linux/drivers/staging/et131x/et131x.c
<<
>>
Prefs
   1/*
   2 * Agere Systems Inc.
   3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   4 *
   5 * Copyright © 2005 Agere Systems Inc.
   6 * All rights reserved.
   7 *   http://www.agere.com
   8 *
   9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
  10 *
  11 *------------------------------------------------------------------------------
  12 *
  13 * SOFTWARE LICENSE
  14 *
  15 * This software is provided subject to the following terms and conditions,
  16 * which you should read carefully before using the software.  Using this
  17 * software indicates your acceptance of these terms and conditions.  If you do
  18 * not agree with these terms and conditions, do not use the software.
  19 *
  20 * Copyright © 2005 Agere Systems Inc.
  21 * All rights reserved.
  22 *
  23 * Redistribution and use in source or binary forms, with or without
  24 * modifications, are permitted provided that the following conditions are met:
  25 *
  26 * . Redistributions of source code must retain the above copyright notice, this
  27 *    list of conditions and the following Disclaimer as comments in the code as
  28 *    well as in the documentation and/or other materials provided with the
  29 *    distribution.
  30 *
  31 * . Redistributions in binary form must reproduce the above copyright notice,
  32 *    this list of conditions and the following Disclaimer in the documentation
  33 *    and/or other materials provided with the distribution.
  34 *
  35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  36 *    may be used to endorse or promote products derived from this software
  37 *    without specific prior written permission.
  38 *
  39 * Disclaimer
  40 *
  41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  52 * DAMAGE.
  53 *
  54 */
  55
  56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  57
  58#include <linux/pci.h>
  59#include <linux/init.h>
  60#include <linux/module.h>
  61#include <linux/types.h>
  62#include <linux/kernel.h>
  63
  64#include <linux/sched.h>
  65#include <linux/ptrace.h>
  66#include <linux/slab.h>
  67#include <linux/ctype.h>
  68#include <linux/string.h>
  69#include <linux/timer.h>
  70#include <linux/interrupt.h>
  71#include <linux/in.h>
  72#include <linux/delay.h>
  73#include <linux/bitops.h>
  74#include <linux/io.h>
  75
  76#include <linux/netdevice.h>
  77#include <linux/etherdevice.h>
  78#include <linux/skbuff.h>
  79#include <linux/if_arp.h>
  80#include <linux/ioport.h>
  81#include <linux/crc32.h>
  82#include <linux/random.h>
  83#include <linux/phy.h>
  84
  85#include "et131x.h"
  86
  87MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  88MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  89MODULE_LICENSE("Dual BSD/GPL");
  90MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  91
  92/* EEPROM defines */
  93#define MAX_NUM_REGISTER_POLLS          1000
  94#define MAX_NUM_WRITE_RETRIES           2
  95
  96/* MAC defines */
  97#define COUNTER_WRAP_16_BIT 0x10000
  98#define COUNTER_WRAP_12_BIT 0x1000
  99
 100/* PCI defines */
 101#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
 102#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 103
 104/* ISR defines */
 105/*
 106 * For interrupts, normal running is:
 107 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 108 *       watchdog_interrupt & txdma_xfer_done
 109 *
 110 * In both cases, when flow control is enabled for either Tx or bi-direction,
 111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 112 * buffer rings are running low.
 113 */
 114#define INT_MASK_DISABLE            0xffffffff
 115
 116/* NOTE: Masking out MAC_STAT Interrupt for now...
 117 * #define INT_MASK_ENABLE             0xfff6bf17
 118 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 119 */
 120#define INT_MASK_ENABLE             0xfffebf17
 121#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 122
 123/* General defines */
 124/* Packet and header sizes */
 125#define NIC_MIN_PACKET_SIZE     60
 126
 127/* Multicast list size */
 128#define NIC_MAX_MCAST_LIST      128
 129
 130/* Supported Filters */
 131#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 132#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 133#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 134#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 135#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 136
 137/* Tx Timeout */
 138#define ET131X_TX_TIMEOUT       (1 * HZ)
 139#define NIC_SEND_HANG_THRESHOLD 0
 140
 141/* MP_TCB flags */
 142#define fMP_DEST_MULTI                  0x00000001
 143#define fMP_DEST_BROAD                  0x00000002
 144
 145/* MP_ADAPTER flags */
 146#define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
 147#define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 148
 149/* MP_SHARED flags */
 150#define fMP_ADAPTER_LOWER_POWER         0x00200000
 151
 152#define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 153#define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
 154
 155#define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 156
 157/* Some offsets in PCI config space that are actually used. */
 158#define ET1310_PCI_MAC_ADDRESS          0xA4
 159#define ET1310_PCI_EEPROM_STATUS        0xB2
 160#define ET1310_PCI_ACK_NACK             0xC0
 161#define ET1310_PCI_REPLAY               0xC2
 162#define ET1310_PCI_L0L1LATENCY          0xCF
 163
 164/* PCI Product IDs */
 165#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 166#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 167
 168/* Define order of magnitude converter */
 169#define NANO_IN_A_MICRO 1000
 170
 171#define PARM_RX_NUM_BUFS_DEF    4
 172#define PARM_RX_TIME_INT_DEF    10
 173#define PARM_RX_MEM_END_DEF     0x2bc
 174#define PARM_TX_TIME_INT_DEF    40
 175#define PARM_TX_NUM_BUFS_DEF    4
 176#define PARM_DMA_CACHE_DEF      0
 177
 178/* RX defines */
 179#define USE_FBR0 1
 180#define FBR_CHUNKS 32
 181#define MAX_DESC_PER_RING_RX         1024
 182
 183/* number of RFDs - default and min */
 184#ifdef USE_FBR0
 185#define RFD_LOW_WATER_MARK      40
 186#define NIC_DEFAULT_NUM_RFD     1024
 187#define NUM_FBRS                2
 188#else
 189#define RFD_LOW_WATER_MARK      20
 190#define NIC_DEFAULT_NUM_RFD     256
 191#define NUM_FBRS                1
 192#endif
 193
 194#define NIC_MIN_NUM_RFD         64
 195#define NUM_PACKETS_HANDLED     256
 196
 197#define ALCATEL_MULTICAST_PKT   0x01000000
 198#define ALCATEL_BROADCAST_PKT   0x02000000
 199
 200/* typedefs for Free Buffer Descriptors */
 201struct fbr_desc {
 202        u32 addr_lo;
 203        u32 addr_hi;
 204        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 205};
 206
 207/* Packet Status Ring Descriptors
 208 *
 209 * Word 0:
 210 *
 211 * top 16 bits are from the Alcatel Status Word as enumerated in
 212 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 213 *
 214 * 0: hp                        hash pass
 215 * 1: ipa                       IP checksum assist
 216 * 2: ipp                       IP checksum pass
 217 * 3: tcpa                      TCP checksum assist
 218 * 4: tcpp                      TCP checksum pass
 219 * 5: wol                       WOL Event
 220 * 6: rxmac_error               RXMAC Error Indicator
 221 * 7: drop                      Drop packet
 222 * 8: ft                        Frame Truncated
 223 * 9: jp                        Jumbo Packet
 224 * 10: vp                       VLAN Packet
 225 * 11-15: unused
 226 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 227 * 17: asw_RX_DV_event          short receive event detected
 228 * 18: asw_false_carrier_event  bad carrier since last good packet
 229 * 19: asw_code_err             one or more nibbles signalled as errors
 230 * 20: asw_CRC_err              CRC error
 231 * 21: asw_len_chk_err          frame length field incorrect
 232 * 22: asw_too_long             frame length > 1518 bytes
 233 * 23: asw_OK                   valid CRC + no code error
 234 * 24: asw_multicast            has a multicast address
 235 * 25: asw_broadcast            has a broadcast address
 236 * 26: asw_dribble_nibble       spurious bits after EOP
 237 * 27: asw_control_frame        is a control frame
 238 * 28: asw_pause_frame          is a pause frame
 239 * 29: asw_unsupported_op       unsupported OP code
 240 * 30: asw_VLAN_tag             VLAN tag detected
 241 * 31: asw_long_evt             Rx long event
 242 *
 243 * Word 1:
 244 * 0-15: length                 length in bytes
 245 * 16-25: bi                    Buffer Index
 246 * 26-27: ri                    Ring Index
 247 * 28-31: reserved
 248 */
 249
 250struct pkt_stat_desc {
 251        u32 word0;
 252        u32 word1;
 253};
 254
 255/* Typedefs for the RX DMA status word */
 256
 257/*
 258 * rx status word 0 holds part of the status bits of the Rx DMA engine
 259 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 260 * which contains the Free Buffer ring 0 and 1 available offset.
 261 *
 262 * bit 0-9 FBR1 offset
 263 * bit 10 Wrap flag for FBR1
 264 * bit 16-25 FBR0 offset
 265 * bit 26 Wrap flag for FBR0
 266 */
 267
 268/*
 269 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 270 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 271 * which contains the Packet Status Ring available offset.
 272 *
 273 * bit 0-15 reserved
 274 * bit 16-27 PSRoffset
 275 * bit 28 PSRwrap
 276 * bit 29-31 unused
 277 */
 278
 279/*
 280 * struct rx_status_block is a structure representing the status of the Rx
 281 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 282 */
 283struct rx_status_block {
 284        u32 word0;
 285        u32 word1;
 286};
 287
 288/*
 289 * Structure for look-up table holding free buffer ring pointers, addresses
 290 * and state.
 291 */
 292struct fbr_lookup {
 293        void            *virt[MAX_DESC_PER_RING_RX];
 294        void            *buffer1[MAX_DESC_PER_RING_RX];
 295        void            *buffer2[MAX_DESC_PER_RING_RX];
 296        u32              bus_high[MAX_DESC_PER_RING_RX];
 297        u32              bus_low[MAX_DESC_PER_RING_RX];
 298        void            *ring_virtaddr;
 299        dma_addr_t       ring_physaddr;
 300        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 301        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 302        u64              real_physaddr;
 303        u64              offset;
 304        u32              local_full;
 305        u32              num_entries;
 306        u32              buffsize;
 307};
 308
 309/*
 310 * struct rx_ring is the sructure representing the adaptor's local
 311 * reference(s) to the rings
 312 *
 313 ******************************************************************************
 314 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
 315 *                      and index 1 to refer to FRB0
 316 ******************************************************************************
 317 */
 318struct rx_ring {
 319        struct fbr_lookup *fbr[NUM_FBRS];
 320        void *ps_ring_virtaddr;
 321        dma_addr_t ps_ring_physaddr;
 322        u32 local_psr_full;
 323        u32 psr_num_entries;
 324
 325        struct rx_status_block *rx_status_block;
 326        dma_addr_t rx_status_bus;
 327
 328        /* RECV */
 329        struct list_head recv_list;
 330        u32 num_ready_recv;
 331
 332        u32 num_rfd;
 333
 334        bool unfinished_receives;
 335
 336        /* lookaside lists */
 337        struct kmem_cache *recv_lookaside;
 338};
 339
 340/* TX defines */
 341/*
 342 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 343 *
 344 * 0-15: length of packet
 345 * 16-27: VLAN tag
 346 * 28: VLAN CFI
 347 * 29-31: VLAN priority
 348 *
 349 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 350 *
 351 * 0: last packet in the sequence
 352 * 1: first packet in the sequence
 353 * 2: interrupt the processor when this pkt sent
 354 * 3: Control word - no packet data
 355 * 4: Issue half-duplex backpressure : XON/XOFF
 356 * 5: send pause frame
 357 * 6: Tx frame has error
 358 * 7: append CRC
 359 * 8: MAC override
 360 * 9: pad packet
 361 * 10: Packet is a Huge packet
 362 * 11: append VLAN tag
 363 * 12: IP checksum assist
 364 * 13: TCP checksum assist
 365 * 14: UDP checksum assist
 366 */
 367
 368/* struct tx_desc represents each descriptor on the ring */
 369struct tx_desc {
 370        u32 addr_hi;
 371        u32 addr_lo;
 372        u32 len_vlan;   /* control words how to xmit the */
 373        u32 flags;      /* data (detailed above) */
 374};
 375
 376/*
 377 * The status of the Tx DMA engine it sits in free memory, and is pointed to
 378 * by 0x101c / 0x1020. This is a DMA10 type
 379 */
 380
 381/* TCB (Transmit Control Block: Host Side) */
 382struct tcb {
 383        struct tcb *next;       /* Next entry in ring */
 384        u32 flags;              /* Our flags for the packet */
 385        u32 count;              /* Used to spot stuck/lost packets */
 386        u32 stale;              /* Used to spot stuck/lost packets */
 387        struct sk_buff *skb;    /* Network skb we are tied to */
 388        u32 index;              /* Ring indexes */
 389        u32 index_start;
 390};
 391
 392/* Structure representing our local reference(s) to the ring */
 393struct tx_ring {
 394        /* TCB (Transmit Control Block) memory and lists */
 395        struct tcb *tcb_ring;
 396
 397        /* List of TCBs that are ready to be used */
 398        struct tcb *tcb_qhead;
 399        struct tcb *tcb_qtail;
 400
 401        /* list of TCBs that are currently being sent.  NOTE that access to all
 402         * three of these (including used) are controlled via the
 403         * TCBSendQLock.  This lock should be secured prior to incementing /
 404         * decrementing used, or any queue manipulation on send_head /
 405         * tail
 406         */
 407        struct tcb *send_head;
 408        struct tcb *send_tail;
 409        int used;
 410
 411        /* The actual descriptor ring */
 412        struct tx_desc *tx_desc_ring;
 413        dma_addr_t tx_desc_ring_pa;
 414
 415        /* send_idx indicates where we last wrote to in the descriptor ring. */
 416        u32 send_idx;
 417
 418        /* The location of the write-back status block */
 419        u32 *tx_status;
 420        dma_addr_t tx_status_pa;
 421
 422        /* Packets since the last IRQ: used for interrupt coalescing */
 423        int since_irq;
 424};
 425
 426/*
 427 * Do not change these values: if changed, then change also in respective
 428 * TXdma and Rxdma engines
 429 */
 430#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 431#define NUM_TCB                      64
 432
 433/*
 434 * These values are all superseded by registry entries to facilitate tuning.
 435 * Once the desired performance has been achieved, the optimal registry values
 436 * should be re-populated to these #defines:
 437 */
 438#define TX_ERROR_PERIOD             1000
 439
 440#define LO_MARK_PERCENT_FOR_PSR     15
 441#define LO_MARK_PERCENT_FOR_RX      15
 442
 443/* RFD (Receive Frame Descriptor) */
 444struct rfd {
 445        struct list_head list_node;
 446        struct sk_buff *skb;
 447        u32 len;        /* total size of receive frame */
 448        u16 bufferindex;
 449        u8 ringindex;
 450};
 451
 452/* Flow Control */
 453#define FLOW_BOTH       0
 454#define FLOW_TXONLY     1
 455#define FLOW_RXONLY     2
 456#define FLOW_NONE       3
 457
 458/* Struct to define some device statistics */
 459struct ce_stats {
 460        /* MIB II variables
 461         *
 462         * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
 463         * MUST have 32, then we'll need another way to perform atomic
 464         * operations
 465         */
 466        u32             unicast_pkts_rcvd;
 467        atomic_t        unicast_pkts_xmtd;
 468        u32             multicast_pkts_rcvd;
 469        atomic_t        multicast_pkts_xmtd;
 470        u32             broadcast_pkts_rcvd;
 471        atomic_t        broadcast_pkts_xmtd;
 472        u32             rcvd_pkts_dropped;
 473
 474        /* Tx Statistics. */
 475        u32             tx_underflows;
 476
 477        u32             tx_collisions;
 478        u32             tx_excessive_collisions;
 479        u32             tx_first_collisions;
 480        u32             tx_late_collisions;
 481        u32             tx_max_pkt_errs;
 482        u32             tx_deferred;
 483
 484        /* Rx Statistics. */
 485        u32             rx_overflows;
 486
 487        u32             rx_length_errs;
 488        u32             rx_align_errs;
 489        u32             rx_crc_errs;
 490        u32             rx_code_violations;
 491        u32             rx_other_errs;
 492
 493        u32             synchronous_iterations;
 494        u32             interrupt_status;
 495};
 496
 497/* The private adapter structure */
 498struct et131x_adapter {
 499        struct net_device *netdev;
 500        struct pci_dev *pdev;
 501        struct mii_bus *mii_bus;
 502        struct phy_device *phydev;
 503        struct work_struct task;
 504
 505        /* Flags that indicate current state of the adapter */
 506        u32 flags;
 507
 508        /* local link state, to determine if a state change has occurred */
 509        int link;
 510
 511        /* Configuration  */
 512        u8 rom_addr[ETH_ALEN];
 513        u8 addr[ETH_ALEN];
 514        bool has_eeprom;
 515        u8 eeprom_data[2];
 516
 517        /* Spinlocks */
 518        spinlock_t lock;
 519
 520        spinlock_t tcb_send_qlock;
 521        spinlock_t tcb_ready_qlock;
 522        spinlock_t send_hw_lock;
 523
 524        spinlock_t rcv_lock;
 525        spinlock_t rcv_pend_lock;
 526        spinlock_t fbr_lock;
 527
 528        spinlock_t phy_lock;
 529
 530        /* Packet Filter and look ahead size */
 531        u32 packet_filter;
 532
 533        /* multicast list */
 534        u32 multicast_addr_count;
 535        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 536
 537        /* Pointer to the device's PCI register space */
 538        struct address_map __iomem *regs;
 539
 540        /* Registry parameters */
 541        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 542        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 543
 544        /* Derived from the registry: */
 545        u8 flowcontrol;         /* flow control validated by the far-end */
 546
 547        /* Minimize init-time */
 548        struct timer_list error_timer;
 549
 550        /* variable putting the phy into coma mode when boot up with no cable
 551         * plugged in after 5 seconds
 552         */
 553        u8 boot_coma;
 554
 555        /* Next two used to save power information at power down. This
 556         * information will be used during power up to set up parts of Power
 557         * Management in JAGCore
 558         */
 559        u16 pdown_speed;
 560        u8 pdown_duplex;
 561
 562        /* Tx Memory Variables */
 563        struct tx_ring tx_ring;
 564
 565        /* Rx Memory Variables */
 566        struct rx_ring rx_ring;
 567
 568        /* Stats */
 569        struct ce_stats stats;
 570
 571        struct net_device_stats net_stats;
 572};
 573
 574static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 575{
 576        u32 reg;
 577        int i;
 578
 579        /*
 580         * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 581         *    bits 7,1:0 both equal to 1, at least once after reset.
 582         *    Subsequent operations need only to check that bits 1:0 are equal
 583         *    to 1 prior to starting a single byte read/write
 584         */
 585
 586        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 587                /* Read registers grouped in DWORD1 */
 588                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 589                        return -EIO;
 590
 591                /* I2C idle and Phy Queue Avail both true */
 592                if ((reg & 0x3000) == 0x3000) {
 593                        if (status)
 594                                *status = reg;
 595                        return reg & 0xFF;
 596                }
 597        }
 598        return -ETIMEDOUT;
 599}
 600
 601
 602/**
 603 * eeprom_write - Write a byte to the ET1310's EEPROM
 604 * @adapter: pointer to our private adapter structure
 605 * @addr: the address to write
 606 * @data: the value to write
 607 *
 608 * Returns 1 for a successful write.
 609 */
 610static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 611{
 612        struct pci_dev *pdev = adapter->pdev;
 613        int index = 0;
 614        int retries;
 615        int err = 0;
 616        int i2c_wack = 0;
 617        int writeok = 0;
 618        u32 status;
 619        u32 val = 0;
 620
 621        /*
 622         * For an EEPROM, an I2C single byte write is defined as a START
 623         * condition followed by the device address, EEPROM address, one byte
 624         * of data and a STOP condition.  The STOP condition will trigger the
 625         * EEPROM's internally timed write cycle to the nonvolatile memory.
 626         * All inputs are disabled during this write cycle and the EEPROM will
 627         * not respond to any access until the internal write is complete.
 628         */
 629
 630        err = eeprom_wait_ready(pdev, NULL);
 631        if (err)
 632                return err;
 633
 634         /*
 635         * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 636         *    and bits 1:0 both =0.  Bit 5 should be set according to the
 637         *    type of EEPROM being accessed (1=two byte addressing, 0=one
 638         *    byte addressing).
 639         */
 640        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 641                        LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
 642                return -EIO;
 643
 644        i2c_wack = 1;
 645
 646        /* Prepare EEPROM address for Step 3 */
 647
 648        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 649                /* Write the address to the LBCIF Address Register */
 650                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 651                        break;
 652                /*
 653                 * Write the data to the LBCIF Data Register (the I2C write
 654                 * will begin).
 655                 */
 656                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 657                        break;
 658                /*
 659                 * Monitor bit 1:0 of the LBCIF Status Register.  When bits
 660                 * 1:0 are both equal to 1, the I2C write has completed and the
 661                 * internal write cycle of the EEPROM is about to start.
 662                 * (bits 1:0 = 01 is a legal state while waiting from both
 663                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 664                 * something is broken).
 665                 */
 666                err = eeprom_wait_ready(pdev, &status);
 667                if (err < 0)
 668                        return 0;
 669
 670                /*
 671                 * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 672                 * an error has occurred.Don't break here if we are revision
 673                 * 1, this is so we do a blind write for load bug.
 674                 */
 675                if ((status & LBCIF_STATUS_GENERAL_ERROR)
 676                        && adapter->pdev->revision == 0)
 677                        break;
 678
 679                /*
 680                 * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 681                 * ACK error has occurred on the address phase of the write.
 682                 * This could be due to an actual hardware failure or the
 683                 * EEPROM may still be in its internal write cycle from a
 684                 * previous write. This write operation was ignored and must be
 685                  *repeated later.
 686                 */
 687                if (status & LBCIF_STATUS_ACK_ERROR) {
 688                        /*
 689                         * This could be due to an actual hardware failure
 690                         * or the EEPROM may still be in its internal write
 691                         * cycle from a previous write. This write operation
 692                         * was ignored and must be repeated later.
