linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>                /* STACK_END_MAGIC              */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/kdebug.h>               /* oops_begin/end, ...          */
   9#include <linux/module.h>               /* search_exception_table       */
  10#include <linux/bootmem.h>              /* max_low_pfn                  */
  11#include <linux/kprobes.h>              /* __kprobes, ...               */
  12#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  13#include <linux/perf_event.h>           /* perf_sw_event                */
  14#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  15#include <linux/prefetch.h>             /* prefetchw                    */
  16
  17#include <asm/traps.h>                  /* dotraplinkage, ...           */
  18#include <asm/pgalloc.h>                /* pgd_*(), ...                 */
  19#include <asm/kmemcheck.h>              /* kmemcheck_*(), ...           */
  20#include <asm/fixmap.h>                 /* VSYSCALL_START               */
  21
  22/*
  23 * Page fault error code bits:
  24 *
  25 *   bit 0 ==    0: no page found       1: protection fault
  26 *   bit 1 ==    0: read access         1: write access
  27 *   bit 2 ==    0: kernel-mode access  1: user-mode access
  28 *   bit 3 ==                           1: use of reserved bit detected
  29 *   bit 4 ==                           1: fault was an instruction fetch
  30 */
  31enum x86_pf_error_code {
  32
  33        PF_PROT         =               1 << 0,
  34        PF_WRITE        =               1 << 1,
  35        PF_USER         =               1 << 2,
  36        PF_RSVD         =               1 << 3,
  37        PF_INSTR        =               1 << 4,
  38};
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static inline int __kprobes
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47        if (unlikely(is_kmmio_active()))
  48                if (kmmio_handler(regs, addr) == 1)
  49                        return -1;
  50        return 0;
  51}
  52
  53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  54{
  55        int ret = 0;
  56
  57        /* kprobe_running() needs smp_processor_id() */
  58        if (kprobes_built_in() && !user_mode_vm(regs)) {
  59                preempt_disable();
  60                if (kprobe_running() && kprobe_fault_handler(regs, 14))
  61                        ret = 1;
  62                preempt_enable();
  63        }
  64
  65        return ret;
  66}
  67
  68/*
  69 * Prefetch quirks:
  70 *
  71 * 32-bit mode:
  72 *
  73 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  74 *   Check that here and ignore it.
  75 *
  76 * 64-bit mode:
  77 *
  78 *   Sometimes the CPU reports invalid exceptions on prefetch.
  79 *   Check that here and ignore it.
  80 *
  81 * Opcode checker based on code by Richard Brunner.
  82 */
  83static inline int
  84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  85                      unsigned char opcode, int *prefetch)
  86{
  87        unsigned char instr_hi = opcode & 0xf0;
  88        unsigned char instr_lo = opcode & 0x0f;
  89
  90        switch (instr_hi) {
  91        case 0x20:
  92        case 0x30:
  93                /*
  94                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  95                 * In X86_64 long mode, the CPU will signal invalid
  96                 * opcode if some of these prefixes are present so
  97                 * X86_64 will never get here anyway
  98                 */
  99                return ((instr_lo & 7) == 0x6);
 100#ifdef CONFIG_X86_64
 101        case 0x40:
 102                /*
 103                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 104                 * Need to figure out under what instruction mode the
 105                 * instruction was issued. Could check the LDT for lm,
 106                 * but for now it's good enough to assume that long
 107                 * mode only uses well known segments or kernel.
