linux/drivers/usb/core/message.c
<<
>>
Prefs
   1/*
   2 * message.c - synchronous message handling
   3 */
   4
   5#include <linux/pci.h>  /* for scatterlist macros */
   6#include <linux/usb.h>
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/timer.h>
  12#include <linux/ctype.h>
  13#include <linux/nls.h>
  14#include <linux/device.h>
  15#include <linux/scatterlist.h>
  16#include <linux/usb/quirks.h>
  17#include <linux/usb/hcd.h>      /* for usbcore internals */
  18#include <asm/byteorder.h>
  19
  20#include "usb.h"
  21
  22static void cancel_async_set_config(struct usb_device *udev);
  23
  24struct api_context {
  25        struct completion       done;
  26        int                     status;
  27};
  28
  29static void usb_api_blocking_completion(struct urb *urb)
  30{
  31        struct api_context *ctx = urb->context;
  32
  33        ctx->status = urb->status;
  34        complete(&ctx->done);
  35}
  36
  37
  38/*
  39 * Starts urb and waits for completion or timeout. Note that this call
  40 * is NOT interruptible. Many device driver i/o requests should be
  41 * interruptible and therefore these drivers should implement their
  42 * own interruptible routines.
  43 */
  44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  45{
  46        struct api_context ctx;
  47        unsigned long expire;
  48        int retval;
  49
  50        init_completion(&ctx.done);
  51        urb->context = &ctx;
  52        urb->actual_length = 0;
  53        retval = usb_submit_urb(urb, GFP_NOIO);
  54        if (unlikely(retval))
  55                goto out;
  56
  57        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  58        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  59                usb_kill_urb(urb);
  60                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  61
  62                dev_dbg(&urb->dev->dev,
  63                        "%s timed out on ep%d%s len=%u/%u\n",
  64                        current->comm,
  65                        usb_endpoint_num(&urb->ep->desc),
  66                        usb_urb_dir_in(urb) ? "in" : "out",
  67                        urb->actual_length,
  68                        urb->transfer_buffer_length);
  69        } else
  70                retval = ctx.status;
  71out:
  72        if (actual_length)
  73                *actual_length = urb->actual_length;
  74
  75        usb_free_urb(urb);
  76        return retval;
  77}
  78
  79/*-------------------------------------------------------------------*/
  80/* returns status (negative) or length (positive) */
  81static int usb_internal_control_msg(struct usb_device *usb_dev,
  82                                    unsigned int pipe,
  83                                    struct usb_ctrlrequest *cmd,
  84                                    void *data, int len, int timeout)
  85{
  86        struct urb *urb;
  87        int retv;
  88        int length;
  89
  90        urb = usb_alloc_urb(0, GFP_NOIO);
  91        if (!urb)
  92                return -ENOMEM;
  93
  94        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  95                             len, usb_api_blocking_completion, NULL);
  96
  97        retv = usb_start_wait_urb(urb, timeout, &length);
  98        if (retv < 0)
  99                return retv;
 100        else
 101                return length;
 102}
 103
 104/**
 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 106 * @dev: pointer to the usb device to send the message to
 107 * @pipe: endpoint "pipe" to send the message to
 108 * @request: USB message request value
 109 * @requesttype: USB message request type value
 110 * @value: USB message value
 111 * @index: USB message index value
 112 * @data: pointer to the data to send
 113 * @size: length in bytes of the data to send
 114 * @timeout: time in msecs to wait for the message to complete before timing
 115 *      out (if 0 the wait is forever)
 116 *
 117 * Context: !in_interrupt ()
 118 *
 119 * This function sends a simple control message to a specified endpoint and
 120 * waits for the message to complete, or timeout.
 121 *
 122 * If successful, it returns the number of bytes transferred, otherwise a
 123 * negative error number.
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 */
 132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 133                    __u8 requesttype, __u16 value, __u16 index, void *data,
 134                    __u16 size, int timeout)
 135{
 136        struct usb_ctrlrequest *dr;
 137        int ret;
 138
 139        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 140        if (!dr)
 141                return -ENOMEM;
 142
 143        dr->bRequestType = requesttype;
 144        dr->bRequest = request;
 145        dr->wValue = cpu_to_le16(value);
 146        dr->wIndex = cpu_to_le16(index);
 147        dr->wLength = cpu_to_le16(size);
 148
 149        /* dbg("usb_control_msg"); */
 150
 151        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 152
 153        kfree(dr);
 154
 155        return ret;
 156}
 157EXPORT_SYMBOL_GPL(usb_control_msg);
 158
 159/**
 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 161 * @usb_dev: pointer to the usb device to send the message to
 162 * @pipe: endpoint "pipe" to send the message to
 163 * @data: pointer to the data to send
 164 * @len: length in bytes of the data to send
 165 * @actual_length: pointer to a location to put the actual length transferred
 166 *      in bytes
 167 * @timeout: time in msecs to wait for the message to complete before
 168 *      timing out (if 0 the wait is forever)
 169 *
 170 * Context: !in_interrupt ()
 171 *
 172 * This function sends a simple interrupt message to a specified endpoint and
 173 * waits for the message to complete, or timeout.
 174 *
 175 * If successful, it returns 0, otherwise a negative error number.  The number
 176 * of actual bytes transferred will be stored in the actual_length paramater.
 177 *
 178 * Don't use this function from within an interrupt context, like a bottom half
 179 * handler.  If you need an asynchronous message, or need to send a message
 180 * from within interrupt context, use usb_submit_urb() If a thread in your
 181 * driver uses this call, make sure your disconnect() method can wait for it to
 182 * complete.  Since you don't have a handle on the URB used, you can't cancel
 183 * the request.
 184 */
 185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 186                      void *data, int len, int *actual_length, int timeout)
 187{
 188        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 189}
 190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 191
 192/**
 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 194 * @usb_dev: pointer to the usb device to send the message to
 195 * @pipe: endpoint "pipe" to send the message to
 196 * @data: pointer to the data to send
 197 * @len: length in bytes of the data to send
 198 * @actual_length: pointer to a location to put the actual length transferred
 199 *      in bytes
 200 * @timeout: time in msecs to wait for the message to complete before
 201 *      timing out (if 0 the wait is forever)
 202 *
 203 * Context: !in_interrupt ()
 204 *
 205 * This function sends a simple bulk message to a specified endpoint
 206 * and waits for the message to complete, or timeout.
 207 *
 208 * If successful, it returns 0, otherwise a negative error number.  The number
 209 * of actual bytes transferred will be stored in the actual_length paramater.
 210 *
 211 * Don't use this function from within an interrupt context, like a bottom half
 212 * handler.  If you need an asynchronous message, or need to send a message
 213 * from within interrupt context, use usb_submit_urb() If a thread in your
 214 * driver uses this call, make sure your disconnect() method can wait for it to
 215 * complete.  Since you don't have a handle on the URB used, you can't cancel
 216 * the request.
 217 *
 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 219 * users are forced to abuse this routine by using it to submit URBs for
 220 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 221 * (with the default interval) if the target is an interrupt endpoint.
 222 */
 223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 224                 void *data, int len, int *actual_length, int timeout)
 225{
 226        struct urb *urb;
 227        struct usb_host_endpoint *ep;
 228
 229        ep = usb_pipe_endpoint(usb_dev, pipe);
 230        if (!ep || len < 0)
 231                return -EINVAL;
 232
 233        urb = usb_alloc_urb(0, GFP_KERNEL);
 234        if (!urb)
 235                return -ENOMEM;
 236
 237        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 238                        USB_ENDPOINT_XFER_INT) {
 239                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 240                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 241                                usb_api_blocking_completion, NULL,
 242                                ep->desc.bInterval);
 243        } else
 244                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 245                                usb_api_blocking_completion, NULL);
 246
 247        return usb_start_wait_urb(urb, timeout, actual_length);
 248}
 249EXPORT_SYMBOL_GPL(usb_bulk_msg);
 250
 251/*-------------------------------------------------------------------*/
 252
 253static void sg_clean(struct usb_sg_request *io)
 254{
 255        if (io->urbs) {
 256                while (io->entries--)
 257                        usb_free_urb(io->urbs [io->entries]);
 258                kfree(io->urbs);
 259                io->urbs = NULL;
 260        }
 261        io->dev = NULL;
 262}
 263
 264static void sg_complete(struct urb *urb)
 265{
 266        struct usb_sg_request *io = urb->context;
 267        int status = urb->status;
 268
 269        spin_lock(&io->lock);
 270
 271        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 272         * reports, until the completion callback (this!) returns.  That lets
 273         * device driver code (like this routine) unlink queued urbs first,
 274         * if it needs to, since the HC won't work on them at all.  So it's
 275         * not possible for page N+1 to overwrite page N, and so on.