 693                         */
 694                        udelay(10);
 695                        continue;
 696                }
 697
 698                writeok = 1;
 699                break;
 700        }
 701
 702        /*
 703         * Set bit 6 of the LBCIF Control Register = 0.
 704         */
 705        udelay(10);
 706
 707        while (i2c_wack) {
 708                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 709                        LBCIF_CONTROL_LBCIF_ENABLE))
 710                        writeok = 0;
 711
 712                /* Do read until internal ACK_ERROR goes away meaning write
 713                 * completed
 714                 */
 715                do {
 716                        pci_write_config_dword(pdev,
 717                                               LBCIF_ADDRESS_REGISTER,
 718                                               addr);
 719                        do {
 720                                pci_read_config_dword(pdev,
 721                                        LBCIF_DATA_REGISTER, &val);
 722                        } while ((val & 0x00010000) == 0);
 723                } while (val & 0x00040000);
 724
 725                if ((val & 0xFF00) != 0xC000 || index == 10000)
 726                        break;
 727                index++;
 728        }
 729        return writeok ? 0 : -EIO;
 730}
 731
 732/**
 733 * eeprom_read - Read a byte from the ET1310's EEPROM
 734 * @adapter: pointer to our private adapter structure
 735 * @addr: the address from which to read
 736 * @pdata: a pointer to a byte in which to store the value of the read
 737 * @eeprom_id: the ID of the EEPROM
 738 * @addrmode: how the EEPROM is to be accessed
 739 *
 740 * Returns 1 for a successful read
 741 */
 742static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 743{
 744        struct pci_dev *pdev = adapter->pdev;
 745        int err;
 746        u32 status;
 747
 748        /*
 749         * A single byte read is similar to the single byte write, with the
 750         * exception of the data flow:
 751         */
 752
 753        err = eeprom_wait_ready(pdev, NULL);
 754        if (err)
 755                return err;
 756        /*
 757         * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 758         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 759         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 760         * addressing).
 761         */
 762        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 763                                  LBCIF_CONTROL_LBCIF_ENABLE))
 764                return -EIO;
 765        /*
 766         * Write the address to the LBCIF Address Register (I2C read will
 767         * begin).
 768         */
 769        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 770                return -EIO;
 771        /*
 772         * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 773         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 774         * has occurred).
 775         */
 776        err = eeprom_wait_ready(pdev, &status);
 777        if (err < 0)
 778                return err;
 779        /*
 780         * Regardless of error status, read data byte from LBCIF Data
 781         * Register.
 782         */
 783        *pdata = err;
 784        /*
 785         * Check bit 2 of the LBCIF Status Register.  If = 1,
 786         * then an error has occurred.
 787         */
 788        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 789}
 790
 791static int et131x_init_eeprom(struct et131x_adapter *adapter)
 792{
 793        struct pci_dev *pdev = adapter->pdev;
 794        u8 eestatus;
 795
 796        /* We first need to check the EEPROM Status code located at offset
 797         * 0xB2 of config space
 798         */
 799        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
 800                                      &eestatus);
 801
 802        /* THIS IS A WORKAROUND:
 803         * I need to call this function twice to get my card in a
 804         * LG M1 Express Dual running. I tried also a msleep before this
 805         * function, because I thought there could be some time condidions
 806         * but it didn't work. Call the whole function twice also work.
 807         */
 808        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 809                dev_err(&pdev->dev,
 810                       "Could not read PCI config space for EEPROM Status\n");
 811                return -EIO;
 812        }
 813
 814        /* Determine if the error(s) we care about are present. If they are
 815         * present we need to fail.
 816         */
 817        if (eestatus & 0x4C) {
 818                int write_failed = 0;
 819                if (pdev->revision == 0x01) {
 820                        int     i;
 821                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 822
 823                        /* Re-write the first 4 bytes if we have an eeprom
 824                         * present and the revision id is 1, this fixes the
 825                         * corruption seen with 1310 B Silicon
 826                         */
 827                        for (i = 0; i < 3; i++)
 828                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 829                                        write_failed = 1;
 830                }
 831                if (pdev->revision  != 0x01 || write_failed) {
 832                        dev_err(&pdev->dev,
 833                            "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
 834
 835                        /* This error could mean that there was an error
 836                         * reading the eeprom or that the eeprom doesn't exist.
 837                         * We will treat each case the same and not try to
 838                         * gather additional information that normally would
 839                         * come from the eeprom, like MAC Address
 840                         */
 841                        adapter->has_eeprom = 0;
 842                        return -EIO;
 843                }
 844        }
 845        adapter->has_eeprom = 1;
 846
 847        /* Read the EEPROM for information regarding LED behavior. Refer to
 848         * ET1310_phy.c, et131x_xcvr_init(), for its use.
 849         */
 850        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 851        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 852
 853        if (adapter->eeprom_data[0] != 0xcd)
 854                /* Disable all optional features */
 855                adapter->eeprom_data[1] = 0x00;
 856
 857        return 0;
 858}
 859
 860/**
 861 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
 862 * @adapter: pointer to our adapter structure
 863 */
 864static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 865{
 866        /* Setup the receive dma configuration register for normal operation */
 867        u32 csr =  0x2000;      /* FBR1 enable */
 868
 869        if (adapter->rx_ring.fbr[0]->buffsize == 4096)
 870                csr |= 0x0800;
 871        else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
 872                csr |= 0x1000;
 873        else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
 874                csr |= 0x1800;
 875#ifdef USE_FBR0
 876        csr |= 0x0400;          /* FBR0 enable */
 877        if (adapter->rx_ring.fbr[1]->buffsize == 256)
 878                csr |= 0x0100;
 879        else if (adapter->rx_ring.fbr[1]->buffsize == 512)
 880                csr |= 0x0200;
 881        else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
 882                csr |= 0x0300;
 883#endif
 884        writel(csr, &adapter->regs->rxdma.csr);
 885
 886        csr = readl(&adapter->regs->rxdma.csr);
 887        if ((csr & 0x00020000) != 0) {
 888                udelay(5);
 889                csr = readl(&adapter->regs->rxdma.csr);
 890                if ((csr & 0x00020000) != 0) {
 891                        dev_err(&adapter->pdev->dev,
 892                            "RX Dma failed to exit halt state.  CSR 0x%08x\n",
 893                                csr);
 894                }
 895        }
 896}
 897
 898/**
 899 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
 900 * @adapter: pointer to our adapter structure
 901 */
 902static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 903{
 904        u32 csr;
 905        /* Setup the receive dma configuration register */
 906        writel(0x00002001, &adapter->regs->rxdma.csr);
 907        csr = readl(&adapter->regs->rxdma.csr);
 908        if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
 909                udelay(5);
 910                csr = readl(&adapter->regs->rxdma.csr);
 911                if ((csr & 0x00020000) == 0)
 912                        dev_err(&adapter->pdev->dev,
 913                        "RX Dma failed to enter halt state. CSR 0x%08x\n",
 914                                csr);
 915        }
 916}
 917
 918/**
 919 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
 920 * @adapter: pointer to our adapter structure
 921 *
 922 * Mainly used after a return to the D0 (full-power) state from a lower state.
 923 */
 924static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 925{
 926        /* Setup the transmit dma configuration register for normal
 927         * operation
 928         */
 929        writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 930                                        &adapter->regs->txdma.csr);
 931}
 932
 933static inline void add_10bit(u32 *v, int n)
 934{
 935        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 936}
 937
 938static inline void add_12bit(u32 *v, int n)
 939{
 940        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 941}
 942
 943/**
 944 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
 945 * @adapter: pointer to our adapter structure
 946 */
 947static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 948{
 949        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 950        u32 station1;
 951        u32 station2;
 952        u32 ipg;
 953
 954        /* First we need to reset everything.  Write to MAC configuration
 955         * register 1 to perform reset.
 956         */
 957        writel(0xC00F0000, &macregs->cfg1);
 958
 959        /* Next lets configure the MAC Inter-packet gap register */
 960        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 961        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 962        writel(ipg, &macregs->ipg);
 963
 964        /* Next lets configure the MAC Half Duplex register */
 965        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 966        writel(0x00A1F037, &macregs->hfdp);
 967
 968        /* Next lets configure the MAC Interface Control register */
 969        writel(0, &macregs->if_ctrl);
 970
 971        /* Let's move on to setting up the mii management configuration */
 972        writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
 973
 974        /* Next lets configure the MAC Station Address register.  These
 975         * values are read from the EEPROM during initialization and stored
 976         * in the adapter structure.  We write what is stored in the adapter
 977         * structure to the MAC Station Address registers high and low.  This
 978         * station address is used for generating and checking pause control
 979         * packets.
 980         */
 981        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 982                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 983        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 984                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 985                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 986                    adapter->addr[2];
 987        writel(station1, &macregs->station_addr_1);
 988        writel(station2, &macregs->station_addr_2);
 989
 990        /* Max ethernet packet in bytes that will be passed by the mac without
 991         * being truncated.  Allow the MAC to pass 4 more than our max packet
 992         * size.  This is 4 for the Ethernet CRC.
 993         *
 994         * Packets larger than (registry_jumbo_packet) that do not contain a
 995         * VLAN ID will be dropped by the Rx function.
 996         */
 997        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 998
 999        /* clear out MAC config reset */
1000        writel(0, &macregs->cfg1);
1001}
1002
1003/**
1004 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1005 * @adapter: pointer to our adapter structure
1006 */
1007static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1008{
1009        int32_t delay = 0;
1010        struct mac_regs __iomem *mac = &adapter->regs->mac;
1011        struct phy_device *phydev = adapter->phydev;
1012        u32 cfg1;
1013        u32 cfg2;
1014        u32 ifctrl;
1015        u32 ctl;
1016
1017        ctl = readl(&adapter->regs->txmac.ctl);
1018        cfg1 = readl(&mac->cfg1);
1019        cfg2 = readl(&mac->cfg2);
1020        ifctrl = readl(&mac->if_ctrl);
1021
1022        /* Set up the if mode bits */
1023        cfg2 &= ~0x300;
1024        if (phydev && phydev->speed == SPEED_1000) {
1025                cfg2 |= 0x200;
1026                /* Phy mode bit */
1027                ifctrl &= ~(1 << 24);
1028        } else {
1029                cfg2 |= 0x100;
1030                ifctrl |= (1 << 24);
1031        }
1032
1033        /* We need to enable Rx/Tx */
1034        cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1035        /* Initialize loop back to off */
1036        cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1037        if (adapter->flowcontrol == FLOW_RXONLY ||
1038                                adapter->flowcontrol == FLOW_BOTH)
1039                cfg1 |= CFG1_RX_FLOW;
1040        writel(cfg1, &mac->cfg1);
1041
1042        /* Now we need to initialize the MAC Configuration 2 register */
1043        /* preamble 7, check length, huge frame off, pad crc, crc enable
1044           full duplex off */
1045        cfg2 |= 0x7016;
1046        cfg2 &= ~0x0021;
1047
1048        /* Turn on duplex if needed */
1049        if (phydev && phydev->duplex == DUPLEX_FULL)
1050                cfg2 |= 0x01;
1051
1052        ifctrl &= ~(1 << 26);
1053        if (phydev && phydev->duplex == DUPLEX_HALF)
1054                ifctrl |= (1<<26);      /* Enable ghd */
1055
1056        writel(ifctrl, &mac->if_ctrl);
1057        writel(cfg2, &mac->cfg2);
1058
1059        do {
1060                udelay(10);
1061                delay++;
1062                cfg1 = readl(&mac->cfg1);
1063        } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1064
1065        if (delay == 100) {
1066                dev_warn(&adapter->pdev->dev,
1067                    "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1068                        cfg1);
1069        }
1070
1071        /* Enable txmac */
1072        ctl |= 0x09;    /* TX mac enable, FC disable */
1073        writel(ctl, &adapter->regs->txmac.ctl);
1074
1075        /* Ready to start the RXDMA/TXDMA engine */
1076        if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1077                et131x_rx_dma_enable(adapter);
1078                et131x_tx_dma_enable(adapter);
1079        }
1080}
1081
1082/**
1083 * et1310_in_phy_coma - check if the device is in phy coma
1084 * @adapter: pointer to our adapter structure
1085 *
1086 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1087 */
1088static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1089{
1090        u32 pmcsr;
1091
1092        pmcsr = readl(&adapter->regs->global.pm_csr);
1093
1094        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1095}
1096
1097static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1098{
1099        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1100        u32 hash1 = 0;
1101        u32 hash2 = 0;
1102        u32 hash3 = 0;
1103        u32 hash4 = 0;
1104        u32 pm_csr;
1105
1106        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1107         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1108         * specified) then we should pass NO multi-cast addresses to the
1109         * driver.
1110         */
1111        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1112                int i;
1113
1114                /* Loop through our multicast array and set up the device */
1115                for (i = 0; i < adapter->multicast_addr_count; i++) {
1116                        u32 result;
1117
1118                        result = ether_crc(6, adapter->multicast_list[i]);
1119
1120                        result = (result & 0x3F800000) >> 23;
1121
1122                        if (result < 32) {
1123                                hash1 |= (1 << result);
1124                        } else if ((31 < result) && (result < 64)) {
1125                                result -= 32;
1126                                hash2 |= (1 << result);
1127                        } else if ((63 < result) && (result < 96)) {
1128                                result -= 64;
1129                                hash3 |= (1 << result);
1130                        } else {
1131                                result -= 96;
1132                                hash4 |= (1 << result);
1133                        }
1134                }
1135        }
1136
1137        /* Write out the new hash to the device */
1138        pm_csr = readl(&adapter->regs->global.pm_csr);
1139        if (!et1310_in_phy_coma(adapter)) {
1140                writel(hash1, &rxmac->multi_hash1);
1141                writel(hash2, &rxmac->multi_hash2);
1142                writel(hash3, &rxmac->multi_hash3);
1143                writel(hash4, &rxmac->multi_hash4);
1144        }
1145}
1146
1147static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1148{
1149        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1150        u32 uni_pf1;
1151        u32 uni_pf2;
1152        u32 uni_pf3;
1153        u32 pm_csr;
1154
1155        /* Set up unicast packet filter reg 3 to be the first two octets of
1156         * the MAC address for both address
1157         *
1158         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1159         * MAC address for second address
1160         *
1161         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1162         * MAC address for first address
1163         */
1164        uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1165                  (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1166                  (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1167                   adapter->addr[1];
1168
1169        uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1170                  (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1171                  (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1172                   adapter->addr[5];
1173
1174        uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1175                  (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1176                  (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1177                   adapter->addr[5];
1178
1179        pm_csr = readl(&adapter->regs->global.pm_csr);
1180        if (!et1310_in_phy_coma(adapter)) {
1181                writel(uni_pf1, &rxmac->uni_pf_addr1);
1182                writel(uni_pf2, &rxmac->uni_pf_addr2);
1183                writel(uni_pf3, &rxmac->uni_pf_addr3);
1184        }
1185}
1186
1187static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1188{
1189        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1190        struct phy_device *phydev = adapter->phydev;
1191        u32 sa_lo;
1192        u32 sa_hi = 0;
1193        u32 pf_ctrl = 0;
1194
1195        /* Disable the MAC while it is being configured (also disable WOL) */
1196        writel(0x8, &rxmac->ctrl);
1197
1198        /* Initialize WOL to disabled. */
1199        writel(0, &rxmac->crc0);
1200        writel(0, &rxmac->crc12);
1201        writel(0, &rxmac->crc34);
1202
1203        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1204         * its default Values of 0x00000000 because there are not WOL masks
1205         * as of this time.
1206         */
1207        writel(0, &rxmac->mask0_word0);
1208        writel(0, &rxmac->mask0_word1);
1209        writel(0, &rxmac->mask0_word2);
1210        writel(0, &rxmac->mask0_word3);
1211
1212        writel(0, &rxmac->mask1_word0);
1213        writel(0, &rxmac->mask1_word1);
1214        writel(0, &rxmac->mask1_word2);
1215        writel(0, &rxmac->mask1_word3);
1216
1217        writel(0, &rxmac->mask2_word0);
1218        writel(0, &rxmac->mask2_word1);
1219        writel(0, &rxmac->mask2_word2);
1220        writel(0, &rxmac->mask2_word3);
1221
1222        writel(0, &rxmac->mask3_word0);
1223        writel(0, &rxmac->mask3_word1);
1224        writel(0, &rxmac->mask3_word2);
1225        writel(0, &rxmac->mask3_word3);
1226
1227        writel(0, &rxmac->mask4_word0);
1228        writel(0, &rxmac->mask4_word1);
1229        writel(0, &rxmac->mask4_word2);
1230        writel(0, &rxmac->mask4_word3);
1231
1232        /* Lets setup the WOL Source Address */
1233        sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1234                (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1235                (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1236                 adapter->addr[5];
1237        writel(sa_lo, &rxmac->sa_lo);
1238
1239        sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1240                       adapter->addr[1];
1241        writel(sa_hi, &rxmac->sa_hi);
1242
1243        /* Disable all Packet Filtering */
1244        writel(0, &rxmac->pf_ctrl);
1245
1246        /* Let's initialize the Unicast Packet filtering address */
1247        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1248                et1310_setup_device_for_unicast(adapter);
1249                pf_ctrl |= 4;   /* Unicast filter */
1250        } else {
1251                writel(0, &rxmac->uni_pf_addr1);
1252                writel(0, &rxmac->uni_pf_addr2);
1253                writel(0, &rxmac->uni_pf_addr3);
1254        }
1255
1256        /* Let's initialize the Multicast hash */
1257        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1258                pf_ctrl |= 2;   /* Multicast filter */
1259                et1310_setup_device_for_multicast(adapter);
1260        }
1261
1262        /* Runt packet filtering.  Didn't work in version A silicon. */
1263        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1264        pf_ctrl |= 8;   /* Fragment filter */
1265
1266        if (adapter->registry_jumbo_packet > 8192)
1267                /* In order to transmit jumbo packets greater than 8k, the
1268                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1269                 * to (16k - Jumbo packet size).  In order to implement this,
1270                 * we must use "cut through" mode in the RxMAC, which chops
1271                 * packets down into segments which are (max_size * 16).  In
1272                 * this case we selected 256 bytes, since this is the size of
1273                 * the PCI-Express TLP's that the 1310 uses.
1274                 *
1275                 * seg_en on, fc_en off, size 0x10
1276                 */
1277                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1278        else
1279                writel(0, &rxmac->mcif_ctrl_max_seg);
1280
1281        /* Initialize the MCIF water marks */
1282        writel(0, &rxmac->mcif_water_mark);
1283
1284        /*  Initialize the MIF control */
1285        writel(0, &rxmac->mif_ctrl);
1286
1287        /* Initialize the Space Available Register */
1288        writel(0, &rxmac->space_avail);
1289
1290        /* Initialize the the mif_ctrl register
1291         * bit 3:  Receive code error. One or more nibbles were signaled as
1292         *         errors  during the reception of the packet.  Clear this
1293         *         bit in Gigabit, set it in 100Mbit.  This was derived
1294         *         experimentally at UNH.
1295         * bit 4:  Receive CRC error. The packet's CRC did not match the
1296         *         internally generated CRC.
1297         * bit 5:  Receive length check error. Indicates that frame length
1298         *         field value in the packet does not match the actual data
1299         *         byte length and is not a type field.
1300         * bit 16: Receive frame truncated.
1301         * bit 17: Drop packet enable
1302         */
1303        if (phydev && phydev->speed == SPEED_100)
1304                writel(0x30038, &rxmac->mif_ctrl);
1305        else
1306                writel(0x30030, &rxmac->mif_ctrl);
1307
1308        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1309         * filter is always enabled since it is where the runt packets are
1310         * supposed to be dropped.  For version A silicon, runt packet
1311         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1312         * but we still leave the packet filter on.
1313         */
1314        writel(pf_ctrl, &rxmac->pf_ctrl);
1315        writel(0x9, &rxmac->ctrl);
1316}
1317
1318static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1319{
1320        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1321
1322        /* We need to update the Control Frame Parameters
1323         * cfpt - control frame pause timer set to 64 (0x40)
1324         * cfep - control frame extended pause timer set to 0x0
1325         */
1326        if (adapter->flowcontrol == FLOW_NONE)
1327                writel(0, &txmac->cf_param);
1328        else
1329                writel(0x40, &txmac->cf_param);
1330}
1331
1332static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1333{
1334        struct macstat_regs __iomem *macstat =
1335                &adapter->regs->macstat;
1336
1337        /* Next we need to initialize all the macstat registers to zero on
1338         * the device.
