linux/drivers/gpu/drm/i915/intel_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/* FBC, or Frame Buffer Compression, is a technique employed to compress the
  35 * framebuffer contents in-memory, aiming at reducing the required bandwidth
  36 * during in-memory transfers and, therefore, reduce the power packet.
  37 *
  38 * The benefits of FBC are mostly visible with solid backgrounds and
  39 * variation-less patterns.
  40 *
  41 * FBC-related functionality can be enabled by the means of the
  42 * i915.i915_enable_fbc parameter
  43 */
  44
  45static void i8xx_disable_fbc(struct drm_device *dev)
  46{
  47        struct drm_i915_private *dev_priv = dev->dev_private;
  48        u32 fbc_ctl;
  49
  50        /* Disable compression */
  51        fbc_ctl = I915_READ(FBC_CONTROL);
  52        if ((fbc_ctl & FBC_CTL_EN) == 0)
  53                return;
  54
  55        fbc_ctl &= ~FBC_CTL_EN;
  56        I915_WRITE(FBC_CONTROL, fbc_ctl);
  57
  58        /* Wait for compressing bit to clear */
  59        if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  60                DRM_DEBUG_KMS("FBC idle timed out\n");
  61                return;
  62        }
  63
  64        DRM_DEBUG_KMS("disabled FBC\n");
  65}
  66
  67static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68{
  69        struct drm_device *dev = crtc->dev;
  70        struct drm_i915_private *dev_priv = dev->dev_private;
  71        struct drm_framebuffer *fb = crtc->fb;
  72        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73        struct drm_i915_gem_object *obj = intel_fb->obj;
  74        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75        int cfb_pitch;
  76        int plane, i;
  77        u32 fbc_ctl, fbc_ctl2;
  78
  79        cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  80        if (fb->pitches[0] < cfb_pitch)
  81                cfb_pitch = fb->pitches[0];
  82
  83        /* FBC_CTL wants 64B units */
  84        cfb_pitch = (cfb_pitch / 64) - 1;
  85        plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  86
  87        /* Clear old tags */
  88        for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  89                I915_WRITE(FBC_TAG + (i * 4), 0);
  90
  91        /* Set it up... */
  92        fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  93        fbc_ctl2 |= plane;
  94        I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  95        I915_WRITE(FBC_FENCE_OFF, crtc->y);
  96
  97        /* enable it... */
  98        fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  99        if (IS_I945GM(dev))
 100                fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 101        fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 102        fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
 103        fbc_ctl |= obj->fence_reg;
 104        I915_WRITE(FBC_CONTROL, fbc_ctl);
 105
 106        DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
 107                      cfb_pitch, crtc->y, intel_crtc->plane);
 108}
 109
 110static bool i8xx_fbc_enabled(struct drm_device *dev)
 111{
 112        struct drm_i915_private *dev_priv = dev->dev_private;
 113
 114        return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 115}
 116
 117static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 118{
 119        struct drm_device *dev = crtc->dev;
 120        struct drm_i915_private *dev_priv = dev->dev_private;
 121        struct drm_framebuffer *fb = crtc->fb;
 122        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 123        struct drm_i915_gem_object *obj = intel_fb->obj;
 124        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 125        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 126        unsigned long stall_watermark = 200;
 127        u32 dpfc_ctl;
 128
 129        dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
 130        dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 131        I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
 132
 133        I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 134                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 135                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 136        I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 137
 138        /* enable it... */
 139        I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
 140
 141        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 142}
 143
 144static void g4x_disable_fbc(struct drm_device *dev)
 145{
 146        struct drm_i915_private *dev_priv = dev->dev_private;
 147        u32 dpfc_ctl;
 148
 149        /* Disable compression */
 150        dpfc_ctl = I915_READ(DPFC_CONTROL);
 151        if (dpfc_ctl & DPFC_CTL_EN) {
 152                dpfc_ctl &= ~DPFC_CTL_EN;
 153                I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 154
 155                DRM_DEBUG_KMS("disabled FBC\n");
 156        }
 157}
 158
 159static bool g4x_fbc_enabled(struct drm_device *dev)
 160{
 161        struct drm_i915_private *dev_priv = dev->dev_private;
 162
 163        return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 164}
 165
 166static void sandybridge_blit_fbc_update(struct drm_device *dev)
 167{
 168        struct drm_i915_private *dev_priv = dev->dev_private;
 169        u32 blt_ecoskpd;
 170
 171        /* Make sure blitter notifies FBC of writes */
 172        gen6_gt_force_wake_get(dev_priv);
 173        blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 174        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 175                GEN6_BLITTER_LOCK_SHIFT;
 176        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 177        blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 178        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 179        blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 180                         GEN6_BLITTER_LOCK_SHIFT);
 181        I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 182        POSTING_READ(GEN6_BLITTER_ECOSKPD);
 183        gen6_gt_force_wake_put(dev_priv);
 184}
 185
 186static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 187{
 188        struct drm_device *dev = crtc->dev;
 189        struct drm_i915_private *dev_priv = dev->dev_private;
 190        struct drm_framebuffer *fb = crtc->fb;
 191        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 192        struct drm_i915_gem_object *obj = intel_fb->obj;
 193        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 194        int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 195        unsigned long stall_watermark = 200;
 196        u32 dpfc_ctl;
 197
 198        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 199        dpfc_ctl &= DPFC_RESERVED;
 200        dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
 201        /* Set persistent mode for front-buffer rendering, ala X. */
 202        dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
 203        dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
 204        I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
 205
 206        I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 207                   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 208                   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 209        I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 210        I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
 211        /* enable it... */
 212        I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 213
 214        if (IS_GEN6(dev)) {
 215                I915_WRITE(SNB_DPFC_CTL_SA,
 216                           SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 217                I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 218                sandybridge_blit_fbc_update(dev);
 219        }
 220
 221        DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 222}
 223
 224static void ironlake_disable_fbc(struct drm_device *dev)
 225{
 226        struct drm_i915_private *dev_priv = dev->dev_private;
 227        u32 dpfc_ctl;
 228
 229        /* Disable compression */
 230        dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 231        if (dpfc_ctl & DPFC_CTL_EN) {
 232                dpfc_ctl &= ~DPFC_CTL_EN;
 233                I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 234
 235                DRM_DEBUG_KMS("disabled FBC\n");
 236        }
 237}
 238
 239static bool ironlake_fbc_enabled(struct drm_device *dev)
 240{
 241        struct drm_i915_private *dev_priv = dev->dev_private;
 242
 243        return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 244}
 245
 246bool intel_fbc_enabled(struct drm_device *dev)
 247{
 248        struct drm_i915_private *dev_priv = dev->dev_private;
 249
 250        if (!dev_priv->display.fbc_enabled)
 251                return false;
 252
 253        return dev_priv->display.fbc_enabled(dev);
 254}
 255
 256static void intel_fbc_work_fn(struct work_struct *__work)
 257{
 258        struct intel_fbc_work *work =
 259                container_of(to_delayed_work(__work),
 260                             struct intel_fbc_work, work);
 261        struct drm_device *dev = work->crtc->dev;
 262        struct drm_i915_private *dev_priv = dev->dev_private;
 263
 264        mutex_lock(&dev->struct_mutex);
 265        if (work == dev_priv->fbc_work) {
 266                /* Double check that we haven't switched fb without cancelling
 267                 * the prior work.
 268                 */
 269                if (work->crtc->fb == work->fb) {
 270                        dev_priv->display.enable_fbc(work->crtc,
 271                                                     work->interval);
 272
 273                        dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
 274                        dev_priv->cfb_fb = work->crtc->fb->base.id;
 275                        dev_priv->cfb_y = work->crtc->y;
 276                }
 277
 278                dev_priv->fbc_work = NULL;
 279        }
 280        mutex_unlock(&dev->struct_mutex);
 281
 282        kfree(work);
 283}
 284
 285static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
 286{
 287        if (dev_priv->fbc_work == NULL)
 288                return;
 289
 290        DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 291
 292        /* Synchronisation is provided by struct_mutex and checking of
 293         * dev_priv->fbc_work, so we can perform the cancellation
 294         * entirely asynchronously.
 295         */
 296        if (cancel_delayed_work(&dev_priv->fbc_work->work))
 297                /* tasklet was killed before being run, clean up */
 298                kfree(dev_priv->fbc_work);
 299
 300        /* Mark the work as no longer wanted so that if it does
 301         * wake-up (because the work was already running and waiting
 302         * for our mutex), it will discover that is no longer
 303         * necessary to run.
 304         */
 305        dev_priv->fbc_work = NULL;
 306}
 307
 308void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 309{
 310        struct intel_fbc_work *work;
 311        struct drm_device *dev = crtc->dev;
 312        struct drm_i915_private *dev_priv = dev->dev_private;
 313
 314        if (!dev_priv->display.enable_fbc)
 315                return;
 316
 317        intel_cancel_fbc_work(dev_priv);
 318
 319        work = kzalloc(sizeof *work, GFP_KERNEL);
 320        if (work == NULL) {
 321                dev_priv->display.enable_fbc(crtc, interval);
 322                return;
 323        }
 324
 325        work->crtc = crtc;
 326        work->fb = crtc->fb;
 327        work->interval = interval;
 328        INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 329
 330        dev_priv->fbc_work = work;
 331
 332        DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
 333
 334        /* Delay the actual enabling to let pageflipping cease and the
 335         * display to settle before starting the compression. Note that
 336         * this delay also serves a second purpose: it allows for a
 337         * vblank to pass after disabling the FBC before we attempt
 338         * to modify the control registers.
 339         *
 340         * A more complicated solution would involve tracking vblanks
 341         * following the termination of the page-flipping sequence
 342         * and indeed performing the enable as a co-routine and not
 343         * waiting synchronously upon the vblank.
 344         */
 345        schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 346}
 347
 348void intel_disable_fbc(struct drm_device *dev)
 349{
 350        struct drm_i915_private *dev_priv = dev->dev_private;
 351
 352        intel_cancel_fbc_work(dev_priv);
 353
 354        if (!dev_priv->display.disable_fbc)
 355                return;
 356
 357        dev_priv->display.disable_fbc(dev);
 358        dev_priv->cfb_plane = -1;
 359}
 360
 361/**
 362 * intel_update_fbc - enable/disable FBC as needed
 363 * @dev: the drm_device
 364 *
 365 * Set up the framebuffer compression hardware at mode set time.  We
 366 * enable it if possible:
 367 *   - plane A only (on pre-965)
 368 *   - no pixel mulitply/line duplication
 369 *   - no alpha buffer discard
 370 *   - no dual wide
 371 *   - framebuffer <= 2048 in width, 1536 in height
 372 *
 373 * We can't assume that any compression will take place (worst case),
 374 * so the compressed buffer has to be the same size as the uncompressed
 375 * one.  It also must reside (along with the line length buffer) in
 376 * stolen memory.
 377 *
 378 * We need to enable/disable FBC on a global basis.
 379 */
 380void intel_update_fbc(struct drm_device *dev)
 381{
 382        struct drm_i915_private *dev_priv = dev->dev_private;
 383        struct drm_crtc *crtc = NULL, *tmp_crtc;
 384        struct intel_crtc *intel_crtc;
 385        struct drm_framebuffer *fb;
 386        struct intel_framebuffer *intel_fb;
 387        struct drm_i915_gem_object *obj;
 388        int enable_fbc;
 389
 390        if (!i915_powersave)
 391                return;
 392
 393        if (!I915_HAS_FBC(dev))
 394                return;
 395
 396        /*
 397         * If FBC is already on, we just have to verify that we can
 398         * keep it that way...
 399         * Need to disable if:
 400         *   - more than one pipe is active
 401         *   - changing FBC params (stride, fence, mode)
 402         *   - new fb is too large to fit in compressed buffer
 403         *   - going to an unsupported config (interlace, pixel multiply, etc.)
 404         */
 405        list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
 406                if (tmp_crtc->enabled &&
 407                    !to_intel_crtc(tmp_crtc)->primary_disabled &&
 408                    tmp_crtc->fb) {
 409                        if (crtc) {
 410                                DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 411                                dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
 412                                goto out_disable;
 413                        }
 414                        crtc = tmp_crtc;
 415                }
 416        }
 417
 418        if (!crtc || crtc->fb == NULL) {
 419                DRM_DEBUG_KMS("no output, disabling\n");
 420                dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
 421                goto out_disable;
 422        }
 423
 424        intel_crtc = to_intel_crtc(crtc);
 425        fb = crtc->fb;
 426        intel_fb = to_intel_framebuffer(fb);
 427        obj = intel_fb->obj;
 428
 429        enable_fbc = i915_enable_fbc;
 430        if (enable_fbc < 0) {
 431                DRM_DEBUG_KMS("fbc set to per-chip default\n");
 432                enable_fbc = 1;
 433                if (INTEL_INFO(dev)->gen <= 6)
 434                        enable_fbc = 0;
 435        }
 436        if (!enable_fbc) {
 437                DRM_DEBUG_KMS("fbc disabled per module param\n");
 438                dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
 439                goto out_disable;
 440        }
 441        if (intel_fb->obj->base.size > dev_priv->cfb_size) {
 442                DRM_DEBUG_KMS("framebuffer too large, disabling "
 443                              "compression\n");
 444                dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
 445                goto out_disable;
 446        }
 447        if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
 448            (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
 449                DRM_DEBUG_KMS("mode incompatible with compression, "
 450                              "disabling\n");
 451                dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
 452                goto out_disable;
 453        }
 454        if ((crtc->mode.hdisplay > 2048) ||
 455            (crtc->mode.vdisplay > 1536)) {
 456                DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 457                dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
 458                goto out_disable;
 459        }
 460        if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
 461                DRM_DEBUG_KMS("plane not 0, disabling compression\n");
 462                dev_priv->no_fbc_reason = FBC_BAD_PLANE;
 463                goto out_disable;
 464        }
 465
 466        /* The use of a CPU fence is mandatory in order to detect writes
 467         * by the CPU to the scanout and trigger updates to the FBC.
 468         */
 469        if (obj->tiling_mode != I915_TILING_X ||
 470            obj->fence_reg == I915_FENCE_REG_NONE) {
 471                DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 472                dev_priv->no_fbc_reason = FBC_NOT_TILED;
 473                goto out_disable;
 474        }
 475
 476        /* If the kernel debugger is active, always disable compression */
 477        if (in_dbg_master())
 478                goto out_disable;
 479
 480        /* If the scanout has not changed, don't modify the FBC settings.
 481         * Note that we make the fundamental assumption that the fb->obj
 482         * cannot be unpinned (and have its GTT offset and fence revoked)
 483         * without first being decoupled from the scanout and FBC disabled.
 484         */
 485        if (dev_priv->cfb_plane == intel_crtc->plane &&
 486            dev_priv->cfb_fb == fb->base.id &&
 487            dev_priv->cfb_y == crtc->y)
 488                return;
 489
 490        if (intel_fbc_enabled(dev)) {
 491                /* We update FBC along two paths, after changing fb/crtc
 492                 * configuration (modeswitching) and after page-flipping
 493                 * finishes. For the latter, we know that not only did
 494                 * we disable the FBC at the start of the page-flip
 495                 * sequence, but also more than one vblank has passed.
 496                 *
 497                 * For the former case of modeswitching, it is possible
 498                 * to switch between two FBC valid configurations
 499                 * instantaneously so we do need to disable the FBC
 500                 * before we can modify its control registers. We also
 501                 * have to wait for the next vblank for that to take
 502                 * effect. However, since we delay enabling FBC we can
 503                 * assume that a vblank has passed since disabling and
 504                 * that we can safely alter the registers in the deferred
 505                 * callback.
 506                 *
 507                 * In the scenario that we go from a valid to invalid
 508                 * and then back to valid FBC configuration we have
 509                 * no strict enforcement that a vblank occurred since
 510                 * disabling the FBC. However, along all current pipe
 511                 * disabling paths we do need to wait for a vblank at
 512                 * some point. And we wait before enabling FBC anyway.
