linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/bit_spinlock.h>
  36#include <linux/xattr.h>
  37#include <linux/posix_acl.h>
  38#include <linux/falloc.h>
  39#include <linux/slab.h>
  40#include <linux/ratelimit.h>
  41#include <linux/mount.h>
  42#include "compat.h"
  43#include "ctree.h"
  44#include "disk-io.h"
  45#include "transaction.h"
  46#include "btrfs_inode.h"
  47#include "ioctl.h"
  48#include "print-tree.h"
  49#include "ordered-data.h"
  50#include "xattr.h"
  51#include "tree-log.h"
  52#include "volumes.h"
  53#include "compression.h"
  54#include "locking.h"
  55#include "free-space-cache.h"
  56#include "inode-map.h"
  57
  58struct btrfs_iget_args {
  59        u64 ino;
  60        struct btrfs_root *root;
  61};
  62
  63static const struct inode_operations btrfs_dir_inode_operations;
  64static const struct inode_operations btrfs_symlink_inode_operations;
  65static const struct inode_operations btrfs_dir_ro_inode_operations;
  66static const struct inode_operations btrfs_special_inode_operations;
  67static const struct inode_operations btrfs_file_inode_operations;
  68static const struct address_space_operations btrfs_aops;
  69static const struct address_space_operations btrfs_symlink_aops;
  70static const struct file_operations btrfs_dir_file_operations;
  71static struct extent_io_ops btrfs_extent_io_ops;
  72
  73static struct kmem_cache *btrfs_inode_cachep;
  74struct kmem_cache *btrfs_trans_handle_cachep;
  75struct kmem_cache *btrfs_transaction_cachep;
  76struct kmem_cache *btrfs_path_cachep;
  77struct kmem_cache *btrfs_free_space_cachep;
  78
  79#define S_SHIFT 12
  80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  81        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  82        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  83        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  84        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  85        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  86        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  87        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  88};
  89
  90static int btrfs_setsize(struct inode *inode, loff_t newsize);
  91static int btrfs_truncate(struct inode *inode);
  92static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  93static noinline int cow_file_range(struct inode *inode,
  94                                   struct page *locked_page,
  95                                   u64 start, u64 end, int *page_started,
  96                                   unsigned long *nr_written, int unlock);
  97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
  98                                struct btrfs_root *root, struct inode *inode);
  99
 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 101                                     struct inode *inode,  struct inode *dir,
 102                                     const struct qstr *qstr)
 103{
 104        int err;
 105
 106        err = btrfs_init_acl(trans, inode, dir);
 107        if (!err)
 108                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 109        return err;
 110}
 111
 112/*
 113 * this does all the hard work for inserting an inline extent into
 114 * the btree.  The caller should have done a btrfs_drop_extents so that
 115 * no overlapping inline items exist in the btree
 116 */
 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
 118                                struct btrfs_root *root, struct inode *inode,
 119                                u64 start, size_t size, size_t compressed_size,
 120                                int compress_type,
 121                                struct page **compressed_pages)
 122{
 123        struct btrfs_key key;
 124        struct btrfs_path *path;
 125        struct extent_buffer *leaf;
 126        struct page *page = NULL;
 127        char *kaddr;
 128        unsigned long ptr;
 129        struct btrfs_file_extent_item *ei;
 130        int err = 0;
 131        int ret;
 132        size_t cur_size = size;
 133        size_t datasize;
 134        unsigned long offset;
 135
 136        if (compressed_size && compressed_pages)
 137                cur_size = compressed_size;
 138
 139        path = btrfs_alloc_path();
 140        if (!path)
 141                return -ENOMEM;
 142
 143        path->leave_spinning = 1;
 144
 145        key.objectid = btrfs_ino(inode);
 146        key.offset = start;
 147        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
 148        datasize = btrfs_file_extent_calc_inline_size(cur_size);
 149
 150        inode_add_bytes(inode, size);
