linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50
  51#include <trace/events/xen.h>
  52
  53#include <asm/pgtable.h>
  54#include <asm/tlbflush.h>
  55#include <asm/fixmap.h>
  56#include <asm/mmu_context.h>
  57#include <asm/setup.h>
  58#include <asm/paravirt.h>
  59#include <asm/e820.h>
  60#include <asm/linkage.h>
  61#include <asm/page.h>
  62#include <asm/init.h>
  63#include <asm/pat.h>
  64#include <asm/smp.h>
  65
  66#include <asm/xen/hypercall.h>
  67#include <asm/xen/hypervisor.h>
  68
  69#include <xen/xen.h>
  70#include <xen/page.h>
  71#include <xen/interface/xen.h>
  72#include <xen/interface/hvm/hvm_op.h>
  73#include <xen/interface/version.h>
  74#include <xen/interface/memory.h>
  75#include <xen/hvc-console.h>
  76
  77#include "multicalls.h"
  78#include "mmu.h"
  79#include "debugfs.h"
  80
  81/*
  82 * Protects atomic reservation decrease/increase against concurrent increases.
  83 * Also protects non-atomic updates of current_pages and balloon lists.
  84 */
  85DEFINE_SPINLOCK(xen_reservation_lock);
  86
  87/*
  88 * Identity map, in addition to plain kernel map.  This needs to be
  89 * large enough to allocate page table pages to allocate the rest.
  90 * Each page can map 2MB.
  91 */
  92#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
  93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  94
  95#ifdef CONFIG_X86_64
  96/* l3 pud for userspace vsyscall mapping */
  97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  98#endif /* CONFIG_X86_64 */
  99
 100/*
 101 * Note about cr3 (pagetable base) values:
 102 *
 103 * xen_cr3 contains the current logical cr3 value; it contains the
 104 * last set cr3.  This may not be the current effective cr3, because
 105 * its update may be being lazily deferred.  However, a vcpu looking
 106 * at its own cr3 can use this value knowing that it everything will
 107 * be self-consistent.
 108 *
 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 110 * hypercall to set the vcpu cr3 is complete (so it may be a little
 111 * out of date, but it will never be set early).  If one vcpu is
 112 * looking at another vcpu's cr3 value, it should use this variable.
 113 */
 114DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 115DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 116
 117
 118/*
 119 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 120 * redzone above it, so round it up to a PGD boundary.
 121 */
 122#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 123
 124unsigned long arbitrary_virt_to_mfn(void *vaddr)
 125{
 126        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 127
 128        return PFN_DOWN(maddr.maddr);
 129}
 130
 131xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 132{
 133        unsigned long address = (unsigned long)vaddr;
 134        unsigned int level;
 135        pte_t *pte;
 136        unsigned offset;
 137
 138        /*
 139         * if the PFN is in the linear mapped vaddr range, we can just use
 140         * the (quick) virt_to_machine() p2m lookup
 141         */
 142        if (virt_addr_valid(vaddr))
 143                return virt_to_machine(vaddr);
 144
 145        /* otherwise we have to do a (slower) full page-table walk */
 146
 147        pte = lookup_address(address, &level);
 148        BUG_ON(pte == NULL);
 149        offset = address & ~PAGE_MASK;
 150        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 151}
 152EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 153
 154void make_lowmem_page_readonly(void *vaddr)
 155{
 156        pte_t *pte, ptev;
 157        unsigned long address = (unsigned long)vaddr;
 158        unsigned int level;
 159
 160        pte = lookup_address(address, &level);
 161        if (pte == NULL)
 162                return;         /* vaddr missing */
 163
 164        ptev = pte_wrprotect(*pte);
 165
 166        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 167                BUG();
 168}
 169
 170void make_lowmem_page_readwrite(void *vaddr)
 171{
 172        pte_t *pte, ptev;
 173        unsigned long address = (unsigned long)vaddr;
 174        unsigned int level;
 175
 176        pte = lookup_address(address, &level);
 177        if (pte == NULL)
 178                return;         /* vaddr missing */
 179
 180        ptev = pte_mkwrite(*pte);
 181
 182        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 183                BUG();
 184}
 185
 186
 187static bool xen_page_pinned(void *ptr)
 188{
 189        struct page *page = virt_to_page(ptr);
 190
 191        return PagePinned(page);
 192}
 193
 194void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 195{
 196        struct multicall_space mcs;
 197        struct mmu_update *u;
 198
 199        trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 200
 201        mcs = xen_mc_entry(sizeof(*u));
 202        u = mcs.args;
 203
 204        /* ptep might be kmapped when using 32-bit HIGHPTE */
 205        u->ptr = virt_to_machine(ptep).maddr;
 206        u->val = pte_val_ma(pteval);
 207
 208        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 209
 210        xen_mc_issue(PARAVIRT_LAZY_MMU);
 211}
 212EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 213
 214static void xen_extend_mmu_update(const struct mmu_update *update)
 215{
 216        struct multicall_space mcs;
 217        struct mmu_update *u;
 218
 219        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 220
 221        if (mcs.mc != NULL) {
 222                mcs.mc->args[1]++;
 223        } else {
 224                mcs = __xen_mc_entry(sizeof(*u));
 225                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 226        }
 227
 228        u = mcs.args;
 229        *u = *update;
 230}
 231
 232static void xen_extend_mmuext_op(const struct mmuext_op *op)
 233{
 234        struct multicall_space mcs;
 235        struct mmuext_op *u;
 236
 237        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 238
 239        if (mcs.mc != NULL) {
 240                mcs.mc->args[1]++;
 241        } else {
 242                mcs = __xen_mc_entry(sizeof(*u));
 243                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 244        }
 245
 246        u = mcs.args;
 247        *u = *op;
 248}
 249
 250static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 251{
 252        struct mmu_update u;
 253
 254        preempt_disable();
 255
 256        xen_mc_batch();
 257
 258        /* ptr may be ioremapped for 64-bit pagetable setup */
 259        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 260        u.val = pmd_val_ma(val);
 261        xen_extend_mmu_update(&u);
 262
 263        xen_mc_issue(PARAVIRT_LAZY_MMU);
 264
 265        preempt_enable();
 266}
 267
 268static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 269{
 270        trace_xen_mmu_set_pmd(ptr, val);
 271
 272        /* If page is not pinned, we can just update the entry
 273           directly */
 274        if (!xen_page_pinned(ptr)) {
 275                *ptr = val;
 276                return;
 277        }
 278
 279        xen_set_pmd_hyper(ptr, val);
 280}
 281
 282/*
 283 * Associate a virtual page frame with a given physical page frame
 284 * and protection flags for that frame.
 285 */
 286void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 287{
 288        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 289}
 290
 291static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 292{
 293        struct mmu_update u;
 294
 295        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 296                return false;
 297
 298        xen_mc_batch();
 299
 300        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 301        u.val = pte_val_ma(pteval);
 302        xen_extend_mmu_update(&u);
 303
 304        xen_mc_issue(PARAVIRT_LAZY_MMU);
 305
 306        return true;
 307}
 308
 309static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 310{
 311        if (!xen_batched_set_pte(ptep, pteval)) {
 312                /*
 313                 * Could call native_set_pte() here and trap and
 314                 * emulate the PTE write but with 32-bit guests this
 315                 * needs two traps (one for each of the two 32-bit
 316                 * words in the PTE) so do one hypercall directly
 317                 * instead.