 276         *
 277         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 278         * complete before the HCD can get requests away from hardware,
 279         * though never during cleanup after a hard fault.
 280         */
 281        if (io->status
 282                        && (io->status != -ECONNRESET
 283                                || status != -ECONNRESET)
 284                        && urb->actual_length) {
 285                dev_err(io->dev->bus->controller,
 286                        "dev %s ep%d%s scatterlist error %d/%d\n",
 287                        io->dev->devpath,
 288                        usb_endpoint_num(&urb->ep->desc),
 289                        usb_urb_dir_in(urb) ? "in" : "out",
 290                        status, io->status);
 291                /* BUG (); */
 292        }
 293
 294        if (io->status == 0 && status && status != -ECONNRESET) {
 295                int i, found, retval;
 296
 297                io->status = status;
 298
 299                /* the previous urbs, and this one, completed already.
 300                 * unlink pending urbs so they won't rx/tx bad data.
 301                 * careful: unlink can sometimes be synchronous...
 302                 */
 303                spin_unlock(&io->lock);
 304                for (i = 0, found = 0; i < io->entries; i++) {
 305                        if (!io->urbs [i] || !io->urbs [i]->dev)
 306                                continue;
 307                        if (found) {
 308                                retval = usb_unlink_urb(io->urbs [i]);
 309                                if (retval != -EINPROGRESS &&
 310                                    retval != -ENODEV &&
 311                                    retval != -EBUSY &&
 312                                    retval != -EIDRM)
 313                                        dev_err(&io->dev->dev,
 314                                                "%s, unlink --> %d\n",
 315                                                __func__, retval);
 316                        } else if (urb == io->urbs [i])
 317                                found = 1;
 318                }
 319                spin_lock(&io->lock);
 320        }
 321
 322        /* on the last completion, signal usb_sg_wait() */
 323        io->bytes += urb->actual_length;
 324        io->count--;
 325        if (!io->count)
 326                complete(&io->complete);
 327
 328        spin_unlock(&io->lock);
 329}
 330
 331
 332/**
 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 334 * @io: request block being initialized.  until usb_sg_wait() returns,
 335 *      treat this as a pointer to an opaque block of memory,
 336 * @dev: the usb device that will send or receive the data
 337 * @pipe: endpoint "pipe" used to transfer the data
 338 * @period: polling rate for interrupt endpoints, in frames or
 339 *      (for high speed endpoints) microframes; ignored for bulk
 340 * @sg: scatterlist entries
 341 * @nents: how many entries in the scatterlist
 342 * @length: how many bytes to send from the scatterlist, or zero to
 343 *      send every byte identified in the list.
 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 345 *
 346 * Returns zero for success, else a negative errno value.  This initializes a
 347 * scatter/gather request, allocating resources such as I/O mappings and urb
 348 * memory (except maybe memory used by USB controller drivers).
 349 *
 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 351 * complete (or to be canceled) and then cleans up all resources allocated by
 352 * usb_sg_init().
 353 *
 354 * The request may be canceled with usb_sg_cancel(), either before or after
 355 * usb_sg_wait() is called.
 356 */
 357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 358                unsigned pipe, unsigned period, struct scatterlist *sg,
 359                int nents, size_t length, gfp_t mem_flags)
 360{
 361        int i;
 362        int urb_flags;
 363        int use_sg;
 364
 365        if (!io || !dev || !sg
 366                        || usb_pipecontrol(pipe)
 367                        || usb_pipeisoc(pipe)
 368                        || nents <= 0)
 369                return -EINVAL;
 370
 371        spin_lock_init(&io->lock);
 372        io->dev = dev;
 373        io->pipe = pipe;
 374
 375        if (dev->bus->sg_tablesize > 0) {
 376                use_sg = true;
 377                io->entries = 1;
 378        } else {
 379                use_sg = false;
 380                io->entries = nents;
 381        }
 382
 383        /* initialize all the urbs we'll use */
 384        io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
 385        if (!io->urbs)
 386                goto nomem;
 387
 388        urb_flags = URB_NO_INTERRUPT;
 389        if (usb_pipein(pipe))
 390                urb_flags |= URB_SHORT_NOT_OK;
 391
 392        for_each_sg(sg, sg, io->entries, i) {
 393                struct urb *urb;
 394                unsigned len;
 395
 396                urb = usb_alloc_urb(0, mem_flags);
 397                if (!urb) {
 398                        io->entries = i;
 399                        goto nomem;
 400                }
 401                io->urbs[i] = urb;
 402
 403                urb->dev = NULL;
 404                urb->pipe = pipe;
 405                urb->interval = period;
 406                urb->transfer_flags = urb_flags;
 407                urb->complete = sg_complete;
 408                urb->context = io;
 409                urb->sg = sg;
 410
 411                if (use_sg) {
 412                        /* There is no single transfer buffer */
 413                        urb->transfer_buffer = NULL;
 414                        urb->num_sgs = nents;
 415
 416                        /* A length of zero means transfer the whole sg list */
 417                        len = length;
 418                        if (len == 0) {
 419                                struct scatterlist      *sg2;
 420                                int                     j;
 421
 422                                for_each_sg(sg, sg2, nents, j)
 423                                        len += sg2->length;
 424                        }
 425                } else {
 426                        /*
 427                         * Some systems can't use DMA; they use PIO instead.
 428                         * For their sakes, transfer_buffer is set whenever
 429                         * possible.
 430                         */
 431                        if (!PageHighMem(sg_page(sg)))
 432                                urb->transfer_buffer = sg_virt(sg);
 433                        else
 434                                urb->transfer_buffer = NULL;
 435
 436                        len = sg->length;
 437                        if (length) {
 438                                len = min_t(size_t, len, length);
 439                                length -= len;
 440                                if (length == 0)
 441                                        io->entries = i + 1;
 442                        }
 443                }
 444                urb->transfer_buffer_length = len;
 445        }
 446        io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 447
 448        /* transaction state */
 449        io->count = io->entries;
 450        io->status = 0;
 451        io->bytes = 0;
 452        init_completion(&io->complete);
 453        return 0;
 454
 455nomem:
 456        sg_clean(io);
 457        return -ENOMEM;
 458}
 459EXPORT_SYMBOL_GPL(usb_sg_init);
 460
 461/**
 462 * usb_sg_wait - synchronously execute scatter/gather request
 463 * @io: request block handle, as initialized with usb_sg_init().
 464 *      some fields become accessible when this call returns.
 465 * Context: !in_interrupt ()
 466 *
 467 * This function blocks until the specified I/O operation completes.  It
 468 * leverages the grouping of the related I/O requests to get good transfer
 469 * rates, by queueing the requests.  At higher speeds, such queuing can
 470 * significantly improve USB throughput.
 471 *
 472 * There are three kinds of completion for this function.
 473 * (1) success, where io->status is zero.  The number of io->bytes
 474 *     transferred is as requested.
 475 * (2) error, where io->status is a negative errno value.  The number
 476 *     of io->bytes transferred before the error is usually less
 477 *     than requested, and can be nonzero.
 478 * (3) cancellation, a type of error with status -ECONNRESET that
 479 *     is initiated by usb_sg_cancel().
 480 *
 481 * When this function returns, all memory allocated through usb_sg_init() or
 482 * this call will have been freed.  The request block parameter may still be
 483 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 484 * reinitialized and then reused.
 485 *
 486 * Data Transfer Rates:
 487 *
 488 * Bulk transfers are valid for full or high speed endpoints.
 489 * The best full speed data rate is 19 packets of 64 bytes each
 490 * per frame, or 1216 bytes per millisecond.
 491 * The best high speed data rate is 13 packets of 512 bytes each
 492 * per microframe, or 52 KBytes per millisecond.
 493 *
 494 * The reason to use interrupt transfers through this API would most likely
 495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 496 * could be transferred.  That capability is less useful for low or full
 497 * speed interrupt endpoints, which allow at most one packet per millisecond,
 498 * of at most 8 or 64 bytes (respectively).
 499 *
 500 * It is not necessary to call this function to reserve bandwidth for devices
 501 * under an xHCI host controller, as the bandwidth is reserved when the
 502 * configuration or interface alt setting is selected.