 108                 */
 109                return (!user_mode(regs) || user_64bit_mode(regs));
 110#endif
 111        case 0x60:
 112                /* 0x64 thru 0x67 are valid prefixes in all modes. */
 113                return (instr_lo & 0xC) == 0x4;
 114        case 0xF0:
 115                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 116                return !instr_lo || (instr_lo>>1) == 1;
 117        case 0x00:
 118                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 119                if (probe_kernel_address(instr, opcode))
 120                        return 0;
 121
 122                *prefetch = (instr_lo == 0xF) &&
 123                        (opcode == 0x0D || opcode == 0x18);
 124                return 0;
 125        default:
 126                return 0;
 127        }
 128}
 129
 130static int
 131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 132{
 133        unsigned char *max_instr;
 134        unsigned char *instr;
 135        int prefetch = 0;
 136
 137        /*
 138         * If it was a exec (instruction fetch) fault on NX page, then
 139         * do not ignore the fault:
 140         */
 141        if (error_code & PF_INSTR)
 142                return 0;
 143
 144        instr = (void *)convert_ip_to_linear(current, regs);
 145        max_instr = instr + 15;
 146
 147        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 148                return 0;
 149
 150        while (instr < max_instr) {
 151                unsigned char opcode;
 152
 153                if (probe_kernel_address(instr, opcode))
 154                        break;
 155
 156                instr++;
 157
 158                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 159                        break;
 160        }
 161        return prefetch;
 162}
 163
 164static void
 165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 166                     struct task_struct *tsk, int fault)
 167{
 168        unsigned lsb = 0;
 169        siginfo_t info;
 170
 171        info.si_signo   = si_signo;
 172        info.si_errno   = 0;
 173        info.si_code    = si_code;
 174        info.si_addr    = (void __user *)address;
 175        if (fault & VM_FAULT_HWPOISON_LARGE)
 176                lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 177        if (fault & VM_FAULT_HWPOISON)
 178                lsb = PAGE_SHIFT;
 179        info.si_addr_lsb = lsb;
 180
 181        force_sig_info(si_signo, &info, tsk);
 182}
 183
 184DEFINE_SPINLOCK(pgd_lock);
 185LIST_HEAD(pgd_list);
 186
 187#ifdef CONFIG_X86_32
 188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 189{
 190        unsigned index = pgd_index(address);
 191        pgd_t *pgd_k;
 192        pud_t *pud, *pud_k;
 193        pmd_t *pmd, *pmd_k;
 194
 195        pgd += index;
 196        pgd_k = init_mm.pgd + index;
 197
 198        if (!pgd_present(*pgd_k))
 199                return NULL;
 200
 201        /*
 202         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 203         * and redundant with the set_pmd() on non-PAE. As would
 204         * set_pud.
 205         */
 206        pud = pud_offset(pgd, address);
 207        pud_k = pud_offset(pgd_k, address);
 208        if (!pud_present(*pud_k))
 209                return NULL;
 210
 211        pmd = pmd_offset(pud, address);
 212        pmd_k = pmd_offset(pud_k, address);
 213        if (!pmd_present(*pmd_k))
 214                return NULL;
 215
 216        if (!pmd_present(*pmd))
 217                set_pmd(pmd, *pmd_k);
 218        else
 219                BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 220
 221        return pmd_k;
 222}
 223
 224void vmalloc_sync_all(void)
 225{
 226        unsigned long address;
 227
 228        if (SHARED_KERNEL_PMD)
 229                return;
 230
 231        for (address = VMALLOC_START & PMD_MASK;
 232             address >= TASK_SIZE && address < FIXADDR_TOP;
 233             address += PMD_SIZE) {
 234                struct page *page;
 235
 236                spin_lock(&pgd_lock);
 237                list_for_each_entry(page, &pgd_list, lru) {
 238                        spinlock_t *pgt_lock;
 239                        pmd_t *ret;
 240
 241                        /* the pgt_lock only for Xen */
 242                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 243
 244                        spin_lock(pgt_lock);
 245                        ret = vmalloc_sync_one(page_address(page), address);
 246                        spin_unlock(pgt_lock);
 247
 248                        if (!ret)
 249                                break;
 250                }
 251                spin_unlock(&pgd_lock);
 252        }
 253}
 254
 255/*
 256 * 32-bit:
 257 *
 258 *   Handle a fault on the vmalloc or module mapping area
 259 */
 260static noinline __kprobes int vmalloc_fault(unsigned long address)
 261{
 262        unsigned long pgd_paddr;
 263        pmd_t *pmd_k;
 264        pte_t *pte_k;
 265
 266        /* Make sure we are in vmalloc area: */
 267        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 268                return -1;
 269
 270        WARN_ON_ONCE(in_nmi());
 271
 272        /*
 273         * Synchronize this task's top level page-table
 274         * with the 'reference' page table.
 275         *
 276         * Do _not_ use "current" here. We might be inside
 277         * an interrupt in the middle of a task switch..
 278         */
 279        pgd_paddr = read_cr3();
 280        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 281        if (!pmd_k)
 282                return -1;
 283
 284        pte_k = pte_offset_kernel(pmd_k, address);
 285        if (!pte_present(*pte_k))
 286                return -1;
 287
 288        return 0;
 289}
 290
 291/*
 292 * Did it hit the DOS screen memory VA from vm86 mode?
