, addr, ptep, pte);
1497
1498                        /* Update the lowmem mapping for consistency. */
1499                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1500                        ptep = virt_to_pte(NULL, lowmem_va);
1501                        if (pte_huge(*ptep)) {
1502                                printk(KERN_DEBUG "early shatter of huge page"
1503                                       " at %#lx\n", lowmem_va);
1504                                shatter_pmd((pmd_t *)ptep);
1505                                ptep = virt_to_pte(NULL, lowmem_va);
1506                                BUG_ON(pte_huge(*ptep));
1507                        }
1508                        BUG_ON(pfn != pte_pfn(*ptep));
1509                        set_pte_at(&init_mm, lowmem_va, ptep, pte);
1510                }
1511        }
1512
1513        /* Set our thread pointer appropriately. */
1514        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1515
1516        /* Make sure the finv's have completed. */
1517        mb_incoherent();
1518
1519        /* Flush the TLB so we reference it properly from here on out. */
1520        local_flush_tlb_all();
1521}
1522
1523static struct resource data_resource = {
1524        .name   = "Kernel data",
1525        .start  = 0,
1526        .end    = 0,
1527        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1528};
1529
1530static struct resource code_resource = {
1531        .name   = "Kernel code",
1532        .start  = 0,
1533        .end    = 0,
1534        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1535};
1536
1537/*
1538 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1539 * mappings above 4GB.
1540 */
1541#if defined(CONFIG_PCI) && !defined(__tilegx__)
1542static struct resource* __init
1543insert_non_bus_resource(void)
1544{
1545        struct resource *res =
1546                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1547        res->name = "Non-Bus Physical Address Space";
1548        res->start = (1ULL << 32);
1549        res->end = -1LL;
1550        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1551        if (insert_resource(&iomem_resource, res)) {
1552                kfree(res);
1553                return NULL;
1554        }
1555        return res;
1556}
1557#endif
1558
1559static struct resource* __init
1560insert_ram_resource(u64 start_pfn, u64 end_pfn)
1561{
1562        struct resource *res =
1563                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1564        res->name = "System RAM";
1565        res->start = start_pfn << PAGE_SHIFT;
1566        res->end = (end_pfn << PAGE_SHIFT) - 1;
1567        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1568        if (insert_resource(&iomem_resource, res)) {
1569                kfree(res);
1570                return NULL;
1571        }
1572        return res;
1573}
1574
1575/*
1576 * Request address space for all standard resources
1577 *
1578 * If the system includes PCI root complex drivers, we need to create
1579 * a window just below 4GB where PCI BARs can be mapped.
1580 */
1581static int __init request_standard_resources(void)
1582{
1583        int i;
1584        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1585
1586#if defined(CONFIG_PCI) && !defined(__tilegx__)
1587        insert_non_bus_resource();
1588#endif
1589
1590        for_each_online_node(i) {
1591                u64 start_pfn = node_start_pfn[i];
1592                u64 end_pfn = node_end_pfn[i];
1593
1594#if defined(CONFIG_PCI) && !defined(__tilegx__)
1595                if (start_pfn <= pci_reserve_start_pfn &&
1596                    end_pfn > pci_reserve_start_pfn) {
1597                        if (end_pfn > pci_reserve_end_pfn)
1598                                insert_ram_resource(pci_reserve_end_pfn,
1599                                                     end_pfn);
1600                        end_pfn = pci_reserve_start_pfn;
1601                }
1602#endif
1603                insert_ram_resource(start_pfn, end_pfn);
1604        }
1605
1606        code_resource.start = __pa(_text - CODE_DELTA);
1607        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1608        data_resource.start = __pa(_sdata);
1609        data_resource.end = __pa(_end)-1;
1610
1611        insert_resource(&iomem_resource, &code_resource);
1612        insert_resource(&iomem_resource, &data_resource);
1613
1614#ifdef CONFIG_KEXEC
1615        insert_resource(&iomem_resource, &crashk_res);
1616#endif
1617
1618        return 0;
1619}
1620
1621subsys_initcall(request_standard_resources);
1622