 513                 */
 514                DRM_DEBUG_KMS("disabling active FBC for update\n");
 515                intel_disable_fbc(dev);
 516        }
 517
 518        intel_enable_fbc(crtc, 500);
 519        return;
 520
 521out_disable:
 522        /* Multiple disables should be harmless */
 523        if (intel_fbc_enabled(dev)) {
 524                DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 525                intel_disable_fbc(dev);
 526        }
 527}
 528
 529static void i915_pineview_get_mem_freq(struct drm_device *dev)
 530{
 531        drm_i915_private_t *dev_priv = dev->dev_private;
 532        u32 tmp;
 533
 534        tmp = I915_READ(CLKCFG);
 535
 536        switch (tmp & CLKCFG_FSB_MASK) {
 537        case CLKCFG_FSB_533:
 538                dev_priv->fsb_freq = 533; /* 133*4 */
 539                break;
 540        case CLKCFG_FSB_800:
 541                dev_priv->fsb_freq = 800; /* 200*4 */
 542                break;
 543        case CLKCFG_FSB_667:
 544                dev_priv->fsb_freq =  667; /* 167*4 */
 545                break;
 546        case CLKCFG_FSB_400:
 547                dev_priv->fsb_freq = 400; /* 100*4 */
 548                break;
 549        }
 550
 551        switch (tmp & CLKCFG_MEM_MASK) {
 552        case CLKCFG_MEM_533:
 553                dev_priv->mem_freq = 533;
 554                break;
 555        case CLKCFG_MEM_667:
 556                dev_priv->mem_freq = 667;
 557                break;
 558        case CLKCFG_MEM_800:
 559                dev_priv->mem_freq = 800;
 560                break;
 561        }
 562
 563        /* detect pineview DDR3 setting */
 564        tmp = I915_READ(CSHRDDR3CTL);
 565        dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 566}
 567
 568static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 569{
 570        drm_i915_private_t *dev_priv = dev->dev_private;
 571        u16 ddrpll, csipll;
 572
 573        ddrpll = I915_READ16(DDRMPLL1);
 574        csipll = I915_READ16(CSIPLL0);
 575
 576        switch (ddrpll & 0xff) {
 577        case 0xc:
 578                dev_priv->mem_freq = 800;
 579                break;
 580        case 0x10:
 581                dev_priv->mem_freq = 1066;
 582                break;
 583        case 0x14:
 584                dev_priv->mem_freq = 1333;
 585                break;
 586        case 0x18:
 587                dev_priv->mem_freq = 1600;
 588                break;
 589        default:
 590                DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 591                                 ddrpll & 0xff);
 592                dev_priv->mem_freq = 0;
 593                break;
 594        }
 595
 596        dev_priv->r_t = dev_priv->mem_freq;
 597
 598        switch (csipll & 0x3ff) {
 599        case 0x00c:
 600                dev_priv->fsb_freq = 3200;
 601                break;
 602        case 0x00e:
 603                dev_priv->fsb_freq = 3733;
 604                break;
 605        case 0x010:
 606                dev_priv->fsb_freq = 4266;
 607                break;
 608        case 0x012:
 609                dev_priv->fsb_freq = 4800;
 610                break;
 611        case 0x014:
 612                dev_priv->fsb_freq = 5333;
 613                break;
 614        case 0x016:
 615                dev_priv->fsb_freq = 5866;
 616                break;
 617        case 0x018:
 618                dev_priv->fsb_freq = 6400;
 619                break;
 620        default:
 621                DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 622                                 csipll & 0x3ff);
 623                dev_priv->fsb_freq = 0;
 624                break;
 625        }
 626
 627        if (dev_priv->fsb_freq == 3200) {
 628                dev_priv->c_m = 0;
 629        } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 630                dev_priv->c_m = 1;
 631        } else {
 632                dev_priv->c_m = 2;
 633        }
 634}
 635
 636static const struct cxsr_latency cxsr_latency_table[] = {
 637        {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 638        {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 639        {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 640        {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 641        {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 642
 643        {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 644        {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 645        {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 646        {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 647        {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 648
 649        {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 650        {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 651        {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 652        {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 653        {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 654
 655        {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 656        {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 657        {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 658        {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 659        {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 660
 661        {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 662        {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 663        {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 664        {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 665        {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 666
 667        {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 668        {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 669        {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 670        {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 671        {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 672};
 673
 674static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 675                                                         int is_ddr3,
 676                                                         int fsb,
 677                                                         int mem)
 678{
 679        const struct cxsr_latency *latency;
 680        int i;
 681
 682        if (fsb == 0 || mem == 0)
 683                return NULL;
 684
 685        for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 686                latency = &cxsr_latency_table[i];
 687                if (is_desktop == latency->is_desktop &&
 688                    is_ddr3 == latency->is_ddr3 &&
 689                    fsb == latency->fsb_freq && mem == latency->mem_freq)
 690                        return latency;
 691        }
 692
 693        DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 694
 695        return NULL;
 696}
 697
 698static void pineview_disable_cxsr(struct drm_device *dev)
 699{
 700        struct drm_i915_private *dev_priv = dev->dev_private;
 701
 702        /* deactivate cxsr */
 703        I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
 704}
 705
 706/*
 707 * Latency for FIFO fetches is dependent on several factors:
 708 *   - memory configuration (speed, channels)
 709 *   - chipset
 710 *   - current MCH state
 711 * It can be fairly high in some situations, so here we assume a fairly
 712 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 713 * set this value too high, the FIFO will fetch frequently to stay full)
 714 * and power consumption (set it too low to save power and we might see
 715 * FIFO underruns and display "flicker").
 716 *
 717 * A value of 5us seems to be a good balance; safe for very low end
 718 * platforms but not overly aggressive on lower latency configs.
 719 */
 720static const int latency_ns = 5000;
 721
 722static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 723{
 724        struct drm_i915_private *dev_priv = dev->dev_private;
 725        uint32_t dsparb = I915_READ(DSPARB);
 726        int size;
 727
 728        size = dsparb & 0x7f;
 729        if (plane)
 730                size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 731
 732        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 733                      plane ? "B" : "A", size);
 734
 735        return size;
 736}
 737
 738static int i85x_get_fifo_size(struct drm_device *dev, int plane)
 739{
 740        struct drm_i915_private *dev_priv = dev->dev_private;
 741        uint32_t dsparb = I915_READ(DSPARB);
 742        int size;
 743
 744        size = dsparb & 0x1ff;
 745        if (plane)
 746                size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 747        size >>= 1; /* Convert to cachelines */
 748
 749        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 750                      plane ? "B" : "A", size);
 751
 752        return size;
 753}
 754
 755static int i845_get_fifo_size(struct drm_device *dev, int plane)
 756{
 757        struct drm_i915_private *dev_priv = dev->dev_private;
 758        uint32_t dsparb = I915_READ(DSPARB);
 759        int size;
 760
 761        size = dsparb & 0x7f;
 762        size >>= 2; /* Convert to cachelines */
 763
 764        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 765                      plane ? "B" : "A",
 766                      size);
 767
 768        return size;
 769}
 770
 771static int i830_get_fifo_size(struct drm_device *dev, int plane)
 772{
 773        struct drm_i915_private *dev_priv = dev->dev_private;
 774        uint32_t dsparb = I915_READ(DSPARB);
 775        int size;
 776
 777        size = dsparb & 0x7f;
 778        size >>= 1; /* Convert to cachelines */
 779
 780        DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 781                      plane ? "B" : "A", size);
 782
 783        return size;
 784}
 785
 786/* Pineview has different values for various configs */
 787static const struct intel_watermark_params pineview_display_wm = {
 788        PINEVIEW_DISPLAY_FIFO,
 789        PINEVIEW_MAX_WM,
 790        PINEVIEW_DFT_WM,
 791        PINEVIEW_GUARD_WM,
 792        PINEVIEW_FIFO_LINE_SIZE
 793};
 794static const struct intel_watermark_params pineview_display_hplloff_wm = {
 795        PINEVIEW_DISPLAY_FIFO,
 796        PINEVIEW_MAX_WM,
 797        PINEVIEW_DFT_HPLLOFF_WM,
 798        PINEVIEW_GUARD_WM,
 799        PINEVIEW_FIFO_LINE_SIZE
 800};
 801static const struct intel_watermark_params pineview_cursor_wm = {
 802        PINEVIEW_CURSOR_FIFO,
 803        PINEVIEW_CURSOR_MAX_WM,
 804        PINEVIEW_CURSOR_DFT_WM,
 805        PINEVIEW_CURSOR_GUARD_WM,
 806        PINEVIEW_FIFO_LINE_SIZE,
 807};
 808static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 809        PINEVIEW_CURSOR_FIFO,
 810        PINEVIEW_CURSOR_MAX_WM,
 811        PINEVIEW_CURSOR_DFT_WM,
 812        PINEVIEW_CURSOR_GUARD_WM,
 813        PINEVIEW_FIFO_LINE_SIZE
 814};
 815static const struct intel_watermark_params g4x_wm_info = {
 816        G4X_FIFO_SIZE,
 817        G4X_MAX_WM,
 818        G4X_MAX_WM,
 819        2,
 820        G4X_FIFO_LINE_SIZE,
 821};
 822static const struct intel_watermark_params g4x_cursor_wm_info = {
 823        I965_CURSOR_FIFO,
 824        I965_CURSOR_MAX_WM,
 825        I965_CURSOR_DFT_WM,
 826        2,
 827        G4X_FIFO_LINE_SIZE,
 828};
 829static const struct intel_watermark_params valleyview_wm_info = {
 830        VALLEYVIEW_FIFO_SIZE,
 831        VALLEYVIEW_MAX_WM,
 832        VALLEYVIEW_MAX_WM,
 833        2,
 834        G4X_FIFO_LINE_SIZE,
 835};
 836static const struct intel_watermark_params valleyview_cursor_wm_info = {
 837        I965_CURSOR_FIFO,
 838        VALLEYVIEW_CURSOR_MAX_WM,
 839        I965_CURSOR_DFT_WM,
 840        2,
 841        G4X_FIFO_LINE_SIZE,
 842};
 843static const struct intel_watermark_params i965_cursor_wm_info = {
 844        I965_CURSOR_FIFO,
 845        I965_CURSOR_MAX_WM,
 846        I965_CURSOR_DFT_WM,
 847        2,
 848        I915_FIFO_LINE_SIZE,
 849};
 850static const struct intel_watermark_params i945_wm_info = {
 851        I945_FIFO_SIZE,
 852        I915_MAX_WM,
 853        1,
 854        2,
 855        I915_FIFO_LINE_SIZE
 856};
 857static const struct intel_watermark_params i915_wm_info = {
 858        I915_FIFO_SIZE,
 859        I915_MAX_WM,
 860        1,
 861        2,
 862        I915_FIFO_LINE_SIZE
 863};
 864static const struct intel_watermark_params i855_wm_info = {
 865        I855GM_FIFO_SIZE,
 866        I915_MAX_WM,
 867        1,
 868        2,
 869        I830_FIFO_LINE_SIZE
 870};
 871static const struct intel_watermark_params i830_wm_info = {
 872        I830_FIFO_SIZE,
 873        I915_MAX_WM,
 874        1,
 875        2,
 876        I830_FIFO_LINE_SIZE
 877};
 878
 879static const struct intel_watermark_params ironlake_display_wm_info = {
 880        ILK_DISPLAY_FIFO,
 881        ILK_DISPLAY_MAXWM,
 882        ILK_DISPLAY_DFTWM,
 883        2,
 884        ILK_FIFO_LINE_SIZE
 885};
 886static const struct intel_watermark_params ironlake_cursor_wm_info = {
 887        ILK_CURSOR_FIFO,
 888        ILK_CURSOR_MAXWM,
 889        ILK_CURSOR_DFTWM,
 890        2,
 891        ILK_FIFO_LINE_SIZE
 892};
 893static const struct intel_watermark_params ironlake_display_srwm_info = {
 894        ILK_DISPLAY_SR_FIFO,
 895        ILK_DISPLAY_MAX_SRWM,
 896        ILK_DISPLAY_DFT_SRWM,
 897        2,
 898        ILK_FIFO_LINE_SIZE
 899};
 900static const struct intel_watermark_params ironlake_cursor_srwm_info = {
 901        ILK_CURSOR_SR_FIFO,
 902        ILK_CURSOR_MAX_SRWM,
 903        ILK_CURSOR_DFT_SRWM,
 904        2,
 905        ILK_FIFO_LINE_SIZE
 906};
 907
 908static const struct intel_watermark_params sandybridge_display_wm_info = {
 909        SNB_DISPLAY_FIFO,
 910        SNB_DISPLAY_MAXWM,
 911        SNB_DISPLAY_DFTWM,
 912        2,
 913        SNB_FIFO_LINE_SIZE
 914};
 915static const struct intel_watermark_params sandybridge_cursor_wm_info = {
 916        SNB_CURSOR_FIFO,
 917        SNB_CURSOR_MAXWM,
 918        SNB_CURSOR_DFTWM,
 919        2,
 920        SNB_FIFO_LINE_SIZE
 921};
 922static const struct intel_watermark_params sandybridge_display_srwm_info = {
 923        SNB_DISPLAY_SR_FIFO,
 924        SNB_DISPLAY_MAX_SRWM,
 925        SNB_DISPLAY_DFT_SRWM,
 926        2,
 927        SNB_FIFO_LINE_SIZE
 928};
 929static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
 930        SNB_CURSOR_SR_FIFO,
 931        SNB_CURSOR_MAX_SRWM,
 932        SNB_CURSOR_DFT_SRWM,
 933        2,
 934        SNB_FIFO_LINE_SIZE
 935};
 936
 937
 938/**
 939 * intel_calculate_wm - calculate watermark level
 940 * @clock_in_khz: pixel clock
 941 * @wm: chip FIFO params
 942 * @pixel_size: display pixel size
 943 * @latency_ns: memory latency for the platform
 944 *
 945 * Calculate the watermark level (the level at which the display plane will
 946 * start fetching from memory again).  Each chip has a different display
 947 * FIFO size and allocation, so the caller needs to figure that out and pass
 948 * in the correct intel_watermark_params structure.
 949 *
 950 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 951 * on the pixel size.  When it reaches the watermark level, it'll start
 952 * fetching FIFO line sized based chunks from memory until the FIFO fills
 953 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 954 * will occur, and a display engine hang could result.
 955 */
 956static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 957                                        const struct intel_watermark_params *wm,
 958                                        int fifo_size,
 959                                        int pixel_size,
 960                                        unsigned long latency_ns)
 961{
 962        long entries_required, wm_size;
 963
 964        /*
 965         * Note: we need to make sure we don't overflow for various clock &
 966         * latency values.
 967         * clocks go from a few thousand to several hundred thousand.
