linux/drivers/crypto/ux500/hash/hash_core.c
<<
>>
Prefs
   1/*
   2 * Cryptographic API.
   3 * Support for Nomadik hardware crypto engine.
   4
   5 * Copyright (C) ST-Ericsson SA 2010
   6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
   7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
   8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
   9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
  10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
  11 * License terms: GNU General Public License (GPL) version 2
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/device.h>
  16#include <linux/err.h>
  17#include <linux/init.h>
  18#include <linux/io.h>
  19#include <linux/klist.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/platform_device.h>
  23#include <linux/crypto.h>
  24
  25#include <linux/regulator/consumer.h>
  26#include <linux/dmaengine.h>
  27#include <linux/bitops.h>
  28
  29#include <crypto/internal/hash.h>
  30#include <crypto/sha.h>
  31#include <crypto/scatterwalk.h>
  32#include <crypto/algapi.h>
  33
  34#include <mach/crypto-ux500.h>
  35#include <mach/hardware.h>
  36
  37#include "hash_alg.h"
  38
  39#define DEV_DBG_NAME "hashX hashX:"
  40
  41static int hash_mode;
  42module_param(hash_mode, int, 0);
  43MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
  44
  45/**
  46 * Pre-calculated empty message digests.
  47 */
  48static u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
  49        0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
  50        0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
  51        0xaf, 0xd8, 0x07, 0x09
  52};
  53
  54static u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
  55        0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
  56        0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
  57        0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
  58        0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
  59};
  60
  61/* HMAC-SHA1, no key */
  62static u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
  63        0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
  64        0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
  65        0x70, 0x69, 0x0e, 0x1d
  66};
  67
  68/* HMAC-SHA256, no key */
  69static u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
  70        0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
  71        0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
  72        0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
  73        0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
  74};
  75
  76/**
  77 * struct hash_driver_data - data specific to the driver.
  78 *
  79 * @device_list:        A list of registered devices to choose from.
  80 * @device_allocation:  A semaphore initialized with number of devices.
  81 */
  82struct hash_driver_data {
  83        struct klist            device_list;
  84        struct semaphore        device_allocation;
  85};
  86
  87static struct hash_driver_data  driver_data;
  88
  89/* Declaration of functions */
  90/**
  91 * hash_messagepad - Pads a message and write the nblw bits.
  92 * @device_data:        Structure for the hash device.
  93 * @message:            Last word of a message
  94 * @index_bytes:        The number of bytes in the last message
  95 *
  96 * This function manages the final part of the digest calculation, when less
  97 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
  98 *
  99 */
 100static void hash_messagepad(struct hash_device_data *device_data,
 101                const u32 *message, u8 index_bytes);
 102
 103/**
 104 * release_hash_device - Releases a previously allocated hash device.
 105 * @device_data:        Structure for the hash device.
 106 *
 107 */
 108static void release_hash_device(struct hash_device_data *device_data)
 109{
 110        spin_lock(&device_data->ctx_lock);
 111        device_data->current_ctx->device = NULL;
 112        device_data->current_ctx = NULL;
 113        spin_unlock(&device_data->ctx_lock);
 114
 115        /*
 116         * The down_interruptible part for this semaphore is called in
 117         * cryp_get_device_data.
 118         */
 119        up(&driver_data.device_allocation);
 120}
 121
 122static void hash_dma_setup_channel(struct hash_device_data *device_data,
 123                                struct device *dev)
 124{
 125        struct hash_platform_data *platform_data = dev->platform_data;
 126        dma_cap_zero(device_data->dma.mask);
 127        dma_cap_set(DMA_SLAVE, device_data->dma.mask);
 128
 129        device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
 130        device_data->dma.chan_mem2hash =
 131                dma_request_channel(device_data->dma.mask,
 132                                platform_data->dma_filter,
 133                                device_data->dma.cfg_mem2hash);
 134
 135        init_completion(&device_data->dma.complete);
 136}
 137
 138static void hash_dma_callback(void *data)
 139{
 140        struct hash_ctx *ctx = (struct hash_ctx *) data;
 141
 142        complete(&ctx->device->dma.complete);
 143}
 144
 145static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
 146                int len, enum dma_data_direction direction)
 147{
 148        struct dma_async_tx_descriptor *desc = NULL;
 149        struct dma_chan *channel = NULL;
 150        dma_cookie_t cookie;
 151
 152        if (direction != DMA_TO_DEVICE) {
 153                dev_err(ctx->device->dev, "[%s] Invalid DMA direction",
 154                                __func__);
 155                return -EFAULT;
 156        }
 157
 158        sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
 159
 160        channel = ctx->device->dma.chan_mem2hash;
 161        ctx->device->dma.sg = sg;
 162        ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
 163                        ctx->device->dma.sg, ctx->device->dma.nents,
 164                        direction);
 165
 166        if (!ctx->device->dma.sg_len) {
 167                dev_err(ctx->device->dev,
 168                                "[%s]: Could not map the sg list (TO_DEVICE)",
 169                                __func__);
 170                return -EFAULT;
 171        }
 172
 173        dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
 174                        "(TO_DEVICE)", __func__);
 175        desc = channel->device->device_prep_slave_sg(channel,
 176                        ctx->device->dma.sg, ctx->device->dma.sg_len,
 177                        direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
 178        if (!desc) {
 179                dev_err(ctx->device->dev,
 180                        "[%s]: device_prep_slave_sg() failed!", __func__);
 181                return -EFAULT;
 182        }
 183
 184        desc->callback = hash_dma_callback;
 185        desc->callback_param = ctx;
 186
 187        cookie = desc->tx_submit(desc);
 188        dma_async_issue_pending(channel);
 189
 190        return 0;
 191}
 192
 193static void hash_dma_done(struct hash_ctx *ctx)
 194{
 195        struct dma_chan *chan;
 196
 197        chan = ctx->device->dma.chan_mem2hash;
 198        chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
 199        dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
 200                        ctx->device->dma.sg_len, DMA_TO_DEVICE);
 201
 202}
 203
 204static int hash_dma_write(struct hash_ctx *ctx,
 205                struct scatterlist *sg, int len)
 206{
 207        int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
 208        if (error) {
 209                dev_dbg(ctx->device->dev, "[%s]: hash_set_dma_transfer() "
 210                        "failed", __func__);
 211                return error;
 212        }
 213
 214        return len;
 215}
 216
 217/**
 218 * get_empty_message_digest - Returns a pre-calculated digest for
 219 * the empty message.
 220 * @device_data:        Structure for the hash device.
 221 * @zero_hash:          Buffer to return the empty message digest.
 222 * @zero_hash_size:     Hash size of the empty message digest.
 223 * @zero_digest:        True if zero_digest returned.
 224 */
 225static int get_empty_message_digest(
 226                struct hash_device_data *device_data,
 227                u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
 228{
 229        int ret = 0;
 230        struct hash_ctx *ctx = device_data->current_ctx;
 231        *zero_digest = false;
 232
 233        /**
 234         * Caller responsible for ctx != NULL.
 235         */
 236
 237        if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
 238                if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 239                        memcpy(zero_hash, &zero_message_hash_sha1[0],
 240                                        SHA1_DIGEST_SIZE);
 241                        *zero_hash_size = SHA1_DIGEST_SIZE;
 242                        *zero_digest = true;
 243                } else if (HASH_ALGO_SHA256 ==
 244                                ctx->config.algorithm) {
 245                        memcpy(zero_hash, &zero_message_hash_sha256[0],
 246                                        SHA256_DIGEST_SIZE);
 247                        *zero_hash_size = SHA256_DIGEST_SIZE;
 248                        *zero_digest = true;
 249                } else {
 250                        dev_err(device_data->dev, "[%s] "
 251                                        "Incorrect algorithm!"