 151        ret = btrfs_insert_empty_item(trans, root, path, &key,
 152                                      datasize);
 153        if (ret) {
 154                err = ret;
 155                goto fail;
 156        }
 157        leaf = path->nodes[0];
 158        ei = btrfs_item_ptr(leaf, path->slots[0],
 159                            struct btrfs_file_extent_item);
 160        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 161        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 162        btrfs_set_file_extent_encryption(leaf, ei, 0);
 163        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 164        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 165        ptr = btrfs_file_extent_inline_start(ei);
 166
 167        if (compress_type != BTRFS_COMPRESS_NONE) {
 168                struct page *cpage;
 169                int i = 0;
 170                while (compressed_size > 0) {
 171                        cpage = compressed_pages[i];
 172                        cur_size = min_t(unsigned long, compressed_size,
 173                                       PAGE_CACHE_SIZE);
 174
 175                        kaddr = kmap_atomic(cpage);
 176                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 177                        kunmap_atomic(kaddr);
 178
 179                        i++;
 180                        ptr += cur_size;
 181                        compressed_size -= cur_size;
 182                }
 183                btrfs_set_file_extent_compression(leaf, ei,
 184                                                  compress_type);
 185        } else {
 186                page = find_get_page(inode->i_mapping,
 187                                     start >> PAGE_CACHE_SHIFT);
 188                btrfs_set_file_extent_compression(leaf, ei, 0);
 189                kaddr = kmap_atomic(page);
 190                offset = start & (PAGE_CACHE_SIZE - 1);
 191                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 192                kunmap_atomic(kaddr);
 193                page_cache_release(page);
 194        }
 195        btrfs_mark_buffer_dirty(leaf);
 196        btrfs_free_path(path);
 197
 198        /*
 199         * we're an inline extent, so nobody can
 200         * extend the file past i_size without locking
 201         * a page we already have locked.
 202         *
 203         * We must do any isize and inode updates
 204         * before we unlock the pages.  Otherwise we
 205         * could end up racing with unlink.
 206         */
 207        BTRFS_I(inode)->disk_i_size = inode->i_size;
 208        ret = btrfs_update_inode(trans, root, inode);
 209
 210        return ret;
 211fail:
 212        btrfs_free_path(path);
 213        return err;
 214}
 215
 216
 217/*
 218 * conditionally insert an inline extent into the file.  This
 219 * does the checks required to make sure the data is small enough
 220 * to fit as an inline extent.
 221 */
 222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
 223                                 struct btrfs_root *root,
 224                                 struct inode *inode, u64 start, u64 end,
 225                                 size_t compressed_size, int compress_type,
 226                                 struct page **compressed_pages)
 227{
 228        u64 isize = i_size_read(inode);
 229        u64 actual_end = min(end + 1, isize);
 230        u64 inline_len = actual_end - start;
 231        u64 aligned_end = (end + root->sectorsize - 1) &
 232                        ~((u64)root->sectorsize - 1);
 233        u64 hint_byte;
 234        u64 data_len = inline_len;
 235        int ret;
 236
 237        if (compressed_size)
 238                data_len = compressed_size;
 239
 240        if (start > 0 ||
 241            actual_end >= PAGE_CACHE_SIZE ||
 242            data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 243            (!compressed_size &&
 244            (actual_end & (root->sectorsize - 1)) == 0) ||
 245            end + 1 < isize ||
 246            data_len > root->fs_info->max_inline) {
 247                return 1;
 248        }
 249
 250        ret = btrfs_drop_extents(trans, inode, start, aligned_end,
 251                                 &hint_byte, 1);
 252        if (ret)
 253                return ret;
 254
 255        if (isize > actual_end)
 256                inline_len = min_t(u64, isize, actual_end);
 257        ret = insert_inline_extent(trans, root, inode, start,
 258                                   inline_len, compressed_size,
 259                                   compress_type, compressed_pages);