 503 */
 504void usb_sg_wait(struct usb_sg_request *io)
 505{
 506        int i;
 507        int entries = io->entries;
 508
 509        /* queue the urbs.  */
 510        spin_lock_irq(&io->lock);
 511        i = 0;
 512        while (i < entries && !io->status) {
 513                int retval;
 514
 515                io->urbs[i]->dev = io->dev;
 516                retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
 517
 518                /* after we submit, let completions or cancelations fire;
 519                 * we handshake using io->status.
 520                 */
 521                spin_unlock_irq(&io->lock);
 522                switch (retval) {
 523                        /* maybe we retrying will recover */
 524                case -ENXIO:    /* hc didn't queue this one */
 525                case -EAGAIN:
 526                case -ENOMEM:
 527                        retval = 0;
 528                        yield();
 529                        break;
 530
 531                        /* no error? continue immediately.
 532                         *
 533                         * NOTE: to work better with UHCI (4K I/O buffer may
 534                         * need 3K of TDs) it may be good to limit how many
 535                         * URBs are queued at once; N milliseconds?
 536                         */
 537                case 0:
 538                        ++i;
 539                        cpu_relax();
 540                        break;
 541
 542                        /* fail any uncompleted urbs */
 543                default:
 544                        io->urbs[i]->status = retval;
 545                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 546                                __func__, retval);
 547                        usb_sg_cancel(io);
 548                }
 549                spin_lock_irq(&io->lock);
 550                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 551                        io->status = retval;
 552        }
 553        io->count -= entries - i;
 554        if (io->count == 0)
 555                complete(&io->complete);
 556        spin_unlock_irq(&io->lock);
 557
 558        /* OK, yes, this could be packaged as non-blocking.
 559         * So could the submit loop above ... but it's easier to
 560         * solve neither problem than to solve both!
 561         */
 562        wait_for_completion(&io->complete);
 563
 564        sg_clean(io);
 565}
 566EXPORT_SYMBOL_GPL(usb_sg_wait);
 567
 568/**
 569 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 570 * @io: request block, initialized with usb_sg_init()
 571 *
 572 * This stops a request after it has been started by usb_sg_wait().
 573 * It can also prevents one initialized by usb_sg_init() from starting,
 574 * so that call just frees resources allocated to the request.
 575 */
 576void usb_sg_cancel(struct usb_sg_request *io)
 577{
 578        unsigned long flags;
 579
 580        spin_lock_irqsave(&io->lock, flags);
 581
 582        /* shut everything down, if it didn't already */
 583        if (!io->status) {
 584                int i;
 585
 586                io->status = -ECONNRESET;
 587                spin_unlock(&io->lock);
 588                for (i = 0; i < io->entries; i++) {
 589                        int retval;
 590
 591                        if (!io->urbs [i]->dev)
 592                                continue;
 593                        retval = usb_unlink_urb(io->urbs [i]);
 594                        if (retval != -EINPROGRESS
 595                                        && retval != -ENODEV
 596                                        && retval != -EBUSY
 597                                        && retval != -EIDRM)
 598                                dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 599                                        __func__, retval);
 600                }
 601                spin_lock(&io->lock);
 602        }
 603        spin_unlock_irqrestore(&io->lock, flags);
 604}
 605EXPORT_SYMBOL_GPL(usb_sg_cancel);
 606
 607/*-------------------------------------------------------------------*/
 608
 609/**
 610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 611 * @dev: the device whose descriptor is being retrieved
 612 * @type: the descriptor type (USB_DT_*)
 613 * @index: the number of the descriptor
 614 * @buf: where to put the descriptor
 615 * @size: how big is "buf"?
 616 * Context: !in_interrupt ()
 617 *
 618 * Gets a USB descriptor.  Convenience functions exist to simplify
 619 * getting some types of descriptors.  Use
 620 * usb_get_string() or usb_string() for USB_DT_STRING.
 621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 622 * are part of the device structure.
 623 * In addition to a number of USB-standard descriptors, some
 624 * devices also use class-specific or vendor-specific descriptors.
 625 *
 626 * This call is synchronous, and may not be used in an interrupt context.
 627 *
 628 * Returns the number of bytes received on success, or else the status code
 629 * returned by the underlying usb_control_msg() call.
 630 */
 631int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 632                       unsigned char index, void *buf, int size)
 633{
 634        int i;
 635        int result;
 636
 637        memset(buf, 0, size);   /* Make sure we parse really received data */
 638
 639        for (i = 0; i < 3; ++i) {
 640                /* retry on length 0 or error; some devices are flakey */
 641                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 642                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 643                                (type << 8) + index, 0, buf, size,
 644                                USB_CTRL_GET_TIMEOUT);
 645                if (result <= 0 && result != -ETIMEDOUT)
 646                        continue;
 647                if (result > 1 && ((u8 *)buf)[1] != type) {
 648                        result = -ENODATA;
 649                        continue;
 650                }
 651                break;
 652        }
 653        return result;
 654}
 655EXPORT_SYMBOL_GPL(usb_get_descriptor);
 656
 657/**
 658 * usb_get_string - gets a string descriptor
 659 * @dev: the device whose string descriptor is being retrieved
 660 * @langid: code for language chosen (from string descriptor zero)
 661 * @index: the number of the descriptor
 662 * @buf: where to put the string
 663 * @size: how big is "buf"?
 664 * Context: !in_interrupt ()
 665 *
 666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 667 * in little-endian byte order).
 668 * The usb_string() function will often be a convenient way to turn
 669 * these strings into kernel-printable form.
 670 *
 671 * Strings may be referenced in device, configuration, interface, or other
 672 * descriptors, and could also be used in vendor-specific ways.
 673 *
 674 * This call is synchronous, and may not be used in an interrupt context.
 675 *
 676 * Returns the number of bytes received on success, or else the status code
 677 * returned by the underlying usb_control_msg() call.
 678 */
 679static int usb_get_string(struct usb_device *dev, unsigned short langid,
 680                          unsigned char index, void *buf, int size)
 681{
 682        int i;
 683        int result;
 684
 685        for (i = 0; i < 3; ++i) {
 686                /* retry on length 0 or stall; some devices are flakey */
 687                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 688                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 689                        (USB_DT_STRING << 8) + index, langid, buf, size,
 690                        USB_CTRL_GET_TIMEOUT);
 691                if (result == 0 || result == -EPIPE)
 692                        continue;
 693                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 694                        result = -ENODATA;
 695                        continue;
 696                }
 697                break;
 698        }
 699        return result;
 700}
 701
 702static void usb_try_string_workarounds(unsigned char *buf, int *length)
 703{
 704        int newlength, oldlength = *length;
 705
 706        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 707                if (!isprint(buf[newlength]) || buf[newlength + 1])
 708                        break;
 709
 710        if (newlength > 2) {
 711                buf[0] = newlength;
 712                *length = newlength;
 713        }
 714}
 715
 716static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 717                          unsigned int index, unsigned char *buf)
 718{
 719        int rc;
 720
 721        /* Try to read the string descriptor by asking for the maximum
 722         * possible number of bytes */
 723        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 724                rc = -EIO;
 725        else
 726                rc = usb_get_string(dev, langid, index, buf, 255);
 727
 728        /* If that failed try to read the descriptor length, then
 729         * ask for just that many bytes */
 730        if (rc < 2) {
 731                rc = usb_get_string(dev, langid, index, buf, 2);
 732                if (rc == 2)
 733                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 734        }
 735
 736        if (rc >= 2) {
 737                if (!buf[0] && !buf[1])
 738                        usb_try_string_workarounds(buf, &rc);
 739
 740                /* There might be extra junk at the end of the descriptor */
 741                if (buf[0] < rc)
 742                        rc = buf[0];
 743
 744                rc = rc - (rc & 1); /* force a multiple of two */
 745        }
 746
 747        if (rc < 2)
 748                rc = (rc < 0 ? rc : -EINVAL);
 749
 750        return rc;
 751}
 752
 753static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 754{
 755        int err;
 756
 757        if (dev->have_langid)
 758                return 0;
 759
 760        if (dev->string_langid < 0)
 761                return -EPIPE;
 762
 763        err = usb_string_sub(dev, 0, 0, tbuf);
 764
 765        /* If the string was reported but is malformed, default to english
 766         * (0x0409) */
 767        if (err == -ENODATA || (err > 0 && err < 4)) {
 768                dev->string_langid = 0x0409;
 769                dev->have_langid = 1;
 770                dev_err(&dev->dev,
 771                        "string descriptor 0 malformed (err = %d), "
 772                        "defaulting to 0x%04x\n",
 773                                err, dev->string_langid);
 774                return 0;
 775        }
 776
 777        /* In case of all other errors, we assume the device is not able to
 778         * deal with strings at all. Set string_langid to -1 in order to
 779         * prevent any string to be retrieved from the device */
 780        if (err < 0) {
 781                dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 782                                        err);
 783                dev->string_langid = -1;
 784                return -EPIPE;
 785        }
 786
 787        /* always use the first langid listed */
 788        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 789        dev->have_langid = 1;
 790        dev_dbg(&dev->dev, "default language 0x%04x\n",
 791                                dev->string_langid);
 792        return 0;
 793}
 794
 795/**
 796 * usb_string - returns UTF-8 version of a string descriptor
 797 * @dev: the device whose string descriptor is being retrieved
 798 * @index: the number of the descriptor
 799 * @buf: where to put the string
 800 * @size: how big is "buf"?