 318                 */
 319                struct mmu_update u;
 320
 321                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 322                u.val = pte_val_ma(pteval);
 323                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 324        }
 325}
 326
 327static void xen_set_pte(pte_t *ptep, pte_t pteval)
 328{
 329        trace_xen_mmu_set_pte(ptep, pteval);
 330        __xen_set_pte(ptep, pteval);
 331}
 332
 333static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 334                    pte_t *ptep, pte_t pteval)
 335{
 336        trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 337        __xen_set_pte(ptep, pteval);
 338}
 339
 340pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 341                                 unsigned long addr, pte_t *ptep)
 342{
 343        /* Just return the pte as-is.  We preserve the bits on commit */
 344        trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 345        return *ptep;
 346}
 347
 348void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 349                                 pte_t *ptep, pte_t pte)
 350{
 351        struct mmu_update u;
 352
 353        trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 354        xen_mc_batch();
 355
 356        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 357        u.val = pte_val_ma(pte);
 358        xen_extend_mmu_update(&u);
 359
 360        xen_mc_issue(PARAVIRT_LAZY_MMU);
 361}
 362
 363/* Assume pteval_t is equivalent to all the other *val_t types. */
 364static pteval_t pte_mfn_to_pfn(pteval_t val)
 365{
 366        if (val & _PAGE_PRESENT) {
 367                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 368                unsigned long pfn = mfn_to_pfn(mfn);
 369
 370                pteval_t flags = val & PTE_FLAGS_MASK;
 371                if (unlikely(pfn == ~0))
 372                        val = flags & ~_PAGE_PRESENT;
 373                else
 374                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 375        }
 376
 377        return val;
 378}
 379
 380static pteval_t pte_pfn_to_mfn(pteval_t val)
 381{
 382        if (val & _PAGE_PRESENT) {
 383                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 384                pteval_t flags = val & PTE_FLAGS_MASK;
 385                unsigned long mfn;
 386
 387                if (!xen_feature(XENFEAT_auto_translated_physmap))
 388                        mfn = get_phys_to_machine(pfn);
 389                else
 390                        mfn = pfn;
 391                /*
 392                 * If there's no mfn for the pfn, then just create an
 393                 * empty non-present pte.  Unfortunately this loses
 394                 * information about the original pfn, so
 395                 * pte_mfn_to_pfn is asymmetric.
 396                 */
 397                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 398                        mfn = 0;
 399                        flags = 0;
 400                } else {
 401                        /*
 402                         * Paramount to do this test _after_ the
 403                         * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 404                         * IDENTITY_FRAME_BIT resolves to true.
 405                         */
 406                        mfn &= ~FOREIGN_FRAME_BIT;
 407                        if (mfn & IDENTITY_FRAME_BIT) {
 408                                mfn &= ~IDENTITY_FRAME_BIT;
 409                                flags |= _PAGE_IOMAP;
 410                        }
 411                }
 412                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 413        }
 414
 415        return val;
 416}
 417
 418static pteval_t iomap_pte(pteval_t val)
 419{
 420        if (val & _PAGE_PRESENT) {
 421                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 422                pteval_t flags = val & PTE_FLAGS_MASK;
 423
 424                /* We assume the pte frame number is a MFN, so
 425                   just use it as-is. */
 426                val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 427        }
 428
 429        return val;
 430}
 431
 432static pteval_t xen_pte_val(pte_t pte)
 433{
 434        pteval_t pteval = pte.pte;
 435#if 0
 436        /* If this is a WC pte, convert back from Xen WC to Linux WC */
 437        if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 438                WARN_ON(!pat_enabled);
 439                pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 440        }
 441#endif
 442        if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 443                return pteval;
 444
 445        return pte_mfn_to_pfn(pteval);
 446}
 447PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 448
 449static pgdval_t xen_pgd_val(pgd_t pgd)
 450{
 451        return pte_mfn_to_pfn(pgd.pgd);
 452}
 453PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 454
 455/*
 456 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 457 * are reserved for now, to correspond to the Intel-reserved PAT
 458 * types.
 459 *
 460 * We expect Linux's PAT set as follows:
 461 *
 462 * Idx  PTE flags        Linux    Xen    Default
 463 * 0                     WB       WB     WB
 464 * 1            PWT      WC       WT     WT
 465 * 2        PCD          UC-      UC-    UC-
 466 * 3        PCD PWT      UC       UC     UC
 467 * 4    PAT              WB       WC     WB
 468 * 5    PAT     PWT      WC       WP     WT
 469 * 6    PAT PCD          UC-      UC     UC-
 470 * 7    PAT PCD PWT      UC       UC     UC
 471 */
 472
 473void xen_set_pat(u64 pat)
 474{
 475        /* We expect Linux to use a PAT setting of
 476         * UC UC- WC WB (ignoring the PAT flag) */
 477        WARN_ON(pat != 0x0007010600070106ull);
 478}
 479
 480static pte_t xen_make_pte(pteval_t pte)
 481{
 482        phys_addr_t addr = (pte & PTE_PFN_MASK);
 483#if 0
 484        /* If Linux is trying to set a WC pte, then map to the Xen WC.
 485         * If _PAGE_PAT is set, then it probably means it is really
 486         * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 487         * things work out OK...
 488         *
 489         * (We should never see kernel mappings with _PAGE_PSE set,
 490         * but we could see hugetlbfs mappings, I think.).
 491         */
 492        if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 493                if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 494                        pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 495        }
 496#endif
 497        /*
 498         * Unprivileged domains are allowed to do IOMAPpings for
 499         * PCI passthrough, but not map ISA space.  The ISA
 500         * mappings are just dummy local mappings to keep other
 501         * parts of the kernel happy.
 502         */
 503        if (unlikely(pte & _PAGE_IOMAP) &&
 504            (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 505                pte = iomap_pte(pte);
 506        } else {
 507                pte &= ~_PAGE_IOMAP;
 508                pte = pte_pfn_to_mfn(pte);
 509        }
 510
 511        return native_make_pte(pte);
 512}
 513PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 514
 515static pgd_t xen_make_pgd(pgdval_t pgd)
 516{
 517        pgd = pte_pfn_to_mfn(pgd);
 518        return native_make_pgd(pgd);
 519}
 520PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 521
 522static pmdval_t xen_pmd_val(pmd_t pmd)
 523{
 524        return pte_mfn_to_pfn(pmd.pmd);
 525}
 526PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 527
 528static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 529{
 530        struct mmu_update u;
 531
 532        preempt_disable();
 533
 534        xen_mc_batch();
 535
 536        /* ptr may be ioremapped for 64-bit pagetable setup */
 537        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 538        u.val = pud_val_ma(val);
 539        xen_extend_mmu_update(&u);
 540
 541        xen_mc_issue(PARAVIRT_LAZY_MMU);
 542
 543        preempt_enable();
 544}
 545
 546static void xen_set_pud(pud_t *ptr, pud_t val)
 547{
 548        trace_xen_mmu_set_pud(ptr, val);
 549
 550        /* If page is not pinned, we can just update the entry
 551           directly */
 552        if (!xen_page_pinned(ptr)) {
 553                *ptr = val;
 554                return;
 555        }
 556
 557        xen_set_pud_hyper(ptr, val);
 558}
 559
 560#ifdef CONFIG_X86_PAE
 561static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 562{
 563        trace_xen_mmu_set_pte_atomic(ptep, pte);
 564        set_64bit((u64 *)ptep, native_pte_val(pte));
 565}
 566
 567static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 568{
 569        trace_xen_mmu_pte_clear(mm, addr, ptep);
 570        if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 571                native_pte_clear(mm, addr, ptep);
 572}
 573
 574static void xen_pmd_clear(pmd_t *pmdp)
 575{
 576        trace_xen_mmu_pmd_clear(pmdp);
 577        set_pmd(pmdp, __pmd(0));
 578}
 579#endif  /* CONFIG_X86_PAE */
 580
 581static pmd_t xen_make_pmd(pmdval_t pmd)
 582{
 583        pmd = pte_pfn_to_mfn(pmd);
 584        return native_make_pmd(pmd);
 585}
 586PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 587
 588#if PAGETABLE_LEVELS == 4
 589static pudval_t xen_pud_val(pud_t pud)
 590{
 591        return pte_mfn_to_pfn(pud.pud);
 592}
 593PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 594
 595static pud_t xen_make_pud(pudval_t pud)
 596{
 597        pud = pte_pfn_to_mfn(pud);
 598
 599        return native_make_pud(pud);
 600}
 601PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 602
 603static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 604{
 605        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 606        unsigned offset = pgd - pgd_page;
 607        pgd_t *user_ptr = NULL;
 608
 609        if (offset < pgd_index(USER_LIMIT)) {
 610                struct page *page = virt_to_page(pgd_page);
 611                user_ptr = (pgd_t *)page->private;
 612                if (user_ptr)
 613                        user_ptr += offset;
 614        }
 615
 616        return user_ptr;
 617}
 618
 619static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 620{
 621        struct mmu_update u;
 622
 623        u.ptr = virt_to_machine(ptr).maddr;
 624        u.val = pgd_val_ma(val);
 625        xen_extend_mmu_update(&u);
 626}
 627
 628/*
 629 * Raw hypercall-based set_pgd, intended for in early boot before
 630 * there's a page structure.  This implies:
 631 *  1. The only existing pagetable is the kernel's
 632 *  2. It is always pinned
 633 *  3. It has no user pagetable attached to it
 634 */
 635static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 636{
 637        preempt_disable();
 638
 639        xen_mc_batch();
 640
 641        __xen_set_pgd_hyper(ptr, val);
 642
 643        xen_mc_issue(PARAVIRT_LAZY_MMU);
 644
 645        preempt_enable();
 646}
 647
 648static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 649{
 650        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 651
 652        trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 653
 654        /* If page is not pinned, we can just update the entry
 655           directly */
 656        if (!xen_page_pinned(ptr)) {
 657                *ptr = val;
 658                if (user_ptr) {
 659                        WARN_ON(xen_page_pinned(user_ptr));
 660                        *user_ptr = val;
 661                }
 662                return;
 663        }
 664
 665        /* If it's pinned, then we can at least batch the kernel and
 666           user updates together. */
 667        xen_mc_batch();
 668
 669        __xen_set_pgd_hyper(ptr, val);
 670        if (user_ptr)
 671                __xen_set_pgd_hyper(user_ptr, val);
 672
 673        xen_mc_issue(PARAVIRT_LAZY_MMU);
 674}
 675#endif  /* PAGETABLE_LEVELS == 4 */
 676
 677/*
 678 * (Yet another) pagetable walker.  This one is intended for pinning a
 679 * pagetable.  This means that it walks a pagetable and calls the
 680 * callback function on each page it finds making up the page table,
 681 * at every level.  It walks the entire pagetable, but it only bothers
 682 * pinning pte pages which are below limit.  In the normal case this
 683 * will be STACK_TOP_MAX, but at boot we need to pin up to
 684 * FIXADDR_TOP.
