linux/drivers/tty/serial/ifx6x60.c
<<
>>
Prefs
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *                    Denis Joseph Barrow <d.barow@option.com>
   8 *                    Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o    The driver currently assumes a single device only. If you need to
  31 *      change this then look for saved_ifx_dev and add a device lookup
  32 * o    The driver is intended to be big-endian safe but has never been
  33 *      tested that way (no suitable hardware). There are a couple of FIXME
  34 *      notes by areas that may need addressing
  35 * o    Some of the GPIO naming/setup assumptions may need revisiting if
  36 *      you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
  63
  64#include "ifx6x60.h"
  65
  66#define IFX_SPI_MORE_MASK               0x10
  67#define IFX_SPI_MORE_BIT                12      /* bit position in u16 */
  68#define IFX_SPI_CTS_BIT                 13      /* bit position in u16 */
  69#define IFX_SPI_MODE                    SPI_MODE_1
  70#define IFX_SPI_TTY_ID                  0
  71#define IFX_SPI_TIMEOUT_SEC             2
  72#define IFX_SPI_HEADER_0                (-1)
  73#define IFX_SPI_HEADER_F                (-2)
  74
  75/* forward reference */
  76static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  77
  78/* local variables */
  79static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
  80static struct tty_driver *tty_drv;
  81static struct ifx_spi_device *saved_ifx_dev;
  82static struct lock_class_key ifx_spi_key;
  83
  84/* GPIO/GPE settings */
  85
  86/**
  87 *      mrdy_set_high           -       set MRDY GPIO
  88 *      @ifx: device we are controlling
  89 *
  90 */
  91static inline void mrdy_set_high(struct ifx_spi_device *ifx)
  92{
  93        gpio_set_value(ifx->gpio.mrdy, 1);
  94}
  95
  96/**
  97 *      mrdy_set_low            -       clear MRDY GPIO
  98 *      @ifx: device we are controlling
  99 *
 100 */
 101static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 102{
 103        gpio_set_value(ifx->gpio.mrdy, 0);
 104}
 105
 106/**
 107 *      ifx_spi_power_state_set
 108 *      @ifx_dev: our SPI device
 109 *      @val: bits to set
 110 *
 111 *      Set bit in power status and signal power system if status becomes non-0
 112 */
 113static void
 114ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 115{
 116        unsigned long flags;
 117
 118        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 119
 120        /*
 121         * if power status is already non-0, just update, else
 122         * tell power system
 123         */
 124        if (!ifx_dev->power_status)
 125                pm_runtime_get(&ifx_dev->spi_dev->dev);
 126        ifx_dev->power_status |= val;
 127
 128        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 129}
 130
 131/**
 132 *      ifx_spi_power_state_clear       -       clear power bit
 133 *      @ifx_dev: our SPI device
 134 *      @val: bits to clear
 135 *
 136 *      clear bit in power status and signal power system if status becomes 0
 137 */
 138static void
 139ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 140{
 141        unsigned long flags;
 142
 143        spin_lock_irqsave(&ifx_dev->power_lock, flags);
 144
 145        if (ifx_dev->power_status) {
 146                ifx_dev->power_status &= ~val;
 147                if (!ifx_dev->power_status)
 148                        pm_runtime_put(&ifx_dev->spi_dev->dev);
 149        }
 150
 151        spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 152}
 153
 154/**
 155 *      swap_buf
 156 *      @buf: our buffer
 157 *      @len : number of bytes (not words) in the buffer
 158 *      @end: end of buffer
 159 *
 160 *      Swap the contents of a buffer into big endian format
 161 */
 162static inline void swap_buf(u16 *buf, int len, void *end)
 163{
 164        int n;
 165
 166        len = ((len + 1) >> 1);
 167        if ((void *)&buf[len] > end) {
 168                pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
 169                       &buf[len], end);
 170                return;
 171        }
 172        for (n = 0; n < len; n++) {
 173                *buf = cpu_to_be16(*buf);
 174                buf++;
 175        }
 176}
 177
 178/**
 179 *      mrdy_assert             -       assert MRDY line
 180 *      @ifx_dev: our SPI device
 181 *
 182 *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 183 *      now.
 184 *
 185 *      FIXME: Can SRDY even go high as we are running this code ?
 186 */
 187static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 188{
 189        int val = gpio_get_value(ifx_dev->gpio.srdy);
 190        if (!val) {
 191                if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 192                                      &ifx_dev->flags)) {
 193                        ifx_dev->spi_timer.expires =
 194                                jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
 195                        add_timer(&ifx_dev->spi_timer);
 196
 197                }
 198        }
 199        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 200        mrdy_set_high(ifx_dev);
 201}
 202
 203/**
 204 *      ifx_spi_hangup          -       hang up an IFX device
 205 *      @ifx_dev: our SPI device
 206 *
 207 *      Hang up the tty attached to the IFX device if one is currently
 208 *      open. If not take no action
 209 */
 210static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
 211{
 212        struct tty_port *pport = &ifx_dev->tty_port;
 213        struct tty_struct *tty = tty_port_tty_get(pport);
 214        if (tty) {
 215                tty_hangup(tty);
 216                tty_kref_put(tty);
 217        }
 218}
 219
 220/**
 221 *      ifx_spi_timeout         -       SPI timeout
 222 *      @arg: our SPI device
 223 *
 224 *      The SPI has timed out: hang up the tty. Users will then see a hangup
 225 *      and error events.