 260        if (ret && ret != -ENOSPC) {
 261                btrfs_abort_transaction(trans, root, ret);
 262                return ret;
 263        } else if (ret == -ENOSPC) {
 264                return 1;
 265        }
 266
 267        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 268        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 269        return 0;
 270}
 271
 272struct async_extent {
 273        u64 start;
 274        u64 ram_size;
 275        u64 compressed_size;
 276        struct page **pages;
 277        unsigned long nr_pages;
 278        int compress_type;
 279        struct list_head list;
 280};
 281
 282struct async_cow {
 283        struct inode *inode;
 284        struct btrfs_root *root;
 285        struct page *locked_page;
 286        u64 start;
 287        u64 end;
 288        struct list_head extents;
 289        struct btrfs_work work;
 290};
 291
 292static noinline int add_async_extent(struct async_cow *cow,
 293                                     u64 start, u64 ram_size,
 294                                     u64 compressed_size,
 295                                     struct page **pages,
 296                                     unsigned long nr_pages,
 297                                     int compress_type)
 298{
 299        struct async_extent *async_extent;
 300
 301        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 302        BUG_ON(!async_extent); /* -ENOMEM */
 303        async_extent->start = start;
 304        async_extent->ram_size = ram_size;
 305        async_extent->compressed_size = compressed_size;
 306        async_extent->pages = pages;
 307        async_extent->nr_pages = nr_pages;
 308        async_extent->compress_type = compress_type;
 309        list_add_tail(&async_extent->list, &cow->extents);
 310        return 0;
 311}
 312
 313/*
 314 * we create compressed extents in two phases.  The first
 315 * phase compresses a range of pages that have already been
 316 * locked (both pages and state bits are locked).
 317 *
 318 * This is done inside an ordered work queue, and the compression
 319 * is spread across many cpus.  The actual IO submission is step
 320 * two, and the ordered work queue takes care of making sure that
 321 * happens in the same order things were put onto the queue by
 322 * writepages and friends.
 323 *
 324 * If this code finds it can't get good compression, it puts an
 325 * entry onto the work queue to write the uncompressed bytes.  This
 326 * makes sure that both compressed inodes and uncompressed inodes
 327 * are written in the same order that the flusher thread sent them
 328 * down.
 329 */
 330static noinline int compress_file_range(struct inode *inode,
 331                                        struct page *locked_page,
 332                                        u64 start, u64 end,
 333                                        struct async_cow *async_cow,
 334                                        int *num_added)
 335{
 336        struct btrfs_root *root = BTRFS_I(inode)->root;
 337        struct btrfs_trans_handle *trans;
 338        u64 num_bytes;
 339        u64 blocksize = root->sectorsize;
 340        u64 actual_end;
 341        u64 isize = i_size_read(inode);
 342        int ret = 0;
 343        struct page **pages = NULL;
 344        unsigned long nr_pages;
 345        unsigned long nr_pages_ret = 0;
 346        unsigned long total_compressed = 0;
 347        unsigned long total_in = 0;
 348        unsigned long max_compressed = 128 * 1024;
 349        unsigned long max_uncompressed = 128 * 1024;
 350        int i;
 351        int will_compress;
 352        int compress_type = root->fs_info->compress_type;
 353
 354        /* if this is a small write inside eof, kick off a defrag */
 355        if ((end - start + 1) < 16 * 1024 &&
 356            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 357                btrfs_add_inode_defrag(NULL, inode);
 358
 359        actual_end = min_t(u64, isize, end + 1);
 360again:
 361        will_compress = 0;
 362        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 363        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 364
 365        /*
 366         * we don't want to send crud past the end of i_size through
 367         * compression, that's just a waste of CPU time.  So, if the
 368         * end of the file is before the start of our current
 369         * requested range of bytes, we bail out to the uncompressed
 370         * cleanup code that can deal with all of this.
 371         *
 372         * It isn't really the fastest way to fix things, but this is a
 373         * very uncommon corner.
