linux/fs/bio-integrity.c
<<
>>
Prefs
   1/*
   2 * bio-integrity.c - bio data integrity extensions
   3 *
   4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
   5 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License version
   9 * 2 as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful, but
  12 * WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; see the file COPYING.  If not, write to
  18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
  19 * USA.
  20 *
  21 */
  22
  23#include <linux/blkdev.h>
  24#include <linux/mempool.h>
  25#include <linux/export.h>
  26#include <linux/bio.h>
  27#include <linux/workqueue.h>
  28#include <linux/slab.h>
  29
  30struct integrity_slab {
  31        struct kmem_cache *slab;
  32        unsigned short nr_vecs;
  33        char name[8];
  34};
  35
  36#define IS(x) { .nr_vecs = x, .name = "bip-"__stringify(x) }
  37struct integrity_slab bip_slab[BIOVEC_NR_POOLS] __read_mostly = {
  38        IS(1), IS(4), IS(16), IS(64), IS(128), IS(BIO_MAX_PAGES),
  39};
  40#undef IS
  41
  42static struct workqueue_struct *kintegrityd_wq;
  43
  44static inline unsigned int vecs_to_idx(unsigned int nr)
  45{
  46        switch (nr) {
  47        case 1:
  48                return 0;
  49        case 2 ... 4:
  50                return 1;
  51        case 5 ... 16:
  52                return 2;
  53        case 17 ... 64:
  54                return 3;
  55        case 65 ... 128:
  56                return 4;
  57        case 129 ... BIO_MAX_PAGES:
  58                return 5;
  59        default:
  60                BUG();
  61        }
  62}
  63
  64static inline int use_bip_pool(unsigned int idx)
  65{
  66        if (idx == BIOVEC_MAX_IDX)
  67                return 1;
  68
  69        return 0;
  70}
  71
  72/**
  73 * bio_integrity_alloc_bioset - Allocate integrity payload and attach it to bio
  74 * @bio:        bio to attach integrity metadata to
  75 * @gfp_mask:   Memory allocation mask
  76 * @nr_vecs:    Number of integrity metadata scatter-gather elements
  77 * @bs:         bio_set to allocate from
  78 *
  79 * Description: This function prepares a bio for attaching integrity
  80 * metadata.  nr_vecs specifies the maximum number of pages containing
  81 * integrity metadata that can be attached.
  82 */
  83struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *bio,
  84                                                         gfp_t gfp_mask,
  85                                                         unsigned int nr_vecs,
  86                                                         struct bio_set *bs)
  87{
  88        struct bio_integrity_payload *bip;
  89        unsigned int idx = vecs_to_idx(nr_vecs);
  90
  91        BUG_ON(bio == NULL);
  92        bip = NULL;
  93
  94        /* Lower order allocations come straight from slab */
  95        if (!use_bip_pool(idx))
  96                bip = kmem_cache_alloc(bip_slab[idx].slab, gfp_mask);
  97
  98        /* Use mempool if lower order alloc failed or max vecs were requested */
  99        if (bip == NULL) {
 100                idx = BIOVEC_MAX_IDX;  /* so we free the payload properly later */
 101                bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
 102
 103                if (unlikely(bip == NULL)) {
 104                        printk(KERN_ERR "%s: could not alloc bip\n", __func__);
 105                        return NULL;
 106                }
 107        }
 108
 109        memset(bip, 0, sizeof(*bip));
 110
 111        bip->bip_slab = idx;
 112        bip->bip_bio = bio;
 113        bio->bi_integrity = bip;
 114
 115        return bip;
 116}
 117EXPORT_SYMBOL(bio_integrity_alloc_bioset);
 118
 119/**
 120 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
 121 * @bio:        bio to attach integrity metadata to
 122 * @gfp_mask:   Memory allocation mask
 123 * @nr_vecs:    Number of integrity metadata scatter-gather elements
 124 *
 125 * Description: This function prepares a bio for attaching integrity
 126 * metadata.  nr_vecs specifies the maximum number of pages containing
 127 * integrity metadata that can be attached.