 226 */
 227static void ifx_spi_timeout(unsigned long arg)
 228{
 229        struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 230
 231        dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 232        ifx_spi_ttyhangup(ifx_dev);
 233        mrdy_set_low(ifx_dev);
 234        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 235}
 236
 237/* char/tty operations */
 238
 239/**
 240 *      ifx_spi_tiocmget        -       get modem lines
 241 *      @tty: our tty device
 242 *      @filp: file handle issuing the request
 243 *
 244 *      Map the signal state into Linux modem flags and report the value
 245 *      in Linux terms
 246 */
 247static int ifx_spi_tiocmget(struct tty_struct *tty)
 248{
 249        unsigned int value;
 250        struct ifx_spi_device *ifx_dev = tty->driver_data;
 251
 252        value =
 253        (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 254        (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 255        (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 256        (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 257        (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 258        (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 259        return value;
 260}
 261
 262/**
 263 *      ifx_spi_tiocmset        -       set modem bits
 264 *      @tty: the tty structure
 265 *      @set: bits to set
 266 *      @clear: bits to clear
 267 *
 268 *      The IFX6x60 only supports DTR and RTS. Set them accordingly
 269 *      and flag that an update to the modem is needed.
 270 *
 271 *      FIXME: do we need to kick the tranfers when we do this ?
 272 */
 273static int ifx_spi_tiocmset(struct tty_struct *tty,
 274                            unsigned int set, unsigned int clear)
 275{
 276        struct ifx_spi_device *ifx_dev = tty->driver_data;
 277
 278        if (set & TIOCM_RTS)
 279                set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 280        if (set & TIOCM_DTR)
 281                set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 282        if (clear & TIOCM_RTS)
 283                clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 284        if (clear & TIOCM_DTR)
 285                clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 286
 287        set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 288        return 0;
 289}
 290
 291/**
 292 *      ifx_spi_open    -       called on tty open
 293 *      @tty: our tty device
 294 *      @filp: file handle being associated with the tty
 295 *
 296 *      Open the tty interface. We let the tty_port layer do all the work
 297 *      for us.
 298 *
 299 *      FIXME: Remove single device assumption and saved_ifx_dev
 300 */
 301static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 302{
 303        return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 304}
 305
 306/**
 307 *      ifx_spi_close   -       called when our tty closes
 308 *      @tty: the tty being closed
 309 *      @filp: the file handle being closed
 310 *
 311 *      Perform the close of the tty. We use the tty_port layer to do all
 312 *      our hard work.
 313 */
 314static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 315{
 316        struct ifx_spi_device *ifx_dev = tty->driver_data;
 317        tty_port_close(&ifx_dev->tty_port, tty, filp);
 318        /* FIXME: should we do an ifx_spi_reset here ? */
 319}
 320
 321/**
 322 *      ifx_decode_spi_header   -       decode received header
 323 *      @buffer: the received data
 324 *      @length: decoded length
 325 *      @more: decoded more flag
 326 *      @received_cts: status of cts we received
 327 *
 328 *      Note how received_cts is handled -- if header is all F it is left
 329 *      the same as it was, if header is all 0 it is set to 0 otherwise it is
 330 *      taken from the incoming header.
 331 *
 332 *      FIXME: endianness
 333 */
 334static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 335                        unsigned char *more, unsigned char *received_cts)
 336{
 337        u16 h1;
 338        u16 h2;
 339        u16 *in_buffer = (u16 *)buffer;
 340
 341        h1 = *in_buffer;
 342        h2 = *(in_buffer+1);
 343
 344        if (h1 == 0 && h2 == 0) {
 345                *received_cts = 0;
 346                return IFX_SPI_HEADER_0;
 347        } else if (h1 == 0xffff && h2 == 0xffff) {
 348                /* spi_slave_cts remains as it was */
 349                return IFX_SPI_HEADER_F;
 350        }
 351
 352        *length = h1 & 0xfff;   /* upper bits of byte are flags */
 353        *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 354        *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 355        return 0;
 356}
 357
 358/**
 359 *      ifx_setup_spi_header    -       set header fields
 360 *      @txbuffer: pointer to start of SPI buffer
 361 *      @tx_count: bytes
 362 *      @more: indicate if more to follow
 363 *
 364 *      Format up an SPI header for a transfer
 365 *
 366 *      FIXME: endianness?
 367 */
 368static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 369                                        unsigned char more)
 370{
 371        *(u16 *)(txbuffer) = tx_count;
 372        *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 373        txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 374}
 375
 376/**
 377 *      ifx_spi_wakeup_serial   -       SPI space made
 378 *      @port_data: our SPI device
 379 *
 380 *      We have emptied the FIFO enough that we want to get more data
 381 *      queued into it. Poke the line discipline via tty_wakeup so that
 382 *      it will feed us more bits
 383 */
 384static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
 385{
 386        struct tty_struct *tty;
 387
 388        tty = tty_port_tty_get(&ifx_dev->tty_port);
 389        if (!tty)
 390                return;
 391        tty_wakeup(tty);
 392        tty_kref_put(tty);
 393}
 394
 395/**
 396 *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
 397 *      @ifx_dev: our SPI device
 398 *
 399 *      The transmit buffr needs a header and various other bits of
 400 *      information followed by as much data as we can pull from the FIFO
 401 *      and transfer. This function formats up a suitable buffer in the
 402 *      ifx_dev->tx_buffer
 403 *
 404 *      FIXME: performance - should we wake the tty when the queue is half
 405 *                           empty ?