 374         */
 375        if (actual_end <= start)
 376                goto cleanup_and_bail_uncompressed;
 377
 378        total_compressed = actual_end - start;
 379
 380        /* we want to make sure that amount of ram required to uncompress
 381         * an extent is reasonable, so we limit the total size in ram
 382         * of a compressed extent to 128k.  This is a crucial number
 383         * because it also controls how easily we can spread reads across
 384         * cpus for decompression.
 385         *
 386         * We also want to make sure the amount of IO required to do
 387         * a random read is reasonably small, so we limit the size of
 388         * a compressed extent to 128k.
 389         */
 390        total_compressed = min(total_compressed, max_uncompressed);
 391        num_bytes = (end - start + blocksize) & ~(blocksize - 1);
 392        num_bytes = max(blocksize,  num_bytes);
 393        total_in = 0;
 394        ret = 0;
 395
 396        /*
 397         * we do compression for mount -o compress and when the
 398         * inode has not been flagged as nocompress.  This flag can
 399         * change at any time if we discover bad compression ratios.
 400         */
 401        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
 402            (btrfs_test_opt(root, COMPRESS) ||
 403             (BTRFS_I(inode)->force_compress) ||
 404             (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
 405                WARN_ON(pages);
 406                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 407                if (!pages) {
 408                        /* just bail out to the uncompressed code */
 409                        goto cont;
 410                }
 411
 412                if (BTRFS_I(inode)->force_compress)
 413                        compress_type = BTRFS_I(inode)->force_compress;
 414
 415                ret = btrfs_compress_pages(compress_type,
 416                                           inode->i_mapping, start,
 417                                           total_compressed, pages,
 418                                           nr_pages, &nr_pages_ret,
 419                                           &total_in,
 420                                           &total_compressed,
 421                                           max_compressed);
 422
 423                if (!ret) {
 424                        unsigned long offset = total_compressed &
 425                                (PAGE_CACHE_SIZE - 1);
 426                        struct page *page = pages[nr_pages_ret - 1];
 427                        char *kaddr;
 428
 429                        /* zero the tail end of the last page, we might be
 430                         * sending it down to disk
 431                         */
 432                        if (offset) {
 433                                kaddr = kmap_atomic(page);
 434                                memset(kaddr + offset, 0,
 435                                       PAGE_CACHE_SIZE - offset);
 436                                kunmap_atomic(kaddr);
 437                        }
 438                        will_compress = 1;
 439                }
 440        }
 441cont:
 442        if (start == 0) {
 443                trans = btrfs_join_transaction(root);
 444                if (IS_ERR(trans)) {
 445                        ret = PTR_ERR(trans);
 446                        trans = NULL;
 447                        goto cleanup_and_out;
 448                }
 449                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 450
 451                /* lets try to make an inline extent */
 452                if (ret || total_in < (actual_end - start)) {
 453                        /* we didn't compress the entire range, try
 454                         * to make an uncompressed inline extent.
 455                         */
 456                        ret = cow_file_range_inline(trans, root, inode,
 457                                                    start, end, 0, 0, NULL);
 458                } else {
 459                        /* try making a compressed inline extent */
 460                        ret = cow_file_range_inline(trans, root, inode,
 461                                                    start, end,
 462                                                    total_compressed,
 463                                                    compress_type, pages);
 464                }
 465                if (ret <= 0) {
 466                        /*
 467                         * inline extent creation worked or returned error,
 468                         * we don't need to create any more async work items.
 469                         * Unlock and free up our temp pages.