 293 */
 294static inline void
 295check_v8086_mode(struct pt_regs *regs, unsigned long address,
 296                 struct task_struct *tsk)
 297{
 298        unsigned long bit;
 299
 300        if (!v8086_mode(regs))
 301                return;
 302
 303        bit = (address - 0xA0000) >> PAGE_SHIFT;
 304        if (bit < 32)
 305                tsk->thread.screen_bitmap |= 1 << bit;
 306}
 307
 308static bool low_pfn(unsigned long pfn)
 309{
 310        return pfn < max_low_pfn;
 311}
 312
 313static void dump_pagetable(unsigned long address)
 314{
 315        pgd_t *base = __va(read_cr3());
 316        pgd_t *pgd = &base[pgd_index(address)];
 317        pmd_t *pmd;
 318        pte_t *pte;
 319
 320#ifdef CONFIG_X86_PAE
 321        printk("*pdpt = %016Lx ", pgd_val(*pgd));
 322        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 323                goto out;
 324#endif
 325        pmd = pmd_offset(pud_offset(pgd, address), address);
 326        printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 327
 328        /*
 329         * We must not directly access the pte in the highpte
 330         * case if the page table is located in highmem.
 331         * And let's rather not kmap-atomic the pte, just in case
 332         * it's allocated already:
 333         */
 334        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 335                goto out;
 336
 337        pte = pte_offset_kernel(pmd, address);
 338        printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 339out:
 340        printk("\n");
 341}
 342
 343#else /* CONFIG_X86_64: */
 344
 345void vmalloc_sync_all(void)
 346{
 347        sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 348}
 349
 350/*
 351 * 64-bit:
 352 *
 353 *   Handle a fault on the vmalloc area
 354 *
 355 * This assumes no large pages in there.
 356 */
 357static noinline __kprobes int vmalloc_fault(unsigned long address)
 358{
 359        pgd_t *pgd, *pgd_ref;
 360        pud_t *pud, *pud_ref;
 361        pmd_t *pmd, *pmd_ref;
 362        pte_t *pte, *pte_ref;
 363
 364        /* Make sure we are in vmalloc area: */
 365        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 366                return -1;
 367
 368        WARN_ON_ONCE(in_nmi());
 369
 370        /*
 371         * Copy kernel mappings over when needed. This can also
 372         * happen within a race in page table update. In the later
 373         * case just flush:
 374         */
 375        pgd = pgd_offset(current->active_mm, address);
 376        pgd_ref = pgd_offset_k(address);
 377        if (pgd_none(*pgd_ref))
 378                return -1;
 379
 380        if (pgd_none(*pgd))
 381                set_pgd(pgd, *pgd_ref);
 382        else
 383                BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 384
 385        /*
 386         * Below here mismatches are bugs because these lower tables
 387         * are shared:
 388         */
 389
 390        pud = pud_offset(pgd, address);
 391        pud_ref = pud_offset(pgd_ref, address);
 392        if (pud_none(*pud_ref))
 393                return -1;
 394
 395        if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 396                BUG();
 397
 398        pmd = pmd_offset(pud, address);
 399        pmd_ref = pmd_offset(pud_ref, address);
 400        if (pmd_none(*pmd_ref))
 401                return -1;
 402
 403        if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 404                BUG();
 405
 406        pte_ref = pte_offset_kernel(pmd_ref, address);
 407        if (!pte_present(*pte_ref))
 408                return -1;
 409
 410        pte = pte_offset_kernel(pmd, address);
 411
 412        /*
 413         * Don't use pte_page here, because the mappings can point
 414         * outside mem_map, and the NUMA hash lookup cannot handle
 415         * that:
 416         */
 417        if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 418                BUG();
 419
 420        return 0;
 421}
 422
 423#ifdef CONFIG_CPU_SUP_AMD
 424static const char errata93_warning[] =
 425KERN_ERR 
 426"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 427"******* Working around it, but it may cause SEGVs or burn power.\n"
 428"******* Please consider a BIOS update.\n"
 429"******* Disabling USB legacy in the BIOS may also help.\n";
 430#endif
 431
 432/*
 433 * No vm86 mode in 64-bit mode:
 434 */
 435static inline void
 436check_v8086_mode(struct pt_regs *regs, unsigned long address,
 437                 struct task_struct *tsk)
 438{
 439}
 440
 441static int bad_address(void *p)
 442{
 443        unsigned long dummy;
 444
 445        return probe_kernel_address((unsigned long *)p, dummy);
 446}
 447
 448static void dump_pagetable(unsigned long address)
 449{
 450        pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 451        pgd_t *pgd = base + pgd_index(address);
 452        pud_t *pud;
 453        pmd_t *pmd;
 454        pte_t *pte;
 455
 456        if (bad_address(pgd))
 457                goto bad;
 458
 459        printk("PGD %lx ", pgd_val(*pgd));
 460
 461        if (!pgd_present(*pgd))
 462                goto out;
 463
 464        pud = pud_offset(pgd, address);
 465        if (bad_address(pud))
 466                goto bad;
 467
 468        printk("PUD %lx ", pud_val(*pud));
 469        if (!pud_present(*pud) || pud_large(*pud))
 470                goto out;
 471
 472        pmd = pmd_offset(pud, address);
 473        if (bad_address(pmd))
 474                goto bad;
 475
 476        printk("PMD %lx ", pmd_val(*pmd));
 477        if (!pmd_present(*pmd) || pmd_large(*pmd))
 478                goto out;
 479
 480        pte = pte_offset_kernel(pmd, address);
 481        if (bad_address(pte))
 482                goto bad;
 483
 484        printk("PTE %lx", pte_val(*pte));
 485out:
 486        printk("\n");
 487        return;
 488bad:
 489        printk("BAD\n");
 490}
 491
 492#endif /* CONFIG_X86_64 */
 493
 494/*
 495 * Workaround for K8 erratum #93 & buggy BIOS.