 406 */
 407static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 408{
 409        int temp_count;
 410        int queue_length;
 411        int tx_count;
 412        unsigned char *tx_buffer;
 413
 414        tx_buffer = ifx_dev->tx_buffer;
 415        memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
 416
 417        /* make room for required SPI header */
 418        tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 419        tx_count = IFX_SPI_HEADER_OVERHEAD;
 420
 421        /* clear to signal no more data if this turns out to be the
 422         * last buffer sent in a sequence */
 423        ifx_dev->spi_more = 0;
 424
 425        /* if modem cts is set, just send empty buffer */
 426        if (!ifx_dev->spi_slave_cts) {
 427                /* see if there's tx data */
 428                queue_length = kfifo_len(&ifx_dev->tx_fifo);
 429                if (queue_length != 0) {
 430                        /* data to mux -- see if there's room for it */
 431                        temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 432                        temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 433                                        tx_buffer, temp_count,
 434                                        &ifx_dev->fifo_lock);
 435
 436                        /* update buffer pointer and data count in message */
 437                        tx_buffer += temp_count;
 438                        tx_count += temp_count;
 439                        if (temp_count == queue_length)
 440                                /* poke port to get more data */
 441                                ifx_spi_wakeup_serial(ifx_dev);
 442                        else /* more data in port, use next SPI message */
 443                                ifx_dev->spi_more = 1;
 444                }
 445        }
 446        /* have data and info for header -- set up SPI header in buffer */
 447        /* spi header needs payload size, not entire buffer size */
 448        ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 449                                        tx_count-IFX_SPI_HEADER_OVERHEAD,
 450                                        ifx_dev->spi_more);
 451        /* swap actual data in the buffer */
 452        swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
 453                &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 454        return tx_count;
 455}
 456
 457/**
 458 *      ifx_spi_write           -       line discipline write
 459 *      @tty: our tty device
 460 *      @buf: pointer to buffer to write (kernel space)
 461 *      @count: size of buffer
 462 *
 463 *      Write the characters we have been given into the FIFO. If the device
 464 *      is not active then activate it, when the SRDY line is asserted back
 465 *      this will commence I/O
 466 */
 467static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 468                         int count)
 469{
 470        struct ifx_spi_device *ifx_dev = tty->driver_data;
 471        unsigned char *tmp_buf = (unsigned char *)buf;
 472        int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
 473                                   &ifx_dev->fifo_lock);
 474        mrdy_assert(ifx_dev);
 475        return tx_count;
 476}
 477
 478/**
 479 *      ifx_spi_chars_in_buffer -       line discipline helper
 480 *      @tty: our tty device
 481 *
 482 *      Report how much data we can accept before we drop bytes. As we use
 483 *      a simple FIFO this is nice and easy.
 484 */
 485static int ifx_spi_write_room(struct tty_struct *tty)
 486{
 487        struct ifx_spi_device *ifx_dev = tty->driver_data;
 488        return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 489}
 490
 491/**
 492 *      ifx_spi_chars_in_buffer -       line discipline helper
 493 *      @tty: our tty device
 494 *
 495 *      Report how many characters we have buffered. In our case this is the
 496 *      number of bytes sitting in our transmit FIFO.
 497 */
 498static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 499{
 500        struct ifx_spi_device *ifx_dev = tty->driver_data;
 501        return kfifo_len(&ifx_dev->tx_fifo);
 502}
 503
 504/**
 505 *      ifx_port_hangup
 506 *      @port: our tty port
 507 *
 508 *      tty port hang up. Called when tty_hangup processing is invoked either
 509 *      by loss of carrier, or by software (eg vhangup). Serialized against
 510 *      activate/shutdown by the tty layer.
 511 */
 512static void ifx_spi_hangup(struct tty_struct *tty)
 513{
 514        struct ifx_spi_device *ifx_dev = tty->driver_data;
 515        tty_port_hangup(&ifx_dev->tty_port);
 516}
 517
 518/**
 519 *      ifx_port_activate
 520 *      @port: our tty port
 521 *
 522 *      tty port activate method - called for first open. Serialized
 523 *      with hangup and shutdown by the tty layer.
 524 */
 525static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 526{
 527        struct ifx_spi_device *ifx_dev =
 528                container_of(port, struct ifx_spi_device, tty_port);
 529
 530        /* clear any old data; can't do this in 'close' */
 531        kfifo_reset(&ifx_dev->tx_fifo);
 532
 533        /* put port data into this tty */
 534        tty->driver_data = ifx_dev;
 535
 536        /* allows flip string push from int context */
 537        tty->low_latency = 1;
 538
 539        return 0;
 540}
 541
 542/**
 543 *      ifx_port_shutdown
 544 *      @port: our tty port
 545 *
 546 *      tty port shutdown method - called for last port close. Serialized
 547 *      with hangup and activate by the tty layer.