 252                                        , __func__);
 253                        ret = -EINVAL;
 254                        goto out;
 255                }
 256        } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
 257                if (!ctx->keylen) {
 258                        if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 259                                memcpy(zero_hash, &zero_message_hmac_sha1[0],
 260                                                SHA1_DIGEST_SIZE);
 261                                *zero_hash_size = SHA1_DIGEST_SIZE;
 262                                *zero_digest = true;
 263                        } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
 264                                memcpy(zero_hash, &zero_message_hmac_sha256[0],
 265                                                SHA256_DIGEST_SIZE);
 266                                *zero_hash_size = SHA256_DIGEST_SIZE;
 267                                *zero_digest = true;
 268                        } else {
 269                                dev_err(device_data->dev, "[%s] "
 270                                                "Incorrect algorithm!"
 271                                                , __func__);
 272                                ret = -EINVAL;
 273                                goto out;
 274                        }
 275                } else {
 276                        dev_dbg(device_data->dev, "[%s] Continue hash "
 277                                        "calculation, since hmac key avalable",
 278                                        __func__);
 279                }
 280        }
 281out:
 282
 283        return ret;
 284}
 285
 286/**
 287 * hash_disable_power - Request to disable power and clock.
 288 * @device_data:        Structure for the hash device.
 289 * @save_device_state:  If true, saves the current hw state.
 290 *
 291 * This function request for disabling power (regulator) and clock,
 292 * and could also save current hw state.
 293 */
 294static int hash_disable_power(
 295                struct hash_device_data *device_data,
 296                bool                    save_device_state)
 297{
 298        int ret = 0;
 299        struct device *dev = device_data->dev;
 300
 301        spin_lock(&device_data->power_state_lock);
 302        if (!device_data->power_state)
 303                goto out;
 304
 305        if (save_device_state) {
 306                hash_save_state(device_data,
 307                                &device_data->state);
 308                device_data->restore_dev_state = true;
 309        }
 310
 311        clk_disable(device_data->clk);
 312        ret = regulator_disable(device_data->regulator);
 313        if (ret)
 314                dev_err(dev, "[%s] regulator_disable() failed!", __func__);
 315
 316        device_data->power_state = false;
 317
 318out:
 319        spin_unlock(&device_data->power_state_lock);
 320
 321        return ret;
 322}
 323
 324/**
 325 * hash_enable_power - Request to enable power and clock.
 326 * @device_data:                Structure for the hash device.
 327 * @restore_device_state:       If true, restores a previous saved hw state.
 328 *
 329 * This function request for enabling power (regulator) and clock,
 330 * and could also restore a previously saved hw state.
 331 */
 332static int hash_enable_power(
 333                struct hash_device_data *device_data,
 334                bool                    restore_device_state)
 335{
 336        int ret = 0;
 337        struct device *dev = device_data->dev;
 338
 339        spin_lock(&device_data->power_state_lock);
 340        if (!device_data->power_state) {
 341                ret = regulator_enable(device_data->regulator);
 342                if (ret) {
 343                        dev_err(dev, "[%s]: regulator_enable() failed!",
 344                                        __func__);
 345                        goto out;
 346                }
 347                ret = clk_enable(device_data->clk);
 348                if (ret) {
 349                        dev_err(dev, "[%s]: clk_enable() failed!",
 350                                        __func__);
 351                        ret = regulator_disable(
 352                                        device_data->regulator);
 353                        goto out;
 354                }
 355                device_data->power_state = true;
 356        }
 357
 358        if (device_data->restore_dev_state) {
 359                if (restore_device_state) {
 360                        device_data->restore_dev_state = false;
 361                        hash_resume_state(device_data,
 362                                &device_data->state);
 363                }
 364        }
 365out:
 366        spin_unlock(&device_data->power_state_lock);
 367
 368        return ret;
 369}
 370
 371/**
 372 * hash_get_device_data - Checks for an available hash device and return it.
 373 * @hash_ctx:           Structure for the hash context.
 374 * @device_data:        Structure for the hash device.
 375 *
 376 * This function check for an available hash device and return it to
 377 * the caller.
 378 * Note! Caller need to release the device, calling up().
 379 */
 380static int hash_get_device_data(struct hash_ctx *ctx,
 381                                struct hash_device_data **device_data)
 382{
 383        int                     ret;
 384        struct klist_iter       device_iterator;
 385        struct klist_node       *device_node;
 386        struct hash_device_data *local_device_data = NULL;
 387
 388        /* Wait until a device is available */
 389        ret = down_interruptible(&driver_data.device_allocation);
 390        if (ret)
 391                return ret;  /* Interrupted */
 392
 393        /* Select a device */
 394        klist_iter_init(&driver_data.device_list, &device_iterator);
 395        device_node = klist_next(&device_iterator);
 396        while (device_node) {
 397                local_device_data = container_of(device_node,
 398                                           struct hash_device_data, list_node);
 399                spin_lock(&local_device_data->ctx_lock);
 400                /* current_ctx allocates a device, NULL = unallocated */
 401                if (local_device_data->current_ctx) {
 402                        device_node = klist_next(&device_iterator);
 403                } else {
 404                        local_device_data->current_ctx = ctx;
 405                        ctx->device = local_device_data;
 406                        spin_unlock(&local_device_data->ctx_lock);
 407                        break;
 408                }
 409                spin_unlock(&local_device_data->ctx_lock);
 410        }
 411        klist_iter_exit(&device_iterator);
 412
 413        if (!device_node) {
 414                /**
 415                 * No free device found.
 416                 * Since we allocated a device with down_interruptible, this
 417                 * should not be able to happen.
 418                 * Number of available devices, which are contained in
 419                 * device_allocation, is therefore decremented by not doing
 420                 * an up(device_allocation).
 421                 */
 422                return -EBUSY;
 423        }
 424
 425        *device_data = local_device_data;
 426
 427        return 0;
 428}
 429
 430/**
 431 * hash_hw_write_key - Writes the key to the hardware registries.
 432 *
 433 * @device_data:        Structure for the hash device.
 434 * @key:                Key to be written.
 435 * @keylen:             The lengt of the key.
 436 *
 437 * Note! This function DOES NOT write to the NBLW registry, even though
 438 * specified in the the hw design spec. Either due to incorrect info in the
 439 * spec or due to a bug in the hw.
 440 */
 441static void hash_hw_write_key(struct hash_device_data *device_data,
 442                const u8 *key, unsigned int keylen)
 443{
 444        u32 word = 0;
 445        int nwords = 1;
 446
 447        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 448
 449        while (keylen >= 4) {
 450                u32 *key_word = (u32 *)key;
 451
 452                HASH_SET_DIN(key_word, nwords);
 453                keylen -= 4;
 454                key += 4;
 455        }
 456
 457        /* Take care of the remaining bytes in the last word */
 458        if (keylen) {
 459                word = 0;
 460                while (keylen) {
 461                        word |= (key[keylen - 1] << (8 * (keylen - 1)));
 462                        keylen--;
 463                }
 464
 465                HASH_SET_DIN(&word, nwords);
 466        }
 467
 468        while (device_data->base->str & HASH_STR_DCAL_MASK)
 469                cpu_relax();
 470
 471        HASH_SET_DCAL;
 472
 473        while (device_data->base->str & HASH_STR_DCAL_MASK)
 474                cpu_relax();
 475}
 476
 477/**
 478 * init_hash_hw - Initialise the hash hardware for a new calculation.
 479 * @device_data:        Structure for the hash device.
 480 * @ctx:                The hash context.
 481 *
 482 * This function will enable the bits needed to clear and start a new
 483 * calculation.
 484 */
 485static int init_hash_hw(struct hash_device_data *device_data,
 486                struct hash_ctx *ctx)
 487{
 488        int ret = 0;
 489
 490        ret = hash_setconfiguration(device_data, &ctx->config);
 491        if (ret) {
 492                dev_err(device_data->dev, "[%s] hash_setconfiguration() "
 493                                "failed!", __func__);
 494                return ret;
 495        }
 496
 497        hash_begin(device_data, ctx);
 498
 499        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 500                hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 501
 502        return ret;
 503}
 504
 505/**
 506 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
 507 *
 508 * @sg:         Scatterlist.
 509 * @size:       Size in bytes.
 510 * @aligned:    True if sg data aligned to work in DMA mode.