 496 *
 497 * BIOS SMM functions are required to use a specific workaround
 498 * to avoid corruption of the 64bit RIP register on C stepping K8.
 499 *
 500 * A lot of BIOS that didn't get tested properly miss this.
 501 *
 502 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 503 * Try to work around it here.
 504 *
 505 * Note we only handle faults in kernel here.
 506 * Does nothing on 32-bit.
 507 */
 508static int is_errata93(struct pt_regs *regs, unsigned long address)
 509{
 510#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 511        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 512            || boot_cpu_data.x86 != 0xf)
 513                return 0;
 514
 515        if (address != regs->ip)
 516                return 0;
 517
 518        if ((address >> 32) != 0)
 519                return 0;
 520
 521        address |= 0xffffffffUL << 32;
 522        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 523            (address >= MODULES_VADDR && address <= MODULES_END)) {
 524                printk_once(errata93_warning);
 525                regs->ip = address;
 526                return 1;
 527        }
 528#endif
 529        return 0;
 530}
 531
 532/*
 533 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 534 * to illegal addresses >4GB.
 535 *
 536 * We catch this in the page fault handler because these addresses
 537 * are not reachable. Just detect this case and return.  Any code
 538 * segment in LDT is compatibility mode.
 539 */
 540static int is_errata100(struct pt_regs *regs, unsigned long address)
 541{
 542#ifdef CONFIG_X86_64
 543        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 544                return 1;
 545#endif
 546        return 0;
 547}
 548
 549static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 550{
 551#ifdef CONFIG_X86_F00F_BUG
 552        unsigned long nr;
 553
 554        /*
 555         * Pentium F0 0F C7 C8 bug workaround:
 556         */
 557        if (boot_cpu_data.f00f_bug) {
 558                nr = (address - idt_descr.address) >> 3;
 559
 560                if (nr == 6) {
 561                        do_invalid_op(regs, 0);
 562                        return 1;
 563                }
 564        }
 565#endif
 566        return 0;
 567}
 568
 569static const char nx_warning[] = KERN_CRIT
 570"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 571
 572static void
 573show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 574                unsigned long address)
 575{
 576        if (!oops_may_print())
 577                return;
 578
 579        if (error_code & PF_INSTR) {
 580                unsigned int level;
 581
 582                pte_t *pte = lookup_address(address, &level);
 583
 584                if (pte && pte_present(*pte) && !pte_exec(*pte))
 585                        printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 586        }
 587
 588        printk(KERN_ALERT "BUG: unable to handle kernel ");
 589        if (address < PAGE_SIZE)
 590                printk(KERN_CONT "NULL pointer dereference");
 591        else
 592                printk(KERN_CONT "paging request");
 593
 594        printk(KERN_CONT " at %p\n", (void *) address);
 595        printk(KERN_ALERT "IP:");
 596        printk_address(regs->ip, 1);
 597
 598        dump_pagetable(address);
 599}
 600
 601static noinline void
 602pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 603            unsigned long address)
 604{
 605        struct task_struct *tsk;
 606        unsigned long flags;
 607        int sig;
 608
 609        flags = oops_begin();
 610        tsk = current;
 611        sig = SIGKILL;
 612
 613        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 614               tsk->comm, address);
 615        dump_pagetable(address);
 616
 617        tsk->thread.cr2         = address;
 618        tsk->thread.trap_nr     = X86_TRAP_PF;
 619        tsk->thread.error_code  = error_code;
 620
 621        if (__die("Bad pagetable", regs, error_code))
 622                sig = 0;
 623
 624        oops_end(flags, regs, sig);
 625}
 626
 627static noinline void
 628no_context(struct pt_regs *regs, unsigned long error_code,
 629           unsigned long address, int signal, int si_code)
 630{
 631        struct task_struct *tsk = current;
 632        unsigned long *stackend;
 633        unsigned long flags;
 634        int sig;
 635
 636        /* Are we prepared to handle this kernel fault? */
 637        if (fixup_exception(regs)) {
 638                if (current_thread_info()->sig_on_uaccess_error && signal) {
 639                        tsk->thread.trap_nr = X86_TRAP_PF;
 640                        tsk->thread.error_code = error_code | PF_USER;
 641                        tsk->thread.cr2 = address;
 642
 643                        /* XXX: hwpoison faults will set the wrong code. */
 644                        force_sig_info_fault(signal, si_code, address, tsk, 0);
 645                }
 646                return;
 647        }
 648
 649        /*
 650         * 32-bit:
 651         *
 652         *   Valid to do another page fault here, because if this fault
 653         *   had been triggered by is_prefetch fixup_exception would have
 654         *   handled it.