 548 */
 549static void ifx_port_shutdown(struct tty_port *port)
 550{
 551        struct ifx_spi_device *ifx_dev =
 552                container_of(port, struct ifx_spi_device, tty_port);
 553
 554        mrdy_set_low(ifx_dev);
 555        clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 556        tasklet_kill(&ifx_dev->io_work_tasklet);
 557}
 558
 559static const struct tty_port_operations ifx_tty_port_ops = {
 560        .activate = ifx_port_activate,
 561        .shutdown = ifx_port_shutdown,
 562};
 563
 564static const struct tty_operations ifx_spi_serial_ops = {
 565        .open = ifx_spi_open,
 566        .close = ifx_spi_close,
 567        .write = ifx_spi_write,
 568        .hangup = ifx_spi_hangup,
 569        .write_room = ifx_spi_write_room,
 570        .chars_in_buffer = ifx_spi_chars_in_buffer,
 571        .tiocmget = ifx_spi_tiocmget,
 572        .tiocmset = ifx_spi_tiocmset,
 573};
 574
 575/**
 576 *      ifx_spi_insert_fip_string       -       queue received data
 577 *      @ifx_ser: our SPI device
 578 *      @chars: buffer we have received
 579 *      @size: number of chars reeived
 580 *
 581 *      Queue bytes to the tty assuming the tty side is currently open. If
 582 *      not the discard the data.
 583 */
 584static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 585                                    unsigned char *chars, size_t size)
 586{
 587        struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
 588        if (!tty)
 589                return;
 590        tty_insert_flip_string(tty, chars, size);
 591        tty_flip_buffer_push(tty);
 592        tty_kref_put(tty);
 593}
 594
 595/**
 596 *      ifx_spi_complete        -       SPI transfer completed
 597 *      @ctx: our SPI device
 598 *
 599 *      An SPI transfer has completed. Process any received data and kick off
 600 *      any further transmits we can commence.
 601 */
 602static void ifx_spi_complete(void *ctx)
 603{
 604        struct ifx_spi_device *ifx_dev = ctx;
 605        struct tty_struct *tty;
 606        struct tty_ldisc *ldisc = NULL;
 607        int length;
 608        int actual_length;
 609        unsigned char more;
 610        unsigned char cts;
 611        int local_write_pending = 0;
 612        int queue_length;
 613        int srdy;
 614        int decode_result;
 615
 616        mrdy_set_low(ifx_dev);
 617
 618        if (!ifx_dev->spi_msg.status) {
 619                /* check header validity, get comm flags */
 620                swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 621                        &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 622                decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 623                                &length, &more, &cts);
 624                if (decode_result == IFX_SPI_HEADER_0) {
 625                        dev_dbg(&ifx_dev->spi_dev->dev,
 626                                "ignore input: invalid header 0");
 627                        ifx_dev->spi_slave_cts = 0;
 628                        goto complete_exit;
 629                } else if (decode_result == IFX_SPI_HEADER_F) {
 630                        dev_dbg(&ifx_dev->spi_dev->dev,
 631                                "ignore input: invalid header F");
 632                        goto complete_exit;
 633                }
 634
 635                ifx_dev->spi_slave_cts = cts;
 636
 637                actual_length = min((unsigned int)length,
 638                                        ifx_dev->spi_msg.actual_length);
 639                swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 640                         actual_length,
 641                         &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 642                ifx_spi_insert_flip_string(
 643                        ifx_dev,
 644                        ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 645                        (size_t)actual_length);
 646        } else {
 647                dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 648                       ifx_dev->spi_msg.status);
 649        }
 650
 651complete_exit:
 652        if (ifx_dev->write_pending) {
 653                ifx_dev->write_pending = 0;
 654                local_write_pending = 1;
 655        }
 656
 657        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 658
 659        queue_length = kfifo_len(&ifx_dev->tx_fifo);
 660        srdy = gpio_get_value(ifx_dev->gpio.srdy);
 661        if (!srdy)
 662                ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 663
 664        /* schedule output if there is more to do */
 665        if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 666                tasklet_schedule(&ifx_dev->io_work_tasklet);
 667        else {
 668                if (more || ifx_dev->spi_more || queue_length > 0 ||
 669                        local_write_pending) {
 670                        if (ifx_dev->spi_slave_cts) {
 671                                if (more)
 672                                        mrdy_assert(ifx_dev);
 673                        } else
 674                                mrdy_assert(ifx_dev);
 675                } else {
 676                        /*
 677                         * poke line discipline driver if any for more data
 678                         * may or may not get more data to write
 679                         * for now, say not busy
 680                         */
 681                        ifx_spi_power_state_clear(ifx_dev,
 682                                                  IFX_SPI_POWER_DATA_PENDING);
 683                        tty = tty_port_tty_get(&ifx_dev->tty_port);
 684                        if (tty) {
 685                                ldisc = tty_ldisc_ref(tty);
 686                                if (ldisc) {
 687                                        ldisc->ops->write_wakeup(tty);
 688                                        tty_ldisc_deref(ldisc);
 689                                }
 690                                tty_kref_put(tty);
 691                        }
 692                }
 693        }
 694}
 695
 696/**
 697 *      ifx_spio_io             -       I/O tasklet
 698 *      @data: our SPI device
 699 *
 700 *      Queue data for transmission if possible and then kick off the
 701 *      transfer.