 470                         */
 471                        extent_clear_unlock_delalloc(inode,
 472                             &BTRFS_I(inode)->io_tree,
 473                             start, end, NULL,
 474                             EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
 475                             EXTENT_CLEAR_DELALLOC |
 476                             EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
 477
 478                        btrfs_end_transaction(trans, root);
 479                        goto free_pages_out;
 480                }
 481                btrfs_end_transaction(trans, root);
 482        }
 483
 484        if (will_compress) {
 485                /*
 486                 * we aren't doing an inline extent round the compressed size
 487                 * up to a block size boundary so the allocator does sane
 488                 * things
 489                 */
 490                total_compressed = (total_compressed + blocksize - 1) &
 491                        ~(blocksize - 1);
 492
 493                /*
 494                 * one last check to make sure the compression is really a
 495                 * win, compare the page count read with the blocks on disk
 496                 */
 497                total_in = (total_in + PAGE_CACHE_SIZE - 1) &
 498                        ~(PAGE_CACHE_SIZE - 1);
 499                if (total_compressed >= total_in) {
 500                        will_compress = 0;
 501                } else {
 502                        num_bytes = total_in;
 503                }
 504        }
 505        if (!will_compress && pages) {
 506                /*
 507                 * the compression code ran but failed to make things smaller,
 508                 * free any pages it allocated and our page pointer array
 509                 */
 510                for (i = 0; i < nr_pages_ret; i++) {
 511                        WARN_ON(pages[i]->mapping);
 512                        page_cache_release(pages[i]);
 513                }
 514                kfree(pages);
 515                pages = NULL;
 516                total_compressed = 0;
 517                nr_pages_ret = 0;
 518
 519                /* flag the file so we don't compress in the future */
 520                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 521                    !(BTRFS_I(inode)->force_compress)) {
 522                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 523                }
 524        }
 525        if (will_compress) {
 526                *num_added += 1;
 527
 528                /* the async work queues will take care of doing actual
 529                 * allocation on disk for these compressed pages,
 530                 * and will submit them to the elevator.
 531                 */
 532                add_async_extent(async_cow, start, num_bytes,
 533                                 total_compressed, pages, nr_pages_ret,
 534                                 compress_type);
 535
 536                if (start + num_bytes < end) {
 537                        start += num_bytes;
 538                        pages = NULL;
 539                        cond_resched();
 540                        goto again;
 541                }
 542        } else {
 543cleanup_and_bail_uncompressed:
 544                /*
 545                 * No compression, but we still need to write the pages in
 546                 * the file we've been given so far.  redirty the locked
 547                 * page if it corresponds to our extent and set things up
 548                 * for the async work queue to run cow_file_range to do
 549                 * the normal delalloc dance
 550                 */
 551                if (page_offset(locked_page) >= start &&
 552                    page_offset(locked_page) <= end) {
 553                        __set_page_dirty_nobuffers(locked_page);
 554                        /* unlocked later on in the async handlers */
 555                }
 556                add_async_extent(async_cow, start, end - start + 1,
 557                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 558                *num_added += 1;
 559        }
 560
 561out:
 562        return ret;
 563
 564free_pages_out:
 565        for (i = 0; i < nr_pages_ret; i++) {
 566                WARN_ON(pages[i]->mapping);
 567                page_cache_release(pages[i]);
 568        }
 569        kfree(pages);
 570
 571        goto out;
 572
 573cleanup_and_out:
 574        extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 575                                     start, end, NULL,
 576                                     EXTENT_CLEAR_UNLOCK_PAGE |
 577                                     EXTENT_CLEAR_DIRTY |
 578                                     EXTENT_CLEAR_DELALLOC |
 579                                     EXTENT_SET_WRITEBACK |
 580                                     EXTENT_END_WRITEBACK);
 581        if (!trans || IS_ERR(trans))
 582                btrfs_error(root->fs_info, ret, "Failed to join transaction");
 583        else
 584                btrfs_abort_transaction(trans, root, ret);
 585        goto free_pages_out;
 586}
 587
 588/*
 589 * phase two of compressed writeback.  This is the ordered portion
 590 * of the code, which only gets called in the order the work was
 591 * queued.  We walk all the async extents created by compress_file_range
 592 * and send them down to the disk.