 801 * Context: !in_interrupt ()
 802 *
 803 * This converts the UTF-16LE encoded strings returned by devices, from
 804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 805 * that are more usable in most kernel contexts.  Note that this function
 806 * chooses strings in the first language supported by the device.
 807 *
 808 * This call is synchronous, and may not be used in an interrupt context.
 809 *
 810 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
 811 */
 812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 813{
 814        unsigned char *tbuf;
 815        int err;
 816
 817        if (dev->state == USB_STATE_SUSPENDED)
 818                return -EHOSTUNREACH;
 819        if (size <= 0 || !buf || !index)
 820                return -EINVAL;
 821        buf[0] = 0;
 822        tbuf = kmalloc(256, GFP_NOIO);
 823        if (!tbuf)
 824                return -ENOMEM;
 825
 826        err = usb_get_langid(dev, tbuf);
 827        if (err < 0)
 828                goto errout;
 829
 830        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 831        if (err < 0)
 832                goto errout;
 833
 834        size--;         /* leave room for trailing NULL char in output buffer */
 835        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 836                        UTF16_LITTLE_ENDIAN, buf, size);
 837        buf[err] = 0;
 838
 839        if (tbuf[1] != USB_DT_STRING)
 840                dev_dbg(&dev->dev,
 841                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 842                        tbuf[1], index, buf);
 843
 844 errout:
 845        kfree(tbuf);
 846        return err;
 847}
 848EXPORT_SYMBOL_GPL(usb_string);
 849
 850/* one UTF-8-encoded 16-bit character has at most three bytes */
 851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 852
 853/**
 854 * usb_cache_string - read a string descriptor and cache it for later use
 855 * @udev: the device whose string descriptor is being read
 856 * @index: the descriptor index
 857 *
 858 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
 859 * or NULL if the index is 0 or the string could not be read.
 860 */
 861char *usb_cache_string(struct usb_device *udev, int index)
 862{
 863        char *buf;
 864        char *smallbuf = NULL;
 865        int len;
 866
 867        if (index <= 0)
 868                return NULL;
 869
 870        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 871        if (buf) {
 872                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 873                if (len > 0) {
 874                        smallbuf = kmalloc(++len, GFP_NOIO);
 875                        if (!smallbuf)
 876                                return buf;
 877                        memcpy(smallbuf, buf, len);
 878                }
 879                kfree(buf);
 880        }
 881        return smallbuf;
 882}
 883
 884/*
 885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 886 * @dev: the device whose device descriptor is being updated
 887 * @size: how much of the descriptor to read
 888 * Context: !in_interrupt ()
 889 *
 890 * Updates the copy of the device descriptor stored in the device structure,
 891 * which dedicates space for this purpose.
 892 *
 893 * Not exported, only for use by the core.  If drivers really want to read
 894 * the device descriptor directly, they can call usb_get_descriptor() with
 895 * type = USB_DT_DEVICE and index = 0.
 896 *
 897 * This call is synchronous, and may not be used in an interrupt context.
 898 *
 899 * Returns the number of bytes received on success, or else the status code
 900 * returned by the underlying usb_control_msg() call.
 901 */
 902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 903{
 904        struct usb_device_descriptor *desc;
 905        int ret;
 906
 907        if (size > sizeof(*desc))
 908                return -EINVAL;
 909        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 910        if (!desc)
 911                return -ENOMEM;
 912
 913        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 914        if (ret >= 0)
 915                memcpy(&dev->descriptor, desc, size);
 916        kfree(desc);
 917        return ret;
 918}
 919
 920/**
 921 * usb_get_status - issues a GET_STATUS call
 922 * @dev: the device whose status is being checked
 923 * @type: USB_RECIP_*; for device, interface, or endpoint
 924 * @target: zero (for device), else interface or endpoint number
 925 * @data: pointer to two bytes of bitmap data
 926 * Context: !in_interrupt ()
 927 *
 928 * Returns device, interface, or endpoint status.  Normally only of
 929 * interest to see if the device is self powered, or has enabled the
 930 * remote wakeup facility; or whether a bulk or interrupt endpoint
 931 * is halted ("stalled").
 932 *
 933 * Bits in these status bitmaps are set using the SET_FEATURE request,
 934 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 935 * function should be used to clear halt ("stall") status.
 936 *
 937 * This call is synchronous, and may not be used in an interrupt context.
 938 *
 939 * Returns the number of bytes received on success, or else the status code
 940 * returned by the underlying usb_control_msg() call.
 941 */
 942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 943{
 944        int ret;
 945        u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 946
 947        if (!status)
 948                return -ENOMEM;
 949
 950        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 951                USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 952                sizeof(*status), USB_CTRL_GET_TIMEOUT);
 953
 954        *(u16 *)data = *status;
 955        kfree(status);
 956        return ret;
 957}
 958EXPORT_SYMBOL_GPL(usb_get_status);
 959
 960/**
 961 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 962 * @dev: device whose endpoint is halted
 963 * @pipe: endpoint "pipe" being cleared
 964 * Context: !in_interrupt ()
 965 *
 966 * This is used to clear halt conditions for bulk and interrupt endpoints,
 967 * as reported by URB completion status.  Endpoints that are halted are
 968 * sometimes referred to as being "stalled".  Such endpoints are unable
 969 * to transmit or receive data until the halt status is cleared.  Any URBs
 970 * queued for such an endpoint should normally be unlinked by the driver
 971 * before clearing the halt condition, as described in sections 5.7.5
 972 * and 5.8.5 of the USB 2.0 spec.
 973 *
 974 * Note that control and isochronous endpoints don't halt, although control
 975 * endpoints report "protocol stall" (for unsupported requests) using the
 976 * same status code used to report a true stall.
 977 *
 978 * This call is synchronous, and may not be used in an interrupt context.
 979 *
 980 * Returns zero on success, or else the status code returned by the
 981 * underlying usb_control_msg() call.
 982 */
 983int usb_clear_halt(struct usb_device *dev, int pipe)
 984{
 985        int result;
 986        int endp = usb_pipeendpoint(pipe);
 987
 988        if (usb_pipein(pipe))
 989                endp |= USB_DIR_IN;
 990
 991        /* we don't care if it wasn't halted first. in fact some devices
 992         * (like some ibmcam model 1 units) seem to expect hosts to make
 993         * this request for iso endpoints, which can't halt!
 994         */
 995        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
 996                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
 997                USB_ENDPOINT_HALT, endp, NULL, 0,
 998                USB_CTRL_SET_TIMEOUT);
 999
1000        /* don't un-halt or force to DATA0 except on success */
1001        if (result < 0)
1002                return result;
1003
1004        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1005         * the clear "took", so some devices could lock up if you check...
1006         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1007         *
1008         * NOTE:  make sure the logic here doesn't diverge much from
1009         * the copy in usb-storage, for as long as we need two copies.
1010         */
1011
1012        usb_reset_endpoint(dev, endp);
1013
1014        return 0;
1015}
1016EXPORT_SYMBOL_GPL(usb_clear_halt);
1017
1018static int create_intf_ep_devs(struct usb_interface *intf)
1019{
1020        struct usb_device *udev = interface_to_usbdev(intf);
1021        struct usb_host_interface *alt = intf->cur_altsetting;
1022        int i;
1023
1024        if (intf->ep_devs_created || intf->unregistering)
1025                return 0;
1026
1027        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1029        intf->ep_devs_created = 1;
1030        return 0;
1031}
1032
1033static void remove_intf_ep_devs(struct usb_interface *intf)
1034{
1035        struct usb_host_interface *alt = intf->cur_altsetting;
1036        int i;
1037
1038        if (!intf->ep_devs_created)
1039                return;
1040
1041        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042                usb_remove_ep_devs(&alt->endpoint[i]);
1043        intf->ep_devs_created = 0;
1044}
1045
1046/**
1047 * usb_disable_endpoint -- Disable an endpoint by address
1048 * @dev: the device whose endpoint is being disabled
1049 * @epaddr: the endpoint's address.  Endpoint number for output,
1050 *      endpoint number + USB_DIR_IN for input
1051 * @reset_hardware: flag to erase any endpoint state stored in the
1052 *      controller hardware
1053 *
1054 * Disables the endpoint for URB submission and nukes all pending URBs.