 128 */
 129struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
 130                                                  gfp_t gfp_mask,
 131                                                  unsigned int nr_vecs)
 132{
 133        return bio_integrity_alloc_bioset(bio, gfp_mask, nr_vecs, fs_bio_set);
 134}
 135EXPORT_SYMBOL(bio_integrity_alloc);
 136
 137/**
 138 * bio_integrity_free - Free bio integrity payload
 139 * @bio:        bio containing bip to be freed
 140 * @bs:         bio_set this bio was allocated from
 141 *
 142 * Description: Used to free the integrity portion of a bio. Usually
 143 * called from bio_free().
 144 */
 145void bio_integrity_free(struct bio *bio, struct bio_set *bs)
 146{
 147        struct bio_integrity_payload *bip = bio->bi_integrity;
 148
 149        BUG_ON(bip == NULL);
 150
 151        /* A cloned bio doesn't own the integrity metadata */
 152        if (!bio_flagged(bio, BIO_CLONED) && !bio_flagged(bio, BIO_FS_INTEGRITY)
 153            && bip->bip_buf != NULL)
 154                kfree(bip->bip_buf);
 155
 156        if (use_bip_pool(bip->bip_slab))
 157                mempool_free(bip, bs->bio_integrity_pool);
 158        else
 159                kmem_cache_free(bip_slab[bip->bip_slab].slab, bip);
 160
 161        bio->bi_integrity = NULL;
 162}
 163EXPORT_SYMBOL(bio_integrity_free);
 164
 165/**
 166 * bio_integrity_add_page - Attach integrity metadata
 167 * @bio:        bio to update
 168 * @page:       page containing integrity metadata
 169 * @len:        number of bytes of integrity metadata in page
 170 * @offset:     start offset within page
 171 *
 172 * Description: Attach a page containing integrity metadata to bio.
 173 */
 174int bio_integrity_add_page(struct bio *bio, struct page *page,
 175                           unsigned int len, unsigned int offset)
 176{
 177        struct bio_integrity_payload *bip = bio->bi_integrity;
 178        struct bio_vec *iv;
 179
 180        if (bip->bip_vcnt >= bvec_nr_vecs(bip->bip_slab)) {
 181                printk(KERN_ERR "%s: bip_vec full\n", __func__);
 182                return 0;
 183        }
 184
 185        iv = bip_vec_idx(bip, bip->bip_vcnt);
 186        BUG_ON(iv == NULL);
 187
 188        iv->bv_page = page;
 189        iv->bv_len = len;
 190        iv->bv_offset = offset;
 191        bip->bip_vcnt++;
 192
 193        return len;
 194}
 195EXPORT_SYMBOL(bio_integrity_add_page);
 196
 197static int bdev_integrity_enabled(struct block_device *bdev, int rw)
 198{
 199        struct blk_integrity *bi = bdev_get_integrity(bdev);
 200
 201        if (bi == NULL)
 202                return 0;
 203
 204        if (rw == READ && bi->verify_fn != NULL &&
 205            (bi->flags & INTEGRITY_FLAG_READ))
 206                return 1;
 207
 208        if (rw == WRITE && bi->generate_fn != NULL &&
 209            (bi->flags & INTEGRITY_FLAG_WRITE))
 210                return 1;
 211
 212        return 0;
 213}
 214
 215/**
 216 * bio_integrity_enabled - Check whether integrity can be passed
 217 * @bio:        bio to check
 218 *
 219 * Description: Determines whether bio_integrity_prep() can be called
 220 * on this bio or not.  bio data direction and target device must be
 221 * set prior to calling.  The functions honors the write_generate and
 222 * read_verify flags in sysfs.
 223 */
 224int bio_integrity_enabled(struct bio *bio)
 225{
 226        /* Already protected? */
 227        if (bio_integrity(bio))
 228                return 0;
 229
 230        return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
 231}
 232EXPORT_SYMBOL(bio_integrity_enabled);
 233
 234/**
 235 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
 236 * @bi:         blk_integrity profile for device
 237 * @sectors:    Number of 512 sectors to convert
 238 *
 239 * Description: The block layer calculates everything in 512 byte
 240 * sectors but integrity metadata is done in terms of the hardware
 241 * sector size of the storage device.  Convert the block layer sectors
 242 * to physical sectors.