 593 */
 594static noinline int submit_compressed_extents(struct inode *inode,
 595                                              struct async_cow *async_cow)
 596{
 597        struct async_extent *async_extent;
 598        u64 alloc_hint = 0;
 599        struct btrfs_trans_handle *trans;
 600        struct btrfs_key ins;
 601        struct extent_map *em;
 602        struct btrfs_root *root = BTRFS_I(inode)->root;
 603        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 604        struct extent_io_tree *io_tree;
 605        int ret = 0;
 606
 607        if (list_empty(&async_cow->extents))
 608                return 0;
 609
 610
 611        while (!list_empty(&async_cow->extents)) {
 612                async_extent = list_entry(async_cow->extents.next,
 613                                          struct async_extent, list);
 614                list_del(&async_extent->list);
 615
 616                io_tree = &BTRFS_I(inode)->io_tree;
 617
 618retry:
 619                /* did the compression code fall back to uncompressed IO? */
 620                if (!async_extent->pages) {
 621                        int page_started = 0;
 622                        unsigned long nr_written = 0;
 623
 624                        lock_extent(io_tree, async_extent->start,
 625                                         async_extent->start +
 626                                         async_extent->ram_size - 1);
 627
 628                        /* allocate blocks */
 629                        ret = cow_file_range(inode, async_cow->locked_page,
 630                                             async_extent->start,
 631                                             async_extent->start +
 632                                             async_extent->ram_size - 1,
 633                                             &page_started, &nr_written, 0);
 634
 635                        /* JDM XXX */
 636
 637                        /*
 638                         * if page_started, cow_file_range inserted an
 639                         * inline extent and took care of all the unlocking
 640                         * and IO for us.  Otherwise, we need to submit
 641                         * all those pages down to the drive.
 642                         */
 643                        if (!page_started && !ret)
 644                                extent_write_locked_range(io_tree,
 645                                                  inode, async_extent->start,
 646                                                  async_extent->start +
 647                                                  async_extent->ram_size - 1,
 648                                                  btrfs_get_extent,
 649                                                  WB_SYNC_ALL);
 650                        kfree(async_extent);
 651                        cond_resched();
 652                        continue;
 653                }
 654
 655                lock_extent(io_tree, async_extent->start,
 656                            async_extent->start + async_extent->ram_size - 1);
 657
 658                trans = btrfs_join_transaction(root);
 659                if (IS_ERR(trans)) {
 660                        ret = PTR_ERR(trans);
 661                } else {
 662                        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 663                        ret = btrfs_reserve_extent(trans, root,
 664                                           async_extent->compressed_size,
 665                                           async_extent->compressed_size,
 666                                           0, alloc_hint, &ins, 1);
 667                        if (ret)
 668                                btrfs_abort_transaction(trans, root, ret);
 669                        btrfs_end_transaction(trans, root);
 670                }
 671
 672                if (ret) {
 673                        int i;
 674                        for (i = 0; i < async_extent->nr_pages; i++) {
 675                                WARN_ON(async_extent->pages[i]->mapping);
 676                                page_cache_release(async_extent->pages[i]);
 677                        }
 678                        kfree(async_extent->pages);
 679                        async_extent->nr_pages = 0;
 680                        async_extent->pages = NULL;
 681                        unlock_extent(io_tree, async_extent->start,
 682                                      async_extent->start +
 683                                      async_extent->ram_size - 1);
 684                        if (ret == -ENOSPC)
 685                                goto retry;
 686                        goto out_free; /* JDM: Requeue? */
 687                }
 688
 689                /*
 690                 * here we're doing allocation and writeback of the
 691                 * compressed pages
 692                 */
 693                btrfs_drop_extent_cache(inode, async_extent->start,
 694                                        async_extent->start +
 695                                        async_extent->ram_size - 1, 0);
 696
 697                em = alloc_extent_map();
 698                BUG_ON(!em); /* -ENOMEM */
 699                em->start = async_extent->start;
 700                em->len = async_extent->ram_size;
 701                em->orig_start = em->start;
 702
 703                em->block_start = ins.objectid;
 704                em->block_len = ins.offset;
 705                em->bdev = root->fs_info->fs_devices->latest_bdev;
 706                em->compress_type = async_extent->compress_type;
 707                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 708                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 709
 710                while (1) {
 711                        write_lock(&em_tree->lock);
 712                        ret = add_extent_mapping(em_tree, em);
 713                        write_unlock(&em_tree->lock);
 714                        if (ret != -EEXIST) {
 715                                free_extent_map(em);
 716                                break;
 717                        }
 718                        btrfs_drop_extent_cache(inode, async_extent->start,
 719                                                async_extent->start +
 720                                                async_extent->ram_size - 1, 0);
 721                }
 722
 723                ret = btrfs_add_ordered_extent_compress(inode,
 724                                                async_extent->start,
 725                                                ins.objectid,
 726                                                async_extent->ram_size,
 727                                                ins.offset,
 728                                                BTRFS_ORDERED_COMPRESSED,
 729                                                async_extent->compress_type);
 730                BUG_ON(ret); /* -ENOMEM */
 731
 732                /*
 733                 * clear dirty, set writeback and unlock the pages.