 702 */
 703static void ifx_spi_io(unsigned long data)
 704{
 705        int retval;
 706        struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 707
 708        if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
 709                if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 710                        ifx_dev->gpio.unack_srdy_int_nb--;
 711
 712                ifx_spi_prepare_tx_buffer(ifx_dev);
 713
 714                spi_message_init(&ifx_dev->spi_msg);
 715                INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 716
 717                ifx_dev->spi_msg.context = ifx_dev;
 718                ifx_dev->spi_msg.complete = ifx_spi_complete;
 719
 720                /* set up our spi transfer */
 721                /* note len is BYTES, not transfers */
 722                ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 723                ifx_dev->spi_xfer.cs_change = 0;
 724                ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 725                /* ifx_dev->spi_xfer.speed_hz = 390625; */
 726                ifx_dev->spi_xfer.bits_per_word = spi_bpw;
 727
 728                ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 729                ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 730
 731                /*
 732                 * setup dma pointers
 733                 */
 734                if (ifx_dev->use_dma) {
 735                        ifx_dev->spi_msg.is_dma_mapped = 1;
 736                        ifx_dev->tx_dma = ifx_dev->tx_bus;
 737                        ifx_dev->rx_dma = ifx_dev->rx_bus;
 738                        ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 739                        ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 740                } else {
 741                        ifx_dev->spi_msg.is_dma_mapped = 0;
 742                        ifx_dev->tx_dma = (dma_addr_t)0;
 743                        ifx_dev->rx_dma = (dma_addr_t)0;
 744                        ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 745                        ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 746                }
 747
 748                spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 749
 750                /* Assert MRDY. This may have already been done by the write
 751                 * routine.
 752                 */
 753                mrdy_assert(ifx_dev);
 754
 755                retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 756                if (retval) {
 757                        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 758                                  &ifx_dev->flags);
 759                        tasklet_schedule(&ifx_dev->io_work_tasklet);
 760                        return;
 761                }
 762        } else
 763                ifx_dev->write_pending = 1;
 764}
 765
 766/**
 767 *      ifx_spi_free_port       -       free up the tty side
 768 *      @ifx_dev: IFX device going away
 769 *
 770 *      Unregister and free up a port when the device goes away
 771 */
 772static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 773{
 774        if (ifx_dev->tty_dev)
 775                tty_unregister_device(tty_drv, ifx_dev->minor);
 776        kfifo_free(&ifx_dev->tx_fifo);
 777}
 778
 779/**
 780 *      ifx_spi_create_port     -       create a new port
 781 *      @ifx_dev: our spi device
 782 *
 783 *      Allocate and initialise the tty port that goes with this interface
 784 *      and add it to the tty layer so that it can be opened.
 785 */
 786static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 787{
 788        int ret = 0;
 789        struct tty_port *pport = &ifx_dev->tty_port;
 790
 791        spin_lock_init(&ifx_dev->fifo_lock);
 792        lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 793                &ifx_spi_key, 0);
 794
 795        if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 796                ret = -ENOMEM;
 797                goto error_ret;
 798        }
 799
 800        tty_port_init(pport);
 801        pport->ops = &ifx_tty_port_ops;
 802        ifx_dev->minor = IFX_SPI_TTY_ID;
 803        ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
 804                                               &ifx_dev->spi_dev->dev);
 805        if (IS_ERR(ifx_dev->tty_dev)) {
 806                dev_dbg(&ifx_dev->spi_dev->dev,
 807                        "%s: registering tty device failed", __func__);
 808                ret = PTR_ERR(ifx_dev->tty_dev);
 809                goto error_ret;
 810        }
 811        return 0;
 812
 813error_ret:
 814        ifx_spi_free_port(ifx_dev);
 815        return ret;
 816}
 817
 818/**
 819 *      ifx_spi_handle_srdy             -       handle SRDY
 820 *      @ifx_dev: device asserting SRDY
 821 *
 822 *      Check our device state and see what we need to kick off when SRDY
 823 *      is asserted. This usually means killing the timer and firing off the
 824 *      I/O processing.
 825 */
 826static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 827{
 828        if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 829                del_timer_sync(&ifx_dev->spi_timer);
 830                clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 831        }
 832
 833        ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 834
 835        if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 836                tasklet_schedule(&ifx_dev->io_work_tasklet);
 837        else
 838                set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 839}
 840
 841/**
 842 *      ifx_spi_srdy_interrupt  -       SRDY asserted
 843 *      @irq: our IRQ number
 844 *      @dev: our ifx device
 845 *
 846 *      The modem asserted SRDY. Handle the srdy event
 847 */
 848static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 849{
 850        struct ifx_spi_device *ifx_dev = dev;
 851        ifx_dev->gpio.unack_srdy_int_nb++;
 852        ifx_spi_handle_srdy(ifx_dev);
 853        return IRQ_HANDLED;
 854}
 855
 856/**
 857 *      ifx_spi_reset_interrupt -       Modem has changed reset state
 858 *      @irq: interrupt number
 859 *      @dev: our device pointer
 860 *
 861 *      The modem has either entered or left reset state. Check the GPIO
 862 *      line to see which.