1339         */
1340        writel(0, &macstat->txrx_0_64_byte_frames);
1341        writel(0, &macstat->txrx_65_127_byte_frames);
1342        writel(0, &macstat->txrx_128_255_byte_frames);
1343        writel(0, &macstat->txrx_256_511_byte_frames);
1344        writel(0, &macstat->txrx_512_1023_byte_frames);
1345        writel(0, &macstat->txrx_1024_1518_byte_frames);
1346        writel(0, &macstat->txrx_1519_1522_gvln_frames);
1347
1348        writel(0, &macstat->rx_bytes);
1349        writel(0, &macstat->rx_packets);
1350        writel(0, &macstat->rx_fcs_errs);
1351        writel(0, &macstat->rx_multicast_packets);
1352        writel(0, &macstat->rx_broadcast_packets);
1353        writel(0, &macstat->rx_control_frames);
1354        writel(0, &macstat->rx_pause_frames);
1355        writel(0, &macstat->rx_unknown_opcodes);
1356        writel(0, &macstat->rx_align_errs);
1357        writel(0, &macstat->rx_frame_len_errs);
1358        writel(0, &macstat->rx_code_errs);
1359        writel(0, &macstat->rx_carrier_sense_errs);
1360        writel(0, &macstat->rx_undersize_packets);
1361        writel(0, &macstat->rx_oversize_packets);
1362        writel(0, &macstat->rx_fragment_packets);
1363        writel(0, &macstat->rx_jabbers);
1364        writel(0, &macstat->rx_drops);
1365
1366        writel(0, &macstat->tx_bytes);
1367        writel(0, &macstat->tx_packets);
1368        writel(0, &macstat->tx_multicast_packets);
1369        writel(0, &macstat->tx_broadcast_packets);
1370        writel(0, &macstat->tx_pause_frames);
1371        writel(0, &macstat->tx_deferred);
1372        writel(0, &macstat->tx_excessive_deferred);
1373        writel(0, &macstat->tx_single_collisions);
1374        writel(0, &macstat->tx_multiple_collisions);
1375        writel(0, &macstat->tx_late_collisions);
1376        writel(0, &macstat->tx_excessive_collisions);
1377        writel(0, &macstat->tx_total_collisions);
1378        writel(0, &macstat->tx_pause_honored_frames);
1379        writel(0, &macstat->tx_drops);
1380        writel(0, &macstat->tx_jabbers);
1381        writel(0, &macstat->tx_fcs_errs);
1382        writel(0, &macstat->tx_control_frames);
1383        writel(0, &macstat->tx_oversize_frames);
1384        writel(0, &macstat->tx_undersize_frames);
1385        writel(0, &macstat->tx_fragments);
1386        writel(0, &macstat->carry_reg1);
1387        writel(0, &macstat->carry_reg2);
1388
1389        /* Unmask any counters that we want to track the overflow of.
1390         * Initially this will be all counters.  It may become clear later
1391         * that we do not need to track all counters.
1392         */
1393        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1394        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1395}
1396
1397/**
1398 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1399 * @adapter: pointer to our private adapter structure
1400 * @addr: the address of the transceiver
1401 * @reg: the register to read
1402 * @value: pointer to a 16-bit value in which the value will be stored
1403 *
1404 * Returns 0 on success, errno on failure (as defined in errno.h)
1405 */
1406static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1407              u8 reg, u16 *value)
1408{
1409        struct mac_regs __iomem *mac = &adapter->regs->mac;
1410        int status = 0;
1411        u32 delay = 0;
1412        u32 mii_addr;
1413        u32 mii_cmd;
1414        u32 mii_indicator;
1415
1416        /* Save a local copy of the registers we are dealing with so we can
1417         * set them back
1418         */
1419        mii_addr = readl(&mac->mii_mgmt_addr);
1420        mii_cmd = readl(&mac->mii_mgmt_cmd);
1421
1422        /* Stop the current operation */
1423        writel(0, &mac->mii_mgmt_cmd);
1424
1425        /* Set up the register we need to read from on the correct PHY */
1426        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1427
1428        writel(0x1, &mac->mii_mgmt_cmd);
1429
1430        do {
1431                udelay(50);
1432                delay++;
1433                mii_indicator = readl(&mac->mii_mgmt_indicator);
1434        } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1435
1436        /* If we hit the max delay, we could not read the register */
1437        if (delay == 50) {
1438                dev_warn(&adapter->pdev->dev,
1439                            "reg 0x%08x could not be read\n", reg);
1440                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1441                            mii_indicator);
1442
1443                status = -EIO;
1444        }
1445
1446        /* If we hit here we were able to read the register and we need to
1447         * return the value to the caller */
1448        *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1449
1450        /* Stop the read operation */
1451        writel(0, &mac->mii_mgmt_cmd);
1452
1453        /* set the registers we touched back to the state at which we entered
1454         * this function
1455         */
1456        writel(mii_addr, &mac->mii_mgmt_addr);
1457        writel(mii_cmd, &mac->mii_mgmt_cmd);
1458
1459        return status;
1460}
1461
1462static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1463{
1464        struct phy_device *phydev = adapter->phydev;
1465
1466        if (!phydev)
1467                return -EIO;
1468
1469        return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1470}
1471
1472/**
1473 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1474 * @adapter: pointer to our private adapter structure
1475 * @reg: the register to read
1476 * @value: 16-bit value to write
1477 *
1478 * FIXME: one caller in netdev still
1479 *
1480 * Return 0 on success, errno on failure (as defined in errno.h)
1481 */
1482static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1483{
1484        struct mac_regs __iomem *mac = &adapter->regs->mac;
1485        struct phy_device *phydev = adapter->phydev;
1486        int status = 0;
1487        u8 addr;
1488        u32 delay = 0;
1489        u32 mii_addr;
1490        u32 mii_cmd;
1491        u32 mii_indicator;
1492
1493        if (!phydev)
1494                return -EIO;
1495
1496        addr = phydev->addr;
1497
1498        /* Save a local copy of the registers we are dealing with so we can
1499         * set them back
1500         */
1501        mii_addr = readl(&mac->mii_mgmt_addr);
1502        mii_cmd = readl(&mac->mii_mgmt_cmd);
1503
1504        /* Stop the current operation */
1505        writel(0, &mac->mii_mgmt_cmd);
1506
1507        /* Set up the register we need to write to on the correct PHY */
1508        writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1509
1510        /* Add the value to write to the registers to the mac */
1511        writel(value, &mac->mii_mgmt_ctrl);
1512
1513        do {
1514                udelay(50);
1515                delay++;
1516                mii_indicator = readl(&mac->mii_mgmt_indicator);
1517        } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1518
1519        /* If we hit the max delay, we could not write the register */
1520        if (delay == 100) {
1521                u16 tmp;
1522
1523                dev_warn(&adapter->pdev->dev,
1524                    "reg 0x%08x could not be written", reg);
1525                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1526                            mii_indicator);
1527                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1528                            readl(&mac->mii_mgmt_cmd));
1529
1530                et131x_mii_read(adapter, reg, &tmp);
1531
1532                status = -EIO;
1533        }
1534        /* Stop the write operation */
1535        writel(0, &mac->mii_mgmt_cmd);
1536
1537        /*
1538         * set the registers we touched back to the state at which we entered
1539         * this function
1540         */
1541        writel(mii_addr, &mac->mii_mgmt_addr);
1542        writel(mii_cmd, &mac->mii_mgmt_cmd);
1543
1544        return status;
1545}
1546
1547/* Still used from _mac for BIT_READ */
1548static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1549                                      u16 action, u16 regnum, u16 bitnum,
1550                                      u8 *value)
1551{
1552        u16 reg;
1553        u16 mask = 0x0001 << bitnum;
1554
1555        /* Read the requested register */
1556        et131x_mii_read(adapter, regnum, &reg);
1557
1558        switch (action) {
1559        case TRUEPHY_BIT_READ:
1560                *value = (reg & mask) >> bitnum;
1561                break;
1562
1563        case TRUEPHY_BIT_SET:
1564                et131x_mii_write(adapter, regnum, reg | mask);
1565                break;
1566
1567        case TRUEPHY_BIT_CLEAR:
1568                et131x_mii_write(adapter, regnum, reg & ~mask);
1569                break;
1570
1571        default:
1572                break;
1573        }
1574}
1575
1576static void et1310_config_flow_control(struct et131x_adapter *adapter)
1577{
1578        struct phy_device *phydev = adapter->phydev;
1579
1580        if (phydev->duplex == DUPLEX_HALF) {
1581                adapter->flowcontrol = FLOW_NONE;
1582        } else {
1583                char remote_pause, remote_async_pause;
1584
1585                et1310_phy_access_mii_bit(adapter,
1586                                TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1587                et1310_phy_access_mii_bit(adapter,
1588                                TRUEPHY_BIT_READ, 5, 11,
1589                                &remote_async_pause);
1590
1591                if ((remote_pause == TRUEPHY_BIT_SET) &&
1592                    (remote_async_pause == TRUEPHY_BIT_SET)) {
1593                        adapter->flowcontrol = adapter->wanted_flow;
1594                } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1595                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1596                        if (adapter->wanted_flow == FLOW_BOTH)
1597                                adapter->flowcontrol = FLOW_BOTH;
1598                        else
1599                                adapter->flowcontrol = FLOW_NONE;
1600                } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1601                           (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1602                        adapter->flowcontrol = FLOW_NONE;
1603                } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1604                               remote_async_pause == TRUEPHY_SET_BIT) */
1605                        if (adapter->wanted_flow == FLOW_BOTH)
1606                                adapter->flowcontrol = FLOW_RXONLY;
1607                        else
1608                                adapter->flowcontrol = FLOW_NONE;
1609                }
1610        }
1611}
1612
1613/**
1614 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1615 * @adapter: pointer to the adapter structure
1616 */
1617static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1618{
1619        struct ce_stats *stats = &adapter->stats;
1620        struct macstat_regs __iomem *macstat =
1621                &adapter->regs->macstat;
1622
1623        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1624        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1625        stats->tx_deferred             += readl(&macstat->tx_deferred);
1626        stats->tx_excessive_collisions +=
1627                                readl(&macstat->tx_multiple_collisions);
1628        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1629        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1630        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1631
1632        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1633        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1634        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1635        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1636        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1637        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1638        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1639}
1640
1641/**
1642 * et1310_handle_macstat_interrupt
1643 * @adapter: pointer to the adapter structure
1644 *
1645 * One of the MACSTAT counters has wrapped.  Update the local copy of
1646 * the statistics held in the adapter structure, checking the "wrap"
1647 * bit for each counter.
1648 */
1649static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1650{
1651        u32 carry_reg1;
1652        u32 carry_reg2;
1653
1654        /* Read the interrupt bits from the register(s).  These are Clear On
1655         * Write.
1656         */
1657        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1658        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1659
1660        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1661        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1662
1663        /* We need to do update the host copy of all the MAC_STAT counters.
1664         * For each counter, check it's overflow bit.  If the overflow bit is
1665         * set, then increment the host version of the count by one complete
1666         * revolution of the counter.  This routine is called when the counter
1667         * block indicates that one of the counters has wrapped.
1668         */
1669        if (carry_reg1 & (1 << 14))
1670                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1671        if (carry_reg1 & (1 << 8))
1672                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1673        if (carry_reg1 & (1 << 7))
1674                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1675        if (carry_reg1 & (1 << 2))
1676                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1677        if (carry_reg1 & (1 << 6))
1678                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1679        if (carry_reg1 & (1 << 3))
1680                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1681        if (carry_reg1 & (1 << 0))
1682                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1683        if (carry_reg2 & (1 << 16))
1684                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1685        if (carry_reg2 & (1 << 15))
1686                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1687        if (carry_reg2 & (1 << 6))
1688                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1689        if (carry_reg2 & (1 << 8))
1690                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1691        if (carry_reg2 & (1 << 5))
1692                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1693        if (carry_reg2 & (1 << 4))
1694                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1695        if (carry_reg2 & (1 << 2))
1696                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1697}
1698
1699static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1700{
1701        struct net_device *netdev = bus->priv;
1702        struct et131x_adapter *adapter = netdev_priv(netdev);
1703        u16 value;
1704        int ret;
1705
1706        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1707
1708        if (ret < 0)
1709                return ret;
1710        else
1711                return value;
1712}
1713
1714static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1715                             int reg, u16 value)
1716{
1717        struct net_device *netdev = bus->priv;
1718        struct et131x_adapter *adapter = netdev_priv(netdev);
1719
1720        return et131x_mii_write(adapter, reg, value);
1721}
1722
1723static int et131x_mdio_reset(struct mii_bus *bus)
1724{
1725        struct net_device *netdev = bus->priv;
1726        struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728        et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1729
1730        return 0;
1731}
1732
1733/**
1734 *      et1310_phy_power_down   -       PHY power control
1735 *      @adapter: device to control
1736 *      @down: true for off/false for back on
1737 *
1738 *      one hundred, ten, one thousand megs
1739 *      How would you like to have your LAN accessed
1740 *      Can't you see that this code processed
1741 *      Phy power, phy power..
1742 */
1743static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1744{
1745        u16 data;
1746
1747        et131x_mii_read(adapter, MII_BMCR, &data);
1748        data &= ~BMCR_PDOWN;
1749        if (down)
1750                data |= BMCR_PDOWN;
1751        et131x_mii_write(adapter, MII_BMCR, data);
1752}
1753
1754/**
1755 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1756 * @adapter: pointer to our private adapter structure
1757 *
1758 */
1759static void et131x_xcvr_init(struct et131x_adapter *adapter)
1760{
1761        u16 imr;
1762        u16 isr;
1763        u16 lcr2;
1764
1765        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1766        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1767
1768        /* Set the link status interrupt only.  Bad behavior when link status
1769         * and auto neg are set, we run into a nested interrupt problem
1770         */
1771        imr |= (ET_PHY_INT_MASK_AUTONEGSTAT |
1772                ET_PHY_INT_MASK_LINKSTAT |
1773                ET_PHY_INT_MASK_ENABLE);
1774
1775        et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1776
1777        /* Set the LED behavior such that LED 1 indicates speed (off =
1778         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1779         * link and activity (on for link, blink off for activity).
1780         *
1781         * NOTE: Some customizations have been added here for specific
1782         * vendors; The LED behavior is now determined by vendor data in the
1783         * EEPROM. However, the above description is the default.
1784         */
1785        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1786                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1787
1788                lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1789                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1790
1791                if ((adapter->eeprom_data[1] & 0x8) == 0)
1792                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1793                else
1794                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1795
1796                et131x_mii_write(adapter, PHY_LED_2, lcr2);
1797        }
1798}
1799
1800/**
1801 * et131x_configure_global_regs -       configure JAGCore global regs
1802 * @adapter: pointer to our adapter structure
1803 *
1804 * Used to configure the global registers on the JAGCore
1805 */
1806static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1807{
1808        struct global_regs __iomem *regs = &adapter->regs->global;
1809
1810        writel(0, &regs->rxq_start_addr);
1811        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1812
1813        if (adapter->registry_jumbo_packet < 2048) {
1814                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1815                 * block of RAM that the driver can split between Tx
1816                 * and Rx as it desires.  Our default is to split it
1817                 * 50/50:
1818                 */
1819                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1820                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1821        } else if (adapter->registry_jumbo_packet < 8192) {
1822                /* For jumbo packets > 2k but < 8k, split 50-50. */
1823                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1824                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1825        } else {
1826                /* 9216 is the only packet size greater than 8k that
1827                 * is available. The Tx buffer has to be big enough
1828                 * for one whole packet on the Tx side. We'll make
1829                 * the Tx 9408, and give the rest to Rx
1830                 */
1831                writel(0x01b3, &regs->rxq_end_addr);
1832                writel(0x01b4, &regs->txq_start_addr);
1833        }
1834
1835        /* Initialize the loopback register. Disable all loopbacks. */
1836        writel(0, &regs->loopback);
1837
1838        /* MSI Register */
1839        writel(0, &regs->msi_config);
1840
1841        /* By default, disable the watchdog timer.  It will be enabled when
1842         * a packet is queued.
1843         */
1844        writel(0, &regs->watchdog_timer);
1845}
1846
1847/**
1848 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1849 * @adapter: pointer to our adapter structure
1850 */
1851static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1852{
1853        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1854        struct rx_ring *rx_local = &adapter->rx_ring;
1855        struct fbr_desc *fbr_entry;
1856        u32 entry;
1857        u32 psr_num_des;
1858        unsigned long flags;
1859
1860        /* Halt RXDMA to perform the reconfigure.  */
1861        et131x_rx_dma_disable(adapter);
1862
1863        /* Load the completion writeback physical address
1864         *
1865         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1866         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1867         * are ever returned, make sure the high part is retrieved here
1868         * before storing the adjusted address.
1869         */
1870        writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1871               &rx_dma->dma_wb_base_hi);
1872        writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1873
1874        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1875
1876        /* Set the address and parameters of the packet status ring into the
1877         * 1310's registers
1878         */
1879        writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1880               &rx_dma->psr_base_hi);
1881        writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1882        writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1883        writel(0, &rx_dma->psr_full_offset);
1884
1885        psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1886        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1887               &rx_dma->psr_min_des);
1888
1889        spin_lock_irqsave(&adapter->rcv_lock, flags);
1890
1891        /* These local variables track the PSR in the adapter structure */
1892        rx_local->local_psr_full = 0;
1893
1894        /* Now's the best time to initialize FBR1 contents */
1895        fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1896        for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1897                fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1898                fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1899                fbr_entry->word2 = entry;
1900                fbr_entry++;
1901        }
1902
1903        /* Set the address and parameters of Free buffer ring 1 (and 0 if
1904         * required) into the 1310's registers
1905         */
1906        writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1907               &rx_dma->fbr1_base_hi);
1908        writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1909        writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1910        writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1911
1912        /* This variable tracks the free buffer ring 1 full position, so it
1913         * has to match the above.
1914         */
1915        rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1916        writel(
1917           ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1918           &rx_dma->fbr1_min_des);
1919
1920#ifdef USE_FBR0
1921        /* Now's the best time to initialize FBR0 contents */
1922        fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1923        for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1924                fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1925                fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1926                fbr_entry->word2 = entry;
1927                fbr_entry++;
1928        }
1929
1930        writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1931               &rx_dma->fbr0_base_hi);
1932        writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1933        writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1934        writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1935
1936        /* This variable tracks the free buffer ring 0 full position, so it
1937         * has to match the above.
1938         */
1939        rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1940        writel(
1941           ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1942           &rx_dma->fbr0_min_des);
1943#endif
1944
1945        /* Program the number of packets we will receive before generating an
1946         * interrupt.
1947         * For version B silicon, this value gets updated once autoneg is
1948         *complete.
1949         */
1950        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1951
1952        /* The "time_done" is not working correctly to coalesce interrupts
1953         * after a given time period, but rather is giving us an interrupt
1954         * regardless of whether we have received packets.
1955         * This value gets updated once autoneg is complete.
1956         */
1957        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1958
1959        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1960}
1961
1962/**
1963 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1964 * @adapter: pointer to our private adapter structure
1965 *
1966 * Configure the transmit engine with the ring buffers we have created
1967 * and prepare it for use.
1968 */
1969static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1970{
1971        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1972
1973        /* Load the hardware with the start of the transmit descriptor ring. */
1974        writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1975               &txdma->pr_base_hi);
1976        writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1977               &txdma->pr_base_lo);
1978
1979        /* Initialise the transmit DMA engine */
1980        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1981
1982        /* Load the completion writeback physical address */
1983        writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1984                                                &txdma->dma_wb_base_hi);
1985        writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1986
1987        *adapter->tx_ring.tx_status = 0;
1988
1989        writel(0, &txdma->service_request);
1990        adapter->tx_ring.send_idx = 0;
1991}
1992
1993/**
1994 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1995 * @adapter: pointer to our private adapter structure
1996 *
1997 * Returns 0 on success, errno on failure (as defined in errno.h)
1998 */
1999static void et131x_adapter_setup(struct et131x_adapter *adapter)
2000{
2001        /* Configure the JAGCore */
2002        et131x_configure_global_regs(adapter);
2003
2004        et1310_config_mac_regs1(adapter);
2005
2006        /* Configure the MMC registers */
2007        /* All we need to do is initialize the Memory Control Register */
2008        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2009
2010        et1310_config_rxmac_regs(adapter);
2011        et1310_config_txmac_regs(adapter);
2012
2013        et131x_config_rx_dma_regs(adapter);
2014        et131x_config_tx_dma_regs(adapter);
2015
2016        et1310_config_macstat_regs(adapter);
2017
2018        et1310_phy_power_down(adapter, 0);
2019        et131x_xcvr_init(adapter);
2020}
2021
2022/**
2023 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2024 * @adapter: pointer to our private adapter structure
2025 */
2026static void et131x_soft_reset(struct et131x_adapter *adapter)
2027{
2028        /* Disable MAC Core */
2029        writel(0xc00f0000, &adapter->regs->mac.cfg1);
2030
2031        /* Set everything to a reset value */
2032        writel(0x7F, &adapter->regs->global.sw_reset);
2033        writel(0x000f0000, &adapter->regs->mac.cfg1);
2034        writel(0x00000000, &adapter->regs->mac.cfg1);
2035}
2036
2037/**
2038 *      et131x_enable_interrupts        -       enable interrupt
2039 *      @adapter: et131x device
2040 *
2041 *      Enable the appropriate interrupts on the ET131x according to our
2042 *      configuration
2043 */
2044static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2045{
2046        u32 mask;
2047
2048        /* Enable all global interrupts */
2049        if (adapter->flowcontrol == FLOW_TXONLY ||
2050                            adapter->flowcontrol == FLOW_BOTH)
2051                mask = INT_MASK_ENABLE;
2052        else
2053                mask = INT_MASK_ENABLE_NO_FLOW;
2054
2055        writel(mask, &adapter->regs->global.int_mask);
2056}
2057
2058/**
2059 *      et131x_disable_interrupts       -       interrupt disable
2060 *      @adapter: et131x device
2061 *
2062 *      Block all interrupts from the et131x device at the device itself
2063 */
2064static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2065{
2066        /* Disable all global interrupts */
2067        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2068}
2069
2070/**
2071 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2072 * @adapter: pointer to our adapter structure
2073 */
2074static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2075{
2076        /* Setup the tramsmit dma configuration register */
2077        writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2078                                        &adapter->regs->txdma.csr);
2079}
2080
2081/**
2082 * et131x_enable_txrx - Enable tx/rx queues
2083 * @netdev: device to be enabled
2084 */
2085static void et131x_enable_txrx(struct net_device *netdev)
2086{
2087        struct et131x_adapter *adapter = netdev_priv(netdev);
2088
2089        /* Enable the Tx and Rx DMA engines (if not already enabled) */
2090        et131x_rx_dma_enable(adapter);
2091        et131x_tx_dma_enable(adapter);
2092
2093        /* Enable device interrupts */
2094        if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2095                et131x_enable_interrupts(adapter);
2096
2097        /* We're ready to move some data, so start the queue */
2098        netif_start_queue(netdev);
2099}
2100
2101/**
2102 * et131x_disable_txrx - Disable tx/rx queues
2103 * @netdev: device to be disabled
2104 */
2105static void et131x_disable_txrx(struct net_device *netdev)
2106{
2107        struct et131x_adapter *adapter = netdev_priv(netdev);
2108
2109        /* First thing is to stop the queue */
2110        netif_stop_queue(netdev);
2111
2112        /* Stop the Tx and Rx DMA engines */
2113        et131x_rx_dma_disable(adapter);
2114        et131x_tx_dma_disable(adapter);
2115
2116        /* Disable device interrupts */
2117        et131x_disable_interrupts(adapter);
2118}
2119
2120/**
2121 * et131x_init_send - Initialize send data structures
2122 * @adapter: pointer to our private adapter structure
2123 */
2124static void et131x_init_send(struct et131x_adapter *adapter)
2125{
2126        struct tcb *tcb;
2127        u32 ct;
2128        struct tx_ring *tx_ring;
2129
2130        /* Setup some convenience pointers */
2131        tx_ring = &adapter->tx_ring;
2132        tcb = adapter->tx_ring.tcb_ring;
2133
2134        tx_ring->tcb_qhead = tcb;
2135
2136        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2137
2138        /* Go through and set up each TCB */
2139        for (ct = 0; ct++ < NUM_TCB; tcb++)
2140                /* Set the link pointer in HW TCB to the next TCB in the
2141                 * chain
2142                 */
2143                tcb->next = tcb + 1;
2144
2145        /* Set the  tail pointer */
2146        tcb--;
2147        tx_ring->tcb_qtail = tcb;
2148        tcb->next = NULL;
2149        /* Curr send queue should now be empty */
2150        tx_ring->send_head = NULL;
2151        tx_ring->send_tail = NULL;
2152}
2153
2154/**
2155 * et1310_enable_phy_coma - called when network cable is unplugged
2156 * @adapter: pointer to our adapter structure
2157 *
2158 * driver receive an phy status change interrupt while in D0 and check that
2159 * phy_status is down.