 511 *
 512 */
 513static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
 514{
 515        int nents = 0;
 516        bool aligned_data = true;
 517
 518        while (size > 0 && sg) {
 519                nents++;
 520                size -= sg->length;
 521
 522                /* hash_set_dma_transfer will align last nent */
 523                if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE))
 524                        || (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) &&
 525                                size > 0))
 526                        aligned_data = false;
 527
 528                sg = sg_next(sg);
 529        }
 530
 531        if (aligned)
 532                *aligned = aligned_data;
 533
 534        if (size != 0)
 535                return -EFAULT;
 536
 537        return nents;
 538}
 539
 540/**
 541 * hash_dma_valid_data - checks for dma valid sg data.
 542 * @sg:         Scatterlist.
 543 * @datasize:   Datasize in bytes.
 544 *
 545 * NOTE! This function checks for dma valid sg data, since dma
 546 * only accept datasizes of even wordsize.
 547 */
 548static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
 549{
 550        bool aligned;
 551
 552        /* Need to include at least one nent, else error */
 553        if (hash_get_nents(sg, datasize, &aligned) < 1)
 554                return false;
 555
 556        return aligned;
 557}
 558
 559/**
 560 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
 561 * @req: The hash request for the job.
 562 *
 563 * Initialize structures.
 564 */
 565static int hash_init(struct ahash_request *req)
 566{
 567        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 568        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 569        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 570
 571        if (!ctx->key)
 572                ctx->keylen = 0;
 573
 574        memset(&req_ctx->state, 0, sizeof(struct hash_state));
 575        req_ctx->updated = 0;
 576        if (hash_mode == HASH_MODE_DMA) {
 577                if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
 578                        req_ctx->dma_mode = false; /* Don't use DMA */
 579
 580                        pr_debug(DEV_DBG_NAME " [%s] DMA mode, but direct "
 581                                        "to CPU mode for data size < %d",
 582                                        __func__, HASH_DMA_ALIGN_SIZE);
 583                } else {
 584                        if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
 585                                        hash_dma_valid_data(req->src,
 586                                                req->nbytes)) {
 587                                req_ctx->dma_mode = true;
 588                        } else {
 589                                req_ctx->dma_mode = false;
 590                                pr_debug(DEV_DBG_NAME " [%s] DMA mode, but use"
 591                                                " CPU mode for datalength < %d"
 592                                                " or non-aligned data, except "
 593                                                "in last nent", __func__,
 594                                                HASH_DMA_PERFORMANCE_MIN_SIZE);
 595                        }
 596                }
 597        }
 598        return 0;
 599}
 600
 601/**
 602 * hash_processblock - This function processes a single block of 512 bits (64
 603 *                     bytes), word aligned, starting at message.
 604 * @device_data:        Structure for the hash device.
 605 * @message:            Block (512 bits) of message to be written to
 606 *                      the HASH hardware.
 607 *
 608 */
 609static void hash_processblock(
 610                struct hash_device_data *device_data,
 611                const u32 *message, int length)
 612{
 613        int len = length / HASH_BYTES_PER_WORD;
 614        /*
 615         * NBLW bits. Reset the number of bits in last word (NBLW).
 616         */
 617        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 618
 619        /*
 620         * Write message data to the HASH_DIN register.
 621         */
 622        HASH_SET_DIN(message, len);
 623}
 624
 625/**
 626 * hash_messagepad - Pads a message and write the nblw bits.
 627 * @device_data:        Structure for the hash device.
 628 * @message:            Last word of a message.
 629 * @index_bytes:        The number of bytes in the last message.
 630 *
 631 * This function manages the final part of the digest calculation, when less
 632 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
 633 *
 634 */
 635static void hash_messagepad(struct hash_device_data *device_data,
 636                const u32 *message, u8 index_bytes)
 637{
 638        int nwords = 1;
 639
 640        /*
 641         * Clear hash str register, only clear NBLW
 642         * since DCAL will be reset by hardware.
 643         */
 644        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 645
 646        /* Main loop */
 647        while (index_bytes >= 4) {
 648                HASH_SET_DIN(message, nwords);
 649                index_bytes -= 4;
 650                message++;
 651        }
 652
 653        if (index_bytes)
 654                HASH_SET_DIN(message, nwords);
 655
 656        while (device_data->base->str & HASH_STR_DCAL_MASK)
 657                cpu_relax();
 658
 659        /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
 660        HASH_SET_NBLW(index_bytes * 8);
 661        dev_dbg(device_data->dev, "[%s] DIN=0x%08x NBLW=%d", __func__,
 662                        readl_relaxed(&device_data->base->din),
 663                        (int)(readl_relaxed(&device_data->base->str) &
 664                                HASH_STR_NBLW_MASK));
 665        HASH_SET_DCAL;
 666        dev_dbg(device_data->dev, "[%s] after dcal -> DIN=0x%08x NBLW=%d",
 667                        __func__, readl_relaxed(&device_data->base->din),
 668                        (int)(readl_relaxed(&device_data->base->str) &
 669                                HASH_STR_NBLW_MASK));
 670
 671        while (device_data->base->str & HASH_STR_DCAL_MASK)
 672                cpu_relax();
 673}
 674
 675/**
 676 * hash_incrementlength - Increments the length of the current message.
 677 * @ctx: Hash context
 678 * @incr: Length of message processed already
 679 *
 680 * Overflow cannot occur, because conditions for overflow are checked in
 681 * hash_hw_update.
 682 */
 683static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
 684{
 685        ctx->state.length.low_word += incr;
 686
 687        /* Check for wrap-around */
 688        if (ctx->state.length.low_word < incr)
 689                ctx->state.length.high_word++;
 690}
 691
 692/**
 693 * hash_setconfiguration - Sets the required configuration for the hash
 694 *                         hardware.
 695 * @device_data:        Structure for the hash device.
 696 * @config:             Pointer to a configuration structure.
 697 */
 698int hash_setconfiguration(struct hash_device_data *device_data,
 699                struct hash_config *config)
 700{
 701        int ret = 0;
 702
 703        if (config->algorithm != HASH_ALGO_SHA1 &&
 704            config->algorithm != HASH_ALGO_SHA256)
 705                return -EPERM;
 706
 707        /*
 708         * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
 709         * to be written to HASH_DIN is considered as 32 bits.
 710         */
 711        HASH_SET_DATA_FORMAT(config->data_format);
 712
 713        /*
 714         * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
 715         */
 716        switch (config->algorithm) {
 717        case HASH_ALGO_SHA1:
 718                HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 719                break;
 720
 721        case HASH_ALGO_SHA256:
 722                HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 723                break;
 724
 725        default:
 726                dev_err(device_data->dev, "[%s] Incorrect algorithm.",
 727                                __func__);
 728                return -EPERM;
 729        }
 730
 731        /*
 732         * MODE bit. This bit selects between HASH or HMAC mode for the
 733         * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
 734         */
 735        if (HASH_OPER_MODE_HASH == config->oper_mode)
 736                HASH_CLEAR_BITS(&device_data->base->cr,
 737                                HASH_CR_MODE_MASK);
 738        else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
 739                HASH_SET_BITS(&device_data->base->cr,
 740                                HASH_CR_MODE_MASK);
 741                if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
 742                        /* Truncate key to blocksize */
 743                        dev_dbg(device_data->dev, "[%s] LKEY set", __func__);
 744                        HASH_SET_BITS(&device_data->base->cr,
 745                                        HASH_CR_LKEY_MASK);
 746                } else {
 747                        dev_dbg(device_data->dev, "[%s] LKEY cleared",
 748                                        __func__);
 749                        HASH_CLEAR_BITS(&device_data->base->cr,
 750                                        HASH_CR_LKEY_MASK);
 751                }
 752        } else {        /* Wrong hash mode */
 753                ret = -EPERM;
 754                dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
 755                                __func__);
 756        }
 757        return ret;
 758}
 759
 760/**
 761 * hash_begin - This routine resets some globals and initializes the hash
 762 *              hardware.
 763 * @device_data:        Structure for the hash device.
 764 * @ctx:                Hash context.