 243 */
 244static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
 245                                                    unsigned int sectors)
 246{
 247        /* At this point there are only 512b or 4096b DIF/EPP devices */
 248        if (bi->sector_size == 4096)
 249                return sectors >>= 3;
 250
 251        return sectors;
 252}
 253
 254/**
 255 * bio_integrity_tag_size - Retrieve integrity tag space
 256 * @bio:        bio to inspect
 257 *
 258 * Description: Returns the maximum number of tag bytes that can be
 259 * attached to this bio. Filesystems can use this to determine how
 260 * much metadata to attach to an I/O.
 261 */
 262unsigned int bio_integrity_tag_size(struct bio *bio)
 263{
 264        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 265
 266        BUG_ON(bio->bi_size == 0);
 267
 268        return bi->tag_size * (bio->bi_size / bi->sector_size);
 269}
 270EXPORT_SYMBOL(bio_integrity_tag_size);
 271
 272int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, int set)
 273{
 274        struct bio_integrity_payload *bip = bio->bi_integrity;
 275        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 276        unsigned int nr_sectors;
 277
 278        BUG_ON(bip->bip_buf == NULL);
 279
 280        if (bi->tag_size == 0)
 281                return -1;
 282
 283        nr_sectors = bio_integrity_hw_sectors(bi,
 284                                        DIV_ROUND_UP(len, bi->tag_size));
 285
 286        if (nr_sectors * bi->tuple_size > bip->bip_size) {
 287                printk(KERN_ERR "%s: tag too big for bio: %u > %u\n",
 288                       __func__, nr_sectors * bi->tuple_size, bip->bip_size);
 289                return -1;
 290        }
 291
 292        if (set)
 293                bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
 294        else
 295                bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
 296
 297        return 0;
 298}
 299
 300/**
 301 * bio_integrity_set_tag - Attach a tag buffer to a bio
 302 * @bio:        bio to attach buffer to
 303 * @tag_buf:    Pointer to a buffer containing tag data
 304 * @len:        Length of the included buffer
 305 *
 306 * Description: Use this function to tag a bio by leveraging the extra
 307 * space provided by devices formatted with integrity protection.  The
 308 * size of the integrity buffer must be <= to the size reported by
 309 * bio_integrity_tag_size().
 310 */
 311int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
 312{
 313        BUG_ON(bio_data_dir(bio) != WRITE);
 314
 315        return bio_integrity_tag(bio, tag_buf, len, 1);
 316}
 317EXPORT_SYMBOL(bio_integrity_set_tag);
 318
 319/**
 320 * bio_integrity_get_tag - Retrieve a tag buffer from a bio
 321 * @bio:        bio to retrieve buffer from
 322 * @tag_buf:    Pointer to a buffer for the tag data
 323 * @len:        Length of the target buffer
 324 *
 325 * Description: Use this function to retrieve the tag buffer from a
 326 * completed I/O. The size of the integrity buffer must be <= to the
 327 * size reported by bio_integrity_tag_size().
 328 */
 329int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
 330{
 331        BUG_ON(bio_data_dir(bio) != READ);
 332
 333        return bio_integrity_tag(bio, tag_buf, len, 0);
 334}
 335EXPORT_SYMBOL(bio_integrity_get_tag);
 336
 337/**
 338 * bio_integrity_generate - Generate integrity metadata for a bio
 339 * @bio:        bio to generate integrity metadata for
 340 *
 341 * Description: Generates integrity metadata for a bio by calling the
 342 * block device's generation callback function.  The bio must have a
 343 * bip attached with enough room to accommodate the generated
 344 * integrity metadata.