1055 * If @reset_hardware is set then also deallocates hcd/hardware state
1056 * for the endpoint.
1057 */
1058void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1059                bool reset_hardware)
1060{
1061        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1062        struct usb_host_endpoint *ep;
1063
1064        if (!dev)
1065                return;
1066
1067        if (usb_endpoint_out(epaddr)) {
1068                ep = dev->ep_out[epnum];
1069                if (reset_hardware)
1070                        dev->ep_out[epnum] = NULL;
1071        } else {
1072                ep = dev->ep_in[epnum];
1073                if (reset_hardware)
1074                        dev->ep_in[epnum] = NULL;
1075        }
1076        if (ep) {
1077                ep->enabled = 0;
1078                usb_hcd_flush_endpoint(dev, ep);
1079                if (reset_hardware)
1080                        usb_hcd_disable_endpoint(dev, ep);
1081        }
1082}
1083
1084/**
1085 * usb_reset_endpoint - Reset an endpoint's state.
1086 * @dev: the device whose endpoint is to be reset
1087 * @epaddr: the endpoint's address.  Endpoint number for output,
1088 *      endpoint number + USB_DIR_IN for input
1089 *
1090 * Resets any host-side endpoint state such as the toggle bit,
1091 * sequence number or current window.
1092 */
1093void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1094{
1095        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1096        struct usb_host_endpoint *ep;
1097
1098        if (usb_endpoint_out(epaddr))
1099                ep = dev->ep_out[epnum];
1100        else
1101                ep = dev->ep_in[epnum];
1102        if (ep)
1103                usb_hcd_reset_endpoint(dev, ep);
1104}
1105EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1106
1107
1108/**
1109 * usb_disable_interface -- Disable all endpoints for an interface
1110 * @dev: the device whose interface is being disabled
1111 * @intf: pointer to the interface descriptor
1112 * @reset_hardware: flag to erase any endpoint state stored in the
1113 *      controller hardware
1114 *
1115 * Disables all the endpoints for the interface's current altsetting.
1116 */
1117void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1118                bool reset_hardware)
1119{
1120        struct usb_host_interface *alt = intf->cur_altsetting;
1121        int i;
1122
1123        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1124                usb_disable_endpoint(dev,
1125                                alt->endpoint[i].desc.bEndpointAddress,
1126                                reset_hardware);
1127        }
1128}
1129
1130/**
1131 * usb_disable_device - Disable all the endpoints for a USB device
1132 * @dev: the device whose endpoints are being disabled
1133 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1134 *
1135 * Disables all the device's endpoints, potentially including endpoint 0.
1136 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1137 * pending urbs) and usbcore state for the interfaces, so that usbcore
1138 * must usb_set_configuration() before any interfaces could be used.
1139 */
1140void usb_disable_device(struct usb_device *dev, int skip_ep0)
1141{
1142        int i;
1143        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1144
1145        /* getting rid of interfaces will disconnect
1146         * any drivers bound to them (a key side effect)
1147         */
1148        if (dev->actconfig) {
1149                /*
1150                 * FIXME: In order to avoid self-deadlock involving the
1151                 * bandwidth_mutex, we have to mark all the interfaces
1152                 * before unregistering any of them.
1153                 */
1154                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1155                        dev->actconfig->interface[i]->unregistering = 1;
1156
1157                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1158                        struct usb_interface    *interface;
1159
1160                        /* remove this interface if it has been registered */
1161                        interface = dev->actconfig->interface[i];
1162                        if (!device_is_registered(&interface->dev))
1163                                continue;
1164                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1165                                dev_name(&interface->dev));
1166                        remove_intf_ep_devs(interface);
1167                        device_del(&interface->dev);
1168                }
1169
1170                /* Now that the interfaces are unbound, nobody should
1171                 * try to access them.
1172                 */
1173                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1174                        put_device(&dev->actconfig->interface[i]->dev);
1175                        dev->actconfig->interface[i] = NULL;
1176                }
1177                usb_unlocked_disable_lpm(dev);
1178                usb_disable_ltm(dev);
1179                dev->actconfig = NULL;
1180                if (dev->state == USB_STATE_CONFIGURED)
1181                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1182        }
1183
1184        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1185                skip_ep0 ? "non-ep0" : "all");
1186        if (hcd->driver->check_bandwidth) {
1187                /* First pass: Cancel URBs, leave endpoint pointers intact. */
1188                for (i = skip_ep0; i < 16; ++i) {
1189                        usb_disable_endpoint(dev, i, false);
1190                        usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1191                }
1192                /* Remove endpoints from the host controller internal state */
1193                mutex_lock(hcd->bandwidth_mutex);
1194                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1195                mutex_unlock(hcd->bandwidth_mutex);
1196                /* Second pass: remove endpoint pointers */
1197        }
1198        for (i = skip_ep0; i < 16; ++i) {
1199                usb_disable_endpoint(dev, i, true);
1200                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1201        }
1202}
1203
1204/**
1205 * usb_enable_endpoint - Enable an endpoint for USB communications
1206 * @dev: the device whose interface is being enabled
1207 * @ep: the endpoint
1208 * @reset_ep: flag to reset the endpoint state
1209 *
1210 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1211 * For control endpoints, both the input and output sides are handled.
1212 */
1213void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1214                bool reset_ep)
1215{
1216        int epnum = usb_endpoint_num(&ep->desc);
1217        int is_out = usb_endpoint_dir_out(&ep->desc);
1218        int is_control = usb_endpoint_xfer_control(&ep->desc);
1219
1220        if (reset_ep)
1221                usb_hcd_reset_endpoint(dev, ep);
1222        if (is_out || is_control)
1223                dev->ep_out[epnum] = ep;
1224        if (!is_out || is_control)
1225                dev->ep_in[epnum] = ep;
1226        ep->enabled = 1;
1227}
1228
1229/**
1230 * usb_enable_interface - Enable all the endpoints for an interface
1231 * @dev: the device whose interface is being enabled
1232 * @intf: pointer to the interface descriptor
1233 * @reset_eps: flag to reset the endpoints' state
1234 *
1235 * Enables all the endpoints for the interface's current altsetting.
1236 */
1237void usb_enable_interface(struct usb_device *dev,
1238                struct usb_interface *intf, bool reset_eps)
1239{
1240        struct usb_host_interface *alt = intf->cur_altsetting;
1241        int i;
1242
1243        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1244                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1245}
1246
1247/**
1248 * usb_set_interface - Makes a particular alternate setting be current
1249 * @dev: the device whose interface is being updated
1250 * @interface: the interface being updated
1251 * @alternate: the setting being chosen.
1252 * Context: !in_interrupt ()
1253 *
1254 * This is used to enable data transfers on interfaces that may not
1255 * be enabled by default.  Not all devices support such configurability.
1256 * Only the driver bound to an interface may change its setting.
1257 *
1258 * Within any given configuration, each interface may have several
1259 * alternative settings.  These are often used to control levels of
1260 * bandwidth consumption.  For example, the default setting for a high
1261 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1262 * while interrupt transfers of up to 3KBytes per microframe are legal.
1263 * Also, isochronous endpoints may never be part of an
1264 * interface's default setting.  To access such bandwidth, alternate
1265 * interface settings must be made current.
1266 *
1267 * Note that in the Linux USB subsystem, bandwidth associated with
1268 * an endpoint in a given alternate setting is not reserved until an URB
1269 * is submitted that needs that bandwidth.  Some other operating systems
1270 * allocate bandwidth early, when a configuration is chosen.
1271 *
1272 * This call is synchronous, and may not be used in an interrupt context.
1273 * Also, drivers must not change altsettings while urbs are scheduled for
1274 * endpoints in that interface; all such urbs must first be completed
1275 * (perhaps forced by unlinking).
1276 *
1277 * Returns zero on success, or else the status code returned by the
1278 * underlying usb_control_msg() call.