 765 */
 766void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
 767{
 768        /* HW and SW initializations */
 769        /* Note: there is no need to initialize buffer and digest members */
 770
 771        while (device_data->base->str & HASH_STR_DCAL_MASK)
 772                cpu_relax();
 773
 774        /*
 775         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
 776         * prepare the initialize the HASH accelerator to compute the message
 777         * digest of a new message.
 778         */
 779        HASH_INITIALIZE;
 780
 781        /*
 782         * NBLW bits. Reset the number of bits in last word (NBLW).
 783         */
 784        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 785}
 786
 787int hash_process_data(
 788                struct hash_device_data *device_data,
 789                struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
 790                int msg_length, u8 *data_buffer, u8 *buffer, u8 *index)
 791{
 792        int ret = 0;
 793        u32 count;
 794
 795        do {
 796                if ((*index + msg_length) < HASH_BLOCK_SIZE) {
 797                        for (count = 0; count < msg_length; count++) {
 798                                buffer[*index + count] =
 799                                        *(data_buffer + count);
 800                        }
 801                        *index += msg_length;
 802                        msg_length = 0;
 803                } else {
 804                        if (req_ctx->updated) {
 805
 806                                ret = hash_resume_state(device_data,
 807                                                &device_data->state);
 808                                memmove(req_ctx->state.buffer,
 809                                                device_data->state.buffer,
 810                                                HASH_BLOCK_SIZE / sizeof(u32));
 811                                if (ret) {
 812                                        dev_err(device_data->dev, "[%s] "
 813                                                        "hash_resume_state()"
 814                                                        " failed!", __func__);
 815                                        goto out;
 816                                }
 817                        } else {
 818                                ret = init_hash_hw(device_data, ctx);
 819                                if (ret) {
 820                                        dev_err(device_data->dev, "[%s] "
 821                                                        "init_hash_hw()"
 822                                                        " failed!", __func__);
 823                                        goto out;
 824                                }
 825                                req_ctx->updated = 1;
 826                        }
 827                        /*
 828                         * If 'data_buffer' is four byte aligned and
 829                         * local buffer does not have any data, we can
 830                         * write data directly from 'data_buffer' to
 831                         * HW peripheral, otherwise we first copy data
 832                         * to a local buffer
 833                         */
 834                        if ((0 == (((u32)data_buffer) % 4))
 835                                        && (0 == *index))
 836                                hash_processblock(device_data,
 837                                                (const u32 *)
 838                                                data_buffer, HASH_BLOCK_SIZE);
 839                        else {
 840                                for (count = 0; count <
 841                                                (u32)(HASH_BLOCK_SIZE -
 842                                                        *index);
 843                                                count++) {
 844                                        buffer[*index + count] =
 845                                                *(data_buffer + count);
 846                                }
 847                                hash_processblock(device_data,
 848                                                (const u32 *)buffer,
 849                                                HASH_BLOCK_SIZE);
 850                        }
 851                        hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
 852                        data_buffer += (HASH_BLOCK_SIZE - *index);
 853
 854                        msg_length -= (HASH_BLOCK_SIZE - *index);
 855                        *index = 0;
 856
 857                        ret = hash_save_state(device_data,
 858                                        &device_data->state);
 859
 860                        memmove(device_data->state.buffer,
 861                                        req_ctx->state.buffer,
 862                                        HASH_BLOCK_SIZE / sizeof(u32));
 863                        if (ret) {
 864                                dev_err(device_data->dev, "[%s] "
 865                                                "hash_save_state()"
 866                                                " failed!", __func__);
 867                                goto out;
 868                        }
 869                }
 870        } while (msg_length != 0);
 871out:
 872
 873        return ret;
 874}
 875
 876/**
 877 * hash_dma_final - The hash dma final function for SHA1/SHA256.
 878 * @req:        The hash request for the job.
 879 */
 880static int hash_dma_final(struct ahash_request *req)
 881{
 882        int ret = 0;
 883        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 884        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 885        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 886        struct hash_device_data *device_data;
 887        u8 digest[SHA256_DIGEST_SIZE];
 888        int bytes_written = 0;
 889
 890        ret = hash_get_device_data(ctx, &device_data);
 891        if (ret)
 892                return ret;
 893
 894        dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
 895
 896        if (req_ctx->updated) {
 897                ret = hash_resume_state(device_data, &device_data->state);
 898
 899                if (ret) {
 900                        dev_err(device_data->dev, "[%s] hash_resume_state() "
 901                                        "failed!", __func__);
 902                        goto out;
 903                }
 904
 905        }
 906
 907        if (!req_ctx->updated) {
 908                ret = hash_setconfiguration(device_data, &ctx->config);
 909                if (ret) {
 910                        dev_err(device_data->dev, "[%s] "
 911                                        "hash_setconfiguration() failed!",
 912                                        __func__);
 913                        goto out;
 914                }
 915
 916                /* Enable DMA input */
 917                if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
 918                        HASH_CLEAR_BITS(&device_data->base->cr,
 919                                        HASH_CR_DMAE_MASK);
 920                } else {
 921                        HASH_SET_BITS(&device_data->base->cr,
 922                                        HASH_CR_DMAE_MASK);
 923                        HASH_SET_BITS(&device_data->base->cr,
 924                                        HASH_CR_PRIVN_MASK);
 925                }
 926
 927                HASH_INITIALIZE;
 928
 929                if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 930                        hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 931
 932                /* Number of bits in last word = (nbytes * 8) % 32 */
 933                HASH_SET_NBLW((req->nbytes * 8) % 32);
 934                req_ctx->updated = 1;
 935        }
 936
 937        /* Store the nents in the dma struct. */
 938        ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
 939        if (!ctx->device->dma.nents) {
 940                dev_err(device_data->dev, "[%s] "
 941                                "ctx->device->dma.nents = 0", __func__);
 942                goto out;
 943        }
 944
 945        bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
 946        if (bytes_written != req->nbytes) {
 947                dev_err(device_data->dev, "[%s] "
 948                                "hash_dma_write() failed!", __func__);
 949                goto out;
 950        }
 951
 952        wait_for_completion(&ctx->device->dma.complete);
 953        hash_dma_done(ctx);
 954
 955        while (device_data->base->str & HASH_STR_DCAL_MASK)
 956                cpu_relax();
 957
 958        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
 959                unsigned int keylen = ctx->keylen;
 960                u8 *key = ctx->key;
 961
 962                dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
 963                                ctx->keylen);
 964                hash_hw_write_key(device_data, key, keylen);
 965        }
 966
 967        hash_get_digest(device_data, digest, ctx->config.algorithm);
 968        memcpy(req->result, digest, ctx->digestsize);
 969
 970out:
 971        release_hash_device(device_data);
 972
 973        /**
 974         * Allocated in setkey, and only used in HMAC.
 975         */
 976        kfree(ctx->key);
 977
 978        return ret;
 979}
 980
 981/**
 982 * hash_hw_final - The final hash calculation function
 983 * @req:        The hash request for the job.
 984 */
 985int hash_hw_final(struct ahash_request *req)
 986{
 987        int ret = 0;
 988        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 989        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 990        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 991        struct hash_device_data *device_data;
 992        u8 digest[SHA256_DIGEST_SIZE];
 993
 994        ret = hash_get_device_data(ctx, &device_data);
 995        if (ret)
 996                return ret;
 997
 998        dev_dbg(device_data->dev, "[%s] (ctx=0x%x)!", __func__, (u32) ctx);
 999
1000        if (req_ctx->updated) {
1001                ret = hash_resume_state(device_data, &device_data->state);
1002
1003                if (ret) {
1004                        dev_err(device_data->dev, "[%s] hash_resume_state() "
1005                                        "failed!", __func__);
1006                        goto out;
1007                }
1008        } else if (req->nbytes == 0 && ctx->keylen == 0) {
1009                u8 zero_hash[SHA256_DIGEST_SIZE];
1010                u32 zero_hash_size = 0;
1011                bool zero_digest = false;
1012                /**
1013                 * Use a pre-calculated empty message digest
1014                 * (workaround since hw return zeroes, hw bug!?)