 345 */
 346static void bio_integrity_generate(struct bio *bio)
 347{
 348        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 349        struct blk_integrity_exchg bix;
 350        struct bio_vec *bv;
 351        sector_t sector = bio->bi_sector;
 352        unsigned int i, sectors, total;
 353        void *prot_buf = bio->bi_integrity->bip_buf;
 354
 355        total = 0;
 356        bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
 357        bix.sector_size = bi->sector_size;
 358
 359        bio_for_each_segment(bv, bio, i) {
 360                void *kaddr = kmap_atomic(bv->bv_page);
 361                bix.data_buf = kaddr + bv->bv_offset;
 362                bix.data_size = bv->bv_len;
 363                bix.prot_buf = prot_buf;
 364                bix.sector = sector;
 365
 366                bi->generate_fn(&bix);
 367
 368                sectors = bv->bv_len / bi->sector_size;
 369                sector += sectors;
 370                prot_buf += sectors * bi->tuple_size;
 371                total += sectors * bi->tuple_size;
 372                BUG_ON(total > bio->bi_integrity->bip_size);
 373
 374                kunmap_atomic(kaddr);
 375        }
 376}
 377
 378static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
 379{
 380        if (bi)
 381                return bi->tuple_size;
 382
 383        return 0;
 384}
 385
 386/**
 387 * bio_integrity_prep - Prepare bio for integrity I/O
 388 * @bio:        bio to prepare
 389 *
 390 * Description: Allocates a buffer for integrity metadata, maps the
 391 * pages and attaches them to a bio.  The bio must have data
 392 * direction, target device and start sector set priot to calling.  In
 393 * the WRITE case, integrity metadata will be generated using the
 394 * block device's integrity function.  In the READ case, the buffer
 395 * will be prepared for DMA and a suitable end_io handler set up.
 396 */
 397int bio_integrity_prep(struct bio *bio)
 398{
 399        struct bio_integrity_payload *bip;
 400        struct blk_integrity *bi;
 401        struct request_queue *q;
 402        void *buf;
 403        unsigned long start, end;
 404        unsigned int len, nr_pages;
 405        unsigned int bytes, offset, i;
 406        unsigned int sectors;
 407
 408        bi = bdev_get_integrity(bio->bi_bdev);
 409        q = bdev_get_queue(bio->bi_bdev);
 410        BUG_ON(bi == NULL);
 411        BUG_ON(bio_integrity(bio));
 412
 413        sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));
 414
 415        /* Allocate kernel buffer for protection data */
 416        len = sectors * blk_integrity_tuple_size(bi);
 417        buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
 418        if (unlikely(buf == NULL)) {
 419                printk(KERN_ERR "could not allocate integrity buffer\n");
 420                return -ENOMEM;
 421        }
 422
 423        end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 424        start = ((unsigned long) buf) >> PAGE_SHIFT;
 425        nr_pages = end - start;
 426
 427        /* Allocate bio integrity payload and integrity vectors */
 428        bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
 429        if (unlikely(bip == NULL)) {
 430                printk(KERN_ERR "could not allocate data integrity bioset\n");
 431                kfree(buf);
 432                return -EIO;
 433        }
 434
 435        bip->bip_buf = buf;
 436        bip->bip_size = len;
 437        bip->bip_sector = bio->bi_sector;
 438
 439        /* Map it */
 440        offset = offset_in_page(buf);
 441        for (i = 0 ; i < nr_pages ; i++) {
 442                int ret;
 443                bytes = PAGE_SIZE - offset;
 444
 445                if (len <= 0)
 446                        break;
 447
 448                if (bytes > len)
 449                        bytes = len;
 450
 451                ret = bio_integrity_add_page(bio, virt_to_page(buf),
 452                                             bytes, offset);
 453
 454                if (ret == 0)
 455                        return 0;
 456
 457                if (ret < bytes)
 458                        break;
 459
 460                buf += bytes;
 461                len -= bytes;
 462                offset = 0;
 463        }
 464
 465        /* Install custom I/O completion handler if read verify is enabled */
 466        if (bio_data_dir(bio) == READ) {
 467                bip->bip_end_io = bio->bi_end_io;
 468                bio->bi_end_io = bio_integrity_endio;
 469        }
 470
 471        /* Auto-generate integrity metadata if this is a write */
 472        if (bio_data_dir(bio) == WRITE)
 473                bio_integrity_generate(bio);
 474
 475        return 0;
 476}
 477EXPORT_SYMBOL(bio_integrity_prep);
 478
 479/**
 480 * bio_integrity_verify - Verify integrity metadata for a bio
 481 * @bio:        bio to verify
 482 *
 483 * Description: This function is called to verify the integrity of a
 484 * bio.  The data in the bio io_vec is compared to the integrity
 485 * metadata returned by the HBA.