 655         *
 656         * 64-bit:
 657         *
 658         *   Hall of shame of CPU/BIOS bugs.
 659         */
 660        if (is_prefetch(regs, error_code, address))
 661                return;
 662
 663        if (is_errata93(regs, address))
 664                return;
 665
 666        /*
 667         * Oops. The kernel tried to access some bad page. We'll have to
 668         * terminate things with extreme prejudice:
 669         */
 670        flags = oops_begin();
 671
 672        show_fault_oops(regs, error_code, address);
 673
 674        stackend = end_of_stack(tsk);
 675        if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 676                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 677
 678        tsk->thread.cr2         = address;
 679        tsk->thread.trap_nr     = X86_TRAP_PF;
 680        tsk->thread.error_code  = error_code;
 681
 682        sig = SIGKILL;
 683        if (__die("Oops", regs, error_code))
 684                sig = 0;
 685
 686        /* Executive summary in case the body of the oops scrolled away */
 687        printk(KERN_DEFAULT "CR2: %016lx\n", address);
 688
 689        oops_end(flags, regs, sig);
 690}
 691
 692/*
 693 * Print out info about fatal segfaults, if the show_unhandled_signals
 694 * sysctl is set:
 695 */
 696static inline void
 697show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 698                unsigned long address, struct task_struct *tsk)
 699{
 700        if (!unhandled_signal(tsk, SIGSEGV))
 701                return;
 702
 703        if (!printk_ratelimit())
 704                return;
 705
 706        printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 707                task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 708                tsk->comm, task_pid_nr(tsk), address,
 709                (void *)regs->ip, (void *)regs->sp, error_code);
 710
 711        print_vma_addr(KERN_CONT " in ", regs->ip);
 712
 713        printk(KERN_CONT "\n");
 714}
 715
 716static void
 717__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 718                       unsigned long address, int si_code)
 719{
 720        struct task_struct *tsk = current;
 721
 722        /* User mode accesses just cause a SIGSEGV */
 723        if (error_code & PF_USER) {
 724                /*
 725                 * It's possible to have interrupts off here:
 726                 */
 727                local_irq_enable();
 728
 729                /*
 730                 * Valid to do another page fault here because this one came
 731                 * from user space:
 732                 */
 733                if (is_prefetch(regs, error_code, address))
 734                        return;
 735
 736                if (is_errata100(regs, address))
 737                        return;
 738
 739#ifdef CONFIG_X86_64
 740                /*
 741                 * Instruction fetch faults in the vsyscall page might need
 742                 * emulation.
 743                 */
 744                if (unlikely((error_code & PF_INSTR) &&
 745                             ((address & ~0xfff) == VSYSCALL_START))) {
 746                        if (emulate_vsyscall(regs, address))
 747                                return;
 748                }
 749#endif
 750
 751                if (unlikely(show_unhandled_signals))
 752                        show_signal_msg(regs, error_code, address, tsk);
 753
 754                /* Kernel addresses are always protection faults: */
 755                tsk->thread.cr2         = address;
 756                tsk->thread.error_code  = error_code | (address >= TASK_SIZE);
 757                tsk->thread.trap_nr     = X86_TRAP_PF;
 758
 759                force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 760
 761                return;
 762        }
 763
 764        if (is_f00f_bug(regs, address))
 765                return;
 766
 767        no_context(regs, error_code, address, SIGSEGV, si_code);
 768}
 769
 770static noinline void
 771bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 772                     unsigned long address)
 773{
 774        __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 775}
 776
 777static void
 778__bad_area(struct pt_regs *regs, unsigned long error_code,
 779           unsigned long address, int si_code)
 780{
 781        struct mm_struct *mm = current->mm;
 782
 783        /*
 784         * Something tried to access memory that isn't in our memory map..