 685 *
 686 * For 32-bit the important bit is that we don't pin beyond there,
 687 * because then we start getting into Xen's ptes.
 688 *
 689 * For 64-bit, we must skip the Xen hole in the middle of the address
 690 * space, just after the big x86-64 virtual hole.
 691 */
 692static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 693                          int (*func)(struct mm_struct *mm, struct page *,
 694                                      enum pt_level),
 695                          unsigned long limit)
 696{
 697        int flush = 0;
 698        unsigned hole_low, hole_high;
 699        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 700        unsigned pgdidx, pudidx, pmdidx;
 701
 702        /* The limit is the last byte to be touched */
 703        limit--;
 704        BUG_ON(limit >= FIXADDR_TOP);
 705
 706        if (xen_feature(XENFEAT_auto_translated_physmap))
 707                return 0;
 708
 709        /*
 710         * 64-bit has a great big hole in the middle of the address
 711         * space, which contains the Xen mappings.  On 32-bit these
 712         * will end up making a zero-sized hole and so is a no-op.
 713         */
 714        hole_low = pgd_index(USER_LIMIT);
 715        hole_high = pgd_index(PAGE_OFFSET);
 716
 717        pgdidx_limit = pgd_index(limit);
 718#if PTRS_PER_PUD > 1
 719        pudidx_limit = pud_index(limit);
 720#else
 721        pudidx_limit = 0;
 722#endif
 723#if PTRS_PER_PMD > 1
 724        pmdidx_limit = pmd_index(limit);
 725#else
 726        pmdidx_limit = 0;
 727#endif
 728
 729        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 730                pud_t *pud;
 731
 732                if (pgdidx >= hole_low && pgdidx < hole_high)
 733                        continue;
 734
 735                if (!pgd_val(pgd[pgdidx]))
 736                        continue;
 737
 738                pud = pud_offset(&pgd[pgdidx], 0);
 739
 740                if (PTRS_PER_PUD > 1) /* not folded */
 741                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 742
 743                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 744                        pmd_t *pmd;
 745
 746                        if (pgdidx == pgdidx_limit &&
 747                            pudidx > pudidx_limit)
 748                                goto out;
 749
 750                        if (pud_none(pud[pudidx]))
 751                                continue;
 752
 753                        pmd = pmd_offset(&pud[pudidx], 0);
 754
 755                        if (PTRS_PER_PMD > 1) /* not folded */
 756                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 757
 758                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 759                                struct page *pte;
 760
 761                                if (pgdidx == pgdidx_limit &&
 762                                    pudidx == pudidx_limit &&
 763                                    pmdidx > pmdidx_limit)
 764                                        goto out;
 765
 766                                if (pmd_none(pmd[pmdidx]))
 767                                        continue;
 768
 769                                pte = pmd_page(pmd[pmdidx]);
 770                                flush |= (*func)(mm, pte, PT_PTE);
 771                        }
 772                }
 773        }
 774
 775out:
 776        /* Do the top level last, so that the callbacks can use it as
 777           a cue to do final things like tlb flushes. */
 778        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 779
 780        return flush;
 781}
 782
 783static int xen_pgd_walk(struct mm_struct *mm,
 784                        int (*func)(struct mm_struct *mm, struct page *,
 785                                    enum pt_level),
 786                        unsigned long limit)
 787{
 788        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 789}
 790
 791/* If we're using split pte locks, then take the page's lock and
 792   return a pointer to it.  Otherwise return NULL. */
 793static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 794{
 795        spinlock_t *ptl = NULL;
 796
 797#if USE_SPLIT_PTLOCKS
 798        ptl = __pte_lockptr(page);
 799        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 800#endif
 801
 802        return ptl;
 803}
 804
 805static void xen_pte_unlock(void *v)
 806{
 807        spinlock_t *ptl = v;
 808        spin_unlock(ptl);
 809}
 810
 811static void xen_do_pin(unsigned level, unsigned long pfn)
 812{
 813        struct mmuext_op op;
 814
 815        op.cmd = level;
 816        op.arg1.mfn = pfn_to_mfn(pfn);
 817
 818        xen_extend_mmuext_op(&op);
 819}
 820
 821static int xen_pin_page(struct mm_struct *mm, struct page *page,
 822                        enum pt_level level)
 823{
 824        unsigned pgfl = TestSetPagePinned(page);
 825        int flush;
 826
 827        if (pgfl)
 828                flush = 0;              /* already pinned */
 829        else if (PageHighMem(page))
 830                /* kmaps need flushing if we found an unpinned
 831                   highpage */
 832                flush = 1;
 833        else {
 834                void *pt = lowmem_page_address(page);
 835                unsigned long pfn = page_to_pfn(page);
 836                struct multicall_space mcs = __xen_mc_entry(0);
 837                spinlock_t *ptl;
 838
 839                flush = 0;
 840
 841                /*
 842                 * We need to hold the pagetable lock between the time
 843                 * we make the pagetable RO and when we actually pin
 844                 * it.  If we don't, then other users may come in and
 845                 * attempt to update the pagetable by writing it,
 846                 * which will fail because the memory is RO but not
 847                 * pinned, so Xen won't do the trap'n'emulate.
 848                 *
 849                 * If we're using split pte locks, we can't hold the
 850                 * entire pagetable's worth of locks during the
 851                 * traverse, because we may wrap the preempt count (8
 852                 * bits).  The solution is to mark RO and pin each PTE
 853                 * page while holding the lock.  This means the number
 854                 * of locks we end up holding is never more than a
 855                 * batch size (~32 entries, at present).
 856                 *
 857                 * If we're not using split pte locks, we needn't pin
 858                 * the PTE pages independently, because we're
 859                 * protected by the overall pagetable lock.