 486 */
 487static int bio_integrity_verify(struct bio *bio)
 488{
 489        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 490        struct blk_integrity_exchg bix;
 491        struct bio_vec *bv;
 492        sector_t sector = bio->bi_integrity->bip_sector;
 493        unsigned int i, sectors, total, ret;
 494        void *prot_buf = bio->bi_integrity->bip_buf;
 495
 496        ret = total = 0;
 497        bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
 498        bix.sector_size = bi->sector_size;
 499
 500        bio_for_each_segment(bv, bio, i) {
 501                void *kaddr = kmap_atomic(bv->bv_page);
 502                bix.data_buf = kaddr + bv->bv_offset;
 503                bix.data_size = bv->bv_len;
 504                bix.prot_buf = prot_buf;
 505                bix.sector = sector;
 506
 507                ret = bi->verify_fn(&bix);
 508
 509                if (ret) {
 510                        kunmap_atomic(kaddr);
 511                        return ret;
 512                }
 513
 514                sectors = bv->bv_len / bi->sector_size;
 515                sector += sectors;
 516                prot_buf += sectors * bi->tuple_size;
 517                total += sectors * bi->tuple_size;
 518                BUG_ON(total > bio->bi_integrity->bip_size);
 519
 520                kunmap_atomic(kaddr);
 521        }
 522
 523        return ret;
 524}
 525
 526/**
 527 * bio_integrity_verify_fn - Integrity I/O completion worker
 528 * @work:       Work struct stored in bio to be verified
 529 *
 530 * Description: This workqueue function is called to complete a READ
 531 * request.  The function verifies the transferred integrity metadata
 532 * and then calls the original bio end_io function.
 533 */
 534static void bio_integrity_verify_fn(struct work_struct *work)
 535{
 536        struct bio_integrity_payload *bip =
 537                container_of(work, struct bio_integrity_payload, bip_work);
 538        struct bio *bio = bip->bip_bio;
 539        int error;
 540
 541        error = bio_integrity_verify(bio);
 542
 543        /* Restore original bio completion handler */
 544        bio->bi_end_io = bip->bip_end_io;
 545        bio_endio(bio, error);
 546}
 547
 548/**
 549 * bio_integrity_endio - Integrity I/O completion function
 550 * @bio:        Protected bio
 551 * @error:      Pointer to errno
 552 *
 553 * Description: Completion for integrity I/O
 554 *
 555 * Normally I/O completion is done in interrupt context.  However,
 556 * verifying I/O integrity is a time-consuming task which must be run
 557 * in process context.  This function postpones completion
 558 * accordingly.
 559 */
 560void bio_integrity_endio(struct bio *bio, int error)
 561{
 562        struct bio_integrity_payload *bip = bio->bi_integrity;
 563
 564        BUG_ON(bip->bip_bio != bio);
 565
 566        /* In case of an I/O error there is no point in verifying the
 567         * integrity metadata.  Restore original bio end_io handler
 568         * and run it.