2160 *
2161 *          -- gate off JAGCore;
2162 *          -- set gigE PHY in Coma mode
2163 *          -- wake on phy_interrupt; Perform software reset JAGCore,
2164 *             re-initialize jagcore and gigE PHY
2165 *
2166 *      Add D0-ASPM-PhyLinkDown Support:
2167 *          -- while in D0, when there is a phy_interrupt indicating phy link
2168 *             down status, call the MPSetPhyComa routine to enter this active
2169 *             state power saving mode
2170 *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2171 *       indicating linkup status, call the MPDisablePhyComa routine to
2172 *             restore JAGCore and gigE PHY
2173 */
2174static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2175{
2176        unsigned long flags;
2177        u32 pmcsr;
2178
2179        pmcsr = readl(&adapter->regs->global.pm_csr);
2180
2181        /* Save the GbE PHY speed and duplex modes. Need to restore this
2182         * when cable is plugged back in
2183         */
2184        /*
2185         * TODO - when PM is re-enabled, check if we need to
2186         * perform a similar task as this -
2187         * adapter->pdown_speed = adapter->ai_force_speed;
2188         * adapter->pdown_duplex = adapter->ai_force_duplex;
2189         */
2190
2191        /* Stop sending packets. */
2192        spin_lock_irqsave(&adapter->send_hw_lock, flags);
2193        adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2194        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2195
2196        /* Wait for outstanding Receive packets */
2197
2198        et131x_disable_txrx(adapter->netdev);
2199
2200        /* Gate off JAGCore 3 clock domains */
2201        pmcsr &= ~ET_PMCSR_INIT;
2202        writel(pmcsr, &adapter->regs->global.pm_csr);
2203
2204        /* Program gigE PHY in to Coma mode */
2205        pmcsr |= ET_PM_PHY_SW_COMA;
2206        writel(pmcsr, &adapter->regs->global.pm_csr);
2207}
2208
2209/**
2210 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2211 * @adapter: pointer to our adapter structure
2212 */
2213static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2214{
2215        u32 pmcsr;
2216
2217        pmcsr = readl(&adapter->regs->global.pm_csr);
2218
2219        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2220        pmcsr |= ET_PMCSR_INIT;
2221        pmcsr &= ~ET_PM_PHY_SW_COMA;
2222        writel(pmcsr, &adapter->regs->global.pm_csr);
2223
2224        /* Restore the GbE PHY speed and duplex modes;
2225         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2226         */
2227        /* TODO - when PM is re-enabled, check if we need to
2228         * perform a similar task as this -
2229         * adapter->ai_force_speed = adapter->pdown_speed;
2230         * adapter->ai_force_duplex = adapter->pdown_duplex;
2231         */
2232
2233        /* Re-initialize the send structures */
2234        et131x_init_send(adapter);
2235
2236        /* Bring the device back to the state it was during init prior to
2237         * autonegotiation being complete.  This way, when we get the auto-neg
2238         * complete interrupt, we can complete init by calling ConfigMacREGS2.
2239         */
2240        et131x_soft_reset(adapter);
2241
2242        /* setup et1310 as per the documentation ?? */
2243        et131x_adapter_setup(adapter);
2244
2245        /* Allow Tx to restart */
2246        adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2247
2248        et131x_enable_txrx(adapter->netdev);
2249}
2250
2251static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2252{
2253        u32 tmp_free_buff_ring = *free_buff_ring;
2254        tmp_free_buff_ring++;
2255        /* This works for all cases where limit < 1024. The 1023 case
2256           works because 1023++ is 1024 which means the if condition is not
2257           taken but the carry of the bit into the wrap bit toggles the wrap
2258           value correctly */
2259        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2260                tmp_free_buff_ring &= ~ET_DMA10_MASK;
2261                tmp_free_buff_ring ^= ET_DMA10_WRAP;
2262        }
2263        /* For the 1023 case */
2264        tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2265        *free_buff_ring = tmp_free_buff_ring;
2266        return tmp_free_buff_ring;
2267}
2268
2269/**
2270 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2271 * @adapter: pointer to our adapter structure
2272 * @phys_addr: pointer to Physical address
2273 * @offset: pointer to the offset variable
2274 * @mask: correct mask
2275 */
2276static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2277                                          u64 *phys_addr, u64 *offset,
2278                                          u64 mask)
2279{
2280        u64 new_addr = *phys_addr & ~mask;
2281
2282        *offset = 0;
2283
2284        if (new_addr != *phys_addr) {
2285                /* Move to next aligned block */
2286                new_addr += mask + 1;
2287                /* Return offset for adjusting virt addr */
2288                *offset = new_addr - *phys_addr;
2289                /* Return new physical address */
2290                *phys_addr = new_addr;
2291        }
2292}
2293
2294/**
2295 * et131x_rx_dma_memory_alloc
2296 * @adapter: pointer to our private adapter structure
2297 *
2298 * Returns 0 on success and errno on failure (as defined in errno.h)
2299 *
2300 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2301 * and the Packet Status Ring.
2302 */
2303static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2304{
2305        u32 i, j;
2306        u32 bufsize;
2307        u32 pktstat_ringsize, fbr_chunksize;
2308        struct rx_ring *rx_ring;
2309
2310        /* Setup some convenience pointers */
2311        rx_ring = &adapter->rx_ring;
2312
2313        /* Alloc memory for the lookup table */
2314#ifdef USE_FBR0
2315        rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2316#endif
2317        rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2318
2319        /* The first thing we will do is configure the sizes of the buffer
2320         * rings. These will change based on jumbo packet support.  Larger
2321         * jumbo packets increases the size of each entry in FBR0, and the
2322         * number of entries in FBR0, while at the same time decreasing the
2323         * number of entries in FBR1.
2324         *
2325         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2326         * entries are huge in order to accommodate a "jumbo" frame, then it
2327         * will have less entries.  Conversely, FBR1 will now be relied upon
2328         * to carry more "normal" frames, thus it's entry size also increases
2329         * and the number of entries goes up too (since it now carries
2330         * "small" + "regular" packets.
2331         *
2332         * In this scheme, we try to maintain 512 entries between the two
2333         * rings. Also, FBR1 remains a constant size - when it's size doubles
2334         * the number of entries halves.  FBR0 increases in size, however.
2335         */
2336
2337        if (adapter->registry_jumbo_packet < 2048) {
2338#ifdef USE_FBR0
2339                rx_ring->fbr[1]->buffsize = 256;
2340                rx_ring->fbr[1]->num_entries = 512;
2341#endif
2342                rx_ring->fbr[0]->buffsize = 2048;
2343                rx_ring->fbr[0]->num_entries = 512;
2344        } else if (adapter->registry_jumbo_packet < 4096) {
2345#ifdef USE_FBR0
2346                rx_ring->fbr[1]->buffsize = 512;
2347                rx_ring->fbr[1]->num_entries = 1024;
2348#endif
2349                rx_ring->fbr[0]->buffsize = 4096;
2350                rx_ring->fbr[0]->num_entries = 512;
2351        } else {
2352#ifdef USE_FBR0
2353                rx_ring->fbr[1]->buffsize = 1024;
2354                rx_ring->fbr[1]->num_entries = 768;
2355#endif
2356                rx_ring->fbr[0]->buffsize = 16384;
2357                rx_ring->fbr[0]->num_entries = 128;
2358        }
2359
2360#ifdef USE_FBR0
2361        adapter->rx_ring.psr_num_entries =
2362                                adapter->rx_ring.fbr[1]->num_entries +
2363                                adapter->rx_ring.fbr[0]->num_entries;
2364#else
2365        adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2366#endif
2367
2368        /* Allocate an area of memory for Free Buffer Ring 1 */
2369        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2370                                                                        0xfff;
2371        rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2372                                        bufsize,
2373                                        &rx_ring->fbr[0]->ring_physaddr,
2374                                        GFP_KERNEL);
2375        if (!rx_ring->fbr[0]->ring_virtaddr) {
2376                dev_err(&adapter->pdev->dev,
2377                          "Cannot alloc memory for Free Buffer Ring 1\n");
2378                return -ENOMEM;
2379        }
2380
2381        /* Save physical address
2382         *
2383         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2384         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2385         * are ever returned, make sure the high part is retrieved here
2386         * before storing the adjusted address.
2387         */
2388        rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2389
2390        /* Align Free Buffer Ring 1 on a 4K boundary */
2391        et131x_align_allocated_memory(adapter,
2392                                      &rx_ring->fbr[0]->real_physaddr,
2393                                      &rx_ring->fbr[0]->offset, 0x0FFF);
2394
2395        rx_ring->fbr[0]->ring_virtaddr =
2396                        (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2397                        rx_ring->fbr[0]->offset);
2398
2399#ifdef USE_FBR0
2400        /* Allocate an area of memory for Free Buffer Ring 0 */
2401        bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2402                                                                        0xfff;
2403        rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2404                                                bufsize,
2405                                                &rx_ring->fbr[1]->ring_physaddr,
2406                                                GFP_KERNEL);
2407        if (!rx_ring->fbr[1]->ring_virtaddr) {
2408                dev_err(&adapter->pdev->dev,
2409                          "Cannot alloc memory for Free Buffer Ring 0\n");
2410                return -ENOMEM;
2411        }
2412
2413        /* Save physical address
2414         *
2415         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2416         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2417         * are ever returned, make sure the high part is retrieved here before
2418         * storing the adjusted address.
2419         */
2420        rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2421
2422        /* Align Free Buffer Ring 0 on a 4K boundary */
2423        et131x_align_allocated_memory(adapter,
2424                                      &rx_ring->fbr[1]->real_physaddr,
2425                                      &rx_ring->fbr[1]->offset, 0x0FFF);
2426
2427        rx_ring->fbr[1]->ring_virtaddr =
2428                        (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2429                        rx_ring->fbr[1]->offset);
2430#endif
2431        for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2432                u64 fbr1_tmp_physaddr;
2433                u64 fbr1_offset;
2434                u32 fbr1_align;
2435
2436                /* This code allocates an area of memory big enough for N
2437                 * free buffers + (buffer_size - 1) so that the buffers can
2438                 * be aligned on 4k boundaries.  If each buffer were aligned
2439                 * to a buffer_size boundary, the effect would be to double
2440                 * the size of FBR0.  By allocating N buffers at once, we
2441                 * reduce this overhead.
2442                 */
2443                if (rx_ring->fbr[0]->buffsize > 4096)
2444                        fbr1_align = 4096;
2445                else
2446                        fbr1_align = rx_ring->fbr[0]->buffsize;
2447
2448                fbr_chunksize =
2449                    (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2450                rx_ring->fbr[0]->mem_virtaddrs[i] =
2451                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2452                                       &rx_ring->fbr[0]->mem_physaddrs[i],
2453                                       GFP_KERNEL);
2454
2455                if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2456                        dev_err(&adapter->pdev->dev,
2457                                "Could not alloc memory\n");
2458                        return -ENOMEM;
2459                }
2460
2461                /* See NOTE in "Save Physical Address" comment above */
2462                fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2463
2464                et131x_align_allocated_memory(adapter,
2465                                              &fbr1_tmp_physaddr,
2466                                              &fbr1_offset, (fbr1_align - 1));
2467
2468                for (j = 0; j < FBR_CHUNKS; j++) {
2469                        u32 index = (i * FBR_CHUNKS) + j;
2470
2471                        /* Save the Virtual address of this index for quick
2472                         * access later
2473                         */
2474                        rx_ring->fbr[0]->virt[index] =
2475                            (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2476                            (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2477
2478                        /* now store the physical address in the descriptor
2479                         * so the device can access it
2480                         */
2481                        rx_ring->fbr[0]->bus_high[index] =
2482                            (u32) (fbr1_tmp_physaddr >> 32);
2483                        rx_ring->fbr[0]->bus_low[index] =
2484                            (u32) fbr1_tmp_physaddr;
2485
2486                        fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2487
2488                        rx_ring->fbr[0]->buffer1[index] =
2489                            rx_ring->fbr[0]->virt[index];
2490                        rx_ring->fbr[0]->buffer2[index] =
2491                            rx_ring->fbr[0]->virt[index] - 4;
2492                }
2493        }
2494
2495#ifdef USE_FBR0
2496        /* Same for FBR0 (if in use) */
2497        for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2498                u64 fbr0_tmp_physaddr;
2499                u64 fbr0_offset;
2500
2501                fbr_chunksize =
2502                    ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2503                rx_ring->fbr[1]->mem_virtaddrs[i] =
2504                    dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2505                                       &rx_ring->fbr[1]->mem_physaddrs[i],
2506                                       GFP_KERNEL);
2507
2508                if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2509                        dev_err(&adapter->pdev->dev,
2510                                "Could not alloc memory\n");
2511                        return -ENOMEM;
2512                }
2513
2514                /* See NOTE in "Save Physical Address" comment above */
2515                fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2516
2517                et131x_align_allocated_memory(adapter,
2518                                              &fbr0_tmp_physaddr,
2519                                              &fbr0_offset,
2520                                              rx_ring->fbr[1]->buffsize - 1);
2521
2522                for (j = 0; j < FBR_CHUNKS; j++) {
2523                        u32 index = (i * FBR_CHUNKS) + j;
2524
2525                        rx_ring->fbr[1]->virt[index] =
2526                            (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2527                            (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2528
2529                        rx_ring->fbr[1]->bus_high[index] =
2530                            (u32) (fbr0_tmp_physaddr >> 32);
2531                        rx_ring->fbr[1]->bus_low[index] =
2532                            (u32) fbr0_tmp_physaddr;
2533
2534                        fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2535
2536                        rx_ring->fbr[1]->buffer1[index] =
2537                            rx_ring->fbr[1]->virt[index];
2538                        rx_ring->fbr[1]->buffer2[index] =
2539                            rx_ring->fbr[1]->virt[index] - 4;
2540                }
2541        }
2542#endif
2543
2544        /* Allocate an area of memory for FIFO of Packet Status ring entries */
2545        pktstat_ringsize =
2546            sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2547
2548        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2549                                                  pktstat_ringsize,
2550                                                  &rx_ring->ps_ring_physaddr,
2551                                                  GFP_KERNEL);
2552
2553        if (!rx_ring->ps_ring_virtaddr) {
2554                dev_err(&adapter->pdev->dev,
2555                          "Cannot alloc memory for Packet Status Ring\n");
2556                return -ENOMEM;
2557        }
2558        pr_info("Packet Status Ring %llx\n",
2559                (unsigned long long) rx_ring->ps_ring_physaddr);
2560
2561        /*
2562         * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2563         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2564         * are ever returned, make sure the high part is retrieved here before
2565         * storing the adjusted address.
2566         */
2567
2568        /* Allocate an area of memory for writeback of status information */
2569        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2570                                            sizeof(struct rx_status_block),
2571                                            &rx_ring->rx_status_bus,
2572                                            GFP_KERNEL);
2573        if (!rx_ring->rx_status_block) {
2574                dev_err(&adapter->pdev->dev,
2575                          "Cannot alloc memory for Status Block\n");
2576                return -ENOMEM;
2577        }
2578        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2579        pr_info("PRS %llx\n", (unsigned long long)rx_ring->rx_status_bus);
2580
2581        /* Recv
2582         * kmem_cache_create initializes a lookaside list. After successful
2583         * creation, nonpaged fixed-size blocks can be allocated from and
2584         * freed to the lookaside list.
2585         * RFDs will be allocated from this pool.
2586         */
2587        rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2588                                                   sizeof(struct rfd),
2589                                                   0,
2590                                                   SLAB_CACHE_DMA |
2591                                                   SLAB_HWCACHE_ALIGN,
2592                                                   NULL);
2593
2594        adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2595
2596        /* The RFDs are going to be put on lists later on, so initialize the
2597         * lists now.
2598         */
2599        INIT_LIST_HEAD(&rx_ring->recv_list);
2600        return 0;
2601}
2602
2603/**
2604 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2605 * @adapter: pointer to our private adapter structure
2606 */
2607static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2608{
2609        u32 index;
2610        u32 bufsize;
2611        u32 pktstat_ringsize;
2612        struct rfd *rfd;
2613        struct rx_ring *rx_ring;
2614
2615        /* Setup some convenience pointers */
2616        rx_ring = &adapter->rx_ring;
2617
2618        /* Free RFDs and associated packet descriptors */
2619        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2620
2621        while (!list_empty(&rx_ring->recv_list)) {
2622                rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2623                                struct rfd, list_node);
2624
2625                list_del(&rfd->list_node);
2626                rfd->skb = NULL;
2627                kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2628        }
2629
2630        /* Free Free Buffer Ring 1 */
2631        if (rx_ring->fbr[0]->ring_virtaddr) {
2632                /* First the packet memory */
2633                for (index = 0; index <
2634                     (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2635                        if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2636                                u32 fbr1_align;
2637
2638                                if (rx_ring->fbr[0]->buffsize > 4096)
2639                                        fbr1_align = 4096;
2640                                else
2641                                        fbr1_align = rx_ring->fbr[0]->buffsize;
2642
2643                                bufsize =
2644                                    (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2645                                    fbr1_align - 1;
2646
2647                                dma_free_coherent(&adapter->pdev->dev,
2648                                        bufsize,
2649                                        rx_ring->fbr[0]->mem_virtaddrs[index],
2650                                        rx_ring->fbr[0]->mem_physaddrs[index]);
2651
2652                                rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2653                        }
2654                }
2655
2656                /* Now the FIFO itself */
2657                rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2658                    rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2659
2660                bufsize =
2661                    (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2662                                                                        0xfff;
2663
2664                dma_free_coherent(&adapter->pdev->dev, bufsize,
2665                                    rx_ring->fbr[0]->ring_virtaddr,
2666                                    rx_ring->fbr[0]->ring_physaddr);
2667
2668                rx_ring->fbr[0]->ring_virtaddr = NULL;
2669        }
2670
2671#ifdef USE_FBR0
2672        /* Now the same for Free Buffer Ring 0 */
2673        if (rx_ring->fbr[1]->ring_virtaddr) {
2674                /* First the packet memory */
2675                for (index = 0; index <
2676                     (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2677                        if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2678                                bufsize =
2679                                    (rx_ring->fbr[1]->buffsize *
2680                                     (FBR_CHUNKS + 1)) - 1;
2681
2682                                dma_free_coherent(&adapter->pdev->dev,
2683                                        bufsize,
2684                                        rx_ring->fbr[1]->mem_virtaddrs[index],
2685                                        rx_ring->fbr[1]->mem_physaddrs[index]);
2686
2687                                rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2688                        }
2689                }
2690
2691                /* Now the FIFO itself */
2692                rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2693                    rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2694
2695                bufsize =
2696                    (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2697                                                                        0xfff;
2698
2699                dma_free_coherent(&adapter->pdev->dev,
2700                                  bufsize,
2701                                  rx_ring->fbr[1]->ring_virtaddr,
2702                                  rx_ring->fbr[1]->ring_physaddr);
2703
2704                rx_ring->fbr[1]->ring_virtaddr = NULL;
2705        }
2706#endif
2707
2708        /* Free Packet Status Ring */
2709        if (rx_ring->ps_ring_virtaddr) {
2710                pktstat_ringsize =
2711                    sizeof(struct pkt_stat_desc) *
2712                    adapter->rx_ring.psr_num_entries;
2713
2714                dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2715                                    rx_ring->ps_ring_virtaddr,
2716                                    rx_ring->ps_ring_physaddr);
2717
2718                rx_ring->ps_ring_virtaddr = NULL;
2719        }
2720
2721        /* Free area of memory for the writeback of status information */
2722        if (rx_ring->rx_status_block) {
2723                dma_free_coherent(&adapter->pdev->dev,
2724                        sizeof(struct rx_status_block),
2725                        rx_ring->rx_status_block, rx_ring->rx_status_bus);
2726                rx_ring->rx_status_block = NULL;
2727        }
2728
2729        /* Destroy the lookaside (RFD) pool */
2730        if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2731                kmem_cache_destroy(rx_ring->recv_lookaside);
2732                adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2733        }
2734
2735        /* Free the FBR Lookup Table */
2736#ifdef USE_FBR0
2737        kfree(rx_ring->fbr[1]);
2738#endif
2739
2740        kfree(rx_ring->fbr[0]);
2741
2742        /* Reset Counters */
2743        rx_ring->num_ready_recv = 0;
2744}
2745
2746/**
2747 * et131x_init_recv - Initialize receive data structures.