 863 *
 864 *      FIXME: review locking on MR_INPROGRESS versus
 865 *      parallel unsolicited reset/solicited reset
 866 */
 867static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 868{
 869        struct ifx_spi_device *ifx_dev = dev;
 870        int val = gpio_get_value(ifx_dev->gpio.reset_out);
 871        int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 872
 873        if (val == 0) {
 874                /* entered reset */
 875                set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 876                if (!solreset) {
 877                        /* unsolicited reset  */
 878                        ifx_spi_ttyhangup(ifx_dev);
 879                }
 880        } else {
 881                /* exited reset */
 882                clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 883                if (solreset) {
 884                        set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 885                        wake_up(&ifx_dev->mdm_reset_wait);
 886                }
 887        }
 888        return IRQ_HANDLED;
 889}
 890
 891/**
 892 *      ifx_spi_free_device - free device
 893 *      @ifx_dev: device to free
 894 *
 895 *      Free the IFX device
 896 */
 897static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 898{
 899        ifx_spi_free_port(ifx_dev);
 900        dma_free_coherent(&ifx_dev->spi_dev->dev,
 901                                IFX_SPI_TRANSFER_SIZE,
 902                                ifx_dev->tx_buffer,
 903                                ifx_dev->tx_bus);
 904        dma_free_coherent(&ifx_dev->spi_dev->dev,
 905                                IFX_SPI_TRANSFER_SIZE,
 906                                ifx_dev->rx_buffer,
 907                                ifx_dev->rx_bus);
 908}
 909
 910/**
 911 *      ifx_spi_reset   -       reset modem
 912 *      @ifx_dev: modem to reset
 913 *
 914 *      Perform a reset on the modem
 915 */
 916static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 917{
 918        int ret;
 919        /*
 920         * set up modem power, reset
 921         *
 922         * delays are required on some platforms for the modem
 923         * to reset properly
 924         */
 925        set_bit(MR_START, &ifx_dev->mdm_reset_state);
 926        gpio_set_value(ifx_dev->gpio.po, 0);
 927        gpio_set_value(ifx_dev->gpio.reset, 0);
 928        msleep(25);
 929        gpio_set_value(ifx_dev->gpio.reset, 1);
 930        msleep(1);
 931        gpio_set_value(ifx_dev->gpio.po, 1);
 932        msleep(1);
 933        gpio_set_value(ifx_dev->gpio.po, 0);
 934        ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 935                                 test_bit(MR_COMPLETE,
 936                                          &ifx_dev->mdm_reset_state),
 937                                 IFX_RESET_TIMEOUT);
 938        if (!ret)
 939                dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 940                         ifx_dev->mdm_reset_state);
 941
 942        ifx_dev->mdm_reset_state = 0;
 943        return ret;
 944}
 945
 946/**
 947 *      ifx_spi_spi_probe       -       probe callback
 948 *      @spi: our possible matching SPI device
 949 *
 950 *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
 951 *      GPIO setup.
 952 *
 953 *      FIXME:
 954 *      -       Support for multiple devices
 955 *      -       Split out MID specific GPIO handling eventually
 956 */
 957
 958static int ifx_spi_spi_probe(struct spi_device *spi)
 959{
 960        int ret;
 961        int srdy;
 962        struct ifx_modem_platform_data *pl_data;
 963        struct ifx_spi_device *ifx_dev;
 964
 965        if (saved_ifx_dev) {
 966                dev_dbg(&spi->dev, "ignoring subsequent detection");
 967                return -ENODEV;
 968        }
 969
 970        pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
 971        if (!pl_data) {
 972                dev_err(&spi->dev, "missing platform data!");
 973                return -ENODEV;
 974        }
 975
 976        /* initialize structure to hold our device variables */
 977        ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
 978        if (!ifx_dev) {
 979                dev_err(&spi->dev, "spi device allocation failed");
 980                return -ENOMEM;
 981        }
 982        saved_ifx_dev = ifx_dev;
 983        ifx_dev->spi_dev = spi;
 984        clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 985        spin_lock_init(&ifx_dev->write_lock);
 986        spin_lock_init(&ifx_dev->power_lock);
 987        ifx_dev->power_status = 0;
 988        init_timer(&ifx_dev->spi_timer);
 989        ifx_dev->spi_timer.function = ifx_spi_timeout;
 990        ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
 991        ifx_dev->modem = pl_data->modem_type;
 992        ifx_dev->use_dma = pl_data->use_dma;
 993        ifx_dev->max_hz = pl_data->max_hz;
 994        /* initialize spi mode, etc */
 995        spi->max_speed_hz = ifx_dev->max_hz;
 996        spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
 997        spi->bits_per_word = spi_bpw;
 998        ret = spi_setup(spi);
 999        if (ret) {
1000                dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001                return -ENODEV;
1002        }
1003
1004        /* ensure SPI protocol flags are initialized to enable transfer */
1005        ifx_dev->spi_more = 0;
1006        ifx_dev->spi_slave_cts = 0;
1007
1008        /*initialize transfer and dma buffers */
1009        ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010                                IFX_SPI_TRANSFER_SIZE,
1011                                &ifx_dev->tx_bus,
1012                                GFP_KERNEL);
1013        if (!ifx_dev->tx_buffer) {
1014                dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015                ret = -ENOMEM;
1016                goto error_ret;
1017        }
1018        ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019                                IFX_SPI_TRANSFER_SIZE,
1020                                &ifx_dev->rx_bus,
1021                                GFP_KERNEL);
1022        if (!ifx_dev->rx_buffer) {
1023                dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024                ret = -ENOMEM;
1025                goto error_ret;
1026        }
1027
1028        /* initialize waitq for modem reset */
1029        init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031        spi_set_drvdata(spi, ifx_dev);
1032        tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033                                                (unsigned long)ifx_dev);
1034
1035        set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037        /* create our tty port */
1038        ret = ifx_spi_create_port(ifx_dev);
1039        if (ret != 0) {
1040                dev_err(&spi->dev, "create default tty port failed");
1041                goto error_ret;
1042        }
1043
1044        ifx_dev->gpio.reset = pl_data->rst_pmu;
1045        ifx_dev->gpio.po = pl_data->pwr_on;
1046        ifx_dev->gpio.mrdy = pl_data->mrdy;
1047        ifx_dev->gpio.srdy = pl_data->srdy;