 785         * Fix it, but check if it's kernel or user first..
 786         */
 787        up_read(&mm->mmap_sem);
 788
 789        __bad_area_nosemaphore(regs, error_code, address, si_code);
 790}
 791
 792static noinline void
 793bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 794{
 795        __bad_area(regs, error_code, address, SEGV_MAPERR);
 796}
 797
 798static noinline void
 799bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 800                      unsigned long address)
 801{
 802        __bad_area(regs, error_code, address, SEGV_ACCERR);
 803}
 804
 805/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 806static void
 807out_of_memory(struct pt_regs *regs, unsigned long error_code,
 808              unsigned long address)
 809{
 810        /*
 811         * We ran out of memory, call the OOM killer, and return the userspace
 812         * (which will retry the fault, or kill us if we got oom-killed):
 813         */
 814        up_read(&current->mm->mmap_sem);
 815
 816        pagefault_out_of_memory();
 817}
 818
 819static void
 820do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 821          unsigned int fault)
 822{
 823        struct task_struct *tsk = current;
 824        struct mm_struct *mm = tsk->mm;
 825        int code = BUS_ADRERR;
 826
 827        up_read(&mm->mmap_sem);
 828
 829        /* Kernel mode? Handle exceptions or die: */
 830        if (!(error_code & PF_USER)) {
 831                no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 832                return;
 833        }
 834
 835        /* User-space => ok to do another page fault: */
 836        if (is_prefetch(regs, error_code, address))
 837                return;
 838
 839        tsk->thread.cr2         = address;
 840        tsk->thread.error_code  = error_code;
 841        tsk->thread.trap_nr     = X86_TRAP_PF;
 842
 843#ifdef CONFIG_MEMORY_FAILURE
 844        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 845                printk(KERN_ERR
 846        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 847                        tsk->comm, tsk->pid, address);
 848                code = BUS_MCEERR_AR;
 849        }
 850#endif
 851        force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 852}
 853
 854static noinline int
 855mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 856               unsigned long address, unsigned int fault)
 857{
 858        /*
 859         * Pagefault was interrupted by SIGKILL. We have no reason to
 860         * continue pagefault.
 861         */
 862        if (fatal_signal_pending(current)) {
 863                if (!(fault & VM_FAULT_RETRY))
 864                        up_read(&current->mm->mmap_sem);
 865                if (!(error_code & PF_USER))
 866                        no_context(regs, error_code, address, 0, 0);
 867                return 1;
 868        }
 869        if (!(fault & VM_FAULT_ERROR))
 870                return 0;
 871
 872        if (fault & VM_FAULT_OOM) {
 873                /* Kernel mode? Handle exceptions or die: */
 874                if (!(error_code & PF_USER)) {
 875                        up_read(&current->mm->mmap_sem);
 876                        no_context(regs, error_code, address,
 877                                   SIGSEGV, SEGV_MAPERR);
 878                        return 1;
 879                }
 880
 881                out_of_memory(regs, error_code, address);
 882        } else {
 883                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 884                             VM_FAULT_HWPOISON_LARGE))
 885                        do_sigbus(regs, error_code, address, fault);
 886                else
 887                        BUG();
 888        }
 889        return 1;
 890}
 891
 892static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 893{
 894        if ((error_code & PF_WRITE) && !pte_write(*pte))
 895                return 0;
 896
 897        if ((error_code & PF_INSTR) && !pte_exec(*pte))
 898                return 0;
 899
 900        return 1;
 901}
 902
 903/*
 904 * Handle a spurious fault caused by a stale TLB entry.
 905 *
 906 * This allows us to lazily refresh the TLB when increasing the
 907 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 908 * eagerly is very expensive since that implies doing a full
 909 * cross-processor TLB flush, even if no stale TLB entries exist
 910 * on other processors.
 911 *
 912 * There are no security implications to leaving a stale TLB when
 913 * increasing the permissions on a page.