2748 * @adapter: pointer to our private adapter structure
2749 *
2750 * Returns 0 on success and errno on failure (as defined in errno.h)
2751 */
2752static int et131x_init_recv(struct et131x_adapter *adapter)
2753{
2754        int status = -ENOMEM;
2755        struct rfd *rfd = NULL;
2756        u32 rfdct;
2757        u32 numrfd = 0;
2758        struct rx_ring *rx_ring;
2759
2760        /* Setup some convenience pointers */
2761        rx_ring = &adapter->rx_ring;
2762
2763        /* Setup each RFD */
2764        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2765                rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2766                                                     GFP_ATOMIC | GFP_DMA);
2767
2768                if (!rfd) {
2769                        dev_err(&adapter->pdev->dev,
2770                                  "Couldn't alloc RFD out of kmem_cache\n");
2771                        status = -ENOMEM;
2772                        continue;
2773                }
2774
2775                rfd->skb = NULL;
2776
2777                /* Add this RFD to the recv_list */
2778                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2779
2780                /* Increment both the available RFD's, and the total RFD's. */
2781                rx_ring->num_ready_recv++;
2782                numrfd++;
2783        }
2784
2785        if (numrfd > NIC_MIN_NUM_RFD)
2786                status = 0;
2787
2788        rx_ring->num_rfd = numrfd;
2789
2790        if (status != 0) {
2791                kmem_cache_free(rx_ring->recv_lookaside, rfd);
2792                dev_err(&adapter->pdev->dev,
2793                          "Allocation problems in et131x_init_recv\n");
2794        }
2795        return status;
2796}
2797
2798/**
2799 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2800 * @adapter: pointer to our adapter structure
2801 */
2802static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2803{
2804        struct phy_device *phydev = adapter->phydev;
2805
2806        if (!phydev)
2807                return;
2808
2809        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2810         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2811         */
2812        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2813                writel(0, &adapter->regs->rxdma.max_pkt_time);
2814                writel(1, &adapter->regs->rxdma.num_pkt_done);
2815        }
2816}
2817
2818/**
2819 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2820 * @adapter: pointer to our adapter
2821 * @rfd: pointer to the RFD
2822 */
2823static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2824{
2825        struct rx_ring *rx_local = &adapter->rx_ring;
2826        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2827        u16 buff_index = rfd->bufferindex;
2828        u8 ring_index = rfd->ringindex;
2829        unsigned long flags;
2830
2831        /* We don't use any of the OOB data besides status. Otherwise, we
2832         * need to clean up OOB data
2833         */
2834        if (
2835#ifdef USE_FBR0
2836            (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2837#endif
2838            (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2839                spin_lock_irqsave(&adapter->fbr_lock, flags);
2840
2841                if (ring_index == 1) {
2842                        struct fbr_desc *next = (struct fbr_desc *)
2843                                        (rx_local->fbr[0]->ring_virtaddr) +
2844                                        INDEX10(rx_local->fbr[0]->local_full);
2845
2846                        /* Handle the Free Buffer Ring advancement here. Write
2847                         * the PA / Buffer Index for the returned buffer into
2848                         * the oldest (next to be freed)FBR entry
2849                         */
2850                        next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2851                        next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2852                        next->word2 = buff_index;
2853
2854                        writel(bump_free_buff_ring(
2855                                        &rx_local->fbr[0]->local_full,
2856                                        rx_local->fbr[0]->num_entries - 1),
2857                                        &rx_dma->fbr1_full_offset);
2858                }
2859#ifdef USE_FBR0
2860                else {
2861                        struct fbr_desc *next = (struct fbr_desc *)
2862                                rx_local->fbr[1]->ring_virtaddr +
2863                                    INDEX10(rx_local->fbr[1]->local_full);
2864
2865                        /* Handle the Free Buffer Ring advancement here. Write
2866                         * the PA / Buffer Index for the returned buffer into
2867                         * the oldest (next to be freed) FBR entry
2868                         */
2869                        next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2870                        next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2871                        next->word2 = buff_index;
2872
2873                        writel(bump_free_buff_ring(
2874                                        &rx_local->fbr[1]->local_full,
2875                                        rx_local->fbr[1]->num_entries - 1),
2876                               &rx_dma->fbr0_full_offset);
2877                }
2878#endif
2879                spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2880        } else {
2881                dev_err(&adapter->pdev->dev,
2882                          "%s illegal Buffer Index returned\n", __func__);
2883        }
2884
2885        /* The processing on this RFD is done, so put it back on the tail of
2886         * our list
2887         */
2888        spin_lock_irqsave(&adapter->rcv_lock, flags);
2889        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2890        rx_local->num_ready_recv++;
2891        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2892
2893        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2894}
2895
2896/**
2897 * nic_rx_pkts - Checks the hardware for available packets
2898 * @adapter: pointer to our adapter
2899 *
2900 * Returns rfd, a pointer to our MPRFD.
2901 *
2902 * Checks the hardware for available packets, using completion ring
2903 * If packets are available, it gets an RFD from the recv_list, attaches
2904 * the packet to it, puts the RFD in the RecvPendList, and also returns
2905 * the pointer to the RFD.
2906 */
2907static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2908{
2909        struct rx_ring *rx_local = &adapter->rx_ring;
2910        struct rx_status_block *status;
2911        struct pkt_stat_desc *psr;
2912        struct rfd *rfd;
2913        u32 i;
2914        u8 *buf;
2915        unsigned long flags;
2916        struct list_head *element;
2917        u8 ring_index;
2918        u16 buff_index;
2919        u32 len;
2920        u32 word0;
2921        u32 word1;
2922
2923        /* RX Status block is written by the DMA engine prior to every
2924         * interrupt. It contains the next to be used entry in the Packet
2925         * Status Ring, and also the two Free Buffer rings.
2926         */
2927        status = rx_local->rx_status_block;
2928        word1 = status->word1 >> 16;    /* Get the useful bits */
2929
2930        /* Check the PSR and wrap bits do not match */
2931        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2932                /* Looks like this ring is not updated yet */
2933                return NULL;
2934
2935        /* The packet status ring indicates that data is available. */
2936        psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2937                        (rx_local->local_psr_full & 0xFFF);
2938
2939        /* Grab any information that is required once the PSR is
2940         * advanced, since we can no longer rely on the memory being
2941         * accurate
2942         */
2943        len = psr->word1 & 0xFFFF;
2944        ring_index = (psr->word1 >> 26) & 0x03;
2945        buff_index = (psr->word1 >> 16) & 0x3FF;
2946        word0 = psr->word0;
2947
2948        /* Indicate that we have used this PSR entry. */
2949        /* FIXME wrap 12 */
2950        add_12bit(&rx_local->local_psr_full, 1);
2951        if (
2952          (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2953                /* Clear psr full and toggle the wrap bit */
2954                rx_local->local_psr_full &=  ~0xFFF;
2955                rx_local->local_psr_full ^= 0x1000;
2956        }
2957
2958        writel(rx_local->local_psr_full,
2959               &adapter->regs->rxdma.psr_full_offset);
2960
2961#ifndef USE_FBR0
2962        if (ring_index != 1)
2963                return NULL;
2964#endif
2965
2966#ifdef USE_FBR0
2967        if (ring_index > 1 ||
2968                (ring_index == 0 &&
2969                buff_index > rx_local->fbr[1]->num_entries - 1) ||
2970                (ring_index == 1 &&
2971                buff_index > rx_local->fbr[0]->num_entries - 1)) {
2972#else
2973        if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1) {
2974#endif
2975                /* Illegal buffer or ring index cannot be used by S/W*/
2976                dev_err(&adapter->pdev->dev,
2977                          "NICRxPkts PSR Entry %d indicates "
2978                          "length of %d and/or bad bi(%d)\n",
2979                          rx_local->local_psr_full & 0xFFF,
2980                          len, buff_index);
2981                return NULL;
2982        }
2983
2984        /* Get and fill the RFD. */
2985        spin_lock_irqsave(&adapter->rcv_lock, flags);
2986
2987        rfd = NULL;
2988        element = rx_local->recv_list.next;
2989        rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990
2991        if (rfd == NULL) {
2992                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2993                return NULL;
2994        }
2995
2996        list_del(&rfd->list_node);
2997        rx_local->num_ready_recv--;
2998
2999        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000
3001        rfd->bufferindex = buff_index;
3002        rfd->ringindex = ring_index;
3003
3004        /* In V1 silicon, there is a bug which screws up filtering of
3005         * runt packets.  Therefore runt packet filtering is disabled
3006         * in the MAC and the packets are dropped here.  They are
3007         * also counted here.
3008         */
3009        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3010                adapter->stats.rx_other_errs++;
3011                len = 0;
3012        }
3013
3014        if (len) {
3015                /* Determine if this is a multicast packet coming in */
3016                if ((word0 & ALCATEL_MULTICAST_PKT) &&
3017                    !(word0 & ALCATEL_BROADCAST_PKT)) {
3018                        /* Promiscuous mode and Multicast mode are
3019                         * not mutually exclusive as was first
3020                         * thought.  I guess Promiscuous is just
3021                         * considered a super-set of the other
3022                         * filters. Generally filter is 0x2b when in
3023                         * promiscuous mode.
3024                         */
3025                        if ((adapter->packet_filter &
3026                                        ET131X_PACKET_TYPE_MULTICAST)
3027                            && !(adapter->packet_filter &
3028                                        ET131X_PACKET_TYPE_PROMISCUOUS)
3029                            && !(adapter->packet_filter &
3030                                        ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031                                /*
3032                                 * Note - ring_index for fbr[] array is reversed
3033                                 * 1 for FBR0 etc
3034                                 */
3035                                buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3036                                                virt[buff_index];
3037
3038                                /* Loop through our list to see if the
3039                                 * destination address of this packet
3040                                 * matches one in our list.
3041                                 */
3042                                for (i = 0; i < adapter->multicast_addr_count;
3043                                     i++) {
3044                                        if (buf[0] ==
3045                                                adapter->multicast_list[i][0]
3046                                            && buf[1] ==
3047                                                adapter->multicast_list[i][1]
3048                                            && buf[2] ==
3049                                                adapter->multicast_list[i][2]
3050                                            && buf[3] ==
3051                                                adapter->multicast_list[i][3]
3052                                            && buf[4] ==
3053                                                adapter->multicast_list[i][4]
3054                                            && buf[5] ==
3055                                                adapter->multicast_list[i][5]) {
3056                                                break;
3057                                        }
3058                                }
3059
3060                                /* If our index is equal to the number
3061                                 * of Multicast address we have, then
3062                                 * this means we did not find this
3063                                 * packet's matching address in our
3064                                 * list.  Set the len to zero,
3065                                 * so we free our RFD when we return
3066                                 * from this function.
3067                                 */
3068                                if (i == adapter->multicast_addr_count)
3069                                        len = 0;
3070                        }
3071
3072                        if (len > 0)
3073                                adapter->stats.multicast_pkts_rcvd++;
3074                } else if (word0 & ALCATEL_BROADCAST_PKT)
3075                        adapter->stats.broadcast_pkts_rcvd++;
3076                else
3077                        /* Not sure what this counter measures in
3078                         * promiscuous mode. Perhaps we should check
3079                         * the MAC address to see if it is directed
3080                         * to us in promiscuous mode.
3081                         */
3082                        adapter->stats.unicast_pkts_rcvd++;
3083        }
3084
3085        if (len > 0) {
3086                struct sk_buff *skb = NULL;
3087
3088                /*rfd->len = len - 4; */
3089                rfd->len = len;
3090
3091                skb = dev_alloc_skb(rfd->len + 2);
3092                if (!skb) {
3093                        dev_err(&adapter->pdev->dev,
3094                                  "Couldn't alloc an SKB for Rx\n");
3095                        return NULL;
3096                }
3097
3098                adapter->net_stats.rx_bytes += rfd->len;
3099
3100                /*
3101                 * Note - ring_index for fbr[] array is reversed,
3102                 * 1 for FBR0 etc
3103                 */
3104                memcpy(skb_put(skb, rfd->len),
3105                    rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3106                    rfd->len);
3107
3108                skb->dev = adapter->netdev;
3109                skb->protocol = eth_type_trans(skb, adapter->netdev);
3110                skb->ip_summed = CHECKSUM_NONE;
3111
3112                netif_rx_ni(skb);
3113        } else {
3114                rfd->len = 0;
3115        }
3116
3117        nic_return_rfd(adapter, rfd);
3118        return rfd;
3119}
3120
3121/**
3122 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123 * @adapter: pointer to our adapter
3124 *
3125 * Assumption, Rcv spinlock has been acquired.
3126 */
3127static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128{
3129        struct rfd *rfd = NULL;
3130        u32 count = 0;
3131        bool done = true;
3132
3133        /* Process up to available RFD's */
3134        while (count < NUM_PACKETS_HANDLED) {
3135                if (list_empty(&adapter->rx_ring.recv_list)) {
3136                        WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3137                        done = false;
3138                        break;
3139                }
3140
3141                rfd = nic_rx_pkts(adapter);
3142
3143                if (rfd == NULL)
3144                        break;
3145
3146                /* Do not receive any packets until a filter has been set.
3147                 * Do not receive any packets until we have link.
3148                 * If length is zero, return the RFD in order to advance the
3149                 * Free buffer ring.
3150                 */
3151                if (!adapter->packet_filter ||
3152                    !netif_carrier_ok(adapter->netdev) ||
3153                    rfd->len == 0)
3154                        continue;
3155
3156                /* Increment the number of packets we received */
3157                adapter->net_stats.rx_packets++;
3158
3159                /* Set the status on the packet, either resources or success */
3160                if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3161                        dev_warn(&adapter->pdev->dev,
3162                                    "RFD's are running out\n");
3163                }
3164                count++;
3165        }
3166
3167        if (count == NUM_PACKETS_HANDLED || !done) {
3168                adapter->rx_ring.unfinished_receives = true;
3169                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3170                       &adapter->regs->global.watchdog_timer);
3171        } else
3172                /* Watchdog timer will disable itself if appropriate. */
3173                adapter->rx_ring.unfinished_receives = false;
3174}
3175
3176/**
3177 * et131x_tx_dma_memory_alloc
3178 * @adapter: pointer to our private adapter structure
3179 *
3180 * Returns 0 on success and errno on failure (as defined in errno.h).
3181 *
3182 * Allocates memory that will be visible both to the device and to the CPU.
3183 * The OS will pass us packets, pointers to which we will insert in the Tx
3184 * Descriptor queue. The device will read this queue to find the packets in
3185 * memory. The device will update the "status" in memory each time it xmits a
3186 * packet.
3187 */
3188static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189{
3190        int desc_size = 0;
3191        struct tx_ring *tx_ring = &adapter->tx_ring;
3192
3193        /* Allocate memory for the TCB's (Transmit Control Block) */
3194        adapter->tx_ring.tcb_ring =
3195                kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3196        if (!adapter->tx_ring.tcb_ring) {
3197                dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3198                return -ENOMEM;
3199        }
3200
3201        /* Allocate enough memory for the Tx descriptor ring, and allocate
3202         * some extra so that the ring can be aligned on a 4k boundary.
3203         */
3204        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3205        tx_ring->tx_desc_ring =
3206            (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3207                                                  desc_size,
3208                                                  &tx_ring->tx_desc_ring_pa,
3209                                                  GFP_KERNEL);
3210        if (!adapter->tx_ring.tx_desc_ring) {
3211                dev_err(&adapter->pdev->dev,
3212                        "Cannot alloc memory for Tx Ring\n");
3213                return -ENOMEM;
3214        }
3215
3216        /* Save physical address
3217         *
3218         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220         * are ever returned, make sure the high part is retrieved here before
3221         * storing the adjusted address.
3222         */
3223        /* Allocate memory for the Tx status block */
3224        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3225                                                    sizeof(u32),
3226                                                    &tx_ring->tx_status_pa,
3227                                                    GFP_KERNEL);
3228        if (!adapter->tx_ring.tx_status_pa) {
3229                dev_err(&adapter->pdev->dev,
3230                                  "Cannot alloc memory for Tx status block\n");
3231                return -ENOMEM;
3232        }
3233        return 0;
3234}
3235
3236/**
3237 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238 * @adapter: pointer to our private adapter structure
3239 *
3240 * Returns 0 on success and errno on failure (as defined in errno.h).
3241 */
3242static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243{
3244        int desc_size = 0;
3245
3246        if (adapter->tx_ring.tx_desc_ring) {
3247                /* Free memory relating to Tx rings here */
3248                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3249                                                                + 4096 - 1;
3250                dma_free_coherent(&adapter->pdev->dev,
3251                                    desc_size,
3252                                    adapter->tx_ring.tx_desc_ring,
3253                                    adapter->tx_ring.tx_desc_ring_pa);
3254                adapter->tx_ring.tx_desc_ring = NULL;
3255        }
3256
3257        /* Free memory for the Tx status block */
3258        if (adapter->tx_ring.tx_status) {
3259                dma_free_coherent(&adapter->pdev->dev,
3260                                    sizeof(u32),
3261                                    adapter->tx_ring.tx_status,
3262                                    adapter->tx_ring.tx_status_pa);
3263
3264                adapter->tx_ring.tx_status = NULL;
3265        }
3266        /* Free the memory for the tcb structures */
3267        kfree(adapter->tx_ring.tcb_ring);
3268}
3269
3270/**
3271 * nic_send_packet - NIC specific send handler for version B silicon.
3272 * @adapter: pointer to our adapter
3273 * @tcb: pointer to struct tcb
3274 *
3275 * Returns 0 or errno.
3276 */
3277static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278{
3279        u32 i;
3280        struct tx_desc desc[24];        /* 24 x 16 byte */
3281        u32 frag = 0;
3282        u32 thiscopy, remainder;
3283        struct sk_buff *skb = tcb->skb;
3284        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3285        struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3286        unsigned long flags;
3287        struct phy_device *phydev = adapter->phydev;
3288
3289        /* Part of the optimizations of this send routine restrict us to
3290         * sending 24 fragments at a pass.  In practice we should never see
3291         * more than 5 fragments.
3292         *
3293         * NOTE: The older version of this function (below) can handle any
3294         * number of fragments. If needed, we can call this function,
3295         * although it is less efficient.
3296         */
3297        if (nr_frags > 23)
3298                return -EIO;
3299
3300        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301
3302        for (i = 0; i < nr_frags; i++) {
3303                /* If there is something in this element, lets get a
3304                 * descriptor from the ring and get the necessary data
3305                 */
3306                if (i == 0) {
3307                        /* If the fragments are smaller than a standard MTU,
3308                         * then map them to a single descriptor in the Tx
3309                         * Desc ring. However, if they're larger, as is
3310                         * possible with support for jumbo packets, then
3311                         * split them each across 2 descriptors.
3312                         *
3313                         * This will work until we determine why the hardware
3314                         * doesn't seem to like large fragments.
3315                         */
3316                        if ((skb->len - skb->data_len) <= 1514) {
3317                                desc[frag].addr_hi = 0;
3318                                /* Low 16bits are length, high is vlan and
3319                                   unused currently so zero */
3320                                desc[frag].len_vlan =
3321                                        skb->len - skb->data_len;
3322
3323                                /* NOTE: Here, the dma_addr_t returned from
3324                                 * dma_map_single() is implicitly cast as a
3325                                 * u32. Although dma_addr_t can be
3326                                 * 64-bit, the address returned by
3327                                 * dma_map_single() is always 32-bit
3328                                 * addressable (as defined by the pci/dma
3329                                 * subsystem)
3330                                 */
3331                                desc[frag++].addr_lo =
3332                                    dma_map_single(&adapter->pdev->dev,
3333                                                   skb->data,
3334                                                   skb->len -
3335                                                   skb->data_len,
3336                                                   DMA_TO_DEVICE);
3337                        } else {
3338                                desc[frag].addr_hi = 0;
3339                                desc[frag].len_vlan =
3340                                    (skb->len - skb->data_len) / 2;
3341
3342                                /* NOTE: Here, the dma_addr_t returned from
3343                                 * dma_map_single() is implicitly cast as a
3344                                 * u32. Although dma_addr_t can be
3345                                 * 64-bit, the address returned by
3346                                 * dma_map_single() is always 32-bit
3347                                 * addressable (as defined by the pci/dma
3348                                 * subsystem)
3349                                 */
3350                                desc[frag++].addr_lo =
3351                                    dma_map_single(&adapter->pdev->dev,
3352                                                   skb->data,
3353                                                   ((skb->len -
3354                                                     skb->data_len) / 2),
3355                                                   DMA_TO_DEVICE);
3356                                desc[frag].addr_hi = 0;
3357
3358                                desc[frag].len_vlan =
3359                                    (skb->len - skb->data_len) / 2;
3360
3361                                /* NOTE: Here, the dma_addr_t returned from
3362                                 * dma_map_single() is implicitly cast as a
3363                                 * u32. Although dma_addr_t can be
3364                                 * 64-bit, the address returned by
3365                                 * dma_map_single() is always 32-bit
3366                                 * addressable (as defined by the pci/dma
3367                                 * subsystem)
3368                                 */
3369                                desc[frag++].addr_lo =
3370                                    dma_map_single(&adapter->pdev->dev,
3371                                                   skb->data +
3372                                                   ((skb->len -
3373                                                     skb->data_len) / 2),
3374                                                   ((skb->len -
3375                                                     skb->data_len) / 2),
3376                                                   DMA_TO_DEVICE);
3377                        }
3378                } else {
3379                        desc[frag].addr_hi = 0;
3380                        desc[frag].len_vlan =
3381                                        frags[i - 1].size;
3382
3383                        /* NOTE: Here, the dma_addr_t returned from
3384                         * dma_map_page() is implicitly cast as a u32.