 968         * latency is usually a few thousand
 969         */
 970        entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 971                1000;
 972        entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 973
 974        DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 975
 976        wm_size = fifo_size - (entries_required + wm->guard_size);
 977
 978        DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 979
 980        /* Don't promote wm_size to unsigned... */
 981        if (wm_size > (long)wm->max_wm)
 982                wm_size = wm->max_wm;
 983        if (wm_size <= 0)
 984                wm_size = wm->default_wm;
 985        return wm_size;
 986}
 987
 988static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 989{
 990        struct drm_crtc *crtc, *enabled = NULL;
 991
 992        list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 993                if (crtc->enabled && crtc->fb) {
 994                        if (enabled)
 995                                return NULL;
 996                        enabled = crtc;
 997                }
 998        }
 999
1000        return enabled;
1001}
1002
1003static void pineview_update_wm(struct drm_device *dev)
1004{
1005        struct drm_i915_private *dev_priv = dev->dev_private;
1006        struct drm_crtc *crtc;
1007        const struct cxsr_latency *latency;
1008        u32 reg;
1009        unsigned long wm;
1010
1011        latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012                                         dev_priv->fsb_freq, dev_priv->mem_freq);
1013        if (!latency) {
1014                DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015                pineview_disable_cxsr(dev);
1016                return;
1017        }
1018
1019        crtc = single_enabled_crtc(dev);
1020        if (crtc) {
1021                int clock = crtc->mode.clock;
1022                int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024                /* Display SR */
1025                wm = intel_calculate_wm(clock, &pineview_display_wm,
1026                                        pineview_display_wm.fifo_size,
1027                                        pixel_size, latency->display_sr);
1028                reg = I915_READ(DSPFW1);
1029                reg &= ~DSPFW_SR_MASK;
1030                reg |= wm << DSPFW_SR_SHIFT;
1031                I915_WRITE(DSPFW1, reg);
1032                DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034                /* cursor SR */
1035                wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036                                        pineview_display_wm.fifo_size,
1037                                        pixel_size, latency->cursor_sr);
1038                reg = I915_READ(DSPFW3);
1039                reg &= ~DSPFW_CURSOR_SR_MASK;
1040                reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041                I915_WRITE(DSPFW3, reg);
1042
1043                /* Display HPLL off SR */
1044                wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045                                        pineview_display_hplloff_wm.fifo_size,
1046                                        pixel_size, latency->display_hpll_disable);
1047                reg = I915_READ(DSPFW3);
1048                reg &= ~DSPFW_HPLL_SR_MASK;
1049                reg |= wm & DSPFW_HPLL_SR_MASK;
1050                I915_WRITE(DSPFW3, reg);
1051
1052                /* cursor HPLL off SR */
1053                wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054                                        pineview_display_hplloff_wm.fifo_size,
1055                                        pixel_size, latency->cursor_hpll_disable);
1056                reg = I915_READ(DSPFW3);
1057                reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058                reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059                I915_WRITE(DSPFW3, reg);
1060                DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062                /* activate cxsr */
1063                I915_WRITE(DSPFW3,
1064                           I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065                DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066        } else {
1067                pineview_disable_cxsr(dev);
1068                DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069        }
1070}
1071
1072static bool g4x_compute_wm0(struct drm_device *dev,
1073                            int plane,
1074                            const struct intel_watermark_params *display,
1075                            int display_latency_ns,
1076                            const struct intel_watermark_params *cursor,
1077                            int cursor_latency_ns,
1078                            int *plane_wm,
1079                            int *cursor_wm)
1080{
1081        struct drm_crtc *crtc;
1082        int htotal, hdisplay, clock, pixel_size;
1083        int line_time_us, line_count;
1084        int entries, tlb_miss;
1085
1086        crtc = intel_get_crtc_for_plane(dev, plane);
1087        if (crtc->fb == NULL || !crtc->enabled) {
1088                *cursor_wm = cursor->guard_size;
1089                *plane_wm = display->guard_size;
1090                return false;
1091        }
1092
1093        htotal = crtc->mode.htotal;
1094        hdisplay = crtc->mode.hdisplay;
1095        clock = crtc->mode.clock;
1096        pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098        /* Use the small buffer method to calculate plane watermark */
1099        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100        tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101        if (tlb_miss > 0)
1102                entries += tlb_miss;
1103        entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104        *plane_wm = entries + display->guard_size;
1105        if (*plane_wm > (int)display->max_wm)
1106                *plane_wm = display->max_wm;
1107
1108        /* Use the large buffer method to calculate cursor watermark */
1109        line_time_us = ((htotal * 1000) / clock);
1110        line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111        entries = line_count * 64 * pixel_size;
1112        tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113        if (tlb_miss > 0)
1114                entries += tlb_miss;
1115        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116        *cursor_wm = entries + cursor->guard_size;
1117        if (*cursor_wm > (int)cursor->max_wm)
1118                *cursor_wm = (int)cursor->max_wm;
1119
1120        return true;
1121}
1122
1123/*
1124 * Check the wm result.
1125 *
1126 * If any calculated watermark values is larger than the maximum value that
1127 * can be programmed into the associated watermark register, that watermark
1128 * must be disabled.
1129 */
1130static bool g4x_check_srwm(struct drm_device *dev,
1131                           int display_wm, int cursor_wm,
1132                           const struct intel_watermark_params *display,
1133                           const struct intel_watermark_params *cursor)
1134{
1135        DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136                      display_wm, cursor_wm);
1137
1138        if (display_wm > display->max_wm) {
1139                DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140                              display_wm, display->max_wm);
1141                return false;
1142        }
1143
1144        if (cursor_wm > cursor->max_wm) {
1145                DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146                              cursor_wm, cursor->max_wm);
1147                return false;
1148        }
1149
1150        if (!(display_wm || cursor_wm)) {
1151                DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152                return false;
1153        }
1154
1155        return true;
1156}
1157
1158static bool g4x_compute_srwm(struct drm_device *dev,
1159                             int plane,
1160                             int latency_ns,
1161                             const struct intel_watermark_params *display,
1162                             const struct intel_watermark_params *cursor,
1163                             int *display_wm, int *cursor_wm)
1164{
1165        struct drm_crtc *crtc;
1166        int hdisplay, htotal, pixel_size, clock;
1167        unsigned long line_time_us;
1168        int line_count, line_size;
1169        int small, large;
1170        int entries;
1171
1172        if (!latency_ns) {
1173                *display_wm = *cursor_wm = 0;
1174                return false;
1175        }
1176
1177        crtc = intel_get_crtc_for_plane(dev, plane);
1178        hdisplay = crtc->mode.hdisplay;
1179        htotal = crtc->mode.htotal;
1180        clock = crtc->mode.clock;
1181        pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183        line_time_us = (htotal * 1000) / clock;
1184        line_count = (latency_ns / line_time_us + 1000) / 1000;
1185        line_size = hdisplay * pixel_size;
1186
1187        /* Use the minimum of the small and large buffer method for primary */
1188        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189        large = line_count * line_size;
1190
1191        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192        *display_wm = entries + display->guard_size;
1193
1194        /* calculate the self-refresh watermark for display cursor */
1195        entries = line_count * pixel_size * 64;
1196        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197        *cursor_wm = entries + cursor->guard_size;
1198
1199        return g4x_check_srwm(dev,
1200                              *display_wm, *cursor_wm,
1201                              display, cursor);
1202}
1203
1204static bool vlv_compute_drain_latency(struct drm_device *dev,
1205                                     int plane,
1206                                     int *plane_prec_mult,
1207                                     int *plane_dl,
1208                                     int *cursor_prec_mult,
1209                                     int *cursor_dl)
1210{
1211        struct drm_crtc *crtc;
1212        int clock, pixel_size;
1213        int entries;
1214
1215        crtc = intel_get_crtc_for_plane(dev, plane);
1216        if (crtc->fb == NULL || !crtc->enabled)
1217                return false;
1218
1219        clock = crtc->mode.clock;       /* VESA DOT Clock */
1220        pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1221
1222        entries = (clock / 1000) * pixel_size;
1223        *plane_prec_mult = (entries > 256) ?
1224                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225        *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226                                                     pixel_size);
1227
1228        entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1229        *cursor_prec_mult = (entries > 256) ?
1230                DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231        *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233        return true;
1234}
1235
1236/*
1237 * Update drain latency registers of memory arbiter
1238 *
1239 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240 * to be programmed. Each plane has a drain latency multiplier and a drain
1241 * latency value.
1242 */
1243
1244static void vlv_update_drain_latency(struct drm_device *dev)
1245{
1246        struct drm_i915_private *dev_priv = dev->dev_private;
1247        int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248        int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249        int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250                                                        either 16 or 32 */
1251
1252        /* For plane A, Cursor A */
1253        if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254                                      &cursor_prec_mult, &cursora_dl)) {
1255                cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256                        DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257                planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258                        DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260                I915_WRITE(VLV_DDL1, cursora_prec |
1261                                (cursora_dl << DDL_CURSORA_SHIFT) |
1262                                planea_prec | planea_dl);
1263        }
1264
1265        /* For plane B, Cursor B */
1266        if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267                                      &cursor_prec_mult, &cursorb_dl)) {
1268                cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                        DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270                planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                        DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273                I915_WRITE(VLV_DDL2, cursorb_prec |
1274                                (cursorb_dl << DDL_CURSORB_SHIFT) |
1275                                planeb_prec | planeb_dl);
1276        }
1277}
1278
1279#define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281static void valleyview_update_wm(struct drm_device *dev)
1282{
1283        static const int sr_latency_ns = 12000;
1284        struct drm_i915_private *dev_priv = dev->dev_private;
1285        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286        int plane_sr, cursor_sr;
1287        unsigned int enabled = 0;
1288
1289        vlv_update_drain_latency(dev);
1290
1291        if (g4x_compute_wm0(dev, 0,
1292                            &valleyview_wm_info, latency_ns,
1293                            &valleyview_cursor_wm_info, latency_ns,
1294                            &planea_wm, &cursora_wm))
1295                enabled |= 1;
1296
1297        if (g4x_compute_wm0(dev, 1,
1298                            &valleyview_wm_info, latency_ns,
1299                            &valleyview_cursor_wm_info, latency_ns,
1300                            &planeb_wm, &cursorb_wm))
1301                enabled |= 2;
1302
1303        plane_sr = cursor_sr = 0;
1304        if (single_plane_enabled(enabled) &&
1305            g4x_compute_srwm(dev, ffs(enabled) - 1,
1306                             sr_latency_ns,
1307                             &valleyview_wm_info,
1308                             &valleyview_cursor_wm_info,
1309                             &plane_sr, &cursor_sr))
1310                I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311        else
1312                I915_WRITE(FW_BLC_SELF_VLV,
1313                           I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316                      planea_wm, cursora_wm,
1317                      planeb_wm, cursorb_wm,
1318                      plane_sr, cursor_sr);
1319
1320        I915_WRITE(DSPFW1,
1321                   (plane_sr << DSPFW_SR_SHIFT) |
1322                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324                   planea_wm);
1325        I915_WRITE(DSPFW2,
1326                   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327                   (cursora_wm << DSPFW_CURSORA_SHIFT));
1328        I915_WRITE(DSPFW3,
1329                   (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330}
1331
1332static void g4x_update_wm(struct drm_device *dev)
1333{
1334        static const int sr_latency_ns = 12000;
1335        struct drm_i915_private *dev_priv = dev->dev_private;
1336        int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337        int plane_sr, cursor_sr;
1338        unsigned int enabled = 0;
1339
1340        if (g4x_compute_wm0(dev, 0,
1341                            &g4x_wm_info, latency_ns,
1342                            &g4x_cursor_wm_info, latency_ns,
1343                            &planea_wm, &cursora_wm))
1344                enabled |= 1;
1345
1346        if (g4x_compute_wm0(dev, 1,
1347                            &g4x_wm_info, latency_ns,
1348                            &g4x_cursor_wm_info, latency_ns,
1349                            &planeb_wm, &cursorb_wm))
1350                enabled |= 2;
1351
1352        plane_sr = cursor_sr = 0;
1353        if (single_plane_enabled(enabled) &&
1354            g4x_compute_srwm(dev, ffs(enabled) - 1,
1355                             sr_latency_ns,
1356                             &g4x_wm_info,
1357                             &g4x_cursor_wm_info,
1358                             &plane_sr, &cursor_sr))
1359                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360        else
1361                I915_WRITE(FW_BLC_SELF,
1362                           I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364        DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365                      planea_wm, cursora_wm,
1366                      planeb_wm, cursorb_wm,
1367                      plane_sr, cursor_sr);
1368
1369        I915_WRITE(DSPFW1,
1370                   (plane_sr << DSPFW_SR_SHIFT) |
1371                   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372                   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373                   planea_wm);
1374        I915_WRITE(DSPFW2,
1375                   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376                   (cursora_wm << DSPFW_CURSORA_SHIFT));
1377        /* HPLL off in SR has some issues on G4x... disable it */
1378        I915_WRITE(DSPFW3,
1379                   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380                   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381}
1382
1383static void i965_update_wm(struct drm_device *dev)
1384{
1385        struct drm_i915_private *dev_priv = dev->dev_private;
1386        struct drm_crtc *crtc;
1387        int srwm = 1;
1388        int cursor_sr = 16;
1389
1390        /* Calc sr entries for one plane configs */
1391        crtc = single_enabled_crtc(dev);
1392        if (crtc) {
1393                /* self-refresh has much higher latency */
1394                static const int sr_latency_ns = 12000;
1395                int clock = crtc->mode.clock;
1396                int htotal = crtc->mode.htotal;
1397                int hdisplay = crtc->mode.hdisplay;
1398                int pixel_size = crtc->fb->bits_per_pixel / 8;
1399                unsigned long line_time_us;
1400                int entries;
1401
1402                line_time_us = ((htotal * 1000) / clock);
1403
1404                /* Use ns/us then divide to preserve precision */
1405                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406                        pixel_size * hdisplay;
1407                entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408                srwm = I965_FIFO_SIZE - entries;
1409                if (srwm < 0)
1410                        srwm = 1;
1411                srwm &= 0x1ff;
1412                DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413                              entries, srwm);
1414
1415                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416                        pixel_size * 64;
1417                entries = DIV_ROUND_UP(entries,
1418                                          i965_cursor_wm_info.cacheline_size);
1419                cursor_sr = i965_cursor_wm_info.fifo_size -
1420                        (entries + i965_cursor_wm_info.guard_size);
1421
1422                if (cursor_sr > i965_cursor_wm_info.max_wm)
1423                        cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425                DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426                              "cursor %d\n", srwm, cursor_sr);
1427
1428                if (IS_CRESTLINE(dev))
1429                        I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430        } else {
1431                /* Turn off self refresh if both pipes are enabled */
1432                if (IS_CRESTLINE(dev))
1433                        I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434                                   & ~FW_BLC_SELF_EN);
1435        }
1436
1437        DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438                      srwm);
1439
1440        /* 965 has limitations... */
1441        I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442                   (8 << 16) | (8 << 8) | (8 << 0));
1443        I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444        /* update cursor SR watermark */
1445        I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446}
1447
1448static void i9xx_update_wm(struct drm_device *dev)
1449{
1450        struct drm_i915_private *dev_priv = dev->dev_private;
1451        const struct intel_watermark_params *wm_info;
1452        uint32_t fwater_lo;
1453        uint32_t fwater_hi;
1454        int cwm, srwm = 1;
1455        int fifo_size;
1456        int planea_wm, planeb_wm;
1457        struct drm_crtc *crtc, *enabled = NULL;
1458
1459        if (IS_I945GM(dev))
1460                wm_info = &i945_wm_info;
1461        else if (!IS_GEN2(dev))
1462                wm_info = &i915_wm_info;
1463        else
1464                wm_info = &i855_wm_info;
1465
1466        fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467        crtc = intel_get_crtc_for_plane(dev, 0);
1468        if (crtc->enabled && crtc->fb) {
1469                planea_wm = intel_calculate_wm(crtc->mode.clock,
1470                                               wm_info, fifo_size,
1471                                               crtc->fb->bits_per_pixel / 8,
1472                                               latency_ns);
1473                enabled = crtc;
1474        } else
1475                planea_wm = fifo_size - wm_info->guard_size;
1476
1477        fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478        crtc = intel_get_crtc_for_plane(dev, 1);
1479        if (crtc->enabled && crtc->fb) {
1480                planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481                                               wm_info, fifo_size,
1482                                               crtc->fb->bits_per_pixel / 8,
1483                                               latency_ns);
1484                if (enabled == NULL)
1485                        enabled = crtc;
1486                else
1487                        enabled = NULL;
1488        } else
1489                planeb_wm = fifo_size - wm_info->guard_size;
1490
1491        DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493        /*
1494         * Overlay gets an aggressive default since video jitter is bad.
1495         */
1496        cwm = 2;
1497
1498        /* Play safe and disable self-refresh before adjusting watermarks. */
1499        if (IS_I945G(dev) || IS_I945GM(dev))
1500                I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501        else if (IS_I915GM(dev))
1502                I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504        /* Calc sr entries for one plane configs */
1505        if (HAS_FW_BLC(dev) && enabled) {
1506                /* self-refresh has much higher latency */
1507                static const int sr_latency_ns = 6000;
1508                int clock = enabled->mode.clock;
1509                int htotal = enabled->mode.htotal;
1510                int hdisplay = enabled->mode.hdisplay;
1511                int pixel_size = enabled->fb->bits_per_pixel / 8;
1512                unsigned long line_time_us;
1513                int entries;
1514
1515                line_time_us = (htotal * 1000) / clock;
1516
1517                /* Use ns/us then divide to preserve precision */
1518                entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519                        pixel_size * hdisplay;
1520                entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521                DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522                srwm = wm_info->fifo_size - entries;
1523                if (srwm < 0)
1524                        srwm = 1;
1525
1526                if (IS_I945G(dev) || IS_I945GM(dev))
1527                        I915_WRITE(FW_BLC_SELF,
1528                                   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529                else if (IS_I915GM(dev))
1530                        I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531        }
1532
1533        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534                      planea_wm, planeb_wm, cwm, srwm);
1535
1536        fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537        fwater_hi = (cwm & 0x1f);
1538
1539        /* Set request length to 8 cachelines per fetch */
1540        fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541        fwater_hi = fwater_hi | (1 << 8);
1542
1543        I915_WRITE(FW_BLC, fwater_lo);
1544        I915_WRITE(FW_BLC2, fwater_hi);
1545
1546        if (HAS_FW_BLC(dev)) {
1547                if (enabled) {
1548                        if (IS_I945G(dev) || IS_I945GM(dev))
1549                                I915_WRITE(FW_BLC_SELF,
1550                                           FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551                        else if (IS_I915GM(dev))
1552                                I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553                        DRM_DEBUG_KMS("memory self refresh enabled\n");
1554                } else
1555                        DRM_DEBUG_KMS("memory self refresh disabled\n");
1556        }
1557}
1558
1559static void i830_update_wm(struct drm_device *dev)
1560{
1561        struct drm_i915_private *dev_priv = dev->dev_private;
1562        struct drm_crtc *crtc;
1563        uint32_t fwater_lo;
1564        int planea_wm;
1565
1566        crtc = single_enabled_crtc(dev);
1567        if (crtc == NULL)
1568                return;
1569
1570        planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571                                       dev_priv->display.get_fifo_size(dev, 0),
1572                                       crtc->fb->bits_per_pixel / 8,
1573                                       latency_ns);
1574        fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575        fwater_lo |= (3<<8) | planea_wm;
1576
1577        DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579        I915_WRITE(FW_BLC, fwater_lo);
1580}
1581
1582#define ILK_LP0_PLANE_LATENCY           700
1583#define ILK_LP0_CURSOR_LATENCY          1300
1584
1585/*
1586 * Check the wm result.