 860                 */
 861                ptl = NULL;
 862                if (level == PT_PTE)
 863                        ptl = xen_pte_lock(page, mm);
 864
 865                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 866                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 867                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 868
 869                if (ptl) {
 870                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 871
 872                        /* Queue a deferred unlock for when this batch
 873                           is completed. */
 874                        xen_mc_callback(xen_pte_unlock, ptl);
 875                }
 876        }
 877
 878        return flush;
 879}
 880
 881/* This is called just after a mm has been created, but it has not
 882   been used yet.  We need to make sure that its pagetable is all
 883   read-only, and can be pinned. */
 884static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 885{
 886        trace_xen_mmu_pgd_pin(mm, pgd);
 887
 888        xen_mc_batch();
 889
 890        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 891                /* re-enable interrupts for flushing */
 892                xen_mc_issue(0);
 893
 894                kmap_flush_unused();
 895
 896                xen_mc_batch();
 897        }
 898
 899#ifdef CONFIG_X86_64
 900        {
 901                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 902
 903                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 904
 905                if (user_pgd) {
 906                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 907                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 908                                   PFN_DOWN(__pa(user_pgd)));
 909                }
 910        }
 911#else /* CONFIG_X86_32 */
 912#ifdef CONFIG_X86_PAE
 913        /* Need to make sure unshared kernel PMD is pinnable */
 914        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 915                     PT_PMD);
 916#endif
 917        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 918#endif /* CONFIG_X86_64 */
 919        xen_mc_issue(0);
 920}
 921
 922static void xen_pgd_pin(struct mm_struct *mm)
 923{
 924        __xen_pgd_pin(mm, mm->pgd);
 925}
 926
 927/*
 928 * On save, we need to pin all pagetables to make sure they get their
 929 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 930 * them (unpinned pgds are not currently in use, probably because the
 931 * process is under construction or destruction).
 932 *
 933 * Expected to be called in stop_machine() ("equivalent to taking
 934 * every spinlock in the system"), so the locking doesn't really
 935 * matter all that much.
 936 */
 937void xen_mm_pin_all(void)
 938{
 939        struct page *page;
 940
 941        spin_lock(&pgd_lock);
 942
 943        list_for_each_entry(page, &pgd_list, lru) {
 944                if (!PagePinned(page)) {
 945                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 946                        SetPageSavePinned(page);
 947                }
 948        }
 949
 950        spin_unlock(&pgd_lock);
 951}
 952
 953/*
 954 * The init_mm pagetable is really pinned as soon as its created, but
 955 * that's before we have page structures to store the bits.  So do all
 956 * the book-keeping now.
 957 */
 958static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 959                                  enum pt_level level)
 960{
 961        SetPagePinned(page);
 962        return 0;
 963}
 964
 965static void __init xen_mark_init_mm_pinned(void)
 966{
 967        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 968}
 969
 970static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 971                          enum pt_level level)
 972{
 973        unsigned pgfl = TestClearPagePinned(page);
 974
 975        if (pgfl && !PageHighMem(page)) {
 976                void *pt = lowmem_page_address(page);
 977                unsigned long pfn = page_to_pfn(page);
 978                spinlock_t *ptl = NULL;
 979                struct multicall_space mcs;
 980
 981                /*
 982                 * Do the converse to pin_page.  If we're using split
 983                 * pte locks, we must be holding the lock for while
 984                 * the pte page is unpinned but still RO to prevent
 985                 * concurrent updates from seeing it in this
 986                 * partially-pinned state.
 987                 */
 988                if (level == PT_PTE) {
 989                        ptl = xen_pte_lock(page, mm);
 990
 991                        if (ptl)
 992                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 993                }
 994
 995                mcs = __xen_mc_entry(0);
 996
 997                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 998                                        pfn_pte(pfn, PAGE_KERNEL),
 999                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1000
1001                if (ptl) {
1002                        /* unlock when batch completed */
1003                        xen_mc_callback(xen_pte_unlock, ptl);
1004                }
1005        }
1006
1007        return 0;               /* never need to flush on unpin */
1008}
1009
1010/* Release a pagetables pages back as normal RW */
1011static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1012{
1013        trace_xen_mmu_pgd_unpin(mm, pgd);
1014
1015        xen_mc_batch();
1016
1017        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1018
1019#ifdef CONFIG_X86_64
1020        {
1021                pgd_t *user_pgd = xen_get_user_pgd(pgd);
1022
1023                if (user_pgd) {
1024                        xen_do_pin(MMUEXT_UNPIN_TABLE,
1025                                   PFN_DOWN(__pa(user_pgd)));
1026                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1027                }
1028        }
1029#endif
1030
1031#ifdef CONFIG_X86_PAE
1032        /* Need to make sure unshared kernel PMD is unpinned */
1033        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1034                       PT_PMD);
1035#endif
1036
1037        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1038
1039        xen_mc_issue(0);
1040}
1041
1042static void xen_pgd_unpin(struct mm_struct *mm)
1043{
1044        __xen_pgd_unpin(mm, mm->pgd);
1045}
1046
1047/*
1048 * On resume, undo any pinning done at save, so that the rest of the
1049 * kernel doesn't see any unexpected pinned pagetables.
1050 */
1051void xen_mm_unpin_all(void)
1052{
1053        struct page *page;
1054
1055        spin_lock(&pgd_lock);
1056
1057        list_for_each_entry(page, &pgd_list, lru) {
1058                if (PageSavePinned(page)) {
1059                        BUG_ON(!PagePinned(page));
1060                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1061                        ClearPageSavePinned(page);
1062                }
1063        }
1064
1065        spin_unlock(&pgd_lock);
1066}
1067
1068static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1069{
1070        spin_lock(&next->page_table_lock);
1071        xen_pgd_pin(next);
1072        spin_unlock(&next->page_table_lock);
1073}
1074
1075static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1076{
1077        spin_lock(&mm->page_table_lock);
1078        xen_pgd_pin(mm);
1079        spin_unlock(&mm->page_table_lock);
1080}
1081
1082
1083#ifdef CONFIG_SMP
1084/* Another cpu may still have their %cr3 pointing at the pagetable, so
1085   we need to repoint it somewhere else before we can unpin it. */
1086static void drop_other_mm_ref(void *info)
1087{
1088        struct mm_struct *mm = info;
1089        struct mm_struct *active_mm;
1090
1091        active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1092
1093        if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1094                leave_mm(smp_processor_id());
1095
1096        /* If this cpu still has a stale cr3 reference, then make sure
1097           it has been flushed. */
1098        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1099                load_cr3(swapper_pg_dir);
1100}
1101
1102static void xen_drop_mm_ref(struct mm_struct *mm)
1103{
1104        cpumask_var_t mask;
1105        unsigned cpu;
1106
1107        if (current->active_mm == mm) {
1108                if (current->mm == mm)
1109                        load_cr3(swapper_pg_dir);
1110                else
1111                        leave_mm(smp_processor_id());
1112        }
1113
1114        /* Get the "official" set of cpus referring to our pagetable. */
1115        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1116                for_each_online_cpu(cpu) {
1117                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1118                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1119                                continue;
1120                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1121                }
1122                return;
1123        }
1124        cpumask_copy(mask, mm_cpumask(mm));
1125
1126        /* It's possible that a vcpu may have a stale reference to our
1127           cr3, because its in lazy mode, and it hasn't yet flushed
1128           its set of pending hypercalls yet.  In this case, we can
1129           look at its actual current cr3 value, and force it to flush
1130           if needed. */
1131        for_each_online_cpu(cpu) {
1132                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1133                        cpumask_set_cpu(cpu, mask);
1134        }
1135
1136        if (!cpumask_empty(mask))
1137                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1138        free_cpumask_var(mask);
1139}
1140#else
1141static void xen_drop_mm_ref(struct mm_struct *mm)
1142{
1143        if (current->active_mm == mm)
1144                load_cr3(swapper_pg_dir);
1145}
1146#endif
1147
1148/*
1149 * While a process runs, Xen pins its pagetables, which means that the
1150 * hypervisor forces it to be read-only, and it controls all updates
1151 * to it.  This means that all pagetable updates have to go via the
1152 * hypervisor, which is moderately expensive.
1153 *
1154 * Since we're pulling the pagetable down, we switch to use init_mm,
1155 * unpin old process pagetable and mark it all read-write, which
1156 * allows further operations on it to be simple memory accesses.
1157 *
1158 * The only subtle point is that another CPU may be still using the
1159 * pagetable because of lazy tlb flushing.  This means we need need to
1160 * switch all CPUs off this pagetable before we can unpin it.