3385                         * Although dma_addr_t can be 64-bit, the address
3386                         * returned by dma_map_page() is always 32-bit
3387                         * addressable (as defined by the pci/dma subsystem)
3388                         */
3389                        desc[frag++].addr_lo = skb_frag_dma_map(
3390                                                        &adapter->pdev->dev,
3391                                                        &frags[i - 1],
3392                                                        0,
3393                                                        frags[i - 1].size,
3394                                                        DMA_TO_DEVICE);
3395                }
3396        }
3397
3398        if (phydev && phydev->speed == SPEED_1000) {
3399                if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3400                        /* Last element & Interrupt flag */
3401                        desc[frag - 1].flags = 0x5;
3402                        adapter->tx_ring.since_irq = 0;
3403                } else { /* Last element */
3404                        desc[frag - 1].flags = 0x1;
3405                }
3406        } else
3407                desc[frag - 1].flags = 0x5;
3408
3409        desc[0].flags |= 2;     /* First element flag */
3410
3411        tcb->index_start = adapter->tx_ring.send_idx;
3412        tcb->stale = 0;
3413
3414        spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415
3416        thiscopy = NUM_DESC_PER_RING_TX -
3417                                INDEX10(adapter->tx_ring.send_idx);
3418
3419        if (thiscopy >= frag) {
3420                remainder = 0;
3421                thiscopy = frag;
3422        } else {
3423                remainder = frag - thiscopy;
3424        }
3425
3426        memcpy(adapter->tx_ring.tx_desc_ring +
3427               INDEX10(adapter->tx_ring.send_idx), desc,
3428               sizeof(struct tx_desc) * thiscopy);
3429
3430        add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431
3432        if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3433                  INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3434                adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3435                adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3436        }
3437
3438        if (remainder) {
3439                memcpy(adapter->tx_ring.tx_desc_ring,
3440                       desc + thiscopy,
3441                       sizeof(struct tx_desc) * remainder);
3442
3443                add_10bit(&adapter->tx_ring.send_idx, remainder);
3444        }
3445
3446        if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3447                if (adapter->tx_ring.send_idx)
3448                        tcb->index = NUM_DESC_PER_RING_TX - 1;
3449                else
3450                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3451        } else
3452                tcb->index = adapter->tx_ring.send_idx - 1;
3453
3454        spin_lock(&adapter->tcb_send_qlock);
3455
3456        if (adapter->tx_ring.send_tail)
3457                adapter->tx_ring.send_tail->next = tcb;
3458        else
3459                adapter->tx_ring.send_head = tcb;
3460
3461        adapter->tx_ring.send_tail = tcb;
3462
3463        WARN_ON(tcb->next != NULL);
3464
3465        adapter->tx_ring.used++;
3466
3467        spin_unlock(&adapter->tcb_send_qlock);
3468
3469        /* Write the new write pointer back to the device. */
3470        writel(adapter->tx_ring.send_idx,
3471               &adapter->regs->txdma.service_request);
3472
3473        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3474         * timer to wake us up if this packet isn't followed by N more.
3475         */
3476        if (phydev && phydev->speed == SPEED_1000) {
3477                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3478                       &adapter->regs->global.watchdog_timer);
3479        }
3480        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481
3482        return 0;
3483}
3484
3485/**
3486 * send_packet - Do the work to send a packet
3487 * @skb: the packet(s) to send
3488 * @adapter: a pointer to the device's private adapter structure
3489 *
3490 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491 *
3492 * Assumption: Send spinlock has been acquired
3493 */
3494static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495{
3496        int status;
3497        struct tcb *tcb = NULL;
3498        u16 *shbufva;
3499        unsigned long flags;
3500
3501        /* All packets must have at least a MAC address and a protocol type */
3502        if (skb->len < ETH_HLEN)
3503                return -EIO;
3504
3505        /* Get a TCB for this packet */
3506        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507
3508        tcb = adapter->tx_ring.tcb_qhead;
3509
3510        if (tcb == NULL) {
3511                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3512                return -ENOMEM;
3513        }
3514
3515        adapter->tx_ring.tcb_qhead = tcb->next;
3516
3517        if (adapter->tx_ring.tcb_qhead == NULL)
3518                adapter->tx_ring.tcb_qtail = NULL;
3519
3520        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521
3522        tcb->skb = skb;
3523
3524        if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3525                shbufva = (u16 *) skb->data;
3526
3527                if ((shbufva[0] == 0xffff) &&
3528                    (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3529                        tcb->flags |= fMP_DEST_BROAD;
3530                } else if ((shbufva[0] & 0x3) == 0x0001) {
3531                        tcb->flags |=  fMP_DEST_MULTI;
3532                }
3533        }
3534
3535        tcb->next = NULL;
3536
3537        /* Call the NIC specific send handler. */
3538        status = nic_send_packet(adapter, tcb);
3539
3540        if (status != 0) {
3541                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542
3543                if (adapter->tx_ring.tcb_qtail)
3544                        adapter->tx_ring.tcb_qtail->next = tcb;
3545                else
3546                        /* Apparently ready Q is empty. */
3547                        adapter->tx_ring.tcb_qhead = tcb;
3548
3549                adapter->tx_ring.tcb_qtail = tcb;
3550                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3551                return status;
3552        }
3553        WARN_ON(adapter->tx_ring.used > NUM_TCB);
3554        return 0;
3555}
3556
3557/**
3558 * et131x_send_packets - This function is called by the OS to send packets
3559 * @skb: the packet(s) to send
3560 * @netdev:device on which to TX the above packet(s)
3561 *
3562 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563 */
3564static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565{
3566        int status = 0;
3567        struct et131x_adapter *adapter = netdev_priv(netdev);
3568
3569        /* Send these packets
3570         *
3571         * NOTE: The Linux Tx entry point is only given one packet at a time
3572         * to Tx, so the PacketCount and it's array used makes no sense here
3573         */
3574
3575        /* TCB is not available */
3576        if (adapter->tx_ring.used >= NUM_TCB) {
3577                /* NOTE: If there's an error on send, no need to queue the
3578                 * packet under Linux; if we just send an error up to the
3579                 * netif layer, it will resend the skb to us.
3580                 */
3581                status = -ENOMEM;
3582        } else {
3583                /* We need to see if the link is up; if it's not, make the
3584                 * netif layer think we're good and drop the packet
3585                 */
3586                if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3587                                        !netif_carrier_ok(netdev)) {
3588                        dev_kfree_skb_any(skb);
3589                        skb = NULL;
3590
3591                        adapter->net_stats.tx_dropped++;
3592                } else {
3593                        status = send_packet(skb, adapter);
3594                        if (status != 0 && status != -ENOMEM) {
3595                                /* On any other error, make netif think we're
3596                                 * OK and drop the packet
3597                                 */
3598                                dev_kfree_skb_any(skb);
3599                                skb = NULL;
3600                                adapter->net_stats.tx_dropped++;
3601                        }
3602                }
3603        }
3604        return status;
3605}
3606
3607/**
3608 * free_send_packet - Recycle a struct tcb
3609 * @adapter: pointer to our adapter
3610 * @tcb: pointer to struct tcb
3611 *
3612 * Complete the packet if necessary
3613 * Assumption - Send spinlock has been acquired
3614 */
3615static inline void free_send_packet(struct et131x_adapter *adapter,
3616                                                struct tcb *tcb)
3617{
3618        unsigned long flags;
3619        struct tx_desc *desc = NULL;
3620        struct net_device_stats *stats = &adapter->net_stats;
3621
3622        if (tcb->flags & fMP_DEST_BROAD)
3623                atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3624        else if (tcb->flags & fMP_DEST_MULTI)
3625                atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3626        else
3627                atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628
3629        if (tcb->skb) {
3630                stats->tx_bytes += tcb->skb->len;
3631
3632                /* Iterate through the TX descriptors on the ring
3633                 * corresponding to this packet and umap the fragments
3634                 * they point to
3635                 */
3636                do {
3637                        desc = (struct tx_desc *)
3638                                    (adapter->tx_ring.tx_desc_ring +
3639                                                INDEX10(tcb->index_start));
3640
3641                        dma_unmap_single(&adapter->pdev->dev,
3642                                         desc->addr_lo,
3643                                         desc->len_vlan, DMA_TO_DEVICE);
3644
3645                        add_10bit(&tcb->index_start, 1);
3646                        if (INDEX10(tcb->index_start) >=
3647                                                        NUM_DESC_PER_RING_TX) {
3648                                tcb->index_start &= ~ET_DMA10_MASK;
3649                                tcb->index_start ^= ET_DMA10_WRAP;
3650                        }
3651                } while (desc != (adapter->tx_ring.tx_desc_ring +
3652                                INDEX10(tcb->index)));
3653
3654                dev_kfree_skb_any(tcb->skb);
3655        }
3656
3657        memset(tcb, 0, sizeof(struct tcb));
3658
3659        /* Add the TCB to the Ready Q */
3660        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661
3662        adapter->net_stats.tx_packets++;
3663
3664        if (adapter->tx_ring.tcb_qtail)
3665                adapter->tx_ring.tcb_qtail->next = tcb;
3666        else
3667                /* Apparently ready Q is empty. */
3668                adapter->tx_ring.tcb_qhead = tcb;
3669
3670        adapter->tx_ring.tcb_qtail = tcb;
3671
3672        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3673        WARN_ON(adapter->tx_ring.used < 0);
3674}
3675
3676/**
3677 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678 * @adapter: pointer to our adapter
3679 *
3680 * Assumption - Send spinlock has been acquired
3681 */
3682static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683{
3684        struct tcb *tcb;
3685        unsigned long flags;
3686        u32 freed = 0;
3687
3688        /* Any packets being sent? Check the first TCB on the send list */
3689        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690
3691        tcb = adapter->tx_ring.send_head;
3692
3693        while (tcb != NULL && freed < NUM_TCB) {
3694                struct tcb *next = tcb->next;
3695
3696                adapter->tx_ring.send_head = next;
3697
3698                if (next == NULL)
3699                        adapter->tx_ring.send_tail = NULL;
3700
3701                adapter->tx_ring.used--;
3702
3703                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704
3705                freed++;
3706                free_send_packet(adapter, tcb);
3707
3708                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709
3710                tcb = adapter->tx_ring.send_head;
3711        }
3712
3713        WARN_ON(freed == NUM_TCB);
3714
3715        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716
3717        adapter->tx_ring.used = 0;
3718}
3719
3720/**
3721 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722 * @adapter: pointer to our adapter
3723 *
3724 * Re-claim the send resources, complete sends and get more to send from
3725 * the send wait queue.
3726 *
3727 * Assumption - Send spinlock has been acquired
3728 */
3729static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730{
3731        unsigned long flags;
3732        u32 serviced;
3733        struct tcb *tcb;
3734        u32 index;
3735
3736        serviced = readl(&adapter->regs->txdma.new_service_complete);
3737        index = INDEX10(serviced);
3738
3739        /* Has the ring wrapped?  Process any descriptors that do not have
3740         * the same "wrap" indicator as the current completion indicator
3741         */
3742        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743
3744        tcb = adapter->tx_ring.send_head;
3745
3746        while (tcb &&
3747               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3748               index < INDEX10(tcb->index)) {
3749                adapter->tx_ring.used--;
3750                adapter->tx_ring.send_head = tcb->next;
3751                if (tcb->next == NULL)
3752                        adapter->tx_ring.send_tail = NULL;
3753
3754                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3755                free_send_packet(adapter, tcb);
3756                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757
3758                /* Goto the next packet */
3759                tcb = adapter->tx_ring.send_head;
3760        }
3761        while (tcb &&
3762               !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3763               && index > (tcb->index & ET_DMA10_MASK)) {
3764                adapter->tx_ring.used--;
3765                adapter->tx_ring.send_head = tcb->next;
3766                if (tcb->next == NULL)
3767                        adapter->tx_ring.send_tail = NULL;
3768
3769                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3770                free_send_packet(adapter, tcb);
3771                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772
3773                /* Goto the next packet */
3774                tcb = adapter->tx_ring.send_head;
3775        }
3776
3777        /* Wake up the queue when we hit a low-water mark */
3778        if (adapter->tx_ring.used <= NUM_TCB / 3)
3779                netif_wake_queue(adapter->netdev);
3780
3781        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3782}
3783
3784static int et131x_get_settings(struct net_device *netdev,
3785                               struct ethtool_cmd *cmd)
3786{
3787        struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789        return phy_ethtool_gset(adapter->phydev, cmd);
3790}
3791
3792static int et131x_set_settings(struct net_device *netdev,
3793                               struct ethtool_cmd *cmd)
3794{
3795        struct et131x_adapter *adapter = netdev_priv(netdev);
3796
3797        return phy_ethtool_sset(adapter->phydev, cmd);
3798}
3799
3800static int et131x_get_regs_len(struct net_device *netdev)
3801{
3802#define ET131X_REGS_LEN 256
3803        return ET131X_REGS_LEN * sizeof(u32);
3804}
3805
3806static void et131x_get_regs(struct net_device *netdev,
3807                            struct ethtool_regs *regs, void *regs_data)
3808{
3809        struct et131x_adapter *adapter = netdev_priv(netdev);
3810        struct address_map __iomem *aregs = adapter->regs;
3811        u32 *regs_buff = regs_data;
3812        u32 num = 0;
3813
3814        memset(regs_data, 0, et131x_get_regs_len(netdev));
3815
3816        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3817                        adapter->pdev->device;
3818
3819        /* PHY regs */
3820        et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3821        et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3822        et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3823        et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3824        et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3825        et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3826        et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3827        /* Autoneg next page transmit reg */
3828        et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3829        /* Link partner next page reg */
3830        et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3831        et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3832        et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3833        et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3834        et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3835        et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3836        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3837                        (u16 *)&regs_buff[num++]);
3838        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3839                        (u16 *)&regs_buff[num++]);
3840        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3841                        (u16 *)&regs_buff[num++]);
3842        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3843                        (u16 *)&regs_buff[num++]);
3844        et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3845        et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3846        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3847        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3848                        (u16 *)&regs_buff[num++]);
3849        et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3850        et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3851        et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852
3853        /* Global regs */
3854        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3855        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3856        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3857        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3858        regs_buff[num++] = readl(&aregs->global.pm_csr);
3859        regs_buff[num++] = adapter->stats.interrupt_status;
3860        regs_buff[num++] = readl(&aregs->global.int_mask);
3861        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3862        regs_buff[num++] = readl(&aregs->global.int_status_alias);
3863        regs_buff[num++] = readl(&aregs->global.sw_reset);
3864        regs_buff[num++] = readl(&aregs->global.slv_timer);
3865        regs_buff[num++] = readl(&aregs->global.msi_config);
3866        regs_buff[num++] = readl(&aregs->global.loopback);
3867        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868
3869        /* TXDMA regs */
3870        regs_buff[num++] = readl(&aregs->txdma.csr);
3871        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3872        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3873        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3874        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3875        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3876        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3877        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3878        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3879        regs_buff[num++] = readl(&aregs->txdma.service_request);
3880        regs_buff[num++] = readl(&aregs->txdma.service_complete);
3881        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3882        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3883        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3884        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3885        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3886        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3887        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3888        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3889        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3890        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3891        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3892        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3893        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3894        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3895        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896
3897        /* RXDMA regs */
3898        regs_buff[num++] = readl(&aregs->rxdma.csr);
3899        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3900        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3901        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3902        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3903        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3904        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3905        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3906        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3907        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3908        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3909        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3910        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3911        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3912        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3913        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3914        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3915        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3916        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3917        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3918        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3919        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3920        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3921        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3922        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3923        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3924        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3925        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3926        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3927}
3928
3929#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930static void et131x_get_drvinfo(struct net_device *netdev,
3931                               struct ethtool_drvinfo *info)
3932{
3933        struct et131x_adapter *adapter = netdev_priv(netdev);
3934
3935        strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3936        strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3937        strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3938}
3939
3940static struct ethtool_ops et131x_ethtool_ops = {
3941        .get_settings   = et131x_get_settings,
3942        .set_settings   = et131x_set_settings,
3943        .get_drvinfo    = et131x_get_drvinfo,
3944        .get_regs_len   = et131x_get_regs_len,
3945        .get_regs       = et131x_get_regs,
3946        .get_link = ethtool_op_get_link,
3947};
3948/**
3949 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3950 * @adapter: pointer to our private adapter structure
3951 */
3952static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3953{
3954        /* If have our default mac from init and no mac address from
3955         * EEPROM then we need to generate the last octet and set it on the
3956         * device
3957         */
3958        if (adapter->rom_addr[0] == 0x00 &&
3959            adapter->rom_addr[1] == 0x00 &&
3960            adapter->rom_addr[2] == 0x00 &&
3961            adapter->rom_addr[3] == 0x00 &&
3962            adapter->rom_addr[4] == 0x00 &&
3963            adapter->rom_addr[5] == 0x00) {
3964                /*
3965                 * We need to randomly generate the last octet so we
3966                 * decrease our chances of setting the mac address to
3967                 * same as another one of our cards in the system
3968                 */
3969                get_random_bytes(&adapter->addr[5], 1);
3970                /*
3971                 * We have the default value in the register we are
3972                 * working with so we need to copy the current
3973                 * address into the permanent address
3974                 */
3975                memcpy(adapter->rom_addr,
3976                        adapter->addr, ETH_ALEN);
3977        } else {
3978                /* We do not have an override address, so set the
3979                 * current address to the permanent address and add
3980                 * it to the device
3981                 */
3982                memcpy(adapter->addr,
3983                       adapter->rom_addr, ETH_ALEN);
3984        }
3985}
3986
3987/**
3988 * et131x_pci_init       - initial PCI setup
3989 * @adapter: pointer to our private adapter structure
3990 * @pdev: our PCI device
3991 *
3992 * Perform the initial setup of PCI registers and if possible initialise
3993 * the MAC address. At this point the I/O registers have yet to be mapped
3994 */
3995static int et131x_pci_init(struct et131x_adapter *adapter,
3996                                                struct pci_dev *pdev)
3997{
3998        int cap = pci_pcie_cap(pdev);
3999        u16 max_payload;
4000        u16 ctl;
4001        int i, rc;
4002
4003        rc = et131x_init_eeprom(adapter);
4004        if (rc < 0)
4005                goto out;
4006
4007        if (!cap) {
4008                dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4009                goto err_out;
4010        }
4011
4012        /* Let's set up the PORT LOGIC Register.  First we need to know what
4013         * the max_payload_size is
4014         */
4015        if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4016                dev_err(&pdev->dev,
4017                    "Could not read PCI config space for Max Payload Size\n");
4018                goto err_out;
4019        }
4020
4021        /* Program the Ack/Nak latency and replay timers */
4022        max_payload &= 0x07;
4023
4024        if (max_payload < 2) {
4025                static const u16 acknak[2] = { 0x76, 0xD0 };
4026                static const u16 replay[2] = { 0x1E0, 0x2ED };
4027
4028                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4029                                               acknak[max_payload])) {
4030                        dev_err(&pdev->dev,
4031                          "Could not write PCI config space for ACK/NAK\n");
4032                        goto err_out;
4033                }
4034                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4035                                               replay[max_payload])) {
4036                        dev_err(&pdev->dev,
4037                          "Could not write PCI config space for Replay Timer\n");
4038                        goto err_out;
4039                }
4040        }
4041
4042        /* l0s and l1 latency timers.  We are using default values.
4043         * Representing 001 for L0s and 010 for L1
4044         */
4045        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4046                dev_err(&pdev->dev,
4047                  "Could not write PCI config space for Latency Timers\n");
4048                goto err_out;
4049        }
4050
4051        /* Change the max read size to 2k */
4052        if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4053                dev_err(&pdev->dev,
4054                        "Could not read PCI config space for Max read size\n");
4055                goto err_out;
4056        }
4057
4058        ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | (0x04 << 12);
4059
4060        if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4061                dev_err(&pdev->dev,
4062                      "Could not write PCI config space for Max read size\n");
4063                goto err_out;
4064        }
4065
4066        /* Get MAC address from config space if an eeprom exists, otherwise
4067         * the MAC address there will not be valid
4068         */
4069        if (!adapter->has_eeprom) {
4070                et131x_hwaddr_init(adapter);
4071                return 0;
4072        }
4073
4074        for (i = 0; i < ETH_ALEN; i++) {
4075                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4076                                        adapter->rom_addr + i)) {
4077                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4078                        goto err_out;
4079                }
4080        }
4081        memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4082out:
4083        return rc;
4084err_out:
4085        rc = -EIO;
4086        goto out;
4087}
4088
4089/**
4090 * et131x_error_timer_handler
4091 * @data: timer-specific variable; here a pointer to our adapter structure
4092 *
4093 * The routine called when the error timer expires, to track the number of
4094 * recurring errors.
4095 */
4096static void et131x_error_timer_handler(unsigned long data)
4097{
4098        struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4099        struct phy_device *phydev = adapter->phydev;
4100
4101        if (et1310_in_phy_coma(adapter)) {
4102                /* Bring the device immediately out of coma, to
4103                 * prevent it from sleeping indefinitely, this
4104                 * mechanism could be improved! */
4105                et1310_disable_phy_coma(adapter);
4106                adapter->boot_coma = 20;
4107        } else {
4108                et1310_update_macstat_host_counters(adapter);
4109        }
4110
4111        if (!phydev->link && adapter->boot_coma < 11)
4112                adapter->boot_coma++;
4113
4114        if (adapter->boot_coma == 10) {
4115                if (!phydev->link) {
4116                        if (!et1310_in_phy_coma(adapter)) {
4117                                /* NOTE - This was originally a 'sync with
4118                                 *  interrupt'. How to do that under Linux?