1015                 */
1016                ret = get_empty_message_digest(device_data, &zero_hash[0],
1017                                &zero_hash_size, &zero_digest);
1018                if (!ret && likely(zero_hash_size == ctx->digestsize) &&
1019                                zero_digest) {
1020                        memcpy(req->result, &zero_hash[0], ctx->digestsize);
1021                        goto out;
1022                } else if (!ret && !zero_digest) {
1023                        dev_dbg(device_data->dev, "[%s] HMAC zero msg with "
1024                                        "key, continue...", __func__);
1025                } else {
1026                        dev_err(device_data->dev, "[%s] ret=%d, or wrong "
1027                                        "digest size? %s", __func__, ret,
1028                                        (zero_hash_size == ctx->digestsize) ?
1029                                        "true" : "false");
1030                        /* Return error */
1031                        goto out;
1032                }
1033        } else if (req->nbytes == 0 && ctx->keylen > 0) {
1034                dev_err(device_data->dev, "[%s] Empty message with "
1035                                "keylength > 0, NOT supported.", __func__);
1036                goto out;
1037        }
1038
1039        if (!req_ctx->updated) {
1040                ret = init_hash_hw(device_data, ctx);
1041                if (ret) {
1042                        dev_err(device_data->dev, "[%s] init_hash_hw() "
1043                                        "failed!", __func__);
1044                        goto out;
1045                }
1046        }
1047
1048        if (req_ctx->state.index) {
1049                hash_messagepad(device_data, req_ctx->state.buffer,
1050                                req_ctx->state.index);
1051        } else {
1052                HASH_SET_DCAL;
1053                while (device_data->base->str & HASH_STR_DCAL_MASK)
1054                        cpu_relax();
1055        }
1056
1057        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1058                unsigned int keylen = ctx->keylen;
1059                u8 *key = ctx->key;
1060
1061                dev_dbg(device_data->dev, "[%s] keylen: %d", __func__,
1062                                ctx->keylen);
1063                hash_hw_write_key(device_data, key, keylen);
1064        }
1065
1066        hash_get_digest(device_data, digest, ctx->config.algorithm);
1067        memcpy(req->result, digest, ctx->digestsize);
1068
1069out:
1070        release_hash_device(device_data);
1071
1072        /**
1073         * Allocated in setkey, and only used in HMAC.
1074         */
1075        kfree(ctx->key);
1076
1077        return ret;
1078}
1079
1080/**
1081 * hash_hw_update - Updates current HASH computation hashing another part of
1082 *                  the message.
1083 * @req:        Byte array containing the message to be hashed (caller
1084 *              allocated).
1085 */
1086int hash_hw_update(struct ahash_request *req)
1087{
1088        int ret = 0;
1089        u8 index = 0;
1090        u8 *buffer;
1091        struct hash_device_data *device_data;
1092        u8 *data_buffer;
1093        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1094        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1095        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1096        struct crypto_hash_walk walk;
1097        int msg_length = crypto_hash_walk_first(req, &walk);
1098
1099        /* Empty message ("") is correct indata */
1100        if (msg_length == 0)
1101                return ret;
1102
1103        index = req_ctx->state.index;
1104        buffer = (u8 *)req_ctx->state.buffer;
1105
1106        /* Check if ctx->state.length + msg_length
1107           overflows */
1108        if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1109                        HASH_HIGH_WORD_MAX_VAL ==
1110                        req_ctx->state.length.high_word) {
1111                pr_err(DEV_DBG_NAME " [%s] HASH_MSG_LENGTH_OVERFLOW!",
1112                                __func__);
1113                return -EPERM;
1114        }
1115
1116        ret = hash_get_device_data(ctx, &device_data);
1117        if (ret)
1118                return ret;
1119
1120        /* Main loop */
1121        while (0 != msg_length) {
1122                data_buffer = walk.data;
1123                ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1124                                data_buffer, buffer, &index);
1125
1126                if (ret) {
1127                        dev_err(device_data->dev, "[%s] hash_internal_hw_"
1128                                        "update() failed!", __func__);
1129                        goto out;
1130                }
1131
1132                msg_length = crypto_hash_walk_done(&walk, 0);
1133        }
1134
1135        req_ctx->state.index = index;
1136        dev_dbg(device_data->dev, "[%s] indata length=%d, bin=%d))",
1137                        __func__, req_ctx->state.index,
1138                        req_ctx->state.bit_index);
1139
1140out:
1141        release_hash_device(device_data);
1142
1143        return ret;
1144}
1145
1146/**
1147 * hash_resume_state - Function that resumes the state of an calculation.
1148 * @device_data:        Pointer to the device structure.
1149 * @device_state:       The state to be restored in the hash hardware
1150 */
1151int hash_resume_state(struct hash_device_data *device_data,
1152                const struct hash_state *device_state)
1153{
1154        u32 temp_cr;
1155        s32 count;
1156        int hash_mode = HASH_OPER_MODE_HASH;
1157
1158        if (NULL == device_state) {
1159                dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1160                                __func__);
1161                return -EPERM;
1162        }
1163
1164        /* Check correctness of index and length members */
1165        if (device_state->index > HASH_BLOCK_SIZE
1166            || (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1167                dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1168                                __func__);
1169                return -EPERM;
1170        }
1171
1172        /*
1173         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1174         * prepare the initialize the HASH accelerator to compute the message
1175         * digest of a new message.
1176         */
1177        HASH_INITIALIZE;
1178
1179        temp_cr = device_state->temp_cr;
1180        writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1181
1182        if (device_data->base->cr & HASH_CR_MODE_MASK)
1183                hash_mode = HASH_OPER_MODE_HMAC;
1184        else
1185                hash_mode = HASH_OPER_MODE_HASH;
1186
1187        for (count = 0; count < HASH_CSR_COUNT; count++) {
1188                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1189                        break;
1190
1191                writel_relaxed(device_state->csr[count],
1192                                &device_data->base->csrx[count]);
1193        }
1194
1195        writel_relaxed(device_state->csfull, &device_data->base->csfull);
1196        writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1197
1198        writel_relaxed(device_state->str_reg, &device_data->base->str);
1199        writel_relaxed(temp_cr, &device_data->base->cr);
1200
1201        return 0;
1202}
1203
1204/**
1205 * hash_save_state - Function that saves the state of hardware.
1206 * @device_data:        Pointer to the device structure.
1207 * @device_state:       The strucure where the hardware state should be saved.
1208 */
1209int hash_save_state(struct hash_device_data *device_data,
1210                struct hash_state *device_state)
1211{
1212        u32 temp_cr;
1213        u32 count;
1214        int hash_mode = HASH_OPER_MODE_HASH;
1215
1216        if (NULL == device_state) {
1217                dev_err(device_data->dev, "[%s] HASH_INVALID_PARAMETER!",
1218                                __func__);
1219                return -ENOTSUPP;
1220        }
1221
1222        /* Write dummy value to force digest intermediate calculation. This
1223         * actually makes sure that there isn't any ongoing calculation in the
1224         * hardware.
1225         */
1226        while (device_data->base->str & HASH_STR_DCAL_MASK)
1227                cpu_relax();
1228
1229        temp_cr = readl_relaxed(&device_data->base->cr);
1230
1231        device_state->str_reg = readl_relaxed(&device_data->base->str);
1232
1233        device_state->din_reg = readl_relaxed(&device_data->base->din);
1234
1235        if (device_data->base->cr & HASH_CR_MODE_MASK)
1236                hash_mode = HASH_OPER_MODE_HMAC;
1237        else
1238                hash_mode = HASH_OPER_MODE_HASH;
1239
1240        for (count = 0; count < HASH_CSR_COUNT; count++) {
1241                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1242                        break;
1243
1244                device_state->csr[count] =
1245                        readl_relaxed(&device_data->base->csrx[count]);
1246        }
1247
1248        device_state->csfull = readl_relaxed(&device_data->base->csfull);
1249        device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1250
1251        device_state->temp_cr = temp_cr;
1252
1253        return 0;
1254}
1255
1256/**
1257 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1258 * @device_data:
1259 *
1260 */
1261int hash_check_hw(struct hash_device_data *device_data)
1262{
1263        /* Checking Peripheral Ids  */
1264        if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0)
1265                && HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1)
1266                && HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2)
1267                && HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3)
1268                && HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0)
1269                && HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1)
1270                && HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2)
1271                && HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)
1272           ) {
1273                return 0;
1274        }
1275
1276        dev_err(device_data->dev, "[%s] HASH_UNSUPPORTED_HW!",
1277                        __func__);
1278        return -ENOTSUPP;
1279}
1280
1281/**
1282 * hash_get_digest - Gets the digest.