1048        ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050        dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051                 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052                 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054        /* Configure gpios */
1055        ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056        if (ret < 0) {
1057                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058                        ifx_dev->gpio.reset);
1059                goto error_ret;
1060        }
1061        ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062        ret += gpio_export(ifx_dev->gpio.reset, 1);
1063        if (ret) {
1064                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065                        ifx_dev->gpio.reset);
1066                ret = -EBUSY;
1067                goto error_ret2;
1068        }
1069
1070        ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071        ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072        ret += gpio_export(ifx_dev->gpio.po, 1);
1073        if (ret) {
1074                dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075                        ifx_dev->gpio.po);
1076                ret = -EBUSY;
1077                goto error_ret3;
1078        }
1079
1080        ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081        if (ret < 0) {
1082                dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083                        ifx_dev->gpio.mrdy);
1084                goto error_ret3;
1085        }
1086        ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087        ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088        if (ret) {
1089                dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090                        ifx_dev->gpio.mrdy);
1091                ret = -EBUSY;
1092                goto error_ret4;
1093        }
1094
1095        ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096        if (ret < 0) {
1097                dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098                        ifx_dev->gpio.srdy);
1099                ret = -EBUSY;
1100                goto error_ret4;
1101        }
1102        ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103        ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104        if (ret) {
1105                dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106                        ifx_dev->gpio.srdy);
1107                ret = -EBUSY;
1108                goto error_ret5;
1109        }
1110
1111        ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112        if (ret < 0) {
1113                dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114                        ifx_dev->gpio.reset_out);
1115                goto error_ret5;
1116        }
1117        ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118        ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119        if (ret) {
1120                dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121                        ifx_dev->gpio.reset_out);
1122                ret = -EBUSY;
1123                goto error_ret6;
1124        }
1125
1126        ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127                          ifx_spi_reset_interrupt,
1128                          IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129                (void *)ifx_dev);
1130        if (ret) {
1131                dev_err(&spi->dev, "Unable to get irq %x\n",
1132                        gpio_to_irq(ifx_dev->gpio.reset_out));
1133                goto error_ret6;
1134        }
1135
1136        ret = ifx_spi_reset(ifx_dev);
1137
1138        ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139                          ifx_spi_srdy_interrupt,
1140                          IRQF_TRIGGER_RISING, DRVNAME,
1141                          (void *)ifx_dev);
1142        if (ret) {
1143                dev_err(&spi->dev, "Unable to get irq %x",
1144                        gpio_to_irq(ifx_dev->gpio.srdy));
1145                goto error_ret7;
1146        }
1147
1148        /* set pm runtime power state and register with power system */
1149        pm_runtime_set_active(&spi->dev);
1150        pm_runtime_enable(&spi->dev);
1151
1152        /* handle case that modem is already signaling SRDY */
1153        /* no outgoing tty open at this point, this just satisfies the
1154         * modem's read and should reset communication properly
1155         */
1156        srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158        if (srdy) {
1159                mrdy_assert(ifx_dev);
1160                ifx_spi_handle_srdy(ifx_dev);
1161        } else
1162                mrdy_set_low(ifx_dev);
1163        return 0;
1164
1165error_ret7:
1166        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167error_ret6:
1168        gpio_free(ifx_dev->gpio.srdy);
1169error_ret5:
1170        gpio_free(ifx_dev->gpio.mrdy);
1171error_ret4:
1172        gpio_free(ifx_dev->gpio.reset);
1173error_ret3:
1174        gpio_free(ifx_dev->gpio.po);
1175error_ret2:
1176        gpio_free(ifx_dev->gpio.reset_out);
1177error_ret:
1178        ifx_spi_free_device(ifx_dev);
1179        saved_ifx_dev = NULL;
1180        return ret;
1181}
1182
1183/**
1184 *      ifx_spi_spi_remove      -       SPI device was removed
1185 *      @spi: SPI device
1186 *
1187 *      FIXME: We should be shutting the device down here not in
1188 *      the module unload path.
1189 */
1190
1191static int ifx_spi_spi_remove(struct spi_device *spi)
1192{
1193        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194        /* stop activity */
1195        tasklet_kill(&ifx_dev->io_work_tasklet);
1196        /* free irq */
1197        free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198        free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200        gpio_free(ifx_dev->gpio.srdy);
1201        gpio_free(ifx_dev->gpio.mrdy);
1202        gpio_free(ifx_dev->gpio.reset);
1203        gpio_free(ifx_dev->gpio.po);
1204        gpio_free(ifx_dev->gpio.reset_out);
1205
1206        /* free allocations */
1207        ifx_spi_free_device(ifx_dev);
1208
1209        saved_ifx_dev = NULL;
1210        return 0;
1211}
1212
1213/**
1214 *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1215 *      @spi: SPI device
1216 *
1217 *      No action needs to be taken here
1218 */
1219
1220static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221{
1222}
1223
1224/*
1225 * various suspends and resumes have nothing to do
1226 * no hardware to save state for
1227 */
1228
1229/**
1230 *      ifx_spi_spi_suspend     -       suspend SPI on system suspend
1231 *      @dev: device being suspended
1232 *
1233 *      Suspend the SPI side. No action needed on Intel MID platforms, may
1234 *      need extending for other systems.
1235 */
1236static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237{
1238        return 0;
1239}
1240
1241/**
1242 *      ifx_spi_spi_resume      -       resume SPI side on system resume
1243 *      @dev: device being suspended
1244 *
1245 *      Suspend the SPI side. No action needed on Intel MID platforms, may
1246 *      need extending for other systems.