1279 */
1280int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1281{
1282        struct usb_interface *iface;
1283        struct usb_host_interface *alt;
1284        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1285        int ret;
1286        int manual = 0;
1287        unsigned int epaddr;
1288        unsigned int pipe;
1289
1290        if (dev->state == USB_STATE_SUSPENDED)
1291                return -EHOSTUNREACH;
1292
1293        iface = usb_ifnum_to_if(dev, interface);
1294        if (!iface) {
1295                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1296                        interface);
1297                return -EINVAL;
1298        }
1299        if (iface->unregistering)
1300                return -ENODEV;
1301
1302        alt = usb_altnum_to_altsetting(iface, alternate);
1303        if (!alt) {
1304                dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1305                         alternate);
1306                return -EINVAL;
1307        }
1308
1309        /* Make sure we have enough bandwidth for this alternate interface.
1310         * Remove the current alt setting and add the new alt setting.
1311         */
1312        mutex_lock(hcd->bandwidth_mutex);
1313        /* Disable LPM, and re-enable it once the new alt setting is installed,
1314         * so that the xHCI driver can recalculate the U1/U2 timeouts.
1315         */
1316        if (usb_disable_lpm(dev)) {
1317                dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1318                mutex_unlock(hcd->bandwidth_mutex);
1319                return -ENOMEM;
1320        }
1321        ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1322        if (ret < 0) {
1323                dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1324                                alternate);
1325                usb_enable_lpm(dev);
1326                mutex_unlock(hcd->bandwidth_mutex);
1327                return ret;
1328        }
1329
1330        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1331                ret = -EPIPE;
1332        else
1333                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1334                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1335                                   alternate, interface, NULL, 0, 5000);
1336
1337        /* 9.4.10 says devices don't need this and are free to STALL the
1338         * request if the interface only has one alternate setting.
1339         */
1340        if (ret == -EPIPE && iface->num_altsetting == 1) {
1341                dev_dbg(&dev->dev,
1342                        "manual set_interface for iface %d, alt %d\n",
1343                        interface, alternate);
1344                manual = 1;
1345        } else if (ret < 0) {
1346                /* Re-instate the old alt setting */
1347                usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1348                usb_enable_lpm(dev);
1349                mutex_unlock(hcd->bandwidth_mutex);
1350                return ret;
1351        }
1352        mutex_unlock(hcd->bandwidth_mutex);
1353
1354        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1355         * when they implement async or easily-killable versions of this or
1356         * other "should-be-internal" functions (like clear_halt).
1357         * should hcd+usbcore postprocess control requests?
1358         */
1359
1360        /* prevent submissions using previous endpoint settings */
1361        if (iface->cur_altsetting != alt) {
1362                remove_intf_ep_devs(iface);
1363                usb_remove_sysfs_intf_files(iface);
1364        }
1365        usb_disable_interface(dev, iface, true);
1366
1367        iface->cur_altsetting = alt;
1368
1369        /* Now that the interface is installed, re-enable LPM. */
1370        usb_unlocked_enable_lpm(dev);
1371
1372        /* If the interface only has one altsetting and the device didn't
1373         * accept the request, we attempt to carry out the equivalent action
1374         * by manually clearing the HALT feature for each endpoint in the
1375         * new altsetting.
1376         */
1377        if (manual) {
1378                int i;
1379
1380                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1381                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1382                        pipe = __create_pipe(dev,
1383                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1384                                        (usb_endpoint_out(epaddr) ?
1385                                        USB_DIR_OUT : USB_DIR_IN);
1386
1387                        usb_clear_halt(dev, pipe);
1388                }
1389        }
1390
1391        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1392         *
1393         * Note:
1394         * Despite EP0 is always present in all interfaces/AS, the list of
1395         * endpoints from the descriptor does not contain EP0. Due to its
1396         * omnipresence one might expect EP0 being considered "affected" by
1397         * any SetInterface request and hence assume toggles need to be reset.
1398         * However, EP0 toggles are re-synced for every individual transfer
1399         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1400         * (Likewise, EP0 never "halts" on well designed devices.)
1401         */
1402        usb_enable_interface(dev, iface, true);
1403        if (device_is_registered(&iface->dev)) {
1404                usb_create_sysfs_intf_files(iface);
1405                create_intf_ep_devs(iface);
1406        }
1407        return 0;
1408}
1409EXPORT_SYMBOL_GPL(usb_set_interface);
1410
1411/**
1412 * usb_reset_configuration - lightweight device reset
1413 * @dev: the device whose configuration is being reset
1414 *
1415 * This issues a standard SET_CONFIGURATION request to the device using
1416 * the current configuration.  The effect is to reset most USB-related
1417 * state in the device, including interface altsettings (reset to zero),
1418 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1419 * endpoints).  Other usbcore state is unchanged, including bindings of
1420 * usb device drivers to interfaces.
1421 *
1422 * Because this affects multiple interfaces, avoid using this with composite
1423 * (multi-interface) devices.  Instead, the driver for each interface may
1424 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1425 * some devices don't support the SET_INTERFACE request, and others won't
1426 * reset all the interface state (notably endpoint state).  Resetting the whole
1427 * configuration would affect other drivers' interfaces.
1428 *
1429 * The caller must own the device lock.
1430 *
1431 * Returns zero on success, else a negative error code.
1432 */
1433int usb_reset_configuration(struct usb_device *dev)
1434{
1435        int                     i, retval;
1436        struct usb_host_config  *config;
1437        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1438
1439        if (dev->state == USB_STATE_SUSPENDED)
1440                return -EHOSTUNREACH;
1441
1442        /* caller must have locked the device and must own
1443         * the usb bus readlock (so driver bindings are stable);
1444         * calls during probe() are fine
1445         */
1446
1447        for (i = 1; i < 16; ++i) {
1448                usb_disable_endpoint(dev, i, true);
1449                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1450        }
1451
1452        config = dev->actconfig;
1453        retval = 0;
1454        mutex_lock(hcd->bandwidth_mutex);
1455        /* Disable LPM, and re-enable it once the configuration is reset, so
1456         * that the xHCI driver can recalculate the U1/U2 timeouts.
1457         */
1458        if (usb_disable_lpm(dev)) {
1459                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1460                mutex_unlock(hcd->bandwidth_mutex);
1461                return -ENOMEM;
1462        }
1463        /* Make sure we have enough bandwidth for each alternate setting 0 */
1464        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1465                struct usb_interface *intf = config->interface[i];
1466                struct usb_host_interface *alt;
1467
1468                alt = usb_altnum_to_altsetting(intf, 0);
1469                if (!alt)
1470                        alt = &intf->altsetting[0];
1471                if (alt != intf->cur_altsetting)
1472                        retval = usb_hcd_alloc_bandwidth(dev, NULL,
1473                                        intf->cur_altsetting, alt);
1474                if (retval < 0)
1475                        break;
1476        }
1477        /* If not, reinstate the old alternate settings */
1478        if (retval < 0) {
1479reset_old_alts:
1480                for (i--; i >= 0; i--) {
1481                        struct usb_interface *intf = config->interface[i];
1482                        struct usb_host_interface *alt;
1483
1484                        alt = usb_altnum_to_altsetting(intf, 0);
1485                        if (!alt)
1486                                alt = &intf->altsetting[0];
1487                        if (alt != intf->cur_altsetting)
1488                                usb_hcd_alloc_bandwidth(dev, NULL,
1489                                                alt, intf->cur_altsetting);
1490                }
1491                usb_enable_lpm(dev);
1492                mutex_unlock(hcd->bandwidth_mutex);
1493                return retval;
1494        }
1495        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1496                        USB_REQ_SET_CONFIGURATION, 0,
1497                        config->desc.bConfigurationValue, 0,
1498                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1499        if (retval < 0)
1500                goto reset_old_alts;
1501        mutex_unlock(hcd->bandwidth_mutex);
1502
1503        /* re-init hc/hcd interface/endpoint state */
1504        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1505                struct usb_interface *intf = config->interface[i];
1506                struct usb_host_interface *alt;
1507
1508                alt = usb_altnum_to_altsetting(intf, 0);
1509
1510                /* No altsetting 0?  We'll assume the first altsetting.
1511                 * We could use a GetInterface call, but if a device is
1512                 * so non-compliant that it doesn't have altsetting 0
1513                 * then I wouldn't trust its reply anyway.