1283 * @device_data:        Pointer to the device structure.
1284 * @digest:             User allocated byte array for the calculated digest.
1285 * @algorithm:          The algorithm in use.
1286 */
1287void hash_get_digest(struct hash_device_data *device_data,
1288                u8 *digest, int algorithm)
1289{
1290        u32 temp_hx_val, count;
1291        int loop_ctr;
1292
1293        if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1294                dev_err(device_data->dev, "[%s] Incorrect algorithm %d",
1295                                __func__, algorithm);
1296                return;
1297        }
1298
1299        if (algorithm == HASH_ALGO_SHA1)
1300                loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1301        else
1302                loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1303
1304        dev_dbg(device_data->dev, "[%s] digest array:(0x%x)",
1305                        __func__, (u32) digest);
1306
1307        /* Copy result into digest array */
1308        for (count = 0; count < loop_ctr; count++) {
1309                temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1310                digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1311                digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1312                digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1313                digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1314        }
1315}
1316
1317/**
1318 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1319 * @req: The hash request for the job.
1320 */
1321static int ahash_update(struct ahash_request *req)
1322{
1323        int ret = 0;
1324        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325
1326        if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1327                ret = hash_hw_update(req);
1328        /* Skip update for DMA, all data will be passed to DMA in final */
1329
1330        if (ret) {
1331                pr_err(DEV_DBG_NAME " [%s] hash_hw_update() failed!",
1332                                __func__);
1333        }
1334
1335        return ret;
1336}
1337
1338/**
1339 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1340 * @req:        The hash request for the job.
1341 */
1342static int ahash_final(struct ahash_request *req)
1343{
1344        int ret = 0;
1345        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1346
1347        pr_debug(DEV_DBG_NAME " [%s] data size: %d", __func__, req->nbytes);
1348
1349        if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1350                ret = hash_dma_final(req);
1351        else
1352                ret = hash_hw_final(req);
1353
1354        if (ret) {
1355                pr_err(DEV_DBG_NAME " [%s] hash_hw/dma_final() failed",
1356                                __func__);
1357        }
1358
1359        return ret;
1360}
1361
1362static int hash_setkey(struct crypto_ahash *tfm,
1363                const u8 *key, unsigned int keylen, int alg)
1364{
1365        int ret = 0;
1366        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1367
1368        /**
1369         * Freed in final.
1370         */
1371        ctx->key = kmalloc(keylen, GFP_KERNEL);
1372        if (!ctx->key) {
1373                pr_err(DEV_DBG_NAME " [%s] Failed to allocate ctx->key "
1374                       "for %d\n", __func__, alg);
1375                return -ENOMEM;
1376        }
1377
1378        memcpy(ctx->key, key, keylen);
1379        ctx->keylen = keylen;
1380
1381        return ret;
1382}
1383
1384static int ahash_sha1_init(struct ahash_request *req)
1385{
1386        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1387        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1388
1389        ctx->config.data_format = HASH_DATA_8_BITS;
1390        ctx->config.algorithm = HASH_ALGO_SHA1;
1391        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1392        ctx->digestsize = SHA1_DIGEST_SIZE;
1393
1394        return hash_init(req);
1395}
1396
1397static int ahash_sha256_init(struct ahash_request *req)
1398{
1399        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1400        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1401
1402        ctx->config.data_format = HASH_DATA_8_BITS;
1403        ctx->config.algorithm = HASH_ALGO_SHA256;
1404        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1405        ctx->digestsize = SHA256_DIGEST_SIZE;
1406
1407        return hash_init(req);
1408}
1409
1410static int ahash_sha1_digest(struct ahash_request *req)
1411{
1412        int ret2, ret1;
1413
1414        ret1 = ahash_sha1_init(req);
1415        if (ret1)
1416                goto out;
1417
1418        ret1 = ahash_update(req);
1419        ret2 = ahash_final(req);
1420
1421out:
1422        return ret1 ? ret1 : ret2;
1423}
1424
1425static int ahash_sha256_digest(struct ahash_request *req)
1426{
1427        int ret2, ret1;
1428
1429        ret1 = ahash_sha256_init(req);
1430        if (ret1)
1431                goto out;
1432
1433        ret1 = ahash_update(req);
1434        ret2 = ahash_final(req);
1435
1436out:
1437        return ret1 ? ret1 : ret2;
1438}
1439
1440static int hmac_sha1_init(struct ahash_request *req)
1441{
1442        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1443        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1444
1445        ctx->config.data_format = HASH_DATA_8_BITS;
1446        ctx->config.algorithm   = HASH_ALGO_SHA1;
1447        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1448        ctx->digestsize         = SHA1_DIGEST_SIZE;
1449
1450        return hash_init(req);
1451}
1452
1453static int hmac_sha256_init(struct ahash_request *req)
1454{
1455        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1456        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1457
1458        ctx->config.data_format = HASH_DATA_8_BITS;
1459        ctx->config.algorithm   = HASH_ALGO_SHA256;
1460        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1461        ctx->digestsize         = SHA256_DIGEST_SIZE;
1462
1463        return hash_init(req);
1464}
1465
1466static int hmac_sha1_digest(struct ahash_request *req)
1467{
1468        int ret2, ret1;
1469
1470        ret1 = hmac_sha1_init(req);
1471        if (ret1)
1472                goto out;
1473
1474        ret1 = ahash_update(req);
1475        ret2 = ahash_final(req);
1476
1477out:
1478        return ret1 ? ret1 : ret2;
1479}
1480
1481static int hmac_sha256_digest(struct ahash_request *req)
1482{
1483        int ret2, ret1;
1484
1485        ret1 = hmac_sha256_init(req);
1486        if (ret1)
1487                goto out;
1488
1489        ret1 = ahash_update(req);
1490        ret2 = ahash_final(req);
1491
1492out:
1493        return ret1 ? ret1 : ret2;
1494}
1495
1496static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1497                const u8 *key, unsigned int keylen)
1498{
1499        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1500}
1501
1502static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1503                const u8 *key, unsigned int keylen)
1504{
1505        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1506}
1507
1508struct hash_algo_template {
1509        struct hash_config conf;
1510        struct ahash_alg hash;
1511};
1512
1513static int hash_cra_init(struct crypto_tfm *tfm)
1514{
1515        struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1516        struct crypto_alg *alg = tfm->__crt_alg;
1517        struct hash_algo_template *hash_alg;
1518
1519        hash_alg = container_of(__crypto_ahash_alg(alg),
1520                        struct hash_algo_template,
1521                        hash);
1522
1523        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1524                        sizeof(struct hash_req_ctx));
1525
1526        ctx->config.data_format = HASH_DATA_8_BITS;
1527        ctx->config.algorithm = hash_alg->conf.algorithm;
1528        ctx->config.oper_mode = hash_alg->conf.oper_mode;
1529
1530        ctx->digestsize = hash_alg->hash.halg.digestsize;
1531
1532        return 0;
1533}
1534
1535static struct hash_algo_template hash_algs[] = {
1536        {
1537                        .conf.algorithm = HASH_ALGO_SHA1,
1538                        .conf.oper_mode = HASH_OPER_MODE_HASH,
1539                        .hash = {
1540                                .init = hash_init,
1541                                .update = ahash_update,
1542                                .final = ahash_final,
1543                                .digest = ahash_sha1_digest,
1544                                .halg.digestsize = SHA1_DIGEST_SIZE,
1545                                .halg.statesize = sizeof(struct hash_ctx),
1546                                .halg.base = {
1547                                        .cra_name = "sha1",
1548                                        .cra_driver_name = "sha1-ux500",
1549                                        .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1550                                                        CRYPTO_ALG_ASYNC,
1551                                        .cra_blocksize = SHA1_BLOCK_SIZE,
1552                                        .cra_ctxsize = sizeof(struct hash_ctx),
1553                                        .cra_init = hash_cra_init,
1554                                        .cra_module = THIS_MODULE,
1555                        }
1556                }
1557        },
1558        {
1559                        .conf.algorithm         = HASH_ALGO_SHA256,
1560                        .conf.oper_mode         = HASH_OPER_MODE_HASH,