4119                                 */
4120                                et131x_enable_interrupts(adapter);
4121                                et1310_enable_phy_coma(adapter);
4122                        }
4123                }
4124        }
4125
4126        /* This is a periodic timer, so reschedule */
4127        mod_timer(&adapter->error_timer, jiffies +
4128                                          TX_ERROR_PERIOD * HZ / 1000);
4129}
4130
4131/**
4132 * et131x_adapter_memory_alloc
4133 * @adapter: pointer to our private adapter structure
4134 *
4135 * Returns 0 on success, errno on failure (as defined in errno.h).
4136 *
4137 * Allocate all the memory blocks for send, receive and others.
4138 */
4139static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4140{
4141        int status;
4142
4143        /* Allocate memory for the Tx Ring */
4144        status = et131x_tx_dma_memory_alloc(adapter);
4145        if (status != 0) {
4146                dev_err(&adapter->pdev->dev,
4147                          "et131x_tx_dma_memory_alloc FAILED\n");
4148                return status;
4149        }
4150        /* Receive buffer memory allocation */
4151        status = et131x_rx_dma_memory_alloc(adapter);
4152        if (status != 0) {
4153                dev_err(&adapter->pdev->dev,
4154                          "et131x_rx_dma_memory_alloc FAILED\n");
4155                et131x_tx_dma_memory_free(adapter);
4156                return status;
4157        }
4158
4159        /* Init receive data structures */
4160        status = et131x_init_recv(adapter);
4161        if (status != 0) {
4162                dev_err(&adapter->pdev->dev,
4163                        "et131x_init_recv FAILED\n");
4164                et131x_tx_dma_memory_free(adapter);
4165                et131x_rx_dma_memory_free(adapter);
4166        }
4167        return status;
4168}
4169
4170/**
4171 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4172 * @adapter: pointer to our private adapter structure
4173 */
4174static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4175{
4176        /* Free DMA memory */
4177        et131x_tx_dma_memory_free(adapter);
4178        et131x_rx_dma_memory_free(adapter);
4179}
4180
4181static void et131x_adjust_link(struct net_device *netdev)
4182{
4183        struct et131x_adapter *adapter = netdev_priv(netdev);
4184        struct  phy_device *phydev = adapter->phydev;
4185
4186        if (netif_carrier_ok(netdev)) {
4187                adapter->boot_coma = 20;
4188
4189                if (phydev && phydev->speed == SPEED_10) {
4190                        /*
4191                         * NOTE - Is there a way to query this without
4192                         * TruePHY?
4193                         * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4194                         * EMI_TRUEPHY_A13O) {
4195                         */
4196                        u16 register18;
4197
4198                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4199                                         &register18);
4200                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4201                                         register18 | 0x4);
4202                        et131x_mii_write(adapter, PHY_INDEX_REG,
4203                                         register18 | 0x8402);
4204                        et131x_mii_write(adapter, PHY_DATA_REG,
4205                                         register18 | 511);
4206                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4207                                         register18);
4208                }
4209
4210                et1310_config_flow_control(adapter);
4211
4212                if (phydev && phydev->speed == SPEED_1000 &&
4213                                adapter->registry_jumbo_packet > 2048) {
4214                        u16 reg;
4215
4216                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
4217                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4218                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4219                        et131x_mii_write(adapter, PHY_CONFIG, reg);
4220                }
4221
4222                et131x_set_rx_dma_timer(adapter);
4223                et1310_config_mac_regs2(adapter);
4224        }
4225
4226        if (phydev && phydev->link != adapter->link) {
4227                /*
4228                 * Check to see if we are in coma mode and if
4229                 * so, disable it because we will not be able
4230                 * to read PHY values until we are out.
4231                 */
4232                if (et1310_in_phy_coma(adapter))
4233                        et1310_disable_phy_coma(adapter);
4234
4235                if (phydev->link) {
4236                        adapter->boot_coma = 20;
4237                } else {
4238                        dev_warn(&adapter->pdev->dev,
4239                            "Link down - cable problem ?\n");
4240                        adapter->boot_coma = 0;
4241
4242                        if (phydev->speed == SPEED_10) {
4243                                /* NOTE - Is there a way to query this without
4244                                 * TruePHY?
4245                                 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4246                                 * EMI_TRUEPHY_A13O)
4247                                 */
4248                                u16 register18;
4249
4250                                et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4251                                                 &register18);
4252                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4253                                                 register18 | 0x4);
4254                                et131x_mii_write(adapter, PHY_INDEX_REG,
4255                                                 register18 | 0x8402);
4256                                et131x_mii_write(adapter, PHY_DATA_REG,
4257                                                 register18 | 511);
4258                                et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4259                                                 register18);
4260                        }
4261
4262                        /* Free the packets being actively sent & stopped */
4263                        et131x_free_busy_send_packets(adapter);
4264
4265                        /* Re-initialize the send structures */
4266                        et131x_init_send(adapter);
4267
4268                        /*
4269                         * Bring the device back to the state it was during
4270                         * init prior to autonegotiation being complete. This
4271                         * way, when we get the auto-neg complete interrupt,
4272                         * we can complete init by calling config_mac_regs2.
4273                         */
4274                        et131x_soft_reset(adapter);
4275
4276                        /* Setup ET1310 as per the documentation */
4277                        et131x_adapter_setup(adapter);
4278
4279                        /* perform reset of tx/rx */
4280                        et131x_disable_txrx(netdev);
4281                        et131x_enable_txrx(netdev);
4282                }
4283
4284                adapter->link = phydev->link;
4285
4286                phy_print_status(phydev);
4287        }
4288}
4289
4290static int et131x_mii_probe(struct net_device *netdev)
4291{
4292        struct et131x_adapter *adapter = netdev_priv(netdev);
4293        struct  phy_device *phydev = NULL;
4294
4295        phydev = phy_find_first(adapter->mii_bus);
4296        if (!phydev) {
4297                dev_err(&adapter->pdev->dev, "no PHY found\n");
4298                return -ENODEV;
4299        }
4300
4301        phydev = phy_connect(netdev, dev_name(&phydev->dev),
4302                        &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4303
4304        if (IS_ERR(phydev)) {
4305                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4306                return PTR_ERR(phydev);
4307        }
4308
4309        phydev->supported &= (SUPPORTED_10baseT_Half
4310                                | SUPPORTED_10baseT_Full
4311                                | SUPPORTED_100baseT_Half
4312                                | SUPPORTED_100baseT_Full
4313                                | SUPPORTED_Autoneg
4314                                | SUPPORTED_MII
4315                                | SUPPORTED_TP);
4316
4317        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4318                phydev->supported |= SUPPORTED_1000baseT_Full;
4319
4320        phydev->advertising = phydev->supported;
4321        adapter->phydev = phydev;
4322
4323        dev_info(&adapter->pdev->dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
4324                 phydev->drv->name, dev_name(&phydev->dev));
4325
4326        return 0;
4327}
4328
4329/**
4330 * et131x_adapter_init
4331 * @adapter: pointer to the private adapter struct
4332 * @pdev: pointer to the PCI device
4333 *
4334 * Initialize the data structures for the et131x_adapter object and link
4335 * them together with the platform provided device structures.
4336 */
4337static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4338                struct pci_dev *pdev)
4339{
4340        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4341
4342        struct et131x_adapter *adapter;
4343
4344        /* Allocate private adapter struct and copy in relevant information */
4345        adapter = netdev_priv(netdev);
4346        adapter->pdev = pci_dev_get(pdev);
4347        adapter->netdev = netdev;
4348
4349        /* Initialize spinlocks here */
4350        spin_lock_init(&adapter->lock);
4351        spin_lock_init(&adapter->tcb_send_qlock);
4352        spin_lock_init(&adapter->tcb_ready_qlock);
4353        spin_lock_init(&adapter->send_hw_lock);
4354        spin_lock_init(&adapter->rcv_lock);
4355        spin_lock_init(&adapter->rcv_pend_lock);
4356        spin_lock_init(&adapter->fbr_lock);
4357        spin_lock_init(&adapter->phy_lock);
4358
4359        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4360
4361        /* Set the MAC address to a default */
4362        memcpy(adapter->addr, default_mac, ETH_ALEN);
4363
4364        return adapter;
4365}
4366
4367/**
4368 * et131x_pci_remove
4369 * @pdev: a pointer to the device's pci_dev structure
4370 *
4371 * Registered in the pci_driver structure, this function is called when the
4372 * PCI subsystem detects that a PCI device which matches the information
4373 * contained in the pci_device_id table has been removed.
4374 */
4375static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4376{
4377        struct net_device *netdev = pci_get_drvdata(pdev);
4378        struct et131x_adapter *adapter = netdev_priv(netdev);
4379
4380        unregister_netdev(netdev);
4381        phy_disconnect(adapter->phydev);
4382        mdiobus_unregister(adapter->mii_bus);
4383        kfree(adapter->mii_bus->irq);
4384        mdiobus_free(adapter->mii_bus);
4385
4386        et131x_adapter_memory_free(adapter);
4387        iounmap(adapter->regs);
4388        pci_dev_put(pdev);
4389
4390        free_netdev(netdev);
4391        pci_release_regions(pdev);
4392        pci_disable_device(pdev);
4393}
4394
4395/**
4396 * et131x_up - Bring up a device for use.
4397 * @netdev: device to be opened
4398 */
4399static void et131x_up(struct net_device *netdev)
4400{
4401        struct et131x_adapter *adapter = netdev_priv(netdev);
4402
4403        et131x_enable_txrx(netdev);
4404        phy_start(adapter->phydev);
4405}
4406
4407/**
4408 * et131x_down - Bring down the device
4409 * @netdev: device to be brought down
4410 */
4411static void et131x_down(struct net_device *netdev)
4412{
4413        struct et131x_adapter *adapter = netdev_priv(netdev);
4414
4415        /* Save the timestamp for the TX watchdog, prevent a timeout */
4416        netdev->trans_start = jiffies;
4417
4418        phy_stop(adapter->phydev);
4419        et131x_disable_txrx(netdev);
4420}
4421
4422#ifdef CONFIG_PM_SLEEP
4423static int et131x_suspend(struct device *dev)
4424{
4425        struct pci_dev *pdev = to_pci_dev(dev);
4426        struct net_device *netdev = pci_get_drvdata(pdev);
4427
4428        if (netif_running(netdev)) {
4429                netif_device_detach(netdev);
4430                et131x_down(netdev);
4431                pci_save_state(pdev);
4432        }
4433
4434        return 0;
4435}
4436
4437static int et131x_resume(struct device *dev)
4438{
4439        struct pci_dev *pdev = to_pci_dev(dev);
4440        struct net_device *netdev = pci_get_drvdata(pdev);
4441
4442        if (netif_running(netdev)) {
4443                pci_restore_state(pdev);
4444                et131x_up(netdev);
4445                netif_device_attach(netdev);
4446        }
4447
4448        return 0;
4449}
4450
4451static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4452#define ET131X_PM_OPS (&et131x_pm_ops)
4453#else
4454#define ET131X_PM_OPS NULL
4455#endif
4456
4457/**
4458 * et131x_isr - The Interrupt Service Routine for the driver.
4459 * @irq: the IRQ on which the interrupt was received.
4460 * @dev_id: device-specific info (here a pointer to a net_device struct)
4461 *
4462 * Returns a value indicating if the interrupt was handled.
4463 */
4464irqreturn_t et131x_isr(int irq, void *dev_id)
4465{
4466        bool handled = true;
4467        struct net_device *netdev = (struct net_device *)dev_id;
4468        struct et131x_adapter *adapter = NULL;
4469        u32 status;
4470
4471        if (!netif_device_present(netdev)) {
4472                handled = false;
4473                goto out;
4474        }
4475
4476        adapter = netdev_priv(netdev);
4477
4478        /* If the adapter is in low power state, then it should not
4479         * recognize any interrupt
4480         */
4481
4482        /* Disable Device Interrupts */
4483        et131x_disable_interrupts(adapter);
4484
4485        /* Get a copy of the value in the interrupt status register
4486         * so we can process the interrupting section
4487         */
4488        status = readl(&adapter->regs->global.int_status);
4489
4490        if (adapter->flowcontrol == FLOW_TXONLY ||
4491            adapter->flowcontrol == FLOW_BOTH) {
4492                status &= ~INT_MASK_ENABLE;
4493        } else {
4494                status &= ~INT_MASK_ENABLE_NO_FLOW;
4495        }
4496
4497        /* Make sure this is our interrupt */
4498        if (!status) {
4499                handled = false;
4500                et131x_enable_interrupts(adapter);
4501                goto out;
4502        }
4503
4504        /* This is our interrupt, so process accordingly */
4505
4506        if (status & ET_INTR_WATCHDOG) {
4507                struct tcb *tcb = adapter->tx_ring.send_head;
4508
4509                if (tcb)
4510                        if (++tcb->stale > 1)
4511                                status |= ET_INTR_TXDMA_ISR;
4512
4513                if (adapter->rx_ring.unfinished_receives)
4514                        status |= ET_INTR_RXDMA_XFR_DONE;
4515                else if (tcb == NULL)
4516                        writel(0, &adapter->regs->global.watchdog_timer);
4517
4518                status &= ~ET_INTR_WATCHDOG;
4519        }
4520
4521        if (status == 0) {
4522                /* This interrupt has in some way been "handled" by
4523                 * the ISR. Either it was a spurious Rx interrupt, or
4524                 * it was a Tx interrupt that has been filtered by
4525                 * the ISR.
4526                 */
4527                et131x_enable_interrupts(adapter);
4528                goto out;
4529        }
4530
4531        /* We need to save the interrupt status value for use in our
4532         * DPC. We will clear the software copy of that in that
4533         * routine.
4534         */
4535        adapter->stats.interrupt_status = status;
4536
4537        /* Schedule the ISR handler as a bottom-half task in the
4538         * kernel's tq_immediate queue, and mark the queue for
4539         * execution
4540         */
4541        schedule_work(&adapter->task);
4542out:
4543        return IRQ_RETVAL(handled);
4544}
4545
4546/**
4547 * et131x_isr_handler - The ISR handler
4548 * @p_adapter, a pointer to the device's private adapter structure
4549 *
4550 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4551 * work actually gets done.
4552 */
4553static void et131x_isr_handler(struct work_struct *work)
4554{
4555        struct et131x_adapter *adapter =
4556                container_of(work, struct et131x_adapter, task);
4557        u32 status = adapter->stats.interrupt_status;
4558        struct address_map __iomem *iomem = adapter->regs;
4559
4560        /*
4561         * These first two are by far the most common.  Once handled, we clear
4562         * their two bits in the status word.  If the word is now zero, we
4563         * exit.
4564         */
4565        /* Handle all the completed Transmit interrupts */
4566        if (status & ET_INTR_TXDMA_ISR)
4567                et131x_handle_send_interrupt(adapter);
4568
4569        /* Handle all the completed Receives interrupts */
4570        if (status & ET_INTR_RXDMA_XFR_DONE)
4571                et131x_handle_recv_interrupt(adapter);
4572
4573        status &= 0xffffffd7;
4574
4575        if (status) {
4576                /* Handle the TXDMA Error interrupt */
4577                if (status & ET_INTR_TXDMA_ERR) {
4578                        u32 txdma_err;
4579
4580                        /* Following read also clears the register (COR) */
4581                        txdma_err = readl(&iomem->txdma.tx_dma_error);
4582
4583                        dev_warn(&adapter->pdev->dev,
4584                                    "TXDMA_ERR interrupt, error = %d\n",
4585                                    txdma_err);
4586                }
4587
4588                /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4589                if (status &
4590                    (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4591                        /*
4592                         * This indicates the number of unused buffers in
4593                         * RXDMA free buffer ring 0 is <= the limit you
4594                         * programmed. Free buffer resources need to be
4595                         * returned.  Free buffers are consumed as packets
4596                         * are passed from the network to the host. The host
4597                         * becomes aware of the packets from the contents of
4598                         * the packet status ring. This ring is queried when
4599                         * the packet done interrupt occurs. Packets are then
4600                         * passed to the OS. When the OS is done with the
4601                         * packets the resources can be returned to the
4602                         * ET1310 for re-use. This interrupt is one method of
4603                         * returning resources.
4604                         */
4605
4606                        /* If the user has flow control on, then we will
4607                         * send a pause packet, otherwise just exit
4608                         */
4609                        if (adapter->flowcontrol == FLOW_TXONLY ||
4610                            adapter->flowcontrol == FLOW_BOTH) {
4611                                u32 pm_csr;
4612
4613                                /* Tell the device to send a pause packet via
4614                                 * the back pressure register (bp req  and
4615                                 * bp xon/xoff)
4616                                 */
4617                                pm_csr = readl(&iomem->global.pm_csr);
4618                                if (!et1310_in_phy_coma(adapter))
4619                                        writel(3, &iomem->txmac.bp_ctrl);
4620                        }
4621                }
4622
4623                /* Handle Packet Status Ring Low Interrupt */
4624                if (status & ET_INTR_RXDMA_STAT_LOW) {
4625
4626                        /*
4627                         * Same idea as with the two Free Buffer Rings.
4628                         * Packets going from the network to the host each
4629                         * consume a free buffer resource and a packet status
4630                         * resource.  These resoures are passed to the OS.
4631                         * When the OS is done with the resources, they need
4632                         * to be returned to the ET1310. This is one method
4633                         * of returning the resources.
4634                         */
4635                }
4636
4637                /* Handle RXDMA Error Interrupt */
4638                if (status & ET_INTR_RXDMA_ERR) {
4639                        /*
4640                         * The rxdma_error interrupt is sent when a time-out
4641                         * on a request issued by the JAGCore has occurred or
4642                         * a completion is returned with an un-successful
4643                         * status.  In both cases the request is considered
4644                         * complete. The JAGCore will automatically re-try the
4645                         * request in question. Normally information on events
4646                         * like these are sent to the host using the "Advanced
4647                         * Error Reporting" capability. This interrupt is
4648                         * another way of getting similar information. The
4649                         * only thing required is to clear the interrupt by
4650                         * reading the ISR in the global resources. The
4651                         * JAGCore will do a re-try on the request.  Normally
4652                         * you should never see this interrupt. If you start
4653                         * to see this interrupt occurring frequently then
4654                         * something bad has occurred. A reset might be the
4655                         * thing to do.
4656                         */
4657                        /* TRAP();*/
4658
4659                        dev_warn(&adapter->pdev->dev,
4660                                    "RxDMA_ERR interrupt, error %x\n",
4661                                    readl(&iomem->txmac.tx_test));
4662                }
4663
4664                /* Handle the Wake on LAN Event */
4665                if (status & ET_INTR_WOL) {
4666                        /*
4667                         * This is a secondary interrupt for wake on LAN.
4668                         * The driver should never see this, if it does,
4669                         * something serious is wrong. We will TRAP the
4670                         * message when we are in DBG mode, otherwise we
4671                         * will ignore it.
4672                         */
4673                        dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4674                }
4675
4676                /* Let's move on to the TxMac */
4677                if (status & ET_INTR_TXMAC) {
4678                        u32 err = readl(&iomem->txmac.err);
4679
4680                        /*
4681                         * When any of the errors occur and TXMAC generates
4682                         * an interrupt to report these errors, it usually
4683                         * means that TXMAC has detected an error in the data
4684                         * stream retrieved from the on-chip Tx Q. All of
4685                         * these errors are catastrophic and TXMAC won't be
4686                         * able to recover data when these errors occur.  In
4687                         * a nutshell, the whole Tx path will have to be reset
4688                         * and re-configured afterwards.
4689                         */
4690                        dev_warn(&adapter->pdev->dev,
4691                                    "TXMAC interrupt, error 0x%08x\n",
4692                                    err);
4693
4694                        /* If we are debugging, we want to see this error,
4695                         * otherwise we just want the device to be reset and
4696                         * continue
4697                         */
4698                }
4699
4700                /* Handle RXMAC Interrupt */
4701                if (status & ET_INTR_RXMAC) {
4702                        /*
4703                         * These interrupts are catastrophic to the device,
4704                         * what we need to do is disable the interrupts and
4705                         * set the flag to cause us to reset so we can solve
4706                         * this issue.
4707                         */
4708                        /* MP_SET_FLAG( adapter,
4709                                                fMP_ADAPTER_HARDWARE_ERROR); */
4710
4711                        dev_warn(&adapter->pdev->dev,
4712                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4713                                    readl(&iomem->rxmac.err_reg));
4714
4715                        dev_warn(&adapter->pdev->dev,
4716                                    "Enable 0x%08x, Diag 0x%08x\n",
4717                                    readl(&iomem->rxmac.ctrl),
4718                                    readl(&iomem->rxmac.rxq_diag));
4719
4720                        /*
4721                         * If we are debugging, we want to see this error,
4722                         * otherwise we just want the device to be reset and
4723                         * continue
4724                         */
4725                }
4726
4727                /* Handle MAC_STAT Interrupt */
4728                if (status & ET_INTR_MAC_STAT) {
4729                        /*
4730                         * This means at least one of the un-masked counters
4731                         * in the MAC_STAT block has rolled over.  Use this
4732                         * to maintain the top, software managed bits of the
4733                         * counter(s).
4734                         */
4735                        et1310_handle_macstat_interrupt(adapter);
4736                }
4737
4738                /* Handle SLV Timeout Interrupt */
4739                if (status & ET_INTR_SLV_TIMEOUT) {
4740                        /*
4741                         * This means a timeout has occurred on a read or
4742                         * write request to one of the JAGCore registers. The
4743                         * Global Resources block has terminated the request
4744                         * and on a read request, returned a "fake" value.
4745                         * The most likely reasons are: Bad Address or the
4746                         * addressed module is in a power-down state and
4747                         * can't respond.
4748                         */
4749                }
4750        }
4751        et131x_enable_interrupts(adapter);
4752}
4753
4754/**
4755 * et131x_stats - Return the current device statistics.