 914 */
 915static noinline __kprobes int
 916spurious_fault(unsigned long error_code, unsigned long address)
 917{
 918        pgd_t *pgd;
 919        pud_t *pud;
 920        pmd_t *pmd;
 921        pte_t *pte;
 922        int ret;
 923
 924        /* Reserved-bit violation or user access to kernel space? */
 925        if (error_code & (PF_USER | PF_RSVD))
 926                return 0;
 927
 928        pgd = init_mm.pgd + pgd_index(address);
 929        if (!pgd_present(*pgd))
 930                return 0;
 931
 932        pud = pud_offset(pgd, address);
 933        if (!pud_present(*pud))
 934                return 0;
 935
 936        if (pud_large(*pud))
 937                return spurious_fault_check(error_code, (pte_t *) pud);
 938
 939        pmd = pmd_offset(pud, address);
 940        if (!pmd_present(*pmd))
 941                return 0;
 942
 943        if (pmd_large(*pmd))
 944                return spurious_fault_check(error_code, (pte_t *) pmd);
 945
 946        /*
 947         * Note: don't use pte_present() here, since it returns true
 948         * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 949         * _PAGE_GLOBAL bit, which for kernel pages give false positives
 950         * when CONFIG_DEBUG_PAGEALLOC is used.
 951         */
 952        pte = pte_offset_kernel(pmd, address);
 953        if (!(pte_flags(*pte) & _PAGE_PRESENT))
 954                return 0;
 955
 956        ret = spurious_fault_check(error_code, pte);
 957        if (!ret)
 958                return 0;
 959
 960        /*
 961         * Make sure we have permissions in PMD.
 962         * If not, then there's a bug in the page tables:
 963         */
 964        ret = spurious_fault_check(error_code, (pte_t *) pmd);
 965        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 966
 967        return ret;
 968}
 969
 970int show_unhandled_signals = 1;
 971
 972static inline int
 973access_error(unsigned long error_code, struct vm_area_struct *vma)
 974{
 975        if (error_code & PF_WRITE) {
 976                /* write, present and write, not present: */
 977                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 978                        return 1;
 979                return 0;
 980        }
 981
 982        /* read, present: */
 983        if (unlikely(error_code & PF_PROT))
 984                return 1;
 985
 986        /* read, not present: */
 987        if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 988                return 1;
 989
 990        return 0;
 991}
 992
 993static int fault_in_kernel_space(unsigned long address)
 994{
 995        return address >= TASK_SIZE_MAX;
 996}
 997
 998/*
 999 * This routine handles page faults.  It determines the address,
1000 * and the problem, and then passes it off to one of the appropriate
1001 * routines.
1002 */
1003dotraplinkage void __kprobes
1004do_page_fault(struct pt_regs *regs, unsigned long error_code)
1005{
1006        struct vm_area_struct *vma;
1007        struct task_struct *tsk;
1008        unsigned long address;
1009        struct mm_struct *mm;
1010        int fault;
1011        int write = error_code & PF_WRITE;
1012        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
1013                                        (write ? FAULT_FLAG_WRITE : 0);
1014
1015        tsk = current;
1016        mm = tsk->mm;
1017
1018        /* Get the faulting address: */
1019        address = read_cr2();
1020
1021        /*
1022         * Detect and handle instructions that would cause a page fault for
1023         * both a tracked kernel page and a userspace page.
1024         */
1025        if (kmemcheck_active(regs))
1026                kmemcheck_hide(regs);
1027        prefetchw(&mm->mmap_sem);
1028
1029        if (unlikely(kmmio_fault(regs, address)))
1030                return;
1031
1032        /*
1033         * We fault-in kernel-space virtual memory on-demand. The
1034         * 'reference' page table is init_mm.pgd.
1035         *
1036         * NOTE! We MUST NOT take any locks for this case. We may
1037         * be in an interrupt or a critical region, and should
1038         * only copy the information from the master page table,
1039         * nothing more.
1040         *
1041         * This verifies that the fault happens in kernel space
1042         * (error_code & 4) == 0, and that the fault was not a
1043         * protection error (error_code & 9) == 0.
1044         */
1045        if (unlikely(fault_in_kernel_space(address))) {
1046                if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1047                        if (vmalloc_fault(address) >= 0)
1048                                return;
1049
1050                        if (kmemcheck_fault(regs, address, error_code))
1051                                return;
1052                }
1053
1054                /* Can handle a stale RO->RW TLB: */
1055                if (spurious_fault(error_code, address))
1056                        return;
1057
1058                /* kprobes don't want to hook the spurious faults: */
1059                if (notify_page_fault(regs))
1060                        return;
1061                /*
1062                 * Don't take the mm semaphore here. If we fixup a prefetch
1063                 * fault we could otherwise deadlock:
1064                 */
1065                bad_area_nosemaphore(regs, error_code, address);
1066
1067                return;
1068        }
1069
1070        /* kprobes don't want to hook the spurious faults: */
1071        if (unlikely(notify_page_fault(regs)))
1072                return;
1073        /*
1074         * It's safe to allow irq's after cr2 has been saved and the
1075         * vmalloc fault has been handled.