 569         */
 570        if (error) {
 571                bio->bi_end_io = bip->bip_end_io;
 572                bio_endio(bio, error);
 573
 574                return;
 575        }
 576
 577        INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
 578        queue_work(kintegrityd_wq, &bip->bip_work);
 579}
 580EXPORT_SYMBOL(bio_integrity_endio);
 581
 582/**
 583 * bio_integrity_mark_head - Advance bip_vec skip bytes
 584 * @bip:        Integrity vector to advance
 585 * @skip:       Number of bytes to advance it
 586 */
 587void bio_integrity_mark_head(struct bio_integrity_payload *bip,
 588                             unsigned int skip)
 589{
 590        struct bio_vec *iv;
 591        unsigned int i;
 592
 593        bip_for_each_vec(iv, bip, i) {
 594                if (skip == 0) {
 595                        bip->bip_idx = i;
 596                        return;
 597                } else if (skip >= iv->bv_len) {
 598                        skip -= iv->bv_len;
 599                } else { /* skip < iv->bv_len) */
 600                        iv->bv_offset += skip;
 601                        iv->bv_len -= skip;
 602                        bip->bip_idx = i;
 603                        return;
 604                }
 605        }
 606}
 607
 608/**
 609 * bio_integrity_mark_tail - Truncate bip_vec to be len bytes long
 610 * @bip:        Integrity vector to truncate
 611 * @len:        New length of integrity vector
 612 */
 613void bio_integrity_mark_tail(struct bio_integrity_payload *bip,
 614                             unsigned int len)
 615{
 616        struct bio_vec *iv;
 617        unsigned int i;
 618
 619        bip_for_each_vec(iv, bip, i) {
 620                if (len == 0) {
 621                        bip->bip_vcnt = i;
 622                        return;
 623                } else if (len >= iv->bv_len) {
 624                        len -= iv->bv_len;
 625                } else { /* len < iv->bv_len) */
 626                        iv->bv_len = len;
 627                        len = 0;
 628                }
 629        }
 630}
 631
 632/**
 633 * bio_integrity_advance - Advance integrity vector
 634 * @bio:        bio whose integrity vector to update
 635 * @bytes_done: number of data bytes that have been completed
 636 *
 637 * Description: This function calculates how many integrity bytes the
 638 * number of completed data bytes correspond to and advances the
 639 * integrity vector accordingly.
 640 */
 641void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
 642{
 643        struct bio_integrity_payload *bip = bio->bi_integrity;
 644        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 645        unsigned int nr_sectors;
 646
 647        BUG_ON(bip == NULL);
 648        BUG_ON(bi == NULL);
 649
 650        nr_sectors = bio_integrity_hw_sectors(bi, bytes_done >> 9);
 651        bio_integrity_mark_head(bip, nr_sectors * bi->tuple_size);
 652}
 653EXPORT_SYMBOL(bio_integrity_advance);
 654
 655/**
 656 * bio_integrity_trim - Trim integrity vector
 657 * @bio:        bio whose integrity vector to update
 658 * @offset:     offset to first data sector
 659 * @sectors:    number of data sectors
 660 *
 661 * Description: Used to trim the integrity vector in a cloned bio.
 662 * The ivec will be advanced corresponding to 'offset' data sectors
 663 * and the length will be truncated corresponding to 'len' data
 664 * sectors.
 665 */
 666void bio_integrity_trim(struct bio *bio, unsigned int offset,
 667                        unsigned int sectors)
 668{
 669        struct bio_integrity_payload *bip = bio->bi_integrity;
 670        struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 671        unsigned int nr_sectors;
 672
 673        BUG_ON(bip == NULL);
 674        BUG_ON(bi == NULL);
 675        BUG_ON(!bio_flagged(bio, BIO_CLONED));
 676
 677        nr_sectors = bio_integrity_hw_sectors(bi, sectors);
 678        bip->bip_sector = bip->bip_sector + offset;
 679        bio_integrity_mark_head(bip, offset * bi->tuple_size);
 680        bio_integrity_mark_tail(bip, sectors * bi->tuple_size);
 681}
 682EXPORT_SYMBOL(bio_integrity_trim);
 683
 684/**
 685 * bio_integrity_split - Split integrity metadata
 686 * @bio:        Protected bio
 687 * @bp:         Resulting bio_pair
 688 * @sectors:    Offset
 689 *
 690 * Description: Splits an integrity page into a bio_pair.