1161 */
1162static void xen_exit_mmap(struct mm_struct *mm)
1163{
1164        get_cpu();              /* make sure we don't move around */
1165        xen_drop_mm_ref(mm);
1166        put_cpu();
1167
1168        spin_lock(&mm->page_table_lock);
1169
1170        /* pgd may not be pinned in the error exit path of execve */
1171        if (xen_page_pinned(mm->pgd))
1172                xen_pgd_unpin(mm);
1173
1174        spin_unlock(&mm->page_table_lock);
1175}
1176
1177static void __init xen_pagetable_setup_start(pgd_t *base)
1178{
1179}
1180
1181static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1182{
1183        /* reserve the range used */
1184        native_pagetable_reserve(start, end);
1185
1186        /* set as RW the rest */
1187        printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188                        PFN_PHYS(pgt_buf_top));
1189        while (end < PFN_PHYS(pgt_buf_top)) {
1190                make_lowmem_page_readwrite(__va(end));
1191                end += PAGE_SIZE;
1192        }
1193}
1194
1195static void xen_post_allocator_init(void);
1196
1197static void __init xen_pagetable_setup_done(pgd_t *base)
1198{
1199        xen_setup_shared_info();
1200        xen_post_allocator_init();
1201}
1202
1203static void xen_write_cr2(unsigned long cr2)
1204{
1205        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1206}
1207
1208static unsigned long xen_read_cr2(void)
1209{
1210        return this_cpu_read(xen_vcpu)->arch.cr2;
1211}
1212
1213unsigned long xen_read_cr2_direct(void)
1214{
1215        return this_cpu_read(xen_vcpu_info.arch.cr2);
1216}
1217
1218static void xen_flush_tlb(void)
1219{
1220        struct mmuext_op *op;
1221        struct multicall_space mcs;
1222
1223        trace_xen_mmu_flush_tlb(0);
1224
1225        preempt_disable();
1226
1227        mcs = xen_mc_entry(sizeof(*op));
1228
1229        op = mcs.args;
1230        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1231        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1232
1233        xen_mc_issue(PARAVIRT_LAZY_MMU);
1234
1235        preempt_enable();
1236}
1237
1238static void xen_flush_tlb_single(unsigned long addr)
1239{
1240        struct mmuext_op *op;
1241        struct multicall_space mcs;
1242
1243        trace_xen_mmu_flush_tlb_single(addr);
1244
1245        preempt_disable();
1246
1247        mcs = xen_mc_entry(sizeof(*op));
1248        op = mcs.args;
1249        op->cmd = MMUEXT_INVLPG_LOCAL;
1250        op->arg1.linear_addr = addr & PAGE_MASK;
1251        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1252
1253        xen_mc_issue(PARAVIRT_LAZY_MMU);
1254
1255        preempt_enable();
1256}
1257
1258static void xen_flush_tlb_others(const struct cpumask *cpus,
1259                                 struct mm_struct *mm, unsigned long start,
1260                                 unsigned long end)
1261{
1262        struct {
1263                struct mmuext_op op;
1264#ifdef CONFIG_SMP
1265                DECLARE_BITMAP(mask, num_processors);
1266#else
1267                DECLARE_BITMAP(mask, NR_CPUS);
1268#endif
1269        } *args;
1270        struct multicall_space mcs;
1271
1272        trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1273
1274        if (cpumask_empty(cpus))
1275                return;         /* nothing to do */
1276
1277        mcs = xen_mc_entry(sizeof(*args));
1278        args = mcs.args;
1279        args->op.arg2.vcpumask = to_cpumask(args->mask);
1280
1281        /* Remove us, and any offline CPUS. */
1282        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1283        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1284
1285        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1286        if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1287                args->op.cmd = MMUEXT_INVLPG_MULTI;
1288                args->op.arg1.linear_addr = start;
1289        }
1290
1291        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1292
1293        xen_mc_issue(PARAVIRT_LAZY_MMU);
1294}
1295
1296static unsigned long xen_read_cr3(void)
1297{
1298        return this_cpu_read(xen_cr3);
1299}
1300
1301static void set_current_cr3(void *v)
1302{
1303        this_cpu_write(xen_current_cr3, (unsigned long)v);
1304}
1305
1306static void __xen_write_cr3(bool kernel, unsigned long cr3)
1307{
1308        struct mmuext_op op;
1309        unsigned long mfn;
1310
1311        trace_xen_mmu_write_cr3(kernel, cr3);
1312
1313        if (cr3)
1314                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1315        else
1316                mfn = 0;
1317
1318        WARN_ON(mfn == 0 && kernel);
1319
1320        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1321        op.arg1.mfn = mfn;
1322
1323        xen_extend_mmuext_op(&op);
1324
1325        if (kernel) {
1326                this_cpu_write(xen_cr3, cr3);
1327
1328                /* Update xen_current_cr3 once the batch has actually
1329                   been submitted. */
1330                xen_mc_callback(set_current_cr3, (void *)cr3);
1331        }
1332}
1333
1334static void xen_write_cr3(unsigned long cr3)
1335{
1336        BUG_ON(preemptible());
1337
1338        xen_mc_batch();  /* disables interrupts */
1339
1340        /* Update while interrupts are disabled, so its atomic with
1341           respect to ipis */
1342        this_cpu_write(xen_cr3, cr3);
1343
1344        __xen_write_cr3(true, cr3);
1345
1346#ifdef CONFIG_X86_64
1347        {
1348                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1349                if (user_pgd)
1350                        __xen_write_cr3(false, __pa(user_pgd));
1351                else
1352                        __xen_write_cr3(false, 0);
1353        }
1354#endif
1355
1356        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1357}
1358
1359static int xen_pgd_alloc(struct mm_struct *mm)
1360{
1361        pgd_t *pgd = mm->pgd;
1362        int ret = 0;
1363
1364        BUG_ON(PagePinned(virt_to_page(pgd)));
1365
1366#ifdef CONFIG_X86_64
1367        {
1368                struct page *page = virt_to_page(pgd);
1369                pgd_t *user_pgd;
1370
1371                BUG_ON(page->private != 0);
1372
1373                ret = -ENOMEM;
1374
1375                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1376                page->private = (unsigned long)user_pgd;
1377
1378                if (user_pgd != NULL) {
1379                        user_pgd[pgd_index(VSYSCALL_START)] =
1380                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1381                        ret = 0;
1382                }
1383
1384                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1385        }
1386#endif
1387
1388        return ret;
1389}
1390
1391static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1392{
1393#ifdef CONFIG_X86_64
1394        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1395
1396        if (user_pgd)
1397                free_page((unsigned long)user_pgd);
1398#endif
1399}
1400
1401#ifdef CONFIG_X86_32
1402static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1403{
1404        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1405        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1406                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1407                               pte_val_ma(pte));
1408
1409        return pte;
1410}
1411#else /* CONFIG_X86_64 */
1412static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1413{
1414        unsigned long pfn = pte_pfn(pte);
1415
1416        /*
1417         * If the new pfn is within the range of the newly allocated
1418         * kernel pagetable, and it isn't being mapped into an
1419         * early_ioremap fixmap slot as a freshly allocated page, make sure
1420         * it is RO.
1421         */
1422        if (((!is_early_ioremap_ptep(ptep) &&
1423                        pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1424                        (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1425                pte = pte_wrprotect(pte);
1426
1427        return pte;
1428}
1429#endif /* CONFIG_X86_64 */
1430
1431/*
1432 * Init-time set_pte while constructing initial pagetables, which
1433 * doesn't allow RO page table pages to be remapped RW.
1434 *
1435 * If there is no MFN for this PFN then this page is initially
1436 * ballooned out so clear the PTE (as in decrease_reservation() in
1437 * drivers/xen/balloon.c).
1438 *
1439 * Many of these PTE updates are done on unpinned and writable pages
1440 * and doing a hypercall for these is unnecessary and expensive.  At
1441 * this point it is not possible to tell if a page is pinned or not,
1442 * so always write the PTE directly and rely on Xen trapping and
1443 * emulating any updates as necessary.