1587 *
1588 * If any calculated watermark values is larger than the maximum value that
1589 * can be programmed into the associated watermark register, that watermark
1590 * must be disabled.
1591 */
1592static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593                                int fbc_wm, int display_wm, int cursor_wm,
1594                                const struct intel_watermark_params *display,
1595                                const struct intel_watermark_params *cursor)
1596{
1597        struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599        DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600                      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602        if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603                DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604                              fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606                /* fbc has it's own way to disable FBC WM */
1607                I915_WRITE(DISP_ARB_CTL,
1608                           I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609                return false;
1610        }
1611
1612        if (display_wm > display->max_wm) {
1613                DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614                              display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615                return false;
1616        }
1617
1618        if (cursor_wm > cursor->max_wm) {
1619                DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620                              cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621                return false;
1622        }
1623
1624        if (!(fbc_wm || display_wm || cursor_wm)) {
1625                DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626                return false;
1627        }
1628
1629        return true;
1630}
1631
1632/*
1633 * Compute watermark values of WM[1-3],
1634 */
1635static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636                                  int latency_ns,
1637                                  const struct intel_watermark_params *display,
1638                                  const struct intel_watermark_params *cursor,
1639                                  int *fbc_wm, int *display_wm, int *cursor_wm)
1640{
1641        struct drm_crtc *crtc;
1642        unsigned long line_time_us;
1643        int hdisplay, htotal, pixel_size, clock;
1644        int line_count, line_size;
1645        int small, large;
1646        int entries;
1647
1648        if (!latency_ns) {
1649                *fbc_wm = *display_wm = *cursor_wm = 0;
1650                return false;
1651        }
1652
1653        crtc = intel_get_crtc_for_plane(dev, plane);
1654        hdisplay = crtc->mode.hdisplay;
1655        htotal = crtc->mode.htotal;
1656        clock = crtc->mode.clock;
1657        pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659        line_time_us = (htotal * 1000) / clock;
1660        line_count = (latency_ns / line_time_us + 1000) / 1000;
1661        line_size = hdisplay * pixel_size;
1662
1663        /* Use the minimum of the small and large buffer method for primary */
1664        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665        large = line_count * line_size;
1666
1667        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668        *display_wm = entries + display->guard_size;
1669
1670        /*
1671         * Spec says:
1672         * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673         */
1674        *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676        /* calculate the self-refresh watermark for display cursor */
1677        entries = line_count * pixel_size * 64;
1678        entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679        *cursor_wm = entries + cursor->guard_size;
1680
1681        return ironlake_check_srwm(dev, level,
1682                                   *fbc_wm, *display_wm, *cursor_wm,
1683                                   display, cursor);
1684}
1685
1686static void ironlake_update_wm(struct drm_device *dev)
1687{
1688        struct drm_i915_private *dev_priv = dev->dev_private;
1689        int fbc_wm, plane_wm, cursor_wm;
1690        unsigned int enabled;
1691
1692        enabled = 0;
1693        if (g4x_compute_wm0(dev, 0,
1694                            &ironlake_display_wm_info,
1695                            ILK_LP0_PLANE_LATENCY,
1696                            &ironlake_cursor_wm_info,
1697                            ILK_LP0_CURSOR_LATENCY,
1698                            &plane_wm, &cursor_wm)) {
1699                I915_WRITE(WM0_PIPEA_ILK,
1700                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702                              " plane %d, " "cursor: %d\n",
1703                              plane_wm, cursor_wm);
1704                enabled |= 1;
1705        }
1706
1707        if (g4x_compute_wm0(dev, 1,
1708                            &ironlake_display_wm_info,
1709                            ILK_LP0_PLANE_LATENCY,
1710                            &ironlake_cursor_wm_info,
1711                            ILK_LP0_CURSOR_LATENCY,
1712                            &plane_wm, &cursor_wm)) {
1713                I915_WRITE(WM0_PIPEB_ILK,
1714                           (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716                              " plane %d, cursor: %d\n",
1717                              plane_wm, cursor_wm);
1718                enabled |= 2;
1719        }
1720
1721        /*
1722         * Calculate and update the self-refresh watermark only when one
1723         * display plane is used.
1724         */
1725        I915_WRITE(WM3_LP_ILK, 0);
1726        I915_WRITE(WM2_LP_ILK, 0);
1727        I915_WRITE(WM1_LP_ILK, 0);
1728
1729        if (!single_plane_enabled(enabled))
1730                return;
1731        enabled = ffs(enabled) - 1;
1732
1733        /* WM1 */
1734        if (!ironlake_compute_srwm(dev, 1, enabled,
1735                                   ILK_READ_WM1_LATENCY() * 500,
1736                                   &ironlake_display_srwm_info,
1737                                   &ironlake_cursor_srwm_info,
1738                                   &fbc_wm, &plane_wm, &cursor_wm))
1739                return;
1740
1741        I915_WRITE(WM1_LP_ILK,
1742                   WM1_LP_SR_EN |
1743                   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1745                   (plane_wm << WM1_LP_SR_SHIFT) |
1746                   cursor_wm);
1747
1748        /* WM2 */
1749        if (!ironlake_compute_srwm(dev, 2, enabled,
1750                                   ILK_READ_WM2_LATENCY() * 500,
1751                                   &ironlake_display_srwm_info,
1752                                   &ironlake_cursor_srwm_info,
1753                                   &fbc_wm, &plane_wm, &cursor_wm))
1754                return;
1755
1756        I915_WRITE(WM2_LP_ILK,
1757                   WM2_LP_EN |
1758                   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1760                   (plane_wm << WM1_LP_SR_SHIFT) |
1761                   cursor_wm);
1762
1763        /*
1764         * WM3 is unsupported on ILK, probably because we don't have latency
1765         * data for that power state
1766         */
1767}
1768
1769static void sandybridge_update_wm(struct drm_device *dev)
1770{
1771        struct drm_i915_private *dev_priv = dev->dev_private;
1772        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1773        u32 val;
1774        int fbc_wm, plane_wm, cursor_wm;
1775        unsigned int enabled;
1776
1777        enabled = 0;
1778        if (g4x_compute_wm0(dev, 0,
1779                            &sandybridge_display_wm_info, latency,
1780                            &sandybridge_cursor_wm_info, latency,
1781                            &plane_wm, &cursor_wm)) {
1782                val = I915_READ(WM0_PIPEA_ILK);
1783                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784                I915_WRITE(WM0_PIPEA_ILK, val |
1785                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786                DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787                              " plane %d, " "cursor: %d\n",
1788                              plane_wm, cursor_wm);
1789                enabled |= 1;
1790        }
1791
1792        if (g4x_compute_wm0(dev, 1,
1793                            &sandybridge_display_wm_info, latency,
1794                            &sandybridge_cursor_wm_info, latency,
1795                            &plane_wm, &cursor_wm)) {
1796                val = I915_READ(WM0_PIPEB_ILK);
1797                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798                I915_WRITE(WM0_PIPEB_ILK, val |
1799                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800                DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801                              " plane %d, cursor: %d\n",
1802                              plane_wm, cursor_wm);
1803                enabled |= 2;
1804        }
1805
1806        if ((dev_priv->num_pipe == 3) &&
1807            g4x_compute_wm0(dev, 2,
1808                            &sandybridge_display_wm_info, latency,
1809                            &sandybridge_cursor_wm_info, latency,
1810                            &plane_wm, &cursor_wm)) {
1811                val = I915_READ(WM0_PIPEC_IVB);
1812                val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813                I915_WRITE(WM0_PIPEC_IVB, val |
1814                           ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815                DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816                              " plane %d, cursor: %d\n",
1817                              plane_wm, cursor_wm);
1818                enabled |= 3;
1819        }
1820
1821        /*
1822         * Calculate and update the self-refresh watermark only when one
1823         * display plane is used.
1824         *
1825         * SNB support 3 levels of watermark.
1826         *
1827         * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828         * and disabled in the descending order
1829         *
1830         */
1831        I915_WRITE(WM3_LP_ILK, 0);
1832        I915_WRITE(WM2_LP_ILK, 0);
1833        I915_WRITE(WM1_LP_ILK, 0);
1834
1835        if (!single_plane_enabled(enabled) ||
1836            dev_priv->sprite_scaling_enabled)
1837                return;
1838        enabled = ffs(enabled) - 1;
1839
1840        /* WM1 */
1841        if (!ironlake_compute_srwm(dev, 1, enabled,
1842                                   SNB_READ_WM1_LATENCY() * 500,
1843                                   &sandybridge_display_srwm_info,
1844                                   &sandybridge_cursor_srwm_info,
1845                                   &fbc_wm, &plane_wm, &cursor_wm))
1846                return;
1847
1848        I915_WRITE(WM1_LP_ILK,
1849                   WM1_LP_SR_EN |
1850                   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                   (plane_wm << WM1_LP_SR_SHIFT) |
1853                   cursor_wm);
1854
1855        /* WM2 */
1856        if (!ironlake_compute_srwm(dev, 2, enabled,
1857                                   SNB_READ_WM2_LATENCY() * 500,
1858                                   &sandybridge_display_srwm_info,
1859                                   &sandybridge_cursor_srwm_info,
1860                                   &fbc_wm, &plane_wm, &cursor_wm))
1861                return;
1862
1863        I915_WRITE(WM2_LP_ILK,
1864                   WM2_LP_EN |
1865                   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1867                   (plane_wm << WM1_LP_SR_SHIFT) |
1868                   cursor_wm);
1869
1870        /* WM3 */
1871        if (!ironlake_compute_srwm(dev, 3, enabled,
1872                                   SNB_READ_WM3_LATENCY() * 500,
1873                                   &sandybridge_display_srwm_info,
1874                                   &sandybridge_cursor_srwm_info,
1875                                   &fbc_wm, &plane_wm, &cursor_wm))
1876                return;
1877
1878        I915_WRITE(WM3_LP_ILK,
1879                   WM3_LP_EN |
1880                   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881                   (fbc_wm << WM1_LP_FBC_SHIFT) |
1882                   (plane_wm << WM1_LP_SR_SHIFT) |
1883                   cursor_wm);
1884}
1885
1886static void
1887haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888                                 struct drm_display_mode *mode)
1889{
1890        struct drm_i915_private *dev_priv = dev->dev_private;
1891        u32 temp;
1892
1893        temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894        temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896        /* The WM are computed with base on how long it takes to fill a single
1897         * row at the given clock rate, multiplied by 8.
1898         * */
1899        temp |= PIPE_WM_LINETIME_TIME(
1900                ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902        /* IPS watermarks are only used by pipe A, and are ignored by
1903         * pipes B and C.  They are calculated similarly to the common
1904         * linetime values, except that we are using CD clock frequency
1905         * in MHz instead of pixel rate for the division.
1906         *
1907         * This is a placeholder for the IPS watermark calculation code.
1908         */
1909
1910        I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911}
1912
1913static bool
1914sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915                              uint32_t sprite_width, int pixel_size,
1916                              const struct intel_watermark_params *display,
1917                              int display_latency_ns, int *sprite_wm)
1918{
1919        struct drm_crtc *crtc;
1920        int clock;
1921        int entries, tlb_miss;
1922
1923        crtc = intel_get_crtc_for_plane(dev, plane);
1924        if (crtc->fb == NULL || !crtc->enabled) {
1925                *sprite_wm = display->guard_size;
1926                return false;
1927        }
1928
1929        clock = crtc->mode.clock;
1930
1931        /* Use the small buffer method to calculate the sprite watermark */
1932        entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933        tlb_miss = display->fifo_size*display->cacheline_size -
1934                sprite_width * 8;
1935        if (tlb_miss > 0)
1936                entries += tlb_miss;
1937        entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938        *sprite_wm = entries + display->guard_size;
1939        if (*sprite_wm > (int)display->max_wm)
1940                *sprite_wm = display->max_wm;
1941
1942        return true;
1943}
1944
1945static bool
1946sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947                                uint32_t sprite_width, int pixel_size,
1948                                const struct intel_watermark_params *display,
1949                                int latency_ns, int *sprite_wm)
1950{
1951        struct drm_crtc *crtc;
1952        unsigned long line_time_us;
1953        int clock;
1954        int line_count, line_size;
1955        int small, large;
1956        int entries;
1957
1958        if (!latency_ns) {
1959                *sprite_wm = 0;
1960                return false;
1961        }
1962
1963        crtc = intel_get_crtc_for_plane(dev, plane);
1964        clock = crtc->mode.clock;
1965        if (!clock) {
1966                *sprite_wm = 0;
1967                return false;
1968        }
1969
1970        line_time_us = (sprite_width * 1000) / clock;
1971        if (!line_time_us) {
1972                *sprite_wm = 0;
1973                return false;
1974        }
1975
1976        line_count = (latency_ns / line_time_us + 1000) / 1000;
1977        line_size = sprite_width * pixel_size;
1978
1979        /* Use the minimum of the small and large buffer method for primary */
1980        small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981        large = line_count * line_size;
1982
1983        entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984        *sprite_wm = entries + display->guard_size;
1985
1986        return *sprite_wm > 0x3ff ? false : true;
1987}
1988
1989static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990                                         uint32_t sprite_width, int pixel_size)
1991{
1992        struct drm_i915_private *dev_priv = dev->dev_private;
1993        int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1994        u32 val;
1995        int sprite_wm, reg;
1996        int ret;
1997
1998        switch (pipe) {
1999        case 0:
2000                reg = WM0_PIPEA_ILK;
2001                break;
2002        case 1:
2003                reg = WM0_PIPEB_ILK;
2004                break;
2005        case 2:
2006                reg = WM0_PIPEC_IVB;
2007                break;
2008        default:
2009                return; /* bad pipe */
2010        }
2011
2012        ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013                                            &sandybridge_display_wm_info,
2014                                            latency, &sprite_wm);
2015        if (!ret) {
2016                DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017                              pipe);
2018                return;
2019        }
2020
2021        val = I915_READ(reg);
2022        val &= ~WM0_PIPE_SPRITE_MASK;
2023        I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024        DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028                                              pixel_size,
2029                                              &sandybridge_display_srwm_info,
2030                                              SNB_READ_WM1_LATENCY() * 500,
2031                                              &sprite_wm);
2032        if (!ret) {
2033                DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034                              pipe);
2035                return;
2036        }
2037        I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039        /* Only IVB has two more LP watermarks for sprite */
2040        if (!IS_IVYBRIDGE(dev))
2041                return;
2042
2043        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044                                              pixel_size,
2045                                              &sandybridge_display_srwm_info,
2046                                              SNB_READ_WM2_LATENCY() * 500,
2047                                              &sprite_wm);
2048        if (!ret) {
2049                DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050                              pipe);
2051                return;
2052        }
2053        I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055        ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056                                              pixel_size,
2057                                              &sandybridge_display_srwm_info,
2058                                              SNB_READ_WM3_LATENCY() * 500,
2059                                              &sprite_wm);
2060        if (!ret) {
2061                DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062                              pipe);
2063                return;
2064        }
2065        I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066}
2067
2068/**
2069 * intel_update_watermarks - update FIFO watermark values based on current modes
2070 *
2071 * Calculate watermark values for the various WM regs based on current mode
2072 * and plane configuration.
2073 *
2074 * There are several cases to deal with here:
2075 *   - normal (i.e. non-self-refresh)
2076 *   - self-refresh (SR) mode
2077 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2078 *   - lines are small relative to FIFO size (buffer can hold more than 2
2079 *     lines), so need to account for TLB latency
2080 *
2081 *   The normal calculation is:
2082 *     watermark = dotclock * bytes per pixel * latency
2083 *   where latency is platform & configuration dependent (we assume pessimal
2084 *   values here).