1561                        .hash = {
1562                                .init = hash_init,
1563                                .update = ahash_update,
1564                                .final = ahash_final,
1565                                .digest = ahash_sha256_digest,
1566                                .halg.digestsize = SHA256_DIGEST_SIZE,
1567                                .halg.statesize = sizeof(struct hash_ctx),
1568                                .halg.base = {
1569                                        .cra_name = "sha256",
1570                                        .cra_driver_name = "sha256-ux500",
1571                                        .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1572                                                        CRYPTO_ALG_ASYNC,
1573                                        .cra_blocksize = SHA256_BLOCK_SIZE,
1574                                        .cra_ctxsize = sizeof(struct hash_ctx),
1575                                        .cra_type = &crypto_ahash_type,
1576                                        .cra_init = hash_cra_init,
1577                                        .cra_module = THIS_MODULE,
1578                                }
1579                        }
1580
1581        },
1582        {
1583                        .conf.algorithm         = HASH_ALGO_SHA1,
1584                        .conf.oper_mode         = HASH_OPER_MODE_HMAC,
1585                        .hash = {
1586                                .init = hash_init,
1587                                .update = ahash_update,
1588                                .final = ahash_final,
1589                                .digest = hmac_sha1_digest,
1590                                .setkey = hmac_sha1_setkey,
1591                                .halg.digestsize = SHA1_DIGEST_SIZE,
1592                                .halg.statesize = sizeof(struct hash_ctx),
1593                                .halg.base = {
1594                                        .cra_name = "hmac(sha1)",
1595                                        .cra_driver_name = "hmac-sha1-ux500",
1596                                        .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1597                                                        CRYPTO_ALG_ASYNC,
1598                                        .cra_blocksize = SHA1_BLOCK_SIZE,
1599                                        .cra_ctxsize = sizeof(struct hash_ctx),
1600                                        .cra_type = &crypto_ahash_type,
1601                                        .cra_init = hash_cra_init,
1602                                        .cra_module = THIS_MODULE,
1603                                }
1604                        }
1605        },
1606        {
1607                        .conf.algorithm         = HASH_ALGO_SHA256,
1608                        .conf.oper_mode         = HASH_OPER_MODE_HMAC,
1609                        .hash = {
1610                                .init = hash_init,
1611                                .update = ahash_update,
1612                                .final = ahash_final,
1613                                .digest = hmac_sha256_digest,
1614                                .setkey = hmac_sha256_setkey,
1615                                .halg.digestsize = SHA256_DIGEST_SIZE,
1616                                .halg.statesize = sizeof(struct hash_ctx),
1617                                .halg.base = {
1618                                        .cra_name = "hmac(sha256)",
1619                                        .cra_driver_name = "hmac-sha256-ux500",
1620                                        .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1621                                                        CRYPTO_ALG_ASYNC,
1622                                        .cra_blocksize = SHA256_BLOCK_SIZE,
1623                                        .cra_ctxsize = sizeof(struct hash_ctx),
1624                                        .cra_type = &crypto_ahash_type,
1625                                        .cra_init = hash_cra_init,
1626                                        .cra_module = THIS_MODULE,
1627                                }
1628                        }
1629        }
1630};
1631
1632/**
1633 * hash_algs_register_all -
1634 */
1635static int ahash_algs_register_all(struct hash_device_data *device_data)
1636{
1637        int ret;
1638        int i;
1639        int count;
1640
1641        for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1642                ret = crypto_register_ahash(&hash_algs[i].hash);
1643                if (ret) {
1644                        count = i;
1645                        dev_err(device_data->dev, "[%s] alg registration failed",
1646                                hash_algs[i].hash.halg.base.cra_driver_name);
1647                        goto unreg;
1648                }
1649        }
1650        return 0;
1651unreg:
1652        for (i = 0; i < count; i++)
1653                crypto_unregister_ahash(&hash_algs[i].hash);
1654        return ret;
1655}
1656
1657/**
1658 * hash_algs_unregister_all -
1659 */
1660static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1661{
1662        int i;
1663
1664        for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1665                crypto_unregister_ahash(&hash_algs[i].hash);
1666}
1667
1668/**
1669 * ux500_hash_probe - Function that probes the hash hardware.
1670 * @pdev: The platform device.
1671 */
1672static int ux500_hash_probe(struct platform_device *pdev)
1673{
1674        int                     ret = 0;
1675        struct resource         *res = NULL;
1676        struct hash_device_data *device_data;
1677        struct device           *dev = &pdev->dev;
1678
1679        device_data = kzalloc(sizeof(struct hash_device_data), GFP_ATOMIC);
1680        if (!device_data) {
1681                dev_dbg(dev, "[%s] kzalloc() failed!", __func__);
1682                ret = -ENOMEM;
1683                goto out;
1684        }
1685
1686        device_data->dev = dev;
1687        device_data->current_ctx = NULL;
1688
1689        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1690        if (!res) {
1691                dev_dbg(dev, "[%s] platform_get_resource() failed!", __func__);
1692                ret = -ENODEV;
1693                goto out_kfree;
1694        }
1695
1696        res = request_mem_region(res->start, resource_size(res), pdev->name);
1697        if (res == NULL) {
1698                dev_dbg(dev, "[%s] request_mem_region() failed!", __func__);
1699                ret = -EBUSY;
1700                goto out_kfree;
1701        }
1702
1703        device_data->base = ioremap(res->start, resource_size(res));
1704        if (!device_data->base) {
1705                dev_err(dev, "[%s] ioremap() failed!",
1706                                __func__);
1707                ret = -ENOMEM;
1708                goto out_free_mem;
1709        }
1710        spin_lock_init(&device_data->ctx_lock);
1711        spin_lock_init(&device_data->power_state_lock);
1712
1713        /* Enable power for HASH1 hardware block */
1714        device_data->regulator = regulator_get(dev, "v-ape");
1715        if (IS_ERR(device_data->regulator)) {
1716                dev_err(dev, "[%s] regulator_get() failed!", __func__);
1717                ret = PTR_ERR(device_data->regulator);
1718                device_data->regulator = NULL;
1719                goto out_unmap;
1720        }
1721
1722        /* Enable the clock for HASH1 hardware block */
1723        device_data->clk = clk_get(dev, NULL);
1724        if (IS_ERR(device_data->clk)) {
1725                dev_err(dev, "[%s] clk_get() failed!", __func__);
1726                ret = PTR_ERR(device_data->clk);
1727                goto out_regulator;
1728        }
1729
1730        /* Enable device power (and clock) */
1731        ret = hash_enable_power(device_data, false);
1732        if (ret) {
1733                dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1734                goto out_clk;
1735        }
1736
1737        ret = hash_check_hw(device_data);
1738        if (ret) {
1739                dev_err(dev, "[%s] hash_check_hw() failed!", __func__);
1740                goto out_power;
1741        }
1742
1743        if (hash_mode == HASH_MODE_DMA)
1744                hash_dma_setup_channel(device_data, dev);
1745
1746        platform_set_drvdata(pdev, device_data);
1747
1748        /* Put the new device into the device list... */
1749        klist_add_tail(&device_data->list_node, &driver_data.device_list);
1750        /* ... and signal that a new device is available. */
1751        up(&driver_data.device_allocation);
1752
1753        ret = ahash_algs_register_all(device_data);
1754        if (ret) {
1755                dev_err(dev, "[%s] ahash_algs_register_all() "
1756                                "failed!", __func__);
1757                goto out_power;
1758        }
1759
1760        dev_info(dev, "[%s] successfully probed\n", __func__);
1761        return 0;
1762
1763out_power:
1764        hash_disable_power(device_data, false);
1765
1766out_clk:
1767        clk_put(device_data->clk);
1768
1769out_regulator:
1770        regulator_put(device_data->regulator);
1771
1772out_unmap:
1773        iounmap(device_data->base);
1774
1775out_free_mem:
1776        release_mem_region(res->start, resource_size(res));
1777
1778out_kfree:
1779        kfree(device_data);
1780out:
1781        return ret;
1782}
1783
1784/**
1785 * ux500_hash_remove - Function that removes the hash device from the platform.