1444 */
1445static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1446{
1447        if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1448                pte = mask_rw_pte(ptep, pte);
1449        else
1450                pte = __pte_ma(0);
1451
1452        native_set_pte(ptep, pte);
1453}
1454
1455static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1456{
1457        struct mmuext_op op;
1458        op.cmd = cmd;
1459        op.arg1.mfn = pfn_to_mfn(pfn);
1460        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1461                BUG();
1462}
1463
1464/* Early in boot, while setting up the initial pagetable, assume
1465   everything is pinned. */
1466static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1467{
1468#ifdef CONFIG_FLATMEM
1469        BUG_ON(mem_map);        /* should only be used early */
1470#endif
1471        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1472        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1473}
1474
1475/* Used for pmd and pud */
1476static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1477{
1478#ifdef CONFIG_FLATMEM
1479        BUG_ON(mem_map);        /* should only be used early */
1480#endif
1481        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1482}
1483
1484/* Early release_pte assumes that all pts are pinned, since there's
1485   only init_mm and anything attached to that is pinned. */
1486static void __init xen_release_pte_init(unsigned long pfn)
1487{
1488        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1489        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1490}
1491
1492static void __init xen_release_pmd_init(unsigned long pfn)
1493{
1494        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1495}
1496
1497static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1498{
1499        struct multicall_space mcs;
1500        struct mmuext_op *op;
1501
1502        mcs = __xen_mc_entry(sizeof(*op));
1503        op = mcs.args;
1504        op->cmd = cmd;
1505        op->arg1.mfn = pfn_to_mfn(pfn);
1506
1507        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1508}
1509
1510static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1511{
1512        struct multicall_space mcs;
1513        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1514
1515        mcs = __xen_mc_entry(0);
1516        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1517                                pfn_pte(pfn, prot), 0);
1518}
1519
1520/* This needs to make sure the new pte page is pinned iff its being
1521   attached to a pinned pagetable. */
1522static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1523                                    unsigned level)
1524{
1525        bool pinned = PagePinned(virt_to_page(mm->pgd));
1526
1527        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1528
1529        if (pinned) {
1530                struct page *page = pfn_to_page(pfn);
1531
1532                SetPagePinned(page);
1533
1534                if (!PageHighMem(page)) {
1535                        xen_mc_batch();
1536
1537                        __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1538
1539                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1540                                __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1541
1542                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1543                } else {
1544                        /* make sure there are no stray mappings of
1545                           this page */
1546                        kmap_flush_unused();
1547                }
1548        }
1549}
1550
1551static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1552{
1553        xen_alloc_ptpage(mm, pfn, PT_PTE);
1554}
1555
1556static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1557{
1558        xen_alloc_ptpage(mm, pfn, PT_PMD);
1559}
1560
1561/* This should never happen until we're OK to use struct page */
1562static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1563{
1564        struct page *page = pfn_to_page(pfn);
1565        bool pinned = PagePinned(page);
1566
1567        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1568
1569        if (pinned) {
1570                if (!PageHighMem(page)) {
1571                        xen_mc_batch();
1572
1573                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1574                                __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1575
1576                        __set_pfn_prot(pfn, PAGE_KERNEL);
1577
1578                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1579                }
1580                ClearPagePinned(page);
1581        }
1582}
1583
1584static void xen_release_pte(unsigned long pfn)
1585{
1586        xen_release_ptpage(pfn, PT_PTE);
1587}
1588
1589static void xen_release_pmd(unsigned long pfn)
1590{
1591        xen_release_ptpage(pfn, PT_PMD);
1592}
1593
1594#if PAGETABLE_LEVELS == 4
1595static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1596{
1597        xen_alloc_ptpage(mm, pfn, PT_PUD);
1598}
1599
1600static void xen_release_pud(unsigned long pfn)
1601{
1602        xen_release_ptpage(pfn, PT_PUD);
1603}
1604#endif
1605
1606void __init xen_reserve_top(void)
1607{
1608#ifdef CONFIG_X86_32
1609        unsigned long top = HYPERVISOR_VIRT_START;
1610        struct xen_platform_parameters pp;
1611
1612        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1613                top = pp.virt_start;
1614
1615        reserve_top_address(-top);
1616#endif  /* CONFIG_X86_32 */
1617}
1618
1619/*
1620 * Like __va(), but returns address in the kernel mapping (which is
1621 * all we have until the physical memory mapping has been set up.
1622 */
1623static void *__ka(phys_addr_t paddr)
1624{
1625#ifdef CONFIG_X86_64
1626        return (void *)(paddr + __START_KERNEL_map);
1627#else
1628        return __va(paddr);
1629#endif
1630}
1631
1632/* Convert a machine address to physical address */
1633static unsigned long m2p(phys_addr_t maddr)
1634{
1635        phys_addr_t paddr;
1636
1637        maddr &= PTE_PFN_MASK;
1638        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1639
1640        return paddr;
1641}
1642
1643/* Convert a machine address to kernel virtual */
1644static void *m2v(phys_addr_t maddr)
1645{
1646        return __ka(m2p(maddr));
1647}
1648
1649/* Set the page permissions on an identity-mapped pages */
1650static void set_page_prot(void *addr, pgprot_t prot)
1651{
1652        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1653        pte_t pte = pfn_pte(pfn, prot);
1654
1655        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1656                BUG();
1657}
1658
1659static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1660{
1661        unsigned pmdidx, pteidx;
1662        unsigned ident_pte;
1663        unsigned long pfn;
1664
1665        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1666                                      PAGE_SIZE);
1667
1668        ident_pte = 0;
1669        pfn = 0;
1670        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1671                pte_t *pte_page;
1672
1673                /* Reuse or allocate a page of ptes */
1674                if (pmd_present(pmd[pmdidx]))
1675                        pte_page = m2v(pmd[pmdidx].pmd);
1676                else {
1677                        /* Check for free pte pages */
1678                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1679                                break;
1680
1681                        pte_page = &level1_ident_pgt[ident_pte];
1682                        ident_pte += PTRS_PER_PTE;
1683
1684                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1685                }
1686
1687                /* Install mappings */
1688                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1689                        pte_t pte;
1690
1691#ifdef CONFIG_X86_32
1692                        if (pfn > max_pfn_mapped)
1693                                max_pfn_mapped = pfn;
1694#endif
1695
1696                        if (!pte_none(pte_page[pteidx]))
1697                                continue;
1698
1699                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1700                        pte_page[pteidx] = pte;
1701                }
1702        }
1703
1704        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1705                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1706
1707        set_page_prot(pmd, PAGE_KERNEL_RO);
1708}
1709
1710void __init xen_setup_machphys_mapping(void)
1711{
1712        struct xen_machphys_mapping mapping;
1713
1714        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1715                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1716                machine_to_phys_nr = mapping.max_mfn + 1;
1717        } else {
1718                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1719        }
1720#ifdef CONFIG_X86_32
1721        WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1722                < machine_to_phys_mapping);
1723#endif
1724}
1725
1726#ifdef CONFIG_X86_64
1727static void convert_pfn_mfn(void *v)
1728{
1729        pte_t *pte = v;
1730        int i;
1731
1732        /* All levels are converted the same way, so just treat them
1733           as ptes. */
1734        for (i = 0; i < PTRS_PER_PTE; i++)
1735                pte[i] = xen_make_pte(pte[i].pte);
1736}
1737
1738/*
1739 * Set up the initial kernel pagetable.
1740 *
1741 * We can construct this by grafting the Xen provided pagetable into
1742 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1743 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1744 * means that only the kernel has a physical mapping to start with -
1745 * but that's enough to get __va working.  We need to fill in the rest
1746 * of the physical mapping once some sort of allocator has been set
1747 * up.
1748 */
1749pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1750                                         unsigned long max_pfn)
1751{
1752        pud_t *l3;
1753        pmd_t *l2;
1754
1755        /* max_pfn_mapped is the last pfn mapped in the initial memory
1756         * mappings. Considering that on Xen after the kernel mappings we
1757         * have the mappings of some pages that don't exist in pfn space, we
1758         * set max_pfn_mapped to the last real pfn mapped. */
1759        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1760
1761        /* Zap identity mapping */
1762        init_level4_pgt[0] = __pgd(0);
1763
1764        /* Pre-constructed entries are in pfn, so convert to mfn */
1765        convert_pfn_mfn(init_level4_pgt);
1766        convert_pfn_mfn(level3_ident_pgt);
1767        convert_pfn_mfn(level3_kernel_pgt);
1768
1769        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1770        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1771
1772        memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1773        memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1774
1775        l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1776        l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1777        memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1778
1779        /* Set up identity map */
1780        xen_map_identity_early(level2_ident_pgt, max_pfn);
1781
1782        /* Make pagetable pieces RO */
1783        set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1784        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1785        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1786        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1787        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1788        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1789
1790        /* Pin down new L4 */
1791        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1792                          PFN_DOWN(__pa_symbol(init_level4_pgt)));
1793
1794        /* Unpin Xen-provided one */
1795        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1796
1797        /* Switch over */
1798        pgd = init_level4_pgt;
1799
1800        /*
1801         * At this stage there can be no user pgd, and no page
1802         * structure to attach it to, so make sure we just set kernel
1803         * pgd.