2085 *
2086 *   The SR calculation is:
2087 *     watermark = (trunc(latency/line time)+1) * surface width *
2088 *       bytes per pixel
2089 *   where
2090 *     line time = htotal / dotclock
2091 *     surface width = hdisplay for normal plane and 64 for cursor
2092 *   and latency is assumed to be high, as above.
2093 *
2094 * The final value programmed to the register should always be rounded up,
2095 * and include an extra 2 entries to account for clock crossings.
2096 *
2097 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2098 * to set the non-SR watermarks to 8.
2099 */
2100void intel_update_watermarks(struct drm_device *dev)
2101{
2102        struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104        if (dev_priv->display.update_wm)
2105                dev_priv->display.update_wm(dev);
2106}
2107
2108void intel_update_linetime_watermarks(struct drm_device *dev,
2109                int pipe, struct drm_display_mode *mode)
2110{
2111        struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113        if (dev_priv->display.update_linetime_wm)
2114                dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115}
2116
2117void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118                                    uint32_t sprite_width, int pixel_size)
2119{
2120        struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122        if (dev_priv->display.update_sprite_wm)
2123                dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124                                                   pixel_size);
2125}
2126
2127static struct drm_i915_gem_object *
2128intel_alloc_context_page(struct drm_device *dev)
2129{
2130        struct drm_i915_gem_object *ctx;
2131        int ret;
2132
2133        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135        ctx = i915_gem_alloc_object(dev, 4096);
2136        if (!ctx) {
2137                DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138                return NULL;
2139        }
2140
2141        ret = i915_gem_object_pin(ctx, 4096, true);
2142        if (ret) {
2143                DRM_ERROR("failed to pin power context: %d\n", ret);
2144                goto err_unref;
2145        }
2146
2147        ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148        if (ret) {
2149                DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150                goto err_unpin;
2151        }
2152
2153        return ctx;
2154
2155err_unpin:
2156        i915_gem_object_unpin(ctx);
2157err_unref:
2158        drm_gem_object_unreference(&ctx->base);
2159        mutex_unlock(&dev->struct_mutex);
2160        return NULL;
2161}
2162
2163bool ironlake_set_drps(struct drm_device *dev, u8 val)
2164{
2165        struct drm_i915_private *dev_priv = dev->dev_private;
2166        u16 rgvswctl;
2167
2168        rgvswctl = I915_READ16(MEMSWCTL);
2169        if (rgvswctl & MEMCTL_CMD_STS) {
2170                DRM_DEBUG("gpu busy, RCS change rejected\n");
2171                return false; /* still busy with another command */
2172        }
2173
2174        rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2175                (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2176        I915_WRITE16(MEMSWCTL, rgvswctl);
2177        POSTING_READ16(MEMSWCTL);
2178
2179        rgvswctl |= MEMCTL_CMD_STS;
2180        I915_WRITE16(MEMSWCTL, rgvswctl);
2181
2182        return true;
2183}
2184
2185static void ironlake_enable_drps(struct drm_device *dev)
2186{
2187        struct drm_i915_private *dev_priv = dev->dev_private;
2188        u32 rgvmodectl = I915_READ(MEMMODECTL);
2189        u8 fmax, fmin, fstart, vstart;
2190
2191        /* Enable temp reporting */
2192        I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2193        I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2194
2195        /* 100ms RC evaluation intervals */
2196        I915_WRITE(RCUPEI, 100000);
2197        I915_WRITE(RCDNEI, 100000);
2198
2199        /* Set max/min thresholds to 90ms and 80ms respectively */
2200        I915_WRITE(RCBMAXAVG, 90000);
2201        I915_WRITE(RCBMINAVG, 80000);
2202
2203        I915_WRITE(MEMIHYST, 1);
2204
2205        /* Set up min, max, and cur for interrupt handling */
2206        fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2207        fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2208        fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2209                MEMMODE_FSTART_SHIFT;
2210
2211        vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2212                PXVFREQ_PX_SHIFT;
2213
2214        dev_priv->fmax = fmax; /* IPS callback will increase this */
2215        dev_priv->fstart = fstart;
2216
2217        dev_priv->max_delay = fstart;
2218        dev_priv->min_delay = fmin;
2219        dev_priv->cur_delay = fstart;
2220
2221        DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2222                         fmax, fmin, fstart);
2223
2224        I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2225
2226        /*
2227         * Interrupts will be enabled in ironlake_irq_postinstall
2228         */
2229
2230        I915_WRITE(VIDSTART, vstart);
2231        POSTING_READ(VIDSTART);
2232
2233        rgvmodectl |= MEMMODE_SWMODE_EN;
2234        I915_WRITE(MEMMODECTL, rgvmodectl);
2235
2236        if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2237                DRM_ERROR("stuck trying to change perf mode\n");
2238        msleep(1);
2239
2240        ironlake_set_drps(dev, fstart);
2241
2242        dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2243                I915_READ(0x112e0);
2244        dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2245        dev_priv->last_count2 = I915_READ(0x112f4);
2246        getrawmonotonic(&dev_priv->last_time2);
2247}
2248
2249static void ironlake_disable_drps(struct drm_device *dev)
2250{
2251        struct drm_i915_private *dev_priv = dev->dev_private;
2252        u16 rgvswctl = I915_READ16(MEMSWCTL);
2253
2254        /* Ack interrupts, disable EFC interrupt */
2255        I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2256        I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2257        I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2258        I915_WRITE(DEIIR, DE_PCU_EVENT);
2259        I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2260
2261        /* Go back to the starting frequency */
2262        ironlake_set_drps(dev, dev_priv->fstart);
2263        msleep(1);
2264        rgvswctl |= MEMCTL_CMD_STS;
2265        I915_WRITE(MEMSWCTL, rgvswctl);
2266        msleep(1);
2267
2268}
2269
2270void gen6_set_rps(struct drm_device *dev, u8 val)
2271{
2272        struct drm_i915_private *dev_priv = dev->dev_private;
2273        u32 limits;
2274
2275        limits = 0;
2276        if (val >= dev_priv->max_delay)
2277                val = dev_priv->max_delay;
2278        else
2279                limits |= dev_priv->max_delay << 24;
2280
2281        if (val <= dev_priv->min_delay)
2282                val = dev_priv->min_delay;
2283        else
2284                limits |= dev_priv->min_delay << 16;
2285
2286        if (val == dev_priv->cur_delay)
2287                return;
2288
2289        I915_WRITE(GEN6_RPNSWREQ,
2290                   GEN6_FREQUENCY(val) |
2291                   GEN6_OFFSET(0) |
2292                   GEN6_AGGRESSIVE_TURBO);
2293
2294        /* Make sure we continue to get interrupts
2295         * until we hit the minimum or maximum frequencies.
2296         */
2297        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2298
2299        dev_priv->cur_delay = val;
2300}
2301
2302static void gen6_disable_rps(struct drm_device *dev)
2303{
2304        struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306        I915_WRITE(GEN6_RC_CONTROL, 0);
2307        I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2308        I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2309        I915_WRITE(GEN6_PMIER, 0);
2310        /* Complete PM interrupt masking here doesn't race with the rps work
2311         * item again unmasking PM interrupts because that is using a different
2312         * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2313         * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2314
2315        spin_lock_irq(&dev_priv->rps_lock);
2316        dev_priv->pm_iir = 0;
2317        spin_unlock_irq(&dev_priv->rps_lock);
2318
2319        I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2320}
2321
2322int intel_enable_rc6(const struct drm_device *dev)
2323{
2324        /*
2325         * Respect the kernel parameter if it is set
2326         */
2327        if (i915_enable_rc6 >= 0)
2328                return i915_enable_rc6;
2329
2330        /*
2331         * Disable RC6 on Ironlake
2332         */
2333        if (INTEL_INFO(dev)->gen == 5)
2334                return 0;
2335
2336        /* On Haswell, only RC6 is available. So let's enable it by default to
2337         * provide better testing and coverage since the beginning.
2338         */
2339        if (IS_HASWELL(dev))
2340                return INTEL_RC6_ENABLE;
2341
2342        /*
2343         * Disable rc6 on Sandybridge
2344         */
2345        if (INTEL_INFO(dev)->gen == 6) {
2346                DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2347                return INTEL_RC6_ENABLE;
2348        }
2349        DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2350        return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2351}
2352
2353static void gen6_enable_rps(struct drm_device *dev)
2354{
2355        struct drm_i915_private *dev_priv = dev->dev_private;
2356        struct intel_ring_buffer *ring;
2357        u32 rp_state_cap;
2358        u32 gt_perf_status;
2359        u32 pcu_mbox, rc6_mask = 0;
2360        u32 gtfifodbg;
2361        int rc6_mode;
2362        int i;
2363
2364        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2365
2366        /* Here begins a magic sequence of register writes to enable
2367         * auto-downclocking.
2368         *
2369         * Perhaps there might be some value in exposing these to
2370         * userspace...
2371         */
2372        I915_WRITE(GEN6_RC_STATE, 0);
2373
2374        /* Clear the DBG now so we don't confuse earlier errors */
2375        if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2376                DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2377                I915_WRITE(GTFIFODBG, gtfifodbg);
2378        }
2379
2380        gen6_gt_force_wake_get(dev_priv);
2381
2382        rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2383        gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2384
2385        /* In units of 100MHz */
2386        dev_priv->max_delay = rp_state_cap & 0xff;
2387        dev_priv->min_delay = (rp_state_cap & 0xff0000) >> 16;
2388        dev_priv->cur_delay = 0;
2389
2390        /* disable the counters and set deterministic thresholds */
2391        I915_WRITE(GEN6_RC_CONTROL, 0);
2392
2393        I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2394        I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2395        I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2396        I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2397        I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2398
2399        for_each_ring(ring, dev_priv, i)
2400                I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2401
2402        I915_WRITE(GEN6_RC_SLEEP, 0);
2403        I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2404        I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2405        I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2406        I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2407
2408        /* Check if we are enabling RC6 */
2409        rc6_mode = intel_enable_rc6(dev_priv->dev);
2410        if (rc6_mode & INTEL_RC6_ENABLE)
2411                rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2412
2413        /* We don't use those on Haswell */
2414        if (!IS_HASWELL(dev)) {
2415                if (rc6_mode & INTEL_RC6p_ENABLE)
2416                        rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2417
2418                if (rc6_mode & INTEL_RC6pp_ENABLE)
2419                        rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2420        }
2421
2422        DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2423                        (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2424                        (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2425                        (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2426
2427        I915_WRITE(GEN6_RC_CONTROL,
2428                   rc6_mask |
2429                   GEN6_RC_CTL_EI_MODE(1) |
2430                   GEN6_RC_CTL_HW_ENABLE);
2431
2432        I915_WRITE(GEN6_RPNSWREQ,
2433                   GEN6_FREQUENCY(10) |
2434                   GEN6_OFFSET(0) |
2435                   GEN6_AGGRESSIVE_TURBO);
2436        I915_WRITE(GEN6_RC_VIDEO_FREQ,
2437                   GEN6_FREQUENCY(12));
2438
2439        I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2440        I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2441                   dev_priv->max_delay << 24 |
2442                   dev_priv->min_delay << 16);
2443
2444        I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2445        I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2446        I915_WRITE(GEN6_RP_UP_EI, 66000);
2447        I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2448
2449        I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2450        I915_WRITE(GEN6_RP_CONTROL,
2451                   GEN6_RP_MEDIA_TURBO |
2452                   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2453                   GEN6_RP_MEDIA_IS_GFX |
2454                   GEN6_RP_ENABLE |
2455                   GEN6_RP_UP_BUSY_AVG |
2456                   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2457
2458        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2459                     500))
2460                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2461
2462        I915_WRITE(GEN6_PCODE_DATA, 0);
2463        I915_WRITE(GEN6_PCODE_MAILBOX,
2464                   GEN6_PCODE_READY |
2465                   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2466        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2467                     500))
2468                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2469
2470        /* Check for overclock support */
2471        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2472                     500))
2473                DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2474        I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2475        pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2476        if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2477                     500))
2478                DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2479        if (pcu_mbox & (1<<31)) { /* OC supported */
2480                dev_priv->max_delay = pcu_mbox & 0xff;
2481                DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2482        }
2483
2484        gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2485
2486        /* requires MSI enabled */
2487        I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2488        spin_lock_irq(&dev_priv->rps_lock);
2489        WARN_ON(dev_priv->pm_iir != 0);
2490        I915_WRITE(GEN6_PMIMR, 0);
2491        spin_unlock_irq(&dev_priv->rps_lock);
2492        /* enable all PM interrupts */
2493        I915_WRITE(GEN6_PMINTRMSK, 0);
2494
2495        gen6_gt_force_wake_put(dev_priv);
2496}
2497
2498static void gen6_update_ring_freq(struct drm_device *dev)
2499{
2500        struct drm_i915_private *dev_priv = dev->dev_private;
2501        int min_freq = 15;
2502        int gpu_freq, ia_freq, max_ia_freq;
2503        int scaling_factor = 180;
2504
2505        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2506
2507        max_ia_freq = cpufreq_quick_get_max(0);
2508        /*
2509         * Default to measured freq if none found, PCU will ensure we don't go
2510         * over
2511         */
2512        if (!max_ia_freq)
2513                max_ia_freq = tsc_khz;
2514
2515        /* Convert from kHz to MHz */
2516        max_ia_freq /= 1000;
2517
2518        /*
2519         * For each potential GPU frequency, load a ring frequency we'd like
2520         * to use for memory access.  We do this by specifying the IA frequency
2521         * the PCU should use as a reference to determine the ring frequency.
2522         */
2523        for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2524             gpu_freq--) {
2525                int diff = dev_priv->max_delay - gpu_freq;
2526
2527                /*
2528                 * For GPU frequencies less than 750MHz, just use the lowest
2529                 * ring freq.
2530                 */
2531                if (gpu_freq < min_freq)
2532                        ia_freq = 800;
2533                else
2534                        ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2535                ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2536
2537                I915_WRITE(GEN6_PCODE_DATA,
2538                           (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2539                           gpu_freq);
2540                I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2541                           GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2542                if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2543                              GEN6_PCODE_READY) == 0, 10)) {
2544                        DRM_ERROR("pcode write of freq table timed out\n");
2545                        continue;
2546                }
2547        }
2548}
2549
2550void ironlake_teardown_rc6(struct drm_device *dev)
2551{
2552        struct drm_i915_private *dev_priv = dev->dev_private;
2553
2554        if (dev_priv->renderctx) {
2555                i915_gem_object_unpin(dev_priv->renderctx);
2556                drm_gem_object_unreference(&dev_priv->renderctx->base);
2557                dev_priv->renderctx = NULL;
2558        }
2559
2560        if (dev_priv->pwrctx) {
2561                i915_gem_object_unpin(dev_priv->pwrctx);
2562                drm_gem_object_unreference(&dev_priv->pwrctx->base);
2563                dev_priv->pwrctx = NULL;
2564        }
2565}
2566
2567static void ironlake_disable_rc6(struct drm_device *dev)
2568{
2569        struct drm_i915_private *dev_priv = dev->dev_private;
2570
2571        if (I915_READ(PWRCTXA)) {
2572                /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2573                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2574                wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2575                         50);
2576
2577                I915_WRITE(PWRCTXA, 0);
2578                POSTING_READ(PWRCTXA);
2579
2580                I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2581                POSTING_READ(RSTDBYCTL);
2582        }
2583}
2584
2585static int ironlake_setup_rc6(struct drm_device *dev)
2586{
2587        struct drm_i915_private *dev_priv = dev->dev_private;
2588
2589        if (dev_priv->renderctx == NULL)
2590                dev_priv->renderctx = intel_alloc_context_page(dev);
2591        if (!dev_priv->renderctx)
2592                return -ENOMEM;
2593
2594        if (dev_priv->pwrctx == NULL)
2595                dev_priv->pwrctx = intel_alloc_context_page(dev);
2596        if (!dev_priv->pwrctx) {
2597                ironlake_teardown_rc6(dev);
2598                return -ENOMEM;
2599        }
2600
2601        return 0;
2602}
2603
2604static void ironlake_enable_rc6(struct drm_device *dev)
2605{
2606        struct drm_i915_private *dev_priv = dev->dev_private;
2607        struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2608        int ret;
2609
2610        /* rc6 disabled by default due to repeated reports of hanging during
2611         * boot and resume.