1786 * @pdev: The platform device.
1787 */
1788static int ux500_hash_remove(struct platform_device *pdev)
1789{
1790        struct resource         *res;
1791        struct hash_device_data *device_data;
1792        struct device           *dev = &pdev->dev;
1793
1794        device_data = platform_get_drvdata(pdev);
1795        if (!device_data) {
1796                dev_err(dev, "[%s]: platform_get_drvdata() failed!",
1797                        __func__);
1798                return -ENOMEM;
1799        }
1800
1801        /* Try to decrease the number of available devices. */
1802        if (down_trylock(&driver_data.device_allocation))
1803                return -EBUSY;
1804
1805        /* Check that the device is free */
1806        spin_lock(&device_data->ctx_lock);
1807        /* current_ctx allocates a device, NULL = unallocated */
1808        if (device_data->current_ctx) {
1809                /* The device is busy */
1810                spin_unlock(&device_data->ctx_lock);
1811                /* Return the device to the pool. */
1812                up(&driver_data.device_allocation);
1813                return -EBUSY;
1814        }
1815
1816        spin_unlock(&device_data->ctx_lock);
1817
1818        /* Remove the device from the list */
1819        if (klist_node_attached(&device_data->list_node))
1820                klist_remove(&device_data->list_node);
1821
1822        /* If this was the last device, remove the services */
1823        if (list_empty(&driver_data.device_list.k_list))
1824                ahash_algs_unregister_all(device_data);
1825
1826        if (hash_disable_power(device_data, false))
1827                dev_err(dev, "[%s]: hash_disable_power() failed",
1828                        __func__);
1829
1830        clk_put(device_data->clk);
1831        regulator_put(device_data->regulator);
1832
1833        iounmap(device_data->base);
1834
1835        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1836        if (res)
1837                release_mem_region(res->start, resource_size(res));
1838
1839        kfree(device_data);
1840
1841        return 0;
1842}
1843
1844/**
1845 * ux500_hash_shutdown - Function that shutdown the hash device.
1846 * @pdev: The platform device
1847 */
1848static void ux500_hash_shutdown(struct platform_device *pdev)
1849{
1850        struct resource *res = NULL;
1851        struct hash_device_data *device_data;
1852
1853        device_data = platform_get_drvdata(pdev);
1854        if (!device_data) {
1855                dev_err(&pdev->dev, "[%s] platform_get_drvdata() failed!",
1856                                __func__);
1857                return;
1858        }
1859
1860        /* Check that the device is free */
1861        spin_lock(&device_data->ctx_lock);
1862        /* current_ctx allocates a device, NULL = unallocated */
1863        if (!device_data->current_ctx) {
1864                if (down_trylock(&driver_data.device_allocation))
1865                        dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1866                                "Shutting down anyway...", __func__);
1867                /**
1868                 * (Allocate the device)
1869                 * Need to set this to non-null (dummy) value,
1870                 * to avoid usage if context switching.
1871                 */
1872                device_data->current_ctx++;
1873        }
1874        spin_unlock(&device_data->ctx_lock);
1875
1876        /* Remove the device from the list */
1877        if (klist_node_attached(&device_data->list_node))
1878                klist_remove(&device_data->list_node);
1879
1880        /* If this was the last device, remove the services */
1881        if (list_empty(&driver_data.device_list.k_list))
1882                ahash_algs_unregister_all(device_data);
1883
1884        iounmap(device_data->base);
1885
1886        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1887        if (res)
1888                release_mem_region(res->start, resource_size(res));
1889
1890        if (hash_disable_power(device_data, false))
1891                dev_err(&pdev->dev, "[%s] hash_disable_power() failed",
1892                                __func__);
1893}
1894
1895/**
1896 * ux500_hash_suspend - Function that suspends the hash device.
1897 * @dev:        Device to suspend.
1898 */
1899static int ux500_hash_suspend(struct device *dev)
1900{
1901        int ret;
1902        struct hash_device_data *device_data;
1903        struct hash_ctx *temp_ctx = NULL;
1904
1905        device_data = dev_get_drvdata(dev);
1906        if (!device_data) {
1907                dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
1908                return -ENOMEM;
1909        }
1910
1911        spin_lock(&device_data->ctx_lock);
1912        if (!device_data->current_ctx)
1913                device_data->current_ctx++;
1914        spin_unlock(&device_data->ctx_lock);
1915
1916        if (device_data->current_ctx == ++temp_ctx) {
1917                if (down_interruptible(&driver_data.device_allocation))
1918                        dev_dbg(dev, "[%s]: down_interruptible() failed",
1919                                __func__);
1920                ret = hash_disable_power(device_data, false);
1921
1922        } else
1923                ret = hash_disable_power(device_data, true);
1924
1925        if (ret)
1926                dev_err(dev, "[%s]: hash_disable_power()", __func__);
1927
1928        return ret;
1929}
1930
1931/**
1932 * ux500_hash_resume - Function that resume the hash device.
1933 * @dev:        Device to resume.
1934 */
1935static int ux500_hash_resume(struct device *dev)
1936{
1937        int ret = 0;
1938        struct hash_device_data *device_data;
1939        struct hash_ctx *temp_ctx = NULL;
1940
1941        device_data = dev_get_drvdata(dev);
1942        if (!device_data) {
1943                dev_err(dev, "[%s] platform_get_drvdata() failed!", __func__);
1944                return -ENOMEM;
1945        }
1946
1947        spin_lock(&device_data->ctx_lock);
1948        if (device_data->current_ctx == ++temp_ctx)
1949                device_data->current_ctx = NULL;
1950        spin_unlock(&device_data->ctx_lock);
1951
1952        if (!device_data->current_ctx)
1953                up(&driver_data.device_allocation);
1954        else
1955                ret = hash_enable_power(device_data, true);
1956
1957        if (ret)
1958                dev_err(dev, "[%s]: hash_enable_power() failed!", __func__);
1959
1960        return ret;
1961}
1962
1963static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1964
1965static struct platform_driver hash_driver = {
1966        .probe  = ux500_hash_probe,
1967        .remove = ux500_hash_remove,
1968        .shutdown = ux500_hash_shutdown,
1969        .driver = {
1970                .owner = THIS_MODULE,
1971                .name  = "hash1",
1972                .pm    = &ux500_hash_pm,
1973        }
1974};
1975
1976/**
1977 * ux500_hash_mod_init - The kernel module init function.
1978 */
1979static int __init ux500_hash_mod_init(void)
1980{
1981        klist_init(&driver_data.device_list, NULL, NULL);
1982        /* Initialize the semaphore to 0 devices (locked state) */
1983        sema_init(&driver_data.device_allocation, 0);
1984
1985        return platform_driver_register(&hash_driver);
1986}
1987
1988/**
1989 * ux500_hash_mod_fini - The kernel module exit function.
1990 */
1991static void __exit ux500_hash_mod_fini(void)
1992{
1993        platform_driver_unregister(&hash_driver);
1994        return;
1995}
1996
1997module_init(ux500_hash_mod_init);
1998module_exit(ux500_hash_mod_fini);
1999
2000MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
2001MODULE_LICENSE("GPL");
2002
2003MODULE_ALIAS("sha1-all");
2004MODULE_ALIAS("sha256-all");
2005MODULE_ALIAS("hmac-sha1-all");
2006MODULE_ALIAS("hmac-sha256-all");
2007