1804         */
1805        xen_mc_batch();
1806        __xen_write_cr3(true, __pa(pgd));
1807        xen_mc_issue(PARAVIRT_LAZY_CPU);
1808
1809        memblock_reserve(__pa(xen_start_info->pt_base),
1810                         xen_start_info->nr_pt_frames * PAGE_SIZE);
1811
1812        return pgd;
1813}
1814#else   /* !CONFIG_X86_64 */
1815static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1816static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1817
1818static void __init xen_write_cr3_init(unsigned long cr3)
1819{
1820        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1821
1822        BUG_ON(read_cr3() != __pa(initial_page_table));
1823        BUG_ON(cr3 != __pa(swapper_pg_dir));
1824
1825        /*
1826         * We are switching to swapper_pg_dir for the first time (from
1827         * initial_page_table) and therefore need to mark that page
1828         * read-only and then pin it.
1829         *
1830         * Xen disallows sharing of kernel PMDs for PAE
1831         * guests. Therefore we must copy the kernel PMD from
1832         * initial_page_table into a new kernel PMD to be used in
1833         * swapper_pg_dir.
1834         */
1835        swapper_kernel_pmd =
1836                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1837        memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1838               sizeof(pmd_t) * PTRS_PER_PMD);
1839        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1840                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1841        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1842
1843        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1844        xen_write_cr3(cr3);
1845        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1846
1847        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1848                          PFN_DOWN(__pa(initial_page_table)));
1849        set_page_prot(initial_page_table, PAGE_KERNEL);
1850        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1851
1852        pv_mmu_ops.write_cr3 = &xen_write_cr3;
1853}
1854
1855pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1856                                         unsigned long max_pfn)
1857{
1858        pmd_t *kernel_pmd;
1859
1860        initial_kernel_pmd =
1861                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1862
1863        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1864                                  xen_start_info->nr_pt_frames * PAGE_SIZE +
1865                                  512*1024);
1866
1867        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1868        memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1869
1870        xen_map_identity_early(initial_kernel_pmd, max_pfn);
1871
1872        memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1873        initial_page_table[KERNEL_PGD_BOUNDARY] =
1874                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1875
1876        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1877        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1878        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1879
1880        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1881
1882        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1883                          PFN_DOWN(__pa(initial_page_table)));
1884        xen_write_cr3(__pa(initial_page_table));
1885
1886        memblock_reserve(__pa(xen_start_info->pt_base),
1887                         xen_start_info->nr_pt_frames * PAGE_SIZE);
1888
1889        return initial_page_table;
1890}
1891#endif  /* CONFIG_X86_64 */
1892
1893static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1894
1895static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1896{
1897        pte_t pte;
1898
1899        phys >>= PAGE_SHIFT;
1900
1901        switch (idx) {
1902        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1903#ifdef CONFIG_X86_F00F_BUG
1904        case FIX_F00F_IDT:
1905#endif
1906#ifdef CONFIG_X86_32
1907        case FIX_WP_TEST:
1908        case FIX_VDSO:
1909# ifdef CONFIG_HIGHMEM
1910        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1911# endif
1912#else
1913        case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1914        case VVAR_PAGE:
1915#endif
1916        case FIX_TEXT_POKE0:
1917        case FIX_TEXT_POKE1:
1918                /* All local page mappings */
1919                pte = pfn_pte(phys, prot);
1920                break;
1921
1922#ifdef CONFIG_X86_LOCAL_APIC
1923        case FIX_APIC_BASE:     /* maps dummy local APIC */
1924                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1925                break;
1926#endif
1927
1928#ifdef CONFIG_X86_IO_APIC
1929        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1930                /*
1931                 * We just don't map the IO APIC - all access is via
1932                 * hypercalls.  Keep the address in the pte for reference.
1933                 */
1934                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1935                break;
1936#endif
1937
1938        case FIX_PARAVIRT_BOOTMAP:
1939                /* This is an MFN, but it isn't an IO mapping from the
1940                   IO domain */
1941                pte = mfn_pte(phys, prot);
1942                break;
1943
1944        default:
1945                /* By default, set_fixmap is used for hardware mappings */
1946                pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1947                break;
1948        }
1949
1950        __native_set_fixmap(idx, pte);
1951
1952#ifdef CONFIG_X86_64
1953        /* Replicate changes to map the vsyscall page into the user
1954           pagetable vsyscall mapping. */
1955        if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1956            idx == VVAR_PAGE) {
1957                unsigned long vaddr = __fix_to_virt(idx);
1958                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1959        }
1960#endif
1961}
1962
1963static void __init xen_post_allocator_init(void)
1964{
1965        pv_mmu_ops.set_pte = xen_set_pte;
1966        pv_mmu_ops.set_pmd = xen_set_pmd;
1967        pv_mmu_ops.set_pud = xen_set_pud;
1968#if PAGETABLE_LEVELS == 4
1969        pv_mmu_ops.set_pgd = xen_set_pgd;
1970#endif
1971
1972        /* This will work as long as patching hasn't happened yet
1973           (which it hasn't) */
1974        pv_mmu_ops.alloc_pte = xen_alloc_pte;
1975        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1976        pv_mmu_ops.release_pte = xen_release_pte;
1977        pv_mmu_ops.release_pmd = xen_release_pmd;
1978#if PAGETABLE_LEVELS == 4
1979        pv_mmu_ops.alloc_pud = xen_alloc_pud;
1980        pv_mmu_ops.release_pud = xen_release_pud;
1981#endif
1982
1983#ifdef CONFIG_X86_64
1984        SetPagePinned(virt_to_page(level3_user_vsyscall));
1985#endif
1986        xen_mark_init_mm_pinned();
1987}
1988
1989static void xen_leave_lazy_mmu(void)
1990{
1991        preempt_disable();
1992        xen_mc_flush();
1993        paravirt_leave_lazy_mmu();
1994        preempt_enable();
1995}
1996
1997static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1998        .read_cr2 = xen_read_cr2,
1999        .write_cr2 = xen_write_cr2,
2000
2001        .read_cr3 = xen_read_cr3,
2002#ifdef CONFIG_X86_32
2003        .write_cr3 = xen_write_cr3_init,
2004#else
2005        .write_cr3 = xen_write_cr3,
2006#endif
2007
2008        .flush_tlb_user = xen_flush_tlb,
2009        .flush_tlb_kernel = xen_flush_tlb,
2010        .flush_tlb_single = xen_flush_tlb_single,
2011        .flush_tlb_others = xen_flush_tlb_others,
2012
2013        .pte_update = paravirt_nop,
2014        .pte_update_defer = paravirt_nop,
2015
2016        .pgd_alloc = xen_pgd_alloc,
2017        .pgd_free = xen_pgd_free,
2018
2019        .alloc_pte = xen_alloc_pte_init,
2020        .release_pte = xen_release_pte_init,
2021        .alloc_pmd = xen_alloc_pmd_init,
2022        .release_pmd = xen_release_pmd_init,
2023
2024        .set_pte = xen_set_pte_init,
2025        .set_pte_at = xen_set_pte_at,
2026        .set_pmd = xen_set_pmd_hyper,
2027
2028        .ptep_modify_prot_start = __ptep_modify_prot_start,
2029        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2030
2031        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2032        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2033
2034        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2035        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2036
2037#ifdef CONFIG_X86_PAE
2038        .set_pte_atomic = xen_set_pte_atomic,
2039        .pte_clear = xen_pte_clear,
2040        .pmd_clear = xen_pmd_clear,
2041#endif  /* CONFIG_X86_PAE */
2042        .set_pud = xen_set_pud_hyper,
2043
2044        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2045        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2046
2047#if PAGETABLE_LEVELS == 4
2048        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2049        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2050        .set_pgd = xen_set_pgd_hyper,
2051
2052        .alloc_pud = xen_alloc_pmd_init,
2053        .release_pud = xen_release_pmd_init,
2054#endif  /* PAGETABLE_LEVELS == 4 */
2055
2056        .activate_mm = xen_activate_mm,
2057        .dup_mmap = xen_dup_mmap,
2058        .exit_mmap = xen_exit_mmap,
2059
2060        .lazy_mode = {
2061                .enter = paravirt_enter_lazy_mmu,
2062                .leave = xen_leave_lazy_mmu,
2063        },
2064
2065        .set_fixmap = xen_set_fixmap,
2066};
2067
2068void __init xen_init_mmu_ops(void)
2069{
2070        x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2071        x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2072        x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2073        pv_mmu_ops = xen_mmu_ops;
2074
2075        memset(dummy_mapping, 0xff, PAGE_SIZE);
2076}
2077
2078/* Protected by xen_reservation_lock. */
2079#define MAX_CONTIG_ORDER 9 /* 2MB */
2080static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2081
2082#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2083static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2084                                unsigned long *in_frames,
2085                                unsigned long *out_frames)
2086{
2087        int i;
2088        struct multicall_space mcs;
2089
2090        xen_mc_batch();
2091        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2092                mcs = __xen_mc_entry(0);
2093
2094                if (in_frames)
2095                        in_frames[i] = virt_to_mfn(vaddr);
2096
2097                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2098                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2099
2100                if (out_frames)
2101                        out_frames[i] = virt_to_pfn(vaddr);
2102        }
2103        xen_mc_issue(0);
2104}
2105
2106/*
2107 * Update the pfn-to-mfn mappings for a virtual address range, either to
2108 * point to an array of mfns, or contiguously from a single starting
2109 * mfn.