2612         */
2613        if (!intel_enable_rc6(dev))
2614                return;
2615
2616        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2617
2618        ret = ironlake_setup_rc6(dev);
2619        if (ret)
2620                return;
2621
2622        /*
2623         * GPU can automatically power down the render unit if given a page
2624         * to save state.
2625         */
2626        ret = intel_ring_begin(ring, 6);
2627        if (ret) {
2628                ironlake_teardown_rc6(dev);
2629                return;
2630        }
2631
2632        intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2633        intel_ring_emit(ring, MI_SET_CONTEXT);
2634        intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2635                        MI_MM_SPACE_GTT |
2636                        MI_SAVE_EXT_STATE_EN |
2637                        MI_RESTORE_EXT_STATE_EN |
2638                        MI_RESTORE_INHIBIT);
2639        intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2640        intel_ring_emit(ring, MI_NOOP);
2641        intel_ring_emit(ring, MI_FLUSH);
2642        intel_ring_advance(ring);
2643
2644        /*
2645         * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2646         * does an implicit flush, combined with MI_FLUSH above, it should be
2647         * safe to assume that renderctx is valid
2648         */
2649        ret = intel_wait_ring_idle(ring);
2650        if (ret) {
2651                DRM_ERROR("failed to enable ironlake power power savings\n");
2652                ironlake_teardown_rc6(dev);
2653                return;
2654        }
2655
2656        I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2657        I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2658}
2659
2660static unsigned long intel_pxfreq(u32 vidfreq)
2661{
2662        unsigned long freq;
2663        int div = (vidfreq & 0x3f0000) >> 16;
2664        int post = (vidfreq & 0x3000) >> 12;
2665        int pre = (vidfreq & 0x7);
2666
2667        if (!pre)
2668                return 0;
2669
2670        freq = ((div * 133333) / ((1<<post) * pre));
2671
2672        return freq;
2673}
2674
2675static const struct cparams {
2676        u16 i;
2677        u16 t;
2678        u16 m;
2679        u16 c;
2680} cparams[] = {
2681        { 1, 1333, 301, 28664 },
2682        { 1, 1066, 294, 24460 },
2683        { 1, 800, 294, 25192 },
2684        { 0, 1333, 276, 27605 },
2685        { 0, 1066, 276, 27605 },
2686        { 0, 800, 231, 23784 },
2687};
2688
2689unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2690{
2691        u64 total_count, diff, ret;
2692        u32 count1, count2, count3, m = 0, c = 0;
2693        unsigned long now = jiffies_to_msecs(jiffies), diff1;
2694        int i;
2695
2696        diff1 = now - dev_priv->last_time1;
2697
2698        /* Prevent division-by-zero if we are asking too fast.
2699         * Also, we don't get interesting results if we are polling
2700         * faster than once in 10ms, so just return the saved value
2701         * in such cases.
2702         */
2703        if (diff1 <= 10)
2704                return dev_priv->chipset_power;
2705
2706        count1 = I915_READ(DMIEC);
2707        count2 = I915_READ(DDREC);
2708        count3 = I915_READ(CSIEC);
2709
2710        total_count = count1 + count2 + count3;
2711
2712        /* FIXME: handle per-counter overflow */
2713        if (total_count < dev_priv->last_count1) {
2714                diff = ~0UL - dev_priv->last_count1;
2715                diff += total_count;
2716        } else {
2717                diff = total_count - dev_priv->last_count1;
2718        }
2719
2720        for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2721                if (cparams[i].i == dev_priv->c_m &&
2722                    cparams[i].t == dev_priv->r_t) {
2723                        m = cparams[i].m;
2724                        c = cparams[i].c;
2725                        break;
2726                }
2727        }
2728
2729        diff = div_u64(diff, diff1);
2730        ret = ((m * diff) + c);
2731        ret = div_u64(ret, 10);
2732
2733        dev_priv->last_count1 = total_count;
2734        dev_priv->last_time1 = now;
2735
2736        dev_priv->chipset_power = ret;
2737
2738        return ret;
2739}
2740
2741unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2742{
2743        unsigned long m, x, b;
2744        u32 tsfs;
2745
2746        tsfs = I915_READ(TSFS);
2747
2748        m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2749        x = I915_READ8(TR1);
2750
2751        b = tsfs & TSFS_INTR_MASK;
2752
2753        return ((m * x) / 127) - b;
2754}
2755
2756static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2757{
2758        static const struct v_table {
2759                u16 vd; /* in .1 mil */
2760                u16 vm; /* in .1 mil */
2761        } v_table[] = {
2762                { 0, 0, },
2763                { 375, 0, },
2764                { 500, 0, },
2765                { 625, 0, },
2766                { 750, 0, },
2767                { 875, 0, },
2768                { 1000, 0, },
2769                { 1125, 0, },
2770                { 4125, 3000, },
2771                { 4125, 3000, },
2772                { 4125, 3000, },
2773                { 4125, 3000, },
2774                { 4125, 3000, },
2775                { 4125, 3000, },
2776                { 4125, 3000, },
2777                { 4125, 3000, },
2778                { 4125, 3000, },
2779                { 4125, 3000, },
2780                { 4125, 3000, },
2781                { 4125, 3000, },
2782                { 4125, 3000, },
2783                { 4125, 3000, },
2784                { 4125, 3000, },
2785                { 4125, 3000, },
2786                { 4125, 3000, },
2787                { 4125, 3000, },
2788                { 4125, 3000, },
2789                { 4125, 3000, },
2790                { 4125, 3000, },
2791                { 4125, 3000, },
2792                { 4125, 3000, },
2793                { 4125, 3000, },
2794                { 4250, 3125, },
2795                { 4375, 3250, },
2796                { 4500, 3375, },
2797                { 4625, 3500, },
2798                { 4750, 3625, },
2799                { 4875, 3750, },
2800                { 5000, 3875, },
2801                { 5125, 4000, },
2802                { 5250, 4125, },
2803                { 5375, 4250, },
2804                { 5500, 4375, },
2805                { 5625, 4500, },
2806                { 5750, 4625, },
2807                { 5875, 4750, },
2808                { 6000, 4875, },
2809                { 6125, 5000, },
2810                { 6250, 5125, },
2811                { 6375, 5250, },
2812                { 6500, 5375, },
2813                { 6625, 5500, },
2814                { 6750, 5625, },
2815                { 6875, 5750, },
2816                { 7000, 5875, },
2817                { 7125, 6000, },
2818                { 7250, 6125, },
2819                { 7375, 6250, },
2820                { 7500, 6375, },
2821                { 7625, 6500, },
2822                { 7750, 6625, },
2823                { 7875, 6750, },
2824                { 8000, 6875, },
2825                { 8125, 7000, },
2826                { 8250, 7125, },
2827                { 8375, 7250, },
2828                { 8500, 7375, },
2829                { 8625, 7500, },
2830                { 8750, 7625, },
2831                { 8875, 7750, },
2832                { 9000, 7875, },
2833                { 9125, 8000, },
2834                { 9250, 8125, },
2835                { 9375, 8250, },
2836                { 9500, 8375, },
2837                { 9625, 8500, },
2838                { 9750, 8625, },
2839                { 9875, 8750, },
2840                { 10000, 8875, },
2841                { 10125, 9000, },
2842                { 10250, 9125, },
2843                { 10375, 9250, },
2844                { 10500, 9375, },
2845                { 10625, 9500, },
2846                { 10750, 9625, },
2847                { 10875, 9750, },
2848                { 11000, 9875, },
2849                { 11125, 10000, },
2850                { 11250, 10125, },
2851                { 11375, 10250, },
2852                { 11500, 10375, },
2853                { 11625, 10500, },
2854                { 11750, 10625, },
2855                { 11875, 10750, },
2856                { 12000, 10875, },
2857                { 12125, 11000, },
2858                { 12250, 11125, },
2859                { 12375, 11250, },
2860                { 12500, 11375, },
2861                { 12625, 11500, },
2862                { 12750, 11625, },
2863                { 12875, 11750, },
2864                { 13000, 11875, },
2865                { 13125, 12000, },
2866                { 13250, 12125, },
2867                { 13375, 12250, },
2868                { 13500, 12375, },
2869                { 13625, 12500, },
2870                { 13750, 12625, },
2871                { 13875, 12750, },
2872                { 14000, 12875, },
2873                { 14125, 13000, },
2874                { 14250, 13125, },
2875                { 14375, 13250, },
2876                { 14500, 13375, },
2877                { 14625, 13500, },
2878                { 14750, 13625, },
2879                { 14875, 13750, },
2880                { 15000, 13875, },
2881                { 15125, 14000, },
2882                { 15250, 14125, },
2883                { 15375, 14250, },
2884                { 15500, 14375, },
2885                { 15625, 14500, },
2886                { 15750, 14625, },
2887                { 15875, 14750, },
2888                { 16000, 14875, },
2889                { 16125, 15000, },
2890        };
2891        if (dev_priv->info->is_mobile)
2892                return v_table[pxvid].vm;
2893        else
2894                return v_table[pxvid].vd;
2895}
2896
2897void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2898{
2899        struct timespec now, diff1;
2900        u64 diff;
2901        unsigned long diffms;
2902        u32 count;
2903
2904        if (dev_priv->info->gen != 5)
2905                return;
2906
2907        getrawmonotonic(&now);
2908        diff1 = timespec_sub(now, dev_priv->last_time2);
2909
2910        /* Don't divide by 0 */
2911        diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2912        if (!diffms)
2913                return;
2914
2915        count = I915_READ(GFXEC);
2916
2917        if (count < dev_priv->last_count2) {
2918                diff = ~0UL - dev_priv->last_count2;
2919                diff += count;
2920        } else {
2921                diff = count - dev_priv->last_count2;
2922        }
2923
2924        dev_priv->last_count2 = count;
2925        dev_priv->last_time2 = now;
2926
2927        /* More magic constants... */
2928        diff = diff * 1181;
2929        diff = div_u64(diff, diffms * 10);
2930        dev_priv->gfx_power = diff;
2931}
2932
2933unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2934{
2935        unsigned long t, corr, state1, corr2, state2;
2936        u32 pxvid, ext_v;
2937
2938        pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2939        pxvid = (pxvid >> 24) & 0x7f;
2940        ext_v = pvid_to_extvid(dev_priv, pxvid);
2941
2942        state1 = ext_v;
2943
2944        t = i915_mch_val(dev_priv);
2945
2946        /* Revel in the empirically derived constants */
2947
2948        /* Correction factor in 1/100000 units */
2949        if (t > 80)
2950                corr = ((t * 2349) + 135940);
2951        else if (t >= 50)
2952                corr = ((t * 964) + 29317);
2953        else /* < 50 */
2954                corr = ((t * 301) + 1004);
2955
2956        corr = corr * ((150142 * state1) / 10000 - 78642);
2957        corr /= 100000;
2958        corr2 = (corr * dev_priv->corr);
2959
2960        state2 = (corr2 * state1) / 10000;
2961        state2 /= 100; /* convert to mW */
2962
2963        i915_update_gfx_val(dev_priv);
2964
2965        return dev_priv->gfx_power + state2;
2966}
2967
2968/* Global for IPS driver to get at the current i915 device */
2969static struct drm_i915_private *i915_mch_dev;
2970/*
2971 * Lock protecting IPS related data structures
2972 *   - i915_mch_dev
2973 *   - dev_priv->max_delay
2974 *   - dev_priv->min_delay
2975 *   - dev_priv->fmax
2976 *   - dev_priv->gpu_busy
2977 */
2978static DEFINE_SPINLOCK(mchdev_lock);
2979
2980/**
2981 * i915_read_mch_val - return value for IPS use
2982 *
2983 * Calculate and return a value for the IPS driver to use when deciding whether
2984 * we have thermal and power headroom to increase CPU or GPU power budget.
2985 */
2986unsigned long i915_read_mch_val(void)
2987{
2988        struct drm_i915_private *dev_priv;
2989        unsigned long chipset_val, graphics_val, ret = 0;
2990
2991        spin_lock(&mchdev_lock);
2992        if (!i915_mch_dev)
2993                goto out_unlock;
2994        dev_priv = i915_mch_dev;
2995
2996        chipset_val = i915_chipset_val(dev_priv);
2997        graphics_val = i915_gfx_val(dev_priv);
2998
2999        ret = chipset_val + graphics_val;
3000
3001out_unlock:
3002        spin_unlock(&mchdev_lock);
3003
3004        return ret;
3005}
3006EXPORT_SYMBOL_GPL(i915_read_mch_val);
3007
3008/**
3009 * i915_gpu_raise - raise GPU frequency limit
3010 *
3011 * Raise the limit; IPS indicates we have thermal headroom.
3012 */
3013bool i915_gpu_raise(void)
3014{
3015        struct drm_i915_private *dev_priv;
3016        bool ret = true;
3017
3018        spin_lock(&mchdev_lock);
3019        if (!i915_mch_dev) {
3020                ret = false;
3021                goto out_unlock;
3022        }
3023        dev_priv = i915_mch_dev;
3024
3025        if (dev_priv->max_delay > dev_priv->fmax)
3026                dev_priv->max_delay--;
3027
3028out_unlock:
3029        spin_unlock(&mchdev_lock);
3030
3031        return ret;
3032}
3033EXPORT_SYMBOL_GPL(i915_gpu_raise);
3034
3035/**
3036 * i915_gpu_lower - lower GPU frequency limit
3037 *
3038 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3039 * frequency maximum.
3040 */
3041bool i915_gpu_lower(void)
3042{
3043        struct drm_i915_private *dev_priv;
3044        bool ret = true;
3045
3046        spin_lock(&mchdev_lock);
3047        if (!i915_mch_dev) {
3048                ret = false;
3049                goto out_unlock;
3050        }
3051        dev_priv = i915_mch_dev;
3052
3053        if (dev_priv->max_delay < dev_priv->min_delay)
3054                dev_priv->max_delay++;
3055
3056out_unlock:
3057        spin_unlock(&mchdev_lock);
3058
3059        return ret;
3060}
3061EXPORT_SYMBOL_GPL(i915_gpu_lower);
3062
3063/**
3064 * i915_gpu_busy - indicate GPU business to IPS
3065 *
3066 * Tell the IPS driver whether or not the GPU is busy.
3067 */
3068bool i915_gpu_busy(void)
3069{
3070        struct drm_i915_private *dev_priv;
3071        bool ret = false;
3072
3073        spin_lock(&mchdev_lock);
3074        if (!i915_mch_dev)
3075                goto out_unlock;
3076        dev_priv = i915_mch_dev;
3077
3078        ret = dev_priv->busy;
3079
3080out_unlock:
3081        spin_unlock(&mchdev_lock);
3082
3083        return ret;
3084}
3085EXPORT_SYMBOL_GPL(i915_gpu_busy);
3086
3087/**
3088 * i915_gpu_turbo_disable - disable graphics turbo
3089 *
3090 * Disable graphics turbo by resetting the max frequency and setting the
3091 * current frequency to the default.
3092 */
3093bool i915_gpu_turbo_disable(void)
3094{
3095        struct drm_i915_private *dev_priv;
3096        bool ret = true;
3097
3098        spin_lock(&mchdev_lock);
3099        if (!i915_mch_dev) {
3100                ret = false;
3101                goto out_unlock;
3102        }
3103        dev_priv = i915_mch_dev;
3104
3105        dev_priv->max_delay = dev_priv->fstart;
3106
3107        if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3108                ret = false;
3109
3110out_unlock:
3111        spin_unlock(&mchdev_lock);
3112
3113        return ret;
3114}
3115EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3116
3117/**
3118 * Tells the intel_ips driver that the i915 driver is now loaded, if
3119 * IPS got loaded first.
3120 *
3121 * This awkward dance is so that neither module has to depend on the
3122 * other in order for IPS to do the appropriate communication of
3123 * GPU turbo limits to i915.