4756 * @netdev: device whose stats are being queried
4757 *
4758 * Returns 0 on success, errno on failure (as defined in errno.h)
4759 */
4760static struct net_device_stats *et131x_stats(struct net_device *netdev)
4761{
4762        struct et131x_adapter *adapter = netdev_priv(netdev);
4763        struct net_device_stats *stats = &adapter->net_stats;
4764        struct ce_stats *devstat = &adapter->stats;
4765
4766        stats->rx_errors = devstat->rx_length_errs +
4767                           devstat->rx_align_errs +
4768                           devstat->rx_crc_errs +
4769                           devstat->rx_code_violations +
4770                           devstat->rx_other_errs;
4771        stats->tx_errors = devstat->tx_max_pkt_errs;
4772        stats->multicast = devstat->multicast_pkts_rcvd;
4773        stats->collisions = devstat->tx_collisions;
4774
4775        stats->rx_length_errors = devstat->rx_length_errs;
4776        stats->rx_over_errors = devstat->rx_overflows;
4777        stats->rx_crc_errors = devstat->rx_crc_errs;
4778
4779        /* NOTE: These stats don't have corresponding values in CE_STATS,
4780         * so we're going to have to update these directly from within the
4781         * TX/RX code
4782         */
4783        /* stats->rx_bytes            = 20; devstat->; */
4784        /* stats->tx_bytes            = 20;  devstat->; */
4785        /* stats->rx_dropped          = devstat->; */
4786        /* stats->tx_dropped          = devstat->; */
4787
4788        /*  NOTE: Not used, can't find analogous statistics */
4789        /* stats->rx_frame_errors     = devstat->; */
4790        /* stats->rx_fifo_errors      = devstat->; */
4791        /* stats->rx_missed_errors    = devstat->; */
4792
4793        /* stats->tx_aborted_errors   = devstat->; */
4794        /* stats->tx_carrier_errors   = devstat->; */
4795        /* stats->tx_fifo_errors      = devstat->; */
4796        /* stats->tx_heartbeat_errors = devstat->; */
4797        /* stats->tx_window_errors    = devstat->; */
4798        return stats;
4799}
4800
4801/**
4802 * et131x_open - Open the device for use.
4803 * @netdev: device to be opened
4804 *
4805 * Returns 0 on success, errno on failure (as defined in errno.h)
4806 */
4807static int et131x_open(struct net_device *netdev)
4808{
4809        struct et131x_adapter *adapter = netdev_priv(netdev);
4810        struct pci_dev *pdev = adapter->pdev;
4811        unsigned int irq = pdev->irq;
4812        int result;
4813
4814        /* Start the timer to track NIC errors */
4815        init_timer(&adapter->error_timer);
4816        adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4817        adapter->error_timer.function = et131x_error_timer_handler;
4818        adapter->error_timer.data = (unsigned long)adapter;
4819        add_timer(&adapter->error_timer);
4820
4821        result = request_irq(irq, et131x_isr,
4822                             IRQF_SHARED, netdev->name, netdev);
4823        if (result) {
4824                dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4825                return result;
4826        }
4827
4828        adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4829
4830        et131x_up(netdev);
4831
4832        return result;
4833}
4834
4835/**
4836 * et131x_close - Close the device
4837 * @netdev: device to be closed
4838 *
4839 * Returns 0 on success, errno on failure (as defined in errno.h)
4840 */
4841static int et131x_close(struct net_device *netdev)
4842{
4843        struct et131x_adapter *adapter = netdev_priv(netdev);
4844
4845        et131x_down(netdev);
4846
4847        adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4848        free_irq(adapter->pdev->irq, netdev);
4849
4850        /* Stop the error timer */
4851        return del_timer_sync(&adapter->error_timer);
4852}
4853
4854/**
4855 * et131x_ioctl - The I/O Control handler for the driver
4856 * @netdev: device on which the control request is being made
4857 * @reqbuf: a pointer to the IOCTL request buffer
4858 * @cmd: the IOCTL command code
4859 *
4860 * Returns 0 on success, errno on failure (as defined in errno.h)
4861 */
4862static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4863                        int cmd)
4864{
4865        struct et131x_adapter *adapter = netdev_priv(netdev);
4866
4867        if (!adapter->phydev)
4868                return -EINVAL;
4869
4870        return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4871}
4872
4873/**
4874 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4875 * @adapter: pointer to our private adapter structure
4876 *
4877 * FIXME: lot of dups with MAC code
4878 *
4879 * Returns 0 on success, errno on failure
4880 */
4881static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4882{
4883        int filter = adapter->packet_filter;
4884        int status = 0;
4885        u32 ctrl;
4886        u32 pf_ctrl;
4887
4888        ctrl = readl(&adapter->regs->rxmac.ctrl);
4889        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4890
4891        /* Default to disabled packet filtering.  Enable it in the individual
4892         * case statements that require the device to filter something
4893         */
4894        ctrl |= 0x04;
4895
4896        /* Set us to be in promiscuous mode so we receive everything, this
4897         * is also true when we get a packet filter of 0
4898         */
4899        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4900                pf_ctrl &= ~7;  /* Clear filter bits */
4901        else {
4902                /*
4903                 * Set us up with Multicast packet filtering.  Three cases are
4904                 * possible - (1) we have a multi-cast list, (2) we receive ALL
4905                 * multicast entries or (3) we receive none.
4906                 */
4907                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4908                        pf_ctrl &= ~2;  /* Multicast filter bit */
4909                else {
4910                        et1310_setup_device_for_multicast(adapter);
4911                        pf_ctrl |= 2;
4912                        ctrl &= ~0x04;
4913                }
4914
4915                /* Set us up with Unicast packet filtering */
4916                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4917                        et1310_setup_device_for_unicast(adapter);
4918                        pf_ctrl |= 4;
4919                        ctrl &= ~0x04;
4920                }
4921
4922                /* Set us up with Broadcast packet filtering */
4923                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4924                        pf_ctrl |= 1;   /* Broadcast filter bit */
4925                        ctrl &= ~0x04;
4926                } else
4927                        pf_ctrl &= ~1;
4928
4929                /* Setup the receive mac configuration registers - Packet
4930                 * Filter control + the enable / disable for packet filter
4931                 * in the control reg.
4932                 */
4933                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4934                writel(ctrl, &adapter->regs->rxmac.ctrl);
4935        }
4936        return status;
4937}
4938
4939/**
4940 * et131x_multicast - The handler to configure multicasting on the interface
4941 * @netdev: a pointer to a net_device struct representing the device
4942 */
4943static void et131x_multicast(struct net_device *netdev)
4944{
4945        struct et131x_adapter *adapter = netdev_priv(netdev);
4946        int packet_filter;
4947        unsigned long flags;
4948        struct netdev_hw_addr *ha;
4949        int i;
4950
4951        spin_lock_irqsave(&adapter->lock, flags);
4952
4953        /* Before we modify the platform-independent filter flags, store them
4954         * locally. This allows us to determine if anything's changed and if
4955         * we even need to bother the hardware
4956         */
4957        packet_filter = adapter->packet_filter;
4958
4959        /* Clear the 'multicast' flag locally; because we only have a single
4960         * flag to check multicast, and multiple multicast addresses can be
4961         * set, this is the easiest way to determine if more than one
4962         * multicast address is being set.
4963         */
4964        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4965
4966        /* Check the net_device flags and set the device independent flags
4967         * accordingly
4968         */
4969
4970        if (netdev->flags & IFF_PROMISC)
4971                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4972        else
4973                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4974
4975        if (netdev->flags & IFF_ALLMULTI)
4976                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4977
4978        if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4979                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4980
4981        if (netdev_mc_count(netdev) < 1) {
4982                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4983                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4984        } else
4985                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4986
4987        /* Set values in the private adapter struct */
4988        i = 0;
4989        netdev_for_each_mc_addr(ha, netdev) {
4990                if (i == NIC_MAX_MCAST_LIST)
4991                        break;
4992                memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4993        }
4994        adapter->multicast_addr_count = i;
4995
4996        /* Are the new flags different from the previous ones? If not, then no
4997         * action is required
4998         *
4999         * NOTE - This block will always update the multicast_list with the
5000         *        hardware, even if the addresses aren't the same.
5001         */
5002        if (packet_filter != adapter->packet_filter) {
5003                /* Call the device's filter function */
5004                et131x_set_packet_filter(adapter);
5005        }
5006        spin_unlock_irqrestore(&adapter->lock, flags);
5007}
5008
5009/**
5010 * et131x_tx - The handler to tx a packet on the device
5011 * @skb: data to be Tx'd
5012 * @netdev: device on which data is to be Tx'd
5013 *
5014 * Returns 0 on success, errno on failure (as defined in errno.h)
5015 */
5016static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5017{
5018        int status = 0;
5019        struct et131x_adapter *adapter = netdev_priv(netdev);
5020
5021        /* stop the queue if it's getting full */
5022        if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5023            !netif_queue_stopped(netdev))
5024                netif_stop_queue(netdev);
5025
5026        /* Save the timestamp for the TX timeout watchdog */
5027        netdev->trans_start = jiffies;
5028
5029        /* Call the device-specific data Tx routine */
5030        status = et131x_send_packets(skb, netdev);
5031
5032        /* Check status and manage the netif queue if necessary */
5033        if (status != 0) {
5034                if (status == -ENOMEM)
5035                        status = NETDEV_TX_BUSY;
5036                else
5037                        status = NETDEV_TX_OK;
5038        }
5039        return status;
5040}
5041
5042/**
5043 * et131x_tx_timeout - Timeout handler
5044 * @netdev: a pointer to a net_device struct representing the device
5045 *
5046 * The handler called when a Tx request times out. The timeout period is
5047 * specified by the 'tx_timeo" element in the net_device structure (see
5048 * et131x_alloc_device() to see how this value is set).
5049 */
5050static void et131x_tx_timeout(struct net_device *netdev)
5051{
5052        struct et131x_adapter *adapter = netdev_priv(netdev);
5053        struct tcb *tcb;
5054        unsigned long flags;
5055
5056        /* If the device is closed, ignore the timeout */
5057        if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5058                return;
5059
5060        /* Any nonrecoverable hardware error?
5061         * Checks adapter->flags for any failure in phy reading
5062         */
5063        if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5064                return;
5065
5066        /* Hardware failure? */
5067        if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5068                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5069                return;
5070        }
5071
5072        /* Is send stuck? */
5073        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5074
5075        tcb = adapter->tx_ring.send_head;
5076
5077        if (tcb != NULL) {
5078                tcb->count++;
5079
5080                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5081                        spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5082                                               flags);
5083
5084                        dev_warn(&adapter->pdev->dev,
5085                                "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5086                                tcb->index,
5087                                tcb->flags);
5088
5089                        adapter->net_stats.tx_errors++;
5090
5091                        /* perform reset of tx/rx */
5092                        et131x_disable_txrx(netdev);
5093                        et131x_enable_txrx(netdev);
5094                        return;
5095                }
5096        }
5097
5098        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5099}
5100
5101/**
5102 * et131x_change_mtu - The handler called to change the MTU for the device
5103 * @netdev: device whose MTU is to be changed
5104 * @new_mtu: the desired MTU
5105 *
5106 * Returns 0 on success, errno on failure (as defined in errno.h)
5107 */
5108static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5109{
5110        int result = 0;
5111        struct et131x_adapter *adapter = netdev_priv(netdev);
5112
5113        /* Make sure the requested MTU is valid */
5114        if (new_mtu < 64 || new_mtu > 9216)
5115                return -EINVAL;
5116
5117        et131x_disable_txrx(netdev);
5118        et131x_handle_send_interrupt(adapter);
5119        et131x_handle_recv_interrupt(adapter);
5120
5121        /* Set the new MTU */
5122        netdev->mtu = new_mtu;
5123
5124        /* Free Rx DMA memory */
5125        et131x_adapter_memory_free(adapter);
5126
5127        /* Set the config parameter for Jumbo Packet support */
5128        adapter->registry_jumbo_packet = new_mtu + 14;
5129        et131x_soft_reset(adapter);
5130
5131        /* Alloc and init Rx DMA memory */
5132        result = et131x_adapter_memory_alloc(adapter);
5133        if (result != 0) {
5134                dev_warn(&adapter->pdev->dev,
5135                        "Change MTU failed; couldn't re-alloc DMA memory\n");
5136                return result;
5137        }
5138
5139        et131x_init_send(adapter);
5140
5141        et131x_hwaddr_init(adapter);
5142        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5143
5144        /* Init the device with the new settings */
5145        et131x_adapter_setup(adapter);
5146
5147        et131x_enable_txrx(netdev);
5148
5149        return result;
5150}
5151
5152/**
5153 * et131x_set_mac_addr - handler to change the MAC address for the device
5154 * @netdev: device whose MAC is to be changed
5155 * @new_mac: the desired MAC address
5156 *
5157 * Returns 0 on success, errno on failure (as defined in errno.h)
5158 *
5159 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5160 */
5161static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5162{
5163        int result = 0;
5164        struct et131x_adapter *adapter = netdev_priv(netdev);
5165        struct sockaddr *address = new_mac;
5166
5167        /* begin blux */
5168
5169        if (adapter == NULL)
5170                return -ENODEV;
5171
5172        /* Make sure the requested MAC is valid */
5173        if (!is_valid_ether_addr(address->sa_data))
5174                return -EADDRNOTAVAIL;
5175
5176        et131x_disable_txrx(netdev);
5177        et131x_handle_send_interrupt(adapter);
5178        et131x_handle_recv_interrupt(adapter);
5179
5180        /* Set the new MAC */
5181        /* netdev->set_mac_address  = &new_mac; */
5182
5183        memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5184
5185        netdev_info(netdev, "Setting MAC address to %pM\n",
5186                    netdev->dev_addr);
5187
5188        /* Free Rx DMA memory */
5189        et131x_adapter_memory_free(adapter);
5190
5191        et131x_soft_reset(adapter);
5192
5193        /* Alloc and init Rx DMA memory */
5194        result = et131x_adapter_memory_alloc(adapter);
5195        if (result != 0) {
5196                dev_err(&adapter->pdev->dev,
5197                        "Change MAC failed; couldn't re-alloc DMA memory\n");
5198                return result;
5199        }
5200
5201        et131x_init_send(adapter);
5202
5203        et131x_hwaddr_init(adapter);
5204
5205        /* Init the device with the new settings */
5206        et131x_adapter_setup(adapter);
5207
5208        et131x_enable_txrx(netdev);
5209
5210        return result;
5211}
5212
5213static const struct net_device_ops et131x_netdev_ops = {
5214        .ndo_open               = et131x_open,
5215        .ndo_stop               = et131x_close,
5216        .ndo_start_xmit         = et131x_tx,
5217        .ndo_set_rx_mode        = et131x_multicast,
5218        .ndo_tx_timeout         = et131x_tx_timeout,
5219        .ndo_change_mtu         = et131x_change_mtu,
5220        .ndo_set_mac_address    = et131x_set_mac_addr,
5221        .ndo_validate_addr      = eth_validate_addr,
5222        .ndo_get_stats          = et131x_stats,
5223        .ndo_do_ioctl           = et131x_ioctl,
5224};
5225
5226/**
5227 * et131x_pci_setup - Perform device initialization
5228 * @pdev: a pointer to the device's pci_dev structure
5229 * @ent: this device's entry in the pci_device_id table
5230 *
5231 * Returns 0 on success, errno on failure (as defined in errno.h)
5232 *
5233 * Registered in the pci_driver structure, this function is called when the
5234 * PCI subsystem finds a new PCI device which matches the information
5235 * contained in the pci_device_id table. This routine is the equivalent to
5236 * a device insertion routine.
5237 */
5238static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5239                               const struct pci_device_id *ent)
5240{
5241        struct net_device *netdev;
5242        struct et131x_adapter *adapter;
5243        int rc;
5244        int ii;
5245
5246        rc = pci_enable_device(pdev);
5247        if (rc < 0) {
5248                dev_err(&pdev->dev, "pci_enable_device() failed\n");
5249                goto out;
5250        }
5251
5252        /* Perform some basic PCI checks */
5253        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5254                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5255                rc = -ENODEV;
5256                goto err_disable;
5257        }
5258
5259        rc = pci_request_regions(pdev, DRIVER_NAME);
5260        if (rc < 0) {
5261                dev_err(&pdev->dev, "Can't get PCI resources\n");
5262                goto err_disable;
5263        }
5264
5265        pci_set_master(pdev);
5266
5267        /* Check the DMA addressing support of this device */
5268        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5269                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5270                if (rc < 0) {
5271                        dev_err(&pdev->dev,
5272                          "Unable to obtain 64 bit DMA for consistent allocations\n");
5273                        goto err_release_res;
5274                }
5275        } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5276                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5277                if (rc < 0) {
5278                        dev_err(&pdev->dev,
5279                          "Unable to obtain 32 bit DMA for consistent allocations\n");
5280                        goto err_release_res;
5281                }
5282        } else {
5283                dev_err(&pdev->dev, "No usable DMA addressing method\n");
5284                rc = -EIO;
5285                goto err_release_res;
5286        }
5287
5288        /* Allocate netdev and private adapter structs */
5289        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5290        if (!netdev) {
5291                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5292                rc = -ENOMEM;
5293                goto err_release_res;
5294        }
5295
5296        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5297        netdev->netdev_ops     = &et131x_netdev_ops;
5298
5299        SET_NETDEV_DEV(netdev, &pdev->dev);
5300        SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
5301
5302        adapter = et131x_adapter_init(netdev, pdev);
5303
5304        rc = et131x_pci_init(adapter, pdev);
5305        if (rc < 0)
5306                goto err_free_dev;
5307
5308        /* Map the bus-relative registers to system virtual memory */
5309        adapter->regs = pci_ioremap_bar(pdev, 0);
5310        if (!adapter->regs) {
5311                dev_err(&pdev->dev, "Cannot map device registers\n");
5312                rc = -ENOMEM;
5313                goto err_free_dev;
5314        }
5315
5316        /* If Phy COMA mode was enabled when we went down, disable it here. */
5317        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5318
5319        /* Issue a global reset to the et1310 */
5320        et131x_soft_reset(adapter);
5321
5322        /* Disable all interrupts (paranoid) */
5323        et131x_disable_interrupts(adapter);
5324
5325        /* Allocate DMA memory */
5326        rc = et131x_adapter_memory_alloc(adapter);
5327        if (rc < 0) {
5328                dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5329                goto err_iounmap;
5330        }
5331
5332        /* Init send data structures */
5333        et131x_init_send(adapter);
5334
5335        /* Set up the task structure for the ISR's deferred handler */
5336        INIT_WORK(&adapter->task, et131x_isr_handler);
5337
5338        /* Copy address into the net_device struct */
5339        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5340
5341        /* Init variable for counting how long we do not have link status */
5342        adapter->boot_coma = 0;
5343        et1310_disable_phy_coma(adapter);
5344
5345        rc = -ENOMEM;
5346
5347        /* Setup the mii_bus struct */
5348        adapter->mii_bus = mdiobus_alloc();
5349        if (!adapter->mii_bus) {
5350                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5351                goto err_mem_free;
5352        }
5353
5354        adapter->mii_bus->name = "et131x_eth_mii";
5355        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5356                (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5357        adapter->mii_bus->priv = netdev;
5358        adapter->mii_bus->read = et131x_mdio_read;
5359        adapter->mii_bus->write = et131x_mdio_write;
5360        adapter->mii_bus->reset = et131x_mdio_reset;
5361        adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5362        if (!adapter->mii_bus->irq) {
5363                dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5364                goto err_mdio_free;
5365        }
5366
5367        for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5368                adapter->mii_bus->irq[ii] = PHY_POLL;
5369
5370        rc = mdiobus_register(adapter->mii_bus);
5371        if (rc < 0) {
5372                dev_err(&pdev->dev, "failed to register MII bus\n");
5373                goto err_mdio_free_irq;
5374        }
5375
5376        rc = et131x_mii_probe(netdev);
5377        if (rc < 0) {
5378                dev_err(&pdev->dev, "failed to probe MII bus\n");
5379                goto err_mdio_unregister;
5380        }
5381
5382        /* Setup et1310 as per the documentation */
5383        et131x_adapter_setup(adapter);
5384
5385        /* We can enable interrupts now
5386         *
5387         *  NOTE - Because registration of interrupt handler is done in the
5388         *         device's open(), defer enabling device interrupts to that
5389         *         point
5390         */
5391
5392        /* Register the net_device struct with the Linux network layer */
5393        rc = register_netdev(netdev);
5394        if (rc < 0) {
5395                dev_err(&pdev->dev, "register_netdev() failed\n");
5396                goto err_phy_disconnect;
5397        }
5398
5399        /* Register the net_device struct with the PCI subsystem. Save a copy
5400         * of the PCI config space for this device now that the device has
5401         * been initialized, just in case it needs to be quickly restored.
5402         */
5403        pci_set_drvdata(pdev, netdev);
5404out:
5405        return rc;
5406
5407err_phy_disconnect:
5408        phy_disconnect(adapter->phydev);
5409err_mdio_unregister:
5410        mdiobus_unregister(adapter->mii_bus);
5411err_mdio_free_irq:
5412        kfree(adapter->mii_bus->irq);
5413err_mdio_free:
5414        mdiobus_free(adapter->mii_bus);
5415err_mem_free:
5416        et131x_adapter_memory_free(adapter);
5417err_iounmap:
5418        iounmap(adapter->regs);
5419err_free_dev:
5420        pci_dev_put(pdev);
5421        free_netdev(netdev);
5422err_release_res:
5423        pci_release_regions(pdev);
5424err_disable:
5425        pci_disable_device(pdev);
5426        goto out;
5427}
5428
5429static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5430        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5431        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5432        {0,}
5433};
5434MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5435
5436static struct pci_driver et131x_driver = {
5437        .name           = DRIVER_NAME,
5438        .id_table       = et131x_pci_table,
5439        .probe          = et131x_pci_setup,
5440        .remove         = __devexit_p(et131x_pci_remove),
5441        .driver.pm      = ET131X_PM_OPS,
5442};
5443
5444module_pci_driver(et131x_driver);
5445