2110 */
2111static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2112                                     unsigned long *mfns,
2113                                     unsigned long first_mfn)
2114{
2115        unsigned i, limit;
2116        unsigned long mfn;
2117
2118        xen_mc_batch();
2119
2120        limit = 1u << order;
2121        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2122                struct multicall_space mcs;
2123                unsigned flags;
2124
2125                mcs = __xen_mc_entry(0);
2126                if (mfns)
2127                        mfn = mfns[i];
2128                else
2129                        mfn = first_mfn + i;
2130
2131                if (i < (limit - 1))
2132                        flags = 0;
2133                else {
2134                        if (order == 0)
2135                                flags = UVMF_INVLPG | UVMF_ALL;
2136                        else
2137                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2138                }
2139
2140                MULTI_update_va_mapping(mcs.mc, vaddr,
2141                                mfn_pte(mfn, PAGE_KERNEL), flags);
2142
2143                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2144        }
2145
2146        xen_mc_issue(0);
2147}
2148
2149/*
2150 * Perform the hypercall to exchange a region of our pfns to point to
2151 * memory with the required contiguous alignment.  Takes the pfns as
2152 * input, and populates mfns as output.
2153 *
2154 * Returns a success code indicating whether the hypervisor was able to
2155 * satisfy the request or not.
2156 */
2157static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2158                               unsigned long *pfns_in,
2159                               unsigned long extents_out,
2160                               unsigned int order_out,
2161                               unsigned long *mfns_out,
2162                               unsigned int address_bits)
2163{
2164        long rc;
2165        int success;
2166
2167        struct xen_memory_exchange exchange = {
2168                .in = {
2169                        .nr_extents   = extents_in,
2170                        .extent_order = order_in,
2171                        .extent_start = pfns_in,
2172                        .domid        = DOMID_SELF
2173                },
2174                .out = {
2175                        .nr_extents   = extents_out,
2176                        .extent_order = order_out,
2177                        .extent_start = mfns_out,
2178                        .address_bits = address_bits,
2179                        .domid        = DOMID_SELF
2180                }
2181        };
2182
2183        BUG_ON(extents_in << order_in != extents_out << order_out);
2184
2185        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2186        success = (exchange.nr_exchanged == extents_in);
2187
2188        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2189        BUG_ON(success && (rc != 0));
2190
2191        return success;
2192}
2193
2194int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2195                                 unsigned int address_bits)
2196{
2197        unsigned long *in_frames = discontig_frames, out_frame;
2198        unsigned long  flags;
2199        int            success;
2200
2201        /*
2202         * Currently an auto-translated guest will not perform I/O, nor will
2203         * it require PAE page directories below 4GB. Therefore any calls to
2204         * this function are redundant and can be ignored.
2205         */
2206
2207        if (xen_feature(XENFEAT_auto_translated_physmap))
2208                return 0;
2209
2210        if (unlikely(order > MAX_CONTIG_ORDER))
2211                return -ENOMEM;
2212
2213        memset((void *) vstart, 0, PAGE_SIZE << order);
2214
2215        spin_lock_irqsave(&xen_reservation_lock, flags);
2216
2217        /* 1. Zap current PTEs, remembering MFNs. */
2218        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2219
2220        /* 2. Get a new contiguous memory extent. */
2221        out_frame = virt_to_pfn(vstart);
2222        success = xen_exchange_memory(1UL << order, 0, in_frames,
2223                                      1, order, &out_frame,
2224                                      address_bits);
2225
2226        /* 3. Map the new extent in place of old pages. */
2227        if (success)
2228                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2229        else
2230                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2231
2232        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2233
2234        return success ? 0 : -ENOMEM;
2235}
2236EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2237
2238void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2239{
2240        unsigned long *out_frames = discontig_frames, in_frame;
2241        unsigned long  flags;
2242        int success;
2243
2244        if (xen_feature(XENFEAT_auto_translated_physmap))
2245                return;
2246
2247        if (unlikely(order > MAX_CONTIG_ORDER))
2248                return;
2249
2250        memset((void *) vstart, 0, PAGE_SIZE << order);
2251
2252        spin_lock_irqsave(&xen_reservation_lock, flags);
2253
2254        /* 1. Find start MFN of contiguous extent. */
2255        in_frame = virt_to_mfn(vstart);
2256
2257        /* 2. Zap current PTEs. */
2258        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2259
2260        /* 3. Do the exchange for non-contiguous MFNs. */
2261        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2262                                        0, out_frames, 0);
2263
2264        /* 4. Map new pages in place of old pages. */
2265        if (success)
2266                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2267        else
2268                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2269
2270        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2271}
2272EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2273
2274#ifdef CONFIG_XEN_PVHVM
2275static void xen_hvm_exit_mmap(struct mm_struct *mm)
2276{
2277        struct xen_hvm_pagetable_dying a;
2278        int rc;
2279
2280        a.domid = DOMID_SELF;
2281        a.gpa = __pa(mm->pgd);
2282        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2283        WARN_ON_ONCE(rc < 0);
2284}
2285
2286static int is_pagetable_dying_supported(void)
2287{
2288        struct xen_hvm_pagetable_dying a;
2289        int rc = 0;
2290
2291        a.domid = DOMID_SELF;
2292        a.gpa = 0x00;
2293        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2294        if (rc < 0) {
2295                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2296                return 0;
2297        }
2298        return 1;
2299}
2300
2301void __init xen_hvm_init_mmu_ops(void)
2302{
2303        if (is_pagetable_dying_supported())
2304                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2305}
2306#endif
2307
2308#define REMAP_BATCH_SIZE 16
2309
2310struct remap_data {
2311        unsigned long mfn;
2312        pgprot_t prot;
2313        struct mmu_update *mmu_update;
2314};
2315
2316static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2317                                 unsigned long addr, void *data)
2318{
2319        struct remap_data *rmd = data;
2320        pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2321
2322        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2323        rmd->mmu_update->val = pte_val_ma(pte);
2324        rmd->mmu_update++;
2325
2326        return 0;
2327}
2328
2329int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2330                               unsigned long addr,
2331                               unsigned long mfn, int nr,
2332                               pgprot_t prot, unsigned domid)
2333{
2334        struct remap_data rmd;
2335        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2336        int batch;
2337        unsigned long range;
2338        int err = 0;
2339
2340        prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2341
2342        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2343                                (VM_PFNMAP | VM_RESERVED | VM_IO)));
2344
2345        rmd.mfn = mfn;
2346        rmd.prot = prot;
2347
2348        while (nr) {
2349                batch = min(REMAP_BATCH_SIZE, nr);
2350                range = (unsigned long)batch << PAGE_SHIFT;
2351
2352                rmd.mmu_update = mmu_update;
2353                err = apply_to_page_range(vma->vm_mm, addr, range,
2354                                          remap_area_mfn_pte_fn, &rmd);
2355                if (err)
2356                        goto out;
2357
2358                err = -EFAULT;
2359                if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2360                        goto out;
2361
2362                nr -= batch;
2363                addr += range;
2364        }
2365
2366        err = 0;
2367out:
2368
2369        flush_tlb_all();
2370
2371        return err;
2372}
2373EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2374