1247 */
1248static int ifx_spi_spi_resume(struct spi_device *spi)
1249{
1250        return 0;
1251}
1252
1253/**
1254 *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1255 *      @dev: device being suspended
1256 *
1257 *      Suspend the modem. No action needed on Intel MID platforms, may
1258 *      need extending for other systems.
1259 */
1260static int ifx_spi_pm_suspend(struct device *dev)
1261{
1262        return 0;
1263}
1264
1265/**
1266 *      ifx_spi_pm_resume       -       resume modem on system resume
1267 *      @dev: device being suspended
1268 *
1269 *      Allow the modem to resume. No action needed.
1270 *
1271 *      FIXME: do we need to reset anything here ?
1272 */
1273static int ifx_spi_pm_resume(struct device *dev)
1274{
1275        return 0;
1276}
1277
1278/**
1279 *      ifx_spi_pm_runtime_resume       -       suspend modem
1280 *      @dev: device being suspended
1281 *
1282 *      Allow the modem to resume. No action needed.
1283 */
1284static int ifx_spi_pm_runtime_resume(struct device *dev)
1285{
1286        return 0;
1287}
1288
1289/**
1290 *      ifx_spi_pm_runtime_suspend      -       suspend modem
1291 *      @dev: device being suspended
1292 *
1293 *      Allow the modem to suspend and thus suspend to continue up the
1294 *      device tree.
1295 */
1296static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297{
1298        return 0;
1299}
1300
1301/**
1302 *      ifx_spi_pm_runtime_idle         -       check if modem idle
1303 *      @dev: our device
1304 *
1305 *      Check conditions and queue runtime suspend if idle.
1306 */
1307static int ifx_spi_pm_runtime_idle(struct device *dev)
1308{
1309        struct spi_device *spi = to_spi_device(dev);
1310        struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312        if (!ifx_dev->power_status)
1313                pm_runtime_suspend(dev);
1314
1315        return 0;
1316}
1317
1318static const struct dev_pm_ops ifx_spi_pm = {
1319        .resume = ifx_spi_pm_resume,
1320        .suspend = ifx_spi_pm_suspend,
1321        .runtime_resume = ifx_spi_pm_runtime_resume,
1322        .runtime_suspend = ifx_spi_pm_runtime_suspend,
1323        .runtime_idle = ifx_spi_pm_runtime_idle
1324};
1325
1326static const struct spi_device_id ifx_id_table[] = {
1327        {"ifx6160", 0},
1328        {"ifx6260", 0},
1329        { }
1330};
1331MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333/* spi operations */
1334static struct spi_driver ifx_spi_driver = {
1335        .driver = {
1336                .name = DRVNAME,
1337                .pm = &ifx_spi_pm,
1338                .owner = THIS_MODULE},
1339        .probe = ifx_spi_spi_probe,
1340        .shutdown = ifx_spi_spi_shutdown,
1341        .remove = __devexit_p(ifx_spi_spi_remove),
1342        .suspend = ifx_spi_spi_suspend,
1343        .resume = ifx_spi_spi_resume,
1344        .id_table = ifx_id_table
1345};
1346
1347/**
1348 *      ifx_spi_exit    -       module exit
1349 *
1350 *      Unload the module.
1351 */
1352
1353static void __exit ifx_spi_exit(void)
1354{
1355        /* unregister */
1356        tty_unregister_driver(tty_drv);
1357        spi_unregister_driver((void *)&ifx_spi_driver);
1358}
1359
1360/**
1361 *      ifx_spi_init            -       module entry point
1362 *
1363 *      Initialise the SPI and tty interfaces for the IFX SPI driver
1364 *      We need to initialize upper-edge spi driver after the tty
1365 *      driver because otherwise the spi probe will race
1366 */
1367
1368static int __init ifx_spi_init(void)
1369{
1370        int result;
1371
1372        tty_drv = alloc_tty_driver(1);
1373        if (!tty_drv) {
1374                pr_err("%s: alloc_tty_driver failed", DRVNAME);
1375                return -ENOMEM;
1376        }
1377
1378        tty_drv->driver_name = DRVNAME;
1379        tty_drv->name = TTYNAME;
1380        tty_drv->minor_start = IFX_SPI_TTY_ID;
1381        tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1382        tty_drv->subtype = SERIAL_TYPE_NORMAL;
1383        tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1384        tty_drv->init_termios = tty_std_termios;
1385
1386        tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1387
1388        result = tty_register_driver(tty_drv);
1389        if (result) {
1390                pr_err("%s: tty_register_driver failed(%d)",
1391                        DRVNAME, result);
1392                put_tty_driver(tty_drv);
1393                return result;
1394        }
1395
1396        result = spi_register_driver((void *)&ifx_spi_driver);
1397        if (result) {
1398                pr_err("%s: spi_register_driver failed(%d)",
1399                        DRVNAME, result);
1400                tty_unregister_driver(tty_drv);
1401        }
1402        return result;
1403}
1404
1405module_init(ifx_spi_init);
1406module_exit(ifx_spi_exit);
1407
1408MODULE_AUTHOR("Intel");
1409MODULE_DESCRIPTION("IFX6x60 spi driver");
1410MODULE_LICENSE("GPL");
1411MODULE_INFO(Version, "0.1-IFX6x60");
1412