3124 */
3125static void
3126ips_ping_for_i915_load(void)
3127{
3128        void (*link)(void);
3129
3130        link = symbol_get(ips_link_to_i915_driver);
3131        if (link) {
3132                link();
3133                symbol_put(ips_link_to_i915_driver);
3134        }
3135}
3136
3137void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3138{
3139        spin_lock(&mchdev_lock);
3140        i915_mch_dev = dev_priv;
3141        dev_priv->mchdev_lock = &mchdev_lock;
3142        spin_unlock(&mchdev_lock);
3143
3144        ips_ping_for_i915_load();
3145}
3146
3147void intel_gpu_ips_teardown(void)
3148{
3149        spin_lock(&mchdev_lock);
3150        i915_mch_dev = NULL;
3151        spin_unlock(&mchdev_lock);
3152}
3153static void intel_init_emon(struct drm_device *dev)
3154{
3155        struct drm_i915_private *dev_priv = dev->dev_private;
3156        u32 lcfuse;
3157        u8 pxw[16];
3158        int i;
3159
3160        /* Disable to program */
3161        I915_WRITE(ECR, 0);
3162        POSTING_READ(ECR);
3163
3164        /* Program energy weights for various events */
3165        I915_WRITE(SDEW, 0x15040d00);
3166        I915_WRITE(CSIEW0, 0x007f0000);
3167        I915_WRITE(CSIEW1, 0x1e220004);
3168        I915_WRITE(CSIEW2, 0x04000004);
3169
3170        for (i = 0; i < 5; i++)
3171                I915_WRITE(PEW + (i * 4), 0);
3172        for (i = 0; i < 3; i++)
3173                I915_WRITE(DEW + (i * 4), 0);
3174
3175        /* Program P-state weights to account for frequency power adjustment */
3176        for (i = 0; i < 16; i++) {
3177                u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3178                unsigned long freq = intel_pxfreq(pxvidfreq);
3179                unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3180                        PXVFREQ_PX_SHIFT;
3181                unsigned long val;
3182
3183                val = vid * vid;
3184                val *= (freq / 1000);
3185                val *= 255;
3186                val /= (127*127*900);
3187                if (val > 0xff)
3188                        DRM_ERROR("bad pxval: %ld\n", val);
3189                pxw[i] = val;
3190        }
3191        /* Render standby states get 0 weight */
3192        pxw[14] = 0;
3193        pxw[15] = 0;
3194
3195        for (i = 0; i < 4; i++) {
3196                u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3197                        (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3198                I915_WRITE(PXW + (i * 4), val);
3199        }
3200
3201        /* Adjust magic regs to magic values (more experimental results) */
3202        I915_WRITE(OGW0, 0);
3203        I915_WRITE(OGW1, 0);
3204        I915_WRITE(EG0, 0x00007f00);
3205        I915_WRITE(EG1, 0x0000000e);
3206        I915_WRITE(EG2, 0x000e0000);
3207        I915_WRITE(EG3, 0x68000300);
3208        I915_WRITE(EG4, 0x42000000);
3209        I915_WRITE(EG5, 0x00140031);
3210        I915_WRITE(EG6, 0);
3211        I915_WRITE(EG7, 0);
3212
3213        for (i = 0; i < 8; i++)
3214                I915_WRITE(PXWL + (i * 4), 0);
3215
3216        /* Enable PMON + select events */
3217        I915_WRITE(ECR, 0x80000019);
3218
3219        lcfuse = I915_READ(LCFUSE02);
3220
3221        dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3222}
3223
3224void intel_disable_gt_powersave(struct drm_device *dev)
3225{
3226        if (IS_IRONLAKE_M(dev)) {
3227                ironlake_disable_drps(dev);
3228                ironlake_disable_rc6(dev);
3229        } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3230                gen6_disable_rps(dev);
3231        }
3232}
3233
3234void intel_enable_gt_powersave(struct drm_device *dev)
3235{
3236        if (IS_IRONLAKE_M(dev)) {
3237                ironlake_enable_drps(dev);
3238                ironlake_enable_rc6(dev);
3239                intel_init_emon(dev);
3240        } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3241                gen6_enable_rps(dev);
3242                gen6_update_ring_freq(dev);
3243        }
3244}
3245
3246static void ironlake_init_clock_gating(struct drm_device *dev)
3247{
3248        struct drm_i915_private *dev_priv = dev->dev_private;
3249        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3250
3251        /* Required for FBC */
3252        dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3253                DPFCRUNIT_CLOCK_GATE_DISABLE |
3254                DPFDUNIT_CLOCK_GATE_DISABLE;
3255        /* Required for CxSR */
3256        dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3257
3258        I915_WRITE(PCH_3DCGDIS0,
3259                   MARIUNIT_CLOCK_GATE_DISABLE |
3260                   SVSMUNIT_CLOCK_GATE_DISABLE);
3261        I915_WRITE(PCH_3DCGDIS1,
3262                   VFMUNIT_CLOCK_GATE_DISABLE);
3263
3264        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3265
3266        /*
3267         * According to the spec the following bits should be set in
3268         * order to enable memory self-refresh
3269         * The bit 22/21 of 0x42004
3270         * The bit 5 of 0x42020
3271         * The bit 15 of 0x45000
3272         */
3273        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3274                   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3275                    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3276        I915_WRITE(ILK_DSPCLK_GATE,
3277                   (I915_READ(ILK_DSPCLK_GATE) |
3278                    ILK_DPARB_CLK_GATE));
3279        I915_WRITE(DISP_ARB_CTL,
3280                   (I915_READ(DISP_ARB_CTL) |
3281                    DISP_FBC_WM_DIS));
3282        I915_WRITE(WM3_LP_ILK, 0);
3283        I915_WRITE(WM2_LP_ILK, 0);
3284        I915_WRITE(WM1_LP_ILK, 0);
3285
3286        /*
3287         * Based on the document from hardware guys the following bits
3288         * should be set unconditionally in order to enable FBC.
3289         * The bit 22 of 0x42000
3290         * The bit 22 of 0x42004
3291         * The bit 7,8,9 of 0x42020.
3292         */
3293        if (IS_IRONLAKE_M(dev)) {
3294                I915_WRITE(ILK_DISPLAY_CHICKEN1,
3295                           I915_READ(ILK_DISPLAY_CHICKEN1) |
3296                           ILK_FBCQ_DIS);
3297                I915_WRITE(ILK_DISPLAY_CHICKEN2,
3298                           I915_READ(ILK_DISPLAY_CHICKEN2) |
3299                           ILK_DPARB_GATE);
3300                I915_WRITE(ILK_DSPCLK_GATE,
3301                           I915_READ(ILK_DSPCLK_GATE) |
3302                           ILK_DPFC_DIS1 |
3303                           ILK_DPFC_DIS2 |
3304                           ILK_CLK_FBC);
3305        }
3306
3307        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3308                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3309                   ILK_ELPIN_409_SELECT);
3310        I915_WRITE(_3D_CHICKEN2,
3311                   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3312                   _3D_CHICKEN2_WM_READ_PIPELINED);
3313}
3314
3315static void gen6_init_clock_gating(struct drm_device *dev)
3316{
3317        struct drm_i915_private *dev_priv = dev->dev_private;
3318        int pipe;
3319        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3320
3321        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3322
3323        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3324                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3325                   ILK_ELPIN_409_SELECT);
3326
3327        I915_WRITE(WM3_LP_ILK, 0);
3328        I915_WRITE(WM2_LP_ILK, 0);
3329        I915_WRITE(WM1_LP_ILK, 0);
3330
3331        I915_WRITE(CACHE_MODE_0,
3332                   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3333
3334        I915_WRITE(GEN6_UCGCTL1,
3335                   I915_READ(GEN6_UCGCTL1) |
3336                   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3337                   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3338
3339        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3340         * gating disable must be set.  Failure to set it results in
3341         * flickering pixels due to Z write ordering failures after
3342         * some amount of runtime in the Mesa "fire" demo, and Unigine
3343         * Sanctuary and Tropics, and apparently anything else with
3344         * alpha test or pixel discard.
3345         *
3346         * According to the spec, bit 11 (RCCUNIT) must also be set,
3347         * but we didn't debug actual testcases to find it out.
3348         *
3349         * Also apply WaDisableVDSUnitClockGating and
3350         * WaDisableRCPBUnitClockGating.
3351         */
3352        I915_WRITE(GEN6_UCGCTL2,
3353                   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3354                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3355                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3356
3357        /* Bspec says we need to always set all mask bits. */
3358        I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3359                   _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3360
3361        /*
3362         * According to the spec the following bits should be
3363         * set in order to enable memory self-refresh and fbc:
3364         * The bit21 and bit22 of 0x42000
3365         * The bit21 and bit22 of 0x42004
3366         * The bit5 and bit7 of 0x42020
3367         * The bit14 of 0x70180
3368         * The bit14 of 0x71180
3369         */
3370        I915_WRITE(ILK_DISPLAY_CHICKEN1,
3371                   I915_READ(ILK_DISPLAY_CHICKEN1) |
3372                   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3373        I915_WRITE(ILK_DISPLAY_CHICKEN2,
3374                   I915_READ(ILK_DISPLAY_CHICKEN2) |
3375                   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3376        I915_WRITE(ILK_DSPCLK_GATE,
3377                   I915_READ(ILK_DSPCLK_GATE) |
3378                   ILK_DPARB_CLK_GATE  |
3379                   ILK_DPFD_CLK_GATE);
3380
3381        I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3382                   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3383
3384        for_each_pipe(pipe) {
3385                I915_WRITE(DSPCNTR(pipe),
3386                           I915_READ(DSPCNTR(pipe)) |
3387                           DISPPLANE_TRICKLE_FEED_DISABLE);
3388                intel_flush_display_plane(dev_priv, pipe);
3389        }
3390}
3391
3392static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3393{
3394        uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3395
3396        reg &= ~GEN7_FF_SCHED_MASK;
3397        reg |= GEN7_FF_TS_SCHED_HW;
3398        reg |= GEN7_FF_VS_SCHED_HW;
3399        reg |= GEN7_FF_DS_SCHED_HW;
3400
3401        I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3402}
3403
3404static void haswell_init_clock_gating(struct drm_device *dev)
3405{
3406        struct drm_i915_private *dev_priv = dev->dev_private;
3407        int pipe;
3408        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3409
3410        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3411
3412        I915_WRITE(WM3_LP_ILK, 0);
3413        I915_WRITE(WM2_LP_ILK, 0);
3414        I915_WRITE(WM1_LP_ILK, 0);
3415
3416        /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3417         * This implements the WaDisableRCZUnitClockGating workaround.
3418         */
3419        I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3420
3421        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3422
3423        I915_WRITE(IVB_CHICKEN3,
3424                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3425                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3426
3427        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3428        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3429                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3430
3431        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3432        I915_WRITE(GEN7_L3CNTLREG1,
3433                        GEN7_WA_FOR_GEN7_L3_CONTROL);
3434        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3435                        GEN7_WA_L3_CHICKEN_MODE);
3436
3437        /* This is required by WaCatErrorRejectionIssue */
3438        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3439                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3440                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3441
3442        for_each_pipe(pipe) {
3443                I915_WRITE(DSPCNTR(pipe),
3444                           I915_READ(DSPCNTR(pipe)) |
3445                           DISPPLANE_TRICKLE_FEED_DISABLE);
3446                intel_flush_display_plane(dev_priv, pipe);
3447        }
3448
3449        gen7_setup_fixed_func_scheduler(dev_priv);
3450
3451        /* WaDisable4x2SubspanOptimization */
3452        I915_WRITE(CACHE_MODE_1,
3453                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3454
3455        /* XXX: This is a workaround for early silicon revisions and should be
3456         * removed later.
3457         */
3458        I915_WRITE(WM_DBG,
3459                        I915_READ(WM_DBG) |
3460                        WM_DBG_DISALLOW_MULTIPLE_LP |
3461                        WM_DBG_DISALLOW_SPRITE |
3462                        WM_DBG_DISALLOW_MAXFIFO);
3463
3464}
3465
3466static void ivybridge_init_clock_gating(struct drm_device *dev)
3467{
3468        struct drm_i915_private *dev_priv = dev->dev_private;
3469        int pipe;
3470        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3471        uint32_t snpcr;
3472
3473        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3474
3475        I915_WRITE(WM3_LP_ILK, 0);
3476        I915_WRITE(WM2_LP_ILK, 0);
3477        I915_WRITE(WM1_LP_ILK, 0);
3478
3479        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3480
3481        I915_WRITE(IVB_CHICKEN3,
3482                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3483                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3484
3485        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3486        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3487                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3488
3489        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3490        I915_WRITE(GEN7_L3CNTLREG1,
3491                        GEN7_WA_FOR_GEN7_L3_CONTROL);
3492        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3493                        GEN7_WA_L3_CHICKEN_MODE);
3494
3495        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3496         * gating disable must be set.  Failure to set it results in
3497         * flickering pixels due to Z write ordering failures after
3498         * some amount of runtime in the Mesa "fire" demo, and Unigine
3499         * Sanctuary and Tropics, and apparently anything else with
3500         * alpha test or pixel discard.
3501         *
3502         * According to the spec, bit 11 (RCCUNIT) must also be set,
3503         * but we didn't debug actual testcases to find it out.
3504         *
3505         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3506         * This implements the WaDisableRCZUnitClockGating workaround.
3507         */
3508        I915_WRITE(GEN6_UCGCTL2,
3509                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3510                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3511
3512        /* This is required by WaCatErrorRejectionIssue */
3513        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3514                        I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3515                        GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3516
3517        for_each_pipe(pipe) {
3518                I915_WRITE(DSPCNTR(pipe),
3519                           I915_READ(DSPCNTR(pipe)) |
3520                           DISPPLANE_TRICKLE_FEED_DISABLE);
3521                intel_flush_display_plane(dev_priv, pipe);
3522        }
3523
3524        I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3525                   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3526
3527        gen7_setup_fixed_func_scheduler(dev_priv);
3528
3529        /* WaDisable4x2SubspanOptimization */
3530        I915_WRITE(CACHE_MODE_1,
3531                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3532
3533        snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3534        snpcr &= ~GEN6_MBC_SNPCR_MASK;
3535        snpcr |= GEN6_MBC_SNPCR_MED;
3536        I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3537}
3538
3539static void valleyview_init_clock_gating(struct drm_device *dev)
3540{
3541        struct drm_i915_private *dev_priv = dev->dev_private;
3542        int pipe;
3543        uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3544
3545        I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3546
3547        I915_WRITE(WM3_LP_ILK, 0);
3548        I915_WRITE(WM2_LP_ILK, 0);
3549        I915_WRITE(WM1_LP_ILK, 0);
3550
3551        I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3552
3553        I915_WRITE(IVB_CHICKEN3,
3554                   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3555                   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3556
3557        /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3558        I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3559                   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3560
3561        /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3562        I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3563        I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3564
3565        /* This is required by WaCatErrorRejectionIssue */
3566        I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3567                   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3568                   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3569
3570        I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3571                   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3572
3573
3574        /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3575         * gating disable must be set.  Failure to set it results in
3576         * flickering pixels due to Z write ordering failures after
3577         * some amount of runtime in the Mesa "fire" demo, and Unigine
3578         * Sanctuary and Tropics, and apparently anything else with
3579         * alpha test or pixel discard.
3580         *
3581         * According to the spec, bit 11 (RCCUNIT) must also be set,
3582         * but we didn't debug actual testcases to find it out.
3583         *
3584         * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3585         * This implements the WaDisableRCZUnitClockGating workaround.
3586         *
3587         * Also apply WaDisableVDSUnitClockGating and
3588         * WaDisableRCPBUnitClockGating.