 691 */
 692void bio_integrity_split(struct bio *bio, struct bio_pair *bp, int sectors)
 693{
 694        struct blk_integrity *bi;
 695        struct bio_integrity_payload *bip = bio->bi_integrity;
 696        unsigned int nr_sectors;
 697
 698        if (bio_integrity(bio) == 0)
 699                return;
 700
 701        bi = bdev_get_integrity(bio->bi_bdev);
 702        BUG_ON(bi == NULL);
 703        BUG_ON(bip->bip_vcnt != 1);
 704
 705        nr_sectors = bio_integrity_hw_sectors(bi, sectors);
 706
 707        bp->bio1.bi_integrity = &bp->bip1;
 708        bp->bio2.bi_integrity = &bp->bip2;
 709
 710        bp->iv1 = bip->bip_vec[0];
 711        bp->iv2 = bip->bip_vec[0];
 712
 713        bp->bip1.bip_vec[0] = bp->iv1;
 714        bp->bip2.bip_vec[0] = bp->iv2;
 715
 716        bp->iv1.bv_len = sectors * bi->tuple_size;
 717        bp->iv2.bv_offset += sectors * bi->tuple_size;
 718        bp->iv2.bv_len -= sectors * bi->tuple_size;
 719
 720        bp->bip1.bip_sector = bio->bi_integrity->bip_sector;
 721        bp->bip2.bip_sector = bio->bi_integrity->bip_sector + nr_sectors;
 722
 723        bp->bip1.bip_vcnt = bp->bip2.bip_vcnt = 1;
 724        bp->bip1.bip_idx = bp->bip2.bip_idx = 0;
 725}
 726EXPORT_SYMBOL(bio_integrity_split);
 727
 728/**
 729 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 730 * @bio:        New bio
 731 * @bio_src:    Original bio
 732 * @gfp_mask:   Memory allocation mask
 733 * @bs:         bio_set to allocate bip from
 734 *
 735 * Description: Called to allocate a bip when cloning a bio
 736 */
 737int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
 738                        gfp_t gfp_mask, struct bio_set *bs)
 739{
 740        struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
 741        struct bio_integrity_payload *bip;
 742
 743        BUG_ON(bip_src == NULL);
 744
 745        bip = bio_integrity_alloc_bioset(bio, gfp_mask, bip_src->bip_vcnt, bs);
 746
 747        if (bip == NULL)
 748                return -EIO;
 749
 750        memcpy(bip->bip_vec, bip_src->bip_vec,
 751               bip_src->bip_vcnt * sizeof(struct bio_vec));
 752
 753        bip->bip_sector = bip_src->bip_sector;
 754        bip->bip_vcnt = bip_src->bip_vcnt;
 755        bip->bip_idx = bip_src->bip_idx;
 756
 757        return 0;
 758}
 759EXPORT_SYMBOL(bio_integrity_clone);
 760
 761int bioset_integrity_create(struct bio_set *bs, int pool_size)
 762{
 763        unsigned int max_slab = vecs_to_idx(BIO_MAX_PAGES);
 764
 765        if (bs->bio_integrity_pool)
 766                return 0;
 767
 768        bs->bio_integrity_pool =
 769                mempool_create_slab_pool(pool_size, bip_slab[max_slab].slab);
 770
 771        if (!bs->bio_integrity_pool)
 772                return -1;
 773
 774        return 0;
 775}
 776EXPORT_SYMBOL(bioset_integrity_create);
 777
 778void bioset_integrity_free(struct bio_set *bs)
 779{
 780        if (bs->bio_integrity_pool)
 781                mempool_destroy(bs->bio_integrity_pool);
 782}
 783EXPORT_SYMBOL(bioset_integrity_free);
 784
 785void __init bio_integrity_init(void)
 786{
 787        unsigned int i;
 788
 789        /*
 790         * kintegrityd won't block much but may burn a lot of CPU cycles.
 791         * Make it highpri CPU intensive wq with max concurrency of 1.
 792         */
 793        kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
 794                                         WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
 795        if (!kintegrityd_wq)
 796                panic("Failed to create kintegrityd\n");
 797
 798        for (i = 0 ; i < BIOVEC_NR_POOLS ; i++) {
 799                unsigned int size;
 800
 801                size = sizeof(struct bio_integrity_payload)
 802                        + bip_slab[i].nr_vecs * sizeof(struct bio_vec);
 803
 804                bip_slab[i].slab =
 805                        kmem_cache_create(bip_slab[i].name, size, 0,
 806                                          SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 807        }
 808}
 809