1514                 */
1515                if (!alt)
1516                        alt = &intf->altsetting[0];
1517
1518                if (alt != intf->cur_altsetting) {
1519                        remove_intf_ep_devs(intf);
1520                        usb_remove_sysfs_intf_files(intf);
1521                }
1522                intf->cur_altsetting = alt;
1523                usb_enable_interface(dev, intf, true);
1524                if (device_is_registered(&intf->dev)) {
1525                        usb_create_sysfs_intf_files(intf);
1526                        create_intf_ep_devs(intf);
1527                }
1528        }
1529        /* Now that the interfaces are installed, re-enable LPM. */
1530        usb_unlocked_enable_lpm(dev);
1531        return 0;
1532}
1533EXPORT_SYMBOL_GPL(usb_reset_configuration);
1534
1535static void usb_release_interface(struct device *dev)
1536{
1537        struct usb_interface *intf = to_usb_interface(dev);
1538        struct usb_interface_cache *intfc =
1539                        altsetting_to_usb_interface_cache(intf->altsetting);
1540
1541        kref_put(&intfc->ref, usb_release_interface_cache);
1542        kfree(intf);
1543}
1544
1545#ifdef  CONFIG_HOTPLUG
1546static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1547{
1548        struct usb_device *usb_dev;
1549        struct usb_interface *intf;
1550        struct usb_host_interface *alt;
1551
1552        intf = to_usb_interface(dev);
1553        usb_dev = interface_to_usbdev(intf);
1554        alt = intf->cur_altsetting;
1555
1556        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1557                   alt->desc.bInterfaceClass,
1558                   alt->desc.bInterfaceSubClass,
1559                   alt->desc.bInterfaceProtocol))
1560                return -ENOMEM;
1561
1562        if (add_uevent_var(env,
1563                   "MODALIAS=usb:"
1564                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1565                   le16_to_cpu(usb_dev->descriptor.idVendor),
1566                   le16_to_cpu(usb_dev->descriptor.idProduct),
1567                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1568                   usb_dev->descriptor.bDeviceClass,
1569                   usb_dev->descriptor.bDeviceSubClass,
1570                   usb_dev->descriptor.bDeviceProtocol,
1571                   alt->desc.bInterfaceClass,
1572                   alt->desc.bInterfaceSubClass,
1573                   alt->desc.bInterfaceProtocol,
1574                   alt->desc.bInterfaceNumber))
1575                return -ENOMEM;
1576
1577        return 0;
1578}
1579
1580#else
1581
1582static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1583{
1584        return -ENODEV;
1585}
1586#endif  /* CONFIG_HOTPLUG */
1587
1588struct device_type usb_if_device_type = {
1589        .name =         "usb_interface",
1590        .release =      usb_release_interface,
1591        .uevent =       usb_if_uevent,
1592};
1593
1594static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1595                                                struct usb_host_config *config,
1596                                                u8 inum)
1597{
1598        struct usb_interface_assoc_descriptor *retval = NULL;
1599        struct usb_interface_assoc_descriptor *intf_assoc;
1600        int first_intf;
1601        int last_intf;
1602        int i;
1603
1604        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1605                intf_assoc = config->intf_assoc[i];
1606                if (intf_assoc->bInterfaceCount == 0)
1607                        continue;
1608
1609                first_intf = intf_assoc->bFirstInterface;
1610                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1611                if (inum >= first_intf && inum <= last_intf) {
1612                        if (!retval)
1613                                retval = intf_assoc;
1614                        else
1615                                dev_err(&dev->dev, "Interface #%d referenced"
1616                                        " by multiple IADs\n", inum);
1617                }
1618        }
1619
1620        return retval;
1621}
1622
1623
1624/*
1625 * Internal function to queue a device reset
1626 *
1627 * This is initialized into the workstruct in 'struct
1628 * usb_device->reset_ws' that is launched by
1629 * message.c:usb_set_configuration() when initializing each 'struct
1630 * usb_interface'.
1631 *
1632 * It is safe to get the USB device without reference counts because
1633 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1634 * this function will be ran only if @iface is alive (and before
1635 * freeing it any scheduled instances of it will have been cancelled).
1636 *
1637 * We need to set a flag (usb_dev->reset_running) because when we call
1638 * the reset, the interfaces might be unbound. The current interface
1639 * cannot try to remove the queued work as it would cause a deadlock
1640 * (you cannot remove your work from within your executing
1641 * workqueue). This flag lets it know, so that
1642 * usb_cancel_queued_reset() doesn't try to do it.
1643 *
1644 * See usb_queue_reset_device() for more details
1645 */
1646static void __usb_queue_reset_device(struct work_struct *ws)
1647{
1648        int rc;
1649        struct usb_interface *iface =
1650                container_of(ws, struct usb_interface, reset_ws);
1651        struct usb_device *udev = interface_to_usbdev(iface);
1652
1653        rc = usb_lock_device_for_reset(udev, iface);
1654        if (rc >= 0) {
1655                iface->reset_running = 1;
1656                usb_reset_device(udev);
1657                iface->reset_running = 0;
1658                usb_unlock_device(udev);
1659        }
1660}
1661
1662
1663/*
1664 * usb_set_configuration - Makes a particular device setting be current
1665 * @dev: the device whose configuration is being updated
1666 * @configuration: the configuration being chosen.
1667 * Context: !in_interrupt(), caller owns the device lock
1668 *
1669 * This is used to enable non-default device modes.  Not all devices
1670 * use this kind of configurability; many devices only have one
1671 * configuration.
1672 *
1673 * @configuration is the value of the configuration to be installed.
1674 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1675 * must be non-zero; a value of zero indicates that the device in
1676 * unconfigured.  However some devices erroneously use 0 as one of their
1677 * configuration values.  To help manage such devices, this routine will
1678 * accept @configuration = -1 as indicating the device should be put in
1679 * an unconfigured state.
1680 *
1681 * USB device configurations may affect Linux interoperability,
1682 * power consumption and the functionality available.  For example,
1683 * the default configuration is limited to using 100mA of bus power,
1684 * so that when certain device functionality requires more power,
1685 * and the device is bus powered, that functionality should be in some
1686 * non-default device configuration.  Other device modes may also be
1687 * reflected as configuration options, such as whether two ISDN
1688 * channels are available independently; and choosing between open
1689 * standard device protocols (like CDC) or proprietary ones.
1690 *
1691 * Note that a non-authorized device (dev->authorized == 0) will only
1692 * be put in unconfigured mode.
1693 *
1694 * Note that USB has an additional level of device configurability,
1695 * associated with interfaces.  That configurability is accessed using
1696 * usb_set_interface().
1697 *
1698 * This call is synchronous. The calling context must be able to sleep,
1699 * must own the device lock, and must not hold the driver model's USB
1700 * bus mutex; usb interface driver probe() methods cannot use this routine.
1701 *
1702 * Returns zero on success, or else the status code returned by the
1703 * underlying call that failed.  On successful completion, each interface
1704 * in the original device configuration has been destroyed, and each one
1705 * in the new configuration has been probed by all relevant usb device
1706 * drivers currently known to the kernel.
1707 */
1708int usb_set_configuration(struct usb_device *dev, int configuration)
1709{
1710        int i, ret;
1711        struct usb_host_config *cp = NULL;
1712        struct usb_interface **new_interfaces = NULL;
1713        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1714        int n, nintf;
1715
1716        if (dev->authorized == 0 || configuration == -1)
1717                configuration = 0;
1718        else {
1719                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1720                        if (dev->config[i].desc.bConfigurationValue ==
1721                                        configuration) {
1722                                cp = &dev->config[i];
1723                                break;
1724                        }
1725                }
1726        }
1727        if ((!cp && configuration != 0))
1728                return -EINVAL;
1729
1730        /* The USB spec says configuration 0 means unconfigured.
1731         * But if a device includes a configuration numbered 0,
1732         * we will accept it as a correctly configured state.
1733         * Use -1 if you really want to unconfigure the device.
1734         */
1735        if (cp && configuration == 0)
1736                dev_warn(&dev->dev, "config 0 descriptor??\n");
1737
1738        /* Allocate memory for new interfaces before doing anything else,
1739         * so that if we run out then nothing will have changed. */
1740        n = nintf = 0;
1741        if (cp) {
1742                nintf = cp->desc.bNumInterfaces;
1743                new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1744                                GFP_NOIO);
1745                if (!new_interfaces) {
1746                        dev_err(&dev->dev, "Out of memory\n");
1747                        return -ENOMEM;
1748                }
1749
1750                for (; n < nintf; ++n) {
1751                        new_interfaces[n] = kzalloc(
1752                                        sizeof(struct usb_interface),
1753                                        GFP_NOIO);
1754                        if (!new_interfaces[n]) {
1755                                dev_err(&dev->dev, "Out of memory\n");
1756                                ret = -ENOMEM;
1757free_interfaces:
1758                                while (--n >= 0)
1759                                        kfree(new_interfaces[n]);
1760                                kfree(new_interfaces);
1761                                return ret;
1762                        }
1763                }
1764
1765                i = dev->bus_mA - cp->desc.bMaxPower * 2;
1766                if (i < 0)
1767                        dev_warn(&dev->dev, "new config #%d exceeds power "
1768                                        "limit by %dmA\n",
1769                                        configuration, -i);
1770        }
1771
1772        /* Wake up the device so we can send it the Set-Config request */
1773        ret = usb_autoresume_device(dev);
1774        if (ret)
1775                goto free_interfaces;
1776
1777        /* if it's already configured, clear out old state first.