3589         */
3590        I915_WRITE(GEN6_UCGCTL2,
3591                   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3592                   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3593                   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3594                   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3595                   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3596
3597        I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3598
3599        for_each_pipe(pipe) {
3600                I915_WRITE(DSPCNTR(pipe),
3601                           I915_READ(DSPCNTR(pipe)) |
3602                           DISPPLANE_TRICKLE_FEED_DISABLE);
3603                intel_flush_display_plane(dev_priv, pipe);
3604        }
3605
3606        I915_WRITE(CACHE_MODE_1,
3607                   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3608
3609        /*
3610         * On ValleyView, the GUnit needs to signal the GT
3611         * when flip and other events complete.  So enable
3612         * all the GUnit->GT interrupts here
3613         */
3614        I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3615                   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3616                   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3617                   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3618                   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3619                   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3620                   PLANEA_FLIPDONE_INT_EN);
3621}
3622
3623static void g4x_init_clock_gating(struct drm_device *dev)
3624{
3625        struct drm_i915_private *dev_priv = dev->dev_private;
3626        uint32_t dspclk_gate;
3627
3628        I915_WRITE(RENCLK_GATE_D1, 0);
3629        I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3630                   GS_UNIT_CLOCK_GATE_DISABLE |
3631                   CL_UNIT_CLOCK_GATE_DISABLE);
3632        I915_WRITE(RAMCLK_GATE_D, 0);
3633        dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3634                OVRUNIT_CLOCK_GATE_DISABLE |
3635                OVCUNIT_CLOCK_GATE_DISABLE;
3636        if (IS_GM45(dev))
3637                dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3638        I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3639}
3640
3641static void crestline_init_clock_gating(struct drm_device *dev)
3642{
3643        struct drm_i915_private *dev_priv = dev->dev_private;
3644
3645        I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3646        I915_WRITE(RENCLK_GATE_D2, 0);
3647        I915_WRITE(DSPCLK_GATE_D, 0);
3648        I915_WRITE(RAMCLK_GATE_D, 0);
3649        I915_WRITE16(DEUC, 0);
3650}
3651
3652static void broadwater_init_clock_gating(struct drm_device *dev)
3653{
3654        struct drm_i915_private *dev_priv = dev->dev_private;
3655
3656        I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3657                   I965_RCC_CLOCK_GATE_DISABLE |
3658                   I965_RCPB_CLOCK_GATE_DISABLE |
3659                   I965_ISC_CLOCK_GATE_DISABLE |
3660                   I965_FBC_CLOCK_GATE_DISABLE);
3661        I915_WRITE(RENCLK_GATE_D2, 0);
3662}
3663
3664static void gen3_init_clock_gating(struct drm_device *dev)
3665{
3666        struct drm_i915_private *dev_priv = dev->dev_private;
3667        u32 dstate = I915_READ(D_STATE);
3668
3669        dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3670                DSTATE_DOT_CLOCK_GATING;
3671        I915_WRITE(D_STATE, dstate);
3672
3673        if (IS_PINEVIEW(dev))
3674                I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3675
3676        /* IIR "flip pending" means done if this bit is set */
3677        I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3678}
3679
3680static void i85x_init_clock_gating(struct drm_device *dev)
3681{
3682        struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684        I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3685}
3686
3687static void i830_init_clock_gating(struct drm_device *dev)
3688{
3689        struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691        I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3692}
3693
3694static void ibx_init_clock_gating(struct drm_device *dev)
3695{
3696        struct drm_i915_private *dev_priv = dev->dev_private;
3697
3698        /*
3699         * On Ibex Peak and Cougar Point, we need to disable clock
3700         * gating for the panel power sequencer or it will fail to
3701         * start up when no ports are active.
3702         */
3703        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3704}
3705
3706static void cpt_init_clock_gating(struct drm_device *dev)
3707{
3708        struct drm_i915_private *dev_priv = dev->dev_private;
3709        int pipe;
3710
3711        /*
3712         * On Ibex Peak and Cougar Point, we need to disable clock
3713         * gating for the panel power sequencer or it will fail to
3714         * start up when no ports are active.
3715         */
3716        I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3717        I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3718                   DPLS_EDP_PPS_FIX_DIS);
3719        /* Without this, mode sets may fail silently on FDI */
3720        for_each_pipe(pipe)
3721                I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3722}
3723
3724void intel_init_clock_gating(struct drm_device *dev)
3725{
3726        struct drm_i915_private *dev_priv = dev->dev_private;
3727
3728        dev_priv->display.init_clock_gating(dev);
3729
3730        if (dev_priv->display.init_pch_clock_gating)
3731                dev_priv->display.init_pch_clock_gating(dev);
3732}
3733
3734static void gen6_sanitize_pm(struct drm_device *dev)
3735{
3736        struct drm_i915_private *dev_priv = dev->dev_private;
3737        u32 limits, delay, old;
3738
3739        gen6_gt_force_wake_get(dev_priv);
3740
3741        old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS);
3742        /* Make sure we continue to get interrupts
3743         * until we hit the minimum or maximum frequencies.
3744         */
3745        limits &= ~(0x3f << 16 | 0x3f << 24);
3746        delay = dev_priv->cur_delay;
3747        if (delay < dev_priv->max_delay)
3748                limits |= (dev_priv->max_delay & 0x3f) << 24;
3749        if (delay > dev_priv->min_delay)
3750                limits |= (dev_priv->min_delay & 0x3f) << 16;
3751
3752        if (old != limits) {
3753                /* Note that the known failure case is to read back 0. */
3754                DRM_DEBUG_DRIVER("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS "
3755                                 "expected %08x, was %08x\n", limits, old);
3756                I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3757        }
3758
3759        gen6_gt_force_wake_put(dev_priv);
3760}
3761
3762void intel_sanitize_pm(struct drm_device *dev)
3763{
3764        struct drm_i915_private *dev_priv = dev->dev_private;
3765
3766        if (dev_priv->display.sanitize_pm)
3767                dev_priv->display.sanitize_pm(dev);
3768}
3769
3770/* Starting with Haswell, we have different power wells for
3771 * different parts of the GPU. This attempts to enable them all.
3772 */
3773void intel_init_power_wells(struct drm_device *dev)
3774{
3775        struct drm_i915_private *dev_priv = dev->dev_private;
3776        unsigned long power_wells[] = {
3777                HSW_PWR_WELL_CTL1,
3778                HSW_PWR_WELL_CTL2,
3779                HSW_PWR_WELL_CTL4
3780        };
3781        int i;
3782
3783        if (!IS_HASWELL(dev))
3784                return;
3785
3786        mutex_lock(&dev->struct_mutex);
3787
3788        for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3789                int well = I915_READ(power_wells[i]);
3790
3791                if ((well & HSW_PWR_WELL_STATE) == 0) {
3792                        I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3793                        if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3794                                DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3795                }
3796        }
3797
3798        mutex_unlock(&dev->struct_mutex);
3799}
3800
3801/* Set up chip specific power management-related functions */
3802void intel_init_pm(struct drm_device *dev)
3803{
3804        struct drm_i915_private *dev_priv = dev->dev_private;
3805
3806        if (I915_HAS_FBC(dev)) {
3807                if (HAS_PCH_SPLIT(dev)) {
3808                        dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3809                        dev_priv->display.enable_fbc = ironlake_enable_fbc;
3810                        dev_priv->display.disable_fbc = ironlake_disable_fbc;
3811                } else if (IS_GM45(dev)) {
3812                        dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3813                        dev_priv->display.enable_fbc = g4x_enable_fbc;
3814                        dev_priv->display.disable_fbc = g4x_disable_fbc;
3815                } else if (IS_CRESTLINE(dev)) {
3816                        dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3817                        dev_priv->display.enable_fbc = i8xx_enable_fbc;
3818                        dev_priv->display.disable_fbc = i8xx_disable_fbc;
3819                }
3820                /* 855GM needs testing */
3821        }
3822
3823        /* For cxsr */
3824        if (IS_PINEVIEW(dev))
3825                i915_pineview_get_mem_freq(dev);
3826        else if (IS_GEN5(dev))
3827                i915_ironlake_get_mem_freq(dev);
3828
3829        /* For FIFO watermark updates */
3830        if (HAS_PCH_SPLIT(dev)) {
3831                if (HAS_PCH_IBX(dev))
3832                        dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3833                else if (HAS_PCH_CPT(dev))
3834                        dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3835
3836                if (IS_GEN5(dev)) {
3837                        if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3838                                dev_priv->display.update_wm = ironlake_update_wm;
3839                        else {
3840                                DRM_DEBUG_KMS("Failed to get proper latency. "
3841                                              "Disable CxSR\n");
3842                                dev_priv->display.update_wm = NULL;
3843                        }
3844                        dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3845                } else if (IS_GEN6(dev)) {
3846                        if (SNB_READ_WM0_LATENCY()) {
3847                                dev_priv->display.update_wm = sandybridge_update_wm;
3848                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3849                        } else {
3850                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3851                                              "Disable CxSR\n");
3852                                dev_priv->display.update_wm = NULL;
3853                        }
3854                        dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3855                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3856                } else if (IS_IVYBRIDGE(dev)) {
3857                        /* FIXME: detect B0+ stepping and use auto training */
3858                        if (SNB_READ_WM0_LATENCY()) {
3859                                dev_priv->display.update_wm = sandybridge_update_wm;
3860                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3861                        } else {
3862                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3863                                              "Disable CxSR\n");
3864                                dev_priv->display.update_wm = NULL;
3865                        }
3866                        dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3867                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3868                } else if (IS_HASWELL(dev)) {
3869                        if (SNB_READ_WM0_LATENCY()) {
3870                                dev_priv->display.update_wm = sandybridge_update_wm;
3871                                dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3872                                dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3873                        } else {
3874                                DRM_DEBUG_KMS("Failed to read display plane latency. "
3875                                              "Disable CxSR\n");
3876                                dev_priv->display.update_wm = NULL;
3877                        }
3878                        dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3879                        dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3880                } else
3881                        dev_priv->display.update_wm = NULL;
3882        } else if (IS_VALLEYVIEW(dev)) {
3883                dev_priv->display.update_wm = valleyview_update_wm;
3884                dev_priv->display.init_clock_gating =
3885                        valleyview_init_clock_gating;
3886        } else if (IS_PINEVIEW(dev)) {
3887                if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3888                                            dev_priv->is_ddr3,
3889                                            dev_priv->fsb_freq,
3890                                            dev_priv->mem_freq)) {
3891                        DRM_INFO("failed to find known CxSR latency "
3892                                 "(found ddr%s fsb freq %d, mem freq %d), "
3893                                 "disabling CxSR\n",
3894                                 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3895                                 dev_priv->fsb_freq, dev_priv->mem_freq);
3896                        /* Disable CxSR and never update its watermark again */
3897                        pineview_disable_cxsr(dev);
3898                        dev_priv->display.update_wm = NULL;
3899                } else
3900                        dev_priv->display.update_wm = pineview_update_wm;
3901                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3902        } else if (IS_G4X(dev)) {
3903                dev_priv->display.update_wm = g4x_update_wm;
3904                dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3905        } else if (IS_GEN4(dev)) {
3906                dev_priv->display.update_wm = i965_update_wm;
3907                if (IS_CRESTLINE(dev))
3908                        dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3909                else if (IS_BROADWATER(dev))
3910                        dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3911        } else if (IS_GEN3(dev)) {
3912                dev_priv->display.update_wm = i9xx_update_wm;
3913                dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3914                dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3915        } else if (IS_I865G(dev)) {
3916                dev_priv->display.update_wm = i830_update_wm;
3917                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3918                dev_priv->display.get_fifo_size = i830_get_fifo_size;
3919        } else if (IS_I85X(dev)) {
3920                dev_priv->display.update_wm = i9xx_update_wm;
3921                dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3922                dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3923        } else {
3924                dev_priv->display.update_wm = i830_update_wm;
3925                dev_priv->display.init_clock_gating = i830_init_clock_gating;
3926                if (IS_845G(dev))
3927                        dev_priv->display.get_fifo_size = i845_get_fifo_size;
3928                else
3929                        dev_priv->display.get_fifo_size = i830_get_fifo_size;
3930        }
3931}
3932
3933static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
3934{
3935        u32 gt_thread_status_mask;
3936
3937        if (IS_HASWELL(dev_priv->dev))
3938                gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
3939        else
3940                gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
3941
3942        /* w/a for a sporadic read returning 0 by waiting for the GT
3943         * thread to wake up.
3944         */
3945        if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
3946                DRM_ERROR("GT thread status wait timed out\n");
3947}
3948
3949static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3950{
3951        u32 forcewake_ack;
3952
3953        if (IS_HASWELL(dev_priv->dev))
3954                forcewake_ack = FORCEWAKE_ACK_HSW;
3955        else
3956                forcewake_ack = FORCEWAKE_ACK;
3957
3958        if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3959                DRM_ERROR("Force wake wait timed out\n");
3960
3961        I915_WRITE_NOTRACE(FORCEWAKE, 1);
3962        POSTING_READ(FORCEWAKE);
3963
3964        if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3965                DRM_ERROR("Force wake wait timed out\n");
3966
3967        __gen6_gt_wait_for_thread_c0(dev_priv);
3968}
3969
3970static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
3971{
3972        u32 forcewake_ack;
3973
3974        if (IS_HASWELL(dev_priv->dev))
3975                forcewake_ack = FORCEWAKE_ACK_HSW;
3976        else
3977                forcewake_ack = FORCEWAKE_MT_ACK;
3978
3979        if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3980                DRM_ERROR("Force wake wait timed out\n");
3981
3982        I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1));
3983        POSTING_READ(FORCEWAKE_MT);
3984
3985        if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3986                DRM_ERROR("Force wake wait timed out\n");
3987
3988        __gen6_gt_wait_for_thread_c0(dev_priv);
3989}
3990
3991/*
3992 * Generally this is called implicitly by the register read function. However,
3993 * if some sequence requires the GT to not power down then this function should
3994 * be called at the beginning of the sequence followed by a call to
3995 * gen6_gt_force_wake_put() at the end of the sequence.
3996 */
3997void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3998{
3999        unsigned long irqflags;
4000
4001        spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4002        if (dev_priv->forcewake_count++ == 0)
4003                dev_priv->gt.force_wake_get(dev_priv);
4004        spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4005}
4006
4007void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4008{
4009        u32 gtfifodbg;
4010        gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4011        if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4012             "MMIO read or write has been dropped %x\n", gtfifodbg))
4013                I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4014}
4015
4016static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4017{
4018        I915_WRITE_NOTRACE(FORCEWAKE, 0);
4019        POSTING_READ(FORCEWAKE);
4020        gen6_gt_check_fifodbg(dev_priv);
4021}
4022
4023static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4024{
4025        I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1));
4026        POSTING_READ(FORCEWAKE_MT);
4027        gen6_gt_check_fifodbg(dev_priv);
4028}
4029
4030/*
4031 * see gen6_gt_force_wake_get()
4032 */
4033void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4034{
4035        unsigned long irqflags;
4036
4037        spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4038        if (--dev_priv->forcewake_count == 0)
4039                dev_priv->gt.force_wake_put(dev_priv);
4040        spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4041}
4042
4043int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4044{
4045        int ret = 0;
4046
4047        if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4048                int loop = 500;
4049                u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4050                while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4051                        udelay(10);
4052                        fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4053                }
4054                if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4055                        ++ret;
4056                dev_priv->gt_fifo_count = fifo;
4057        }
4058        dev_priv->gt_fifo_count--;
4059
4060        return ret;
4061}
4062
4063static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4064{
4065        /* Already awake? */
4066        if ((I915_READ(0x130094) & 0xa1) == 0xa1)
4067                return;
4068
4069        I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffffffff);
4070        POSTING_READ(FORCEWAKE_VLV);
4071
4072        if (wait_for_atomic_us((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1), 500))
4073                DRM_ERROR("Force wake wait timed out\n");
4074
4075        __gen6_gt_wait_for_thread_c0(dev_priv);
4076}
4077
4078static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4079{
4080        I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffff0000);
4081        /* FIXME: confirm VLV behavior with Punit folks */
4082        POSTING_READ(FORCEWAKE_VLV);
4083}
4084
4085void intel_gt_init(struct drm_device *dev)
4086{
4087        struct drm_i915_private *dev_priv = dev->dev_private;
4088
4089        spin_lock_init(&dev_priv->gt_lock);
4090
4091        if (IS_VALLEYVIEW(dev)) {
4092                dev_priv->gt.force_wake_get = vlv_force_wake_get;
4093                dev_priv->gt.force_wake_put = vlv_force_wake_put;
4094        } else if (INTEL_INFO(dev)->gen >= 6) {
4095                dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4096                dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4097
4098                /* IVB configs may use multi-threaded forcewake */
4099                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4100                        u32 ecobus;
4101
4102                        /* A small trick here - if the bios hasn't configured
4103                         * MT forcewake, and if the device is in RC6, then
4104                         * force_wake_mt_get will not wake the device and the
4105                         * ECOBUS read will return zero. Which will be
4106                         * (correctly) interpreted by the test below as MT
4107                         * forcewake being disabled.
4108                         */
4109                        mutex_lock(&dev->struct_mutex);
4110                        __gen6_gt_force_wake_mt_get(dev_priv);
4111                        ecobus = I915_READ_NOTRACE(ECOBUS);
4112                        __gen6_gt_force_wake_mt_put(dev_priv);
4113                        mutex_unlock(&dev->struct_mutex);
4114
4115                        if (ecobus & FORCEWAKE_MT_ENABLE) {
4116                                DRM_DEBUG_KMS("Using MT version of forcewake\n");
4117                                dev_priv->gt.force_wake_get =
4118                                        __gen6_gt_force_wake_mt_get;
4119                                dev_priv->gt.force_wake_put =
4120                                        __gen6_gt_force_wake_mt_put;
4121                        }
4122                }
4123        }
4124}
4125
4126