1076         *
1077         * User-mode registers count as a user access even for any
1078         * potential system fault or CPU buglet:
1079         */
1080        if (user_mode_vm(regs)) {
1081                local_irq_enable();
1082                error_code |= PF_USER;
1083        } else {
1084                if (regs->flags & X86_EFLAGS_IF)
1085                        local_irq_enable();
1086        }
1087
1088        if (unlikely(error_code & PF_RSVD))
1089                pgtable_bad(regs, error_code, address);
1090
1091        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1092
1093        /*
1094         * If we're in an interrupt, have no user context or are running
1095         * in an atomic region then we must not take the fault:
1096         */
1097        if (unlikely(in_atomic() || !mm)) {
1098                bad_area_nosemaphore(regs, error_code, address);
1099                return;
1100        }
1101
1102        /*
1103         * When running in the kernel we expect faults to occur only to
1104         * addresses in user space.  All other faults represent errors in
1105         * the kernel and should generate an OOPS.  Unfortunately, in the
1106         * case of an erroneous fault occurring in a code path which already
1107         * holds mmap_sem we will deadlock attempting to validate the fault
1108         * against the address space.  Luckily the kernel only validly
1109         * references user space from well defined areas of code, which are
1110         * listed in the exceptions table.
1111         *
1112         * As the vast majority of faults will be valid we will only perform
1113         * the source reference check when there is a possibility of a
1114         * deadlock. Attempt to lock the address space, if we cannot we then
1115         * validate the source. If this is invalid we can skip the address
1116         * space check, thus avoiding the deadlock:
1117         */
1118        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1119                if ((error_code & PF_USER) == 0 &&
1120                    !search_exception_tables(regs->ip)) {
1121                        bad_area_nosemaphore(regs, error_code, address);
1122                        return;
1123                }
1124retry:
1125                down_read(&mm->mmap_sem);
1126        } else {
1127                /*
1128                 * The above down_read_trylock() might have succeeded in
1129                 * which case we'll have missed the might_sleep() from
1130                 * down_read():
1131                 */
1132                might_sleep();
1133        }
1134
1135        vma = find_vma(mm, address);
1136        if (unlikely(!vma)) {
1137                bad_area(regs, error_code, address);
1138                return;
1139        }
1140        if (likely(vma->vm_start <= address))
1141                goto good_area;
1142        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1143                bad_area(regs, error_code, address);
1144                return;
1145        }
1146        if (error_code & PF_USER) {
1147                /*
1148                 * Accessing the stack below %sp is always a bug.
1149                 * The large cushion allows instructions like enter
1150                 * and pusha to work. ("enter $65535, $31" pushes
1151                 * 32 pointers and then decrements %sp by 65535.)
1152                 */
1153                if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1154                        bad_area(regs, error_code, address);
1155                        return;
1156                }
1157        }
1158        if (unlikely(expand_stack(vma, address))) {
1159                bad_area(regs, error_code, address);
1160                return;
1161        }
1162
1163        /*
1164         * Ok, we have a good vm_area for this memory access, so
1165         * we can handle it..
1166         */
1167good_area:
1168        if (unlikely(access_error(error_code, vma))) {
1169                bad_area_access_error(regs, error_code, address);
1170                return;
1171        }
1172
1173        /*
1174         * If for any reason at all we couldn't handle the fault,
1175         * make sure we exit gracefully rather than endlessly redo
1176         * the fault:
1177         */
1178        fault = handle_mm_fault(mm, vma, address, flags);
1179
1180        if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1181                if (mm_fault_error(regs, error_code, address, fault))
1182                        return;
1183        }
1184
1185        /*
1186         * Major/minor page fault accounting is only done on the
1187         * initial attempt. If we go through a retry, it is extremely
1188         * likely that the page will be found in page cache at that point.
1189         */
1190        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1191                if (fault & VM_FAULT_MAJOR) {
1192                        tsk->maj_flt++;
1193                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1194                                      regs, address);
1195                } else {
1196                        tsk->min_flt++;
1197                        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1198                                      regs, address);
1199                }
1200                if (fault & VM_FAULT_RETRY) {
1201                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1202                         * of starvation. */
1203                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
1204                        goto retry;
1205                }
1206        }
1207
1208        check_v8086_mode(regs, address, tsk);
1209
1210        up_read(&mm->mmap_sem);
1211}
1212