1778         * getting rid of old interfaces means unbinding their drivers.
1779         */
1780        if (dev->state != USB_STATE_ADDRESS)
1781                usb_disable_device(dev, 1);     /* Skip ep0 */
1782
1783        /* Get rid of pending async Set-Config requests for this device */
1784        cancel_async_set_config(dev);
1785
1786        /* Make sure we have bandwidth (and available HCD resources) for this
1787         * configuration.  Remove endpoints from the schedule if we're dropping
1788         * this configuration to set configuration 0.  After this point, the
1789         * host controller will not allow submissions to dropped endpoints.  If
1790         * this call fails, the device state is unchanged.
1791         */
1792        mutex_lock(hcd->bandwidth_mutex);
1793        /* Disable LPM, and re-enable it once the new configuration is
1794         * installed, so that the xHCI driver can recalculate the U1/U2
1795         * timeouts.
1796         */
1797        if (dev->actconfig && usb_disable_lpm(dev)) {
1798                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1799                mutex_unlock(hcd->bandwidth_mutex);
1800                return -ENOMEM;
1801        }
1802        ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1803        if (ret < 0) {
1804                if (dev->actconfig)
1805                        usb_enable_lpm(dev);
1806                mutex_unlock(hcd->bandwidth_mutex);
1807                usb_autosuspend_device(dev);
1808                goto free_interfaces;
1809        }
1810
1811        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1812                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1813                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1814        if (ret < 0) {
1815                /* All the old state is gone, so what else can we do?
1816                 * The device is probably useless now anyway.
1817                 */
1818                cp = NULL;
1819        }
1820
1821        dev->actconfig = cp;
1822        if (!cp) {
1823                usb_set_device_state(dev, USB_STATE_ADDRESS);
1824                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1825                /* Leave LPM disabled while the device is unconfigured. */
1826                mutex_unlock(hcd->bandwidth_mutex);
1827                usb_autosuspend_device(dev);
1828                goto free_interfaces;
1829        }
1830        mutex_unlock(hcd->bandwidth_mutex);
1831        usb_set_device_state(dev, USB_STATE_CONFIGURED);
1832
1833        /* Initialize the new interface structures and the
1834         * hc/hcd/usbcore interface/endpoint state.
1835         */
1836        for (i = 0; i < nintf; ++i) {
1837                struct usb_interface_cache *intfc;
1838                struct usb_interface *intf;
1839                struct usb_host_interface *alt;
1840
1841                cp->interface[i] = intf = new_interfaces[i];
1842                intfc = cp->intf_cache[i];
1843                intf->altsetting = intfc->altsetting;
1844                intf->num_altsetting = intfc->num_altsetting;
1845                kref_get(&intfc->ref);
1846
1847                alt = usb_altnum_to_altsetting(intf, 0);
1848
1849                /* No altsetting 0?  We'll assume the first altsetting.
1850                 * We could use a GetInterface call, but if a device is
1851                 * so non-compliant that it doesn't have altsetting 0
1852                 * then I wouldn't trust its reply anyway.
1853                 */
1854                if (!alt)
1855                        alt = &intf->altsetting[0];
1856
1857                intf->intf_assoc =
1858                        find_iad(dev, cp, alt->desc.bInterfaceNumber);
1859                intf->cur_altsetting = alt;
1860                usb_enable_interface(dev, intf, true);
1861                intf->dev.parent = &dev->dev;
1862                intf->dev.driver = NULL;
1863                intf->dev.bus = &usb_bus_type;
1864                intf->dev.type = &usb_if_device_type;
1865                intf->dev.groups = usb_interface_groups;
1866                intf->dev.dma_mask = dev->dev.dma_mask;
1867                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1868                intf->minor = -1;
1869                device_initialize(&intf->dev);
1870                pm_runtime_no_callbacks(&intf->dev);
1871                dev_set_name(&intf->dev, "%d-%s:%d.%d",
1872                        dev->bus->busnum, dev->devpath,
1873                        configuration, alt->desc.bInterfaceNumber);
1874        }
1875        kfree(new_interfaces);
1876
1877        if (cp->string == NULL &&
1878                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1879                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1880
1881        /* Now that the interfaces are installed, re-enable LPM. */
1882        usb_unlocked_enable_lpm(dev);
1883        /* Enable LTM if it was turned off by usb_disable_device. */
1884        usb_enable_ltm(dev);
1885
1886        /* Now that all the interfaces are set up, register them
1887         * to trigger binding of drivers to interfaces.  probe()
1888         * routines may install different altsettings and may
1889         * claim() any interfaces not yet bound.  Many class drivers
1890         * need that: CDC, audio, video, etc.
1891         */
1892        for (i = 0; i < nintf; ++i) {
1893                struct usb_interface *intf = cp->interface[i];
1894
1895                dev_dbg(&dev->dev,
1896                        "adding %s (config #%d, interface %d)\n",
1897                        dev_name(&intf->dev), configuration,
1898                        intf->cur_altsetting->desc.bInterfaceNumber);
1899                device_enable_async_suspend(&intf->dev);
1900                ret = device_add(&intf->dev);
1901                if (ret != 0) {
1902                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
1903                                dev_name(&intf->dev), ret);
1904                        continue;
1905                }
1906                create_intf_ep_devs(intf);
1907        }
1908
1909        usb_autosuspend_device(dev);
1910        return 0;
1911}
1912
1913static LIST_HEAD(set_config_list);
1914static DEFINE_SPINLOCK(set_config_lock);
1915
1916struct set_config_request {
1917        struct usb_device       *udev;
1918        int                     config;
1919        struct work_struct      work;
1920        struct list_head        node;
1921};
1922
1923/* Worker routine for usb_driver_set_configuration() */
1924static void driver_set_config_work(struct work_struct *work)
1925{
1926        struct set_config_request *req =
1927                container_of(work, struct set_config_request, work);
1928        struct usb_device *udev = req->udev;
1929
1930        usb_lock_device(udev);
1931        spin_lock(&set_config_lock);
1932        list_del(&req->node);
1933        spin_unlock(&set_config_lock);
1934
1935        if (req->config >= -1)          /* Is req still valid? */
1936                usb_set_configuration(udev, req->config);
1937        usb_unlock_device(udev);
1938        usb_put_dev(udev);
1939        kfree(req);
1940}
1941
1942/* Cancel pending Set-Config requests for a device whose configuration
1943 * was just changed
1944 */
1945static void cancel_async_set_config(struct usb_device *udev)
1946{
1947        struct set_config_request *req;
1948
1949        spin_lock(&set_config_lock);
1950        list_for_each_entry(req, &set_config_list, node) {
1951                if (req->udev == udev)
1952                        req->config = -999;     /* Mark as cancelled */
1953        }
1954        spin_unlock(&set_config_lock);
1955}
1956
1957/**
1958 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1959 * @udev: the device whose configuration is being updated
1960 * @config: the configuration being chosen.
1961 * Context: In process context, must be able to sleep
1962 *
1963 * Device interface drivers are not allowed to change device configurations.
1964 * This is because changing configurations will destroy the interface the
1965 * driver is bound to and create new ones; it would be like a floppy-disk
1966 * driver telling the computer to replace the floppy-disk drive with a
1967 * tape drive!
1968 *
1969 * Still, in certain specialized circumstances the need may arise.  This
1970 * routine gets around the normal restrictions by using a work thread to
1971 * submit the change-config request.
1972 *
1973 * Returns 0 if the request was successfully queued, error code otherwise.
1974 * The caller has no way to know whether the queued request will eventually
1975 * succeed.
1976 */
1977int usb_driver_set_configuration(struct usb_device *udev, int config)
1978{
1979        struct set_config_request *req;
1980
1981        req = kmalloc(sizeof(*req), GFP_KERNEL);
1982        if (!req)
1983                return -ENOMEM;
1984        req->udev = udev;
1985        req->config = config;
1986        INIT_WORK(&req->work, driver_set_config_work);
1987
1988        spin_lock(&set_config_lock);
1989        list_add(&req->node, &set_config_list);
1990        spin_unlock(&set_config_lock);
1991
1992        usb_get_dev(udev);
1993        schedule_work(&req->work);
1994        return 0;
1995}
1996EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1997