 734                 */
 735                extent_clear_unlock_delalloc(inode,
 736                                &BTRFS_I(inode)->io_tree,
 737                                async_extent->start,
 738                                async_extent->start +
 739                                async_extent->ram_size - 1,
 740                                NULL, EXTENT_CLEAR_UNLOCK_PAGE |
 741                                EXTENT_CLEAR_UNLOCK |
 742                                EXTENT_CLEAR_DELALLOC |
 743                                EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
 744
 745                ret = btrfs_submit_compressed_write(inode,
 746                                    async_extent->start,
 747                                    async_extent->ram_size,
 748                                    ins.objectid,
 749                                    ins.offset, async_extent->pages,
 750                                    async_extent->nr_pages);
 751
 752                BUG_ON(ret); /* -ENOMEM */
 753                alloc_hint = ins.objectid + ins.offset;
 754                kfree(async_extent);
 755                cond_resched();
 756        }
 757        ret = 0;
 758out:
 759        return ret;
 760out_free:
 761        kfree(async_extent);
 762        goto out;
 763}
 764
 765static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 766                                      u64 num_bytes)
 767{
 768        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 769        struct extent_map *em;
 770        u64 alloc_hint = 0;
 771
 772        read_lock(&em_tree->lock);
 773        em = search_extent_mapping(em_tree, start, num_bytes);
 774        if (em) {
 775                /*
 776                 * if block start isn't an actual block number then find the
 777                 * first block in this inode and use that as a hint.  If that
 778                 * block is also bogus then just don't worry about it.
 779                 */
 780                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 781                        free_extent_map(em);
 782                        em = search_extent_mapping(em_tree, 0, 0);
 783                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 784                                alloc_hint = em->block_start;
 785                        if (em)
 786                                free_extent_map(em);
 787                } else {
 788                        alloc_hint = em->block_start;
 789                        free_extent_map(em);
 790                }
 791        }
 792        read_unlock(&em_tree->lock);
 793
 794        return alloc_hint;
 795}
 796
 797/*
 798 * when extent_io.c finds a delayed allocation range in the file,
 799 * the call backs end up in this code.  The basic idea is to
 800 * allocate extents on disk for the range, and create ordered data structs
 801 * in ram to track those extents.
 802 *
 803 * locked_page is the page that writepage had locked already.  We use
 804 * it to make sure we don't do extra locks or unlocks.
 805 *
 806 * *page_started is set to one if we unlock locked_page and do everything
 807 * required to start IO on it.  It may be clean and already done with
 808 * IO when we return.
 809 */
 810static noinline int cow_file_range(struct inode *inode,
 811                                   struct page *locked_page,
 812                                   u64 start, u64 end, int *page_started,
 813                                   unsigned long *nr_written,
 814                                   int unlock)
 815{
 816        struct btrfs_root *root = BTRFS_I(inode)->root;
 817        struct btrfs_trans_handle *trans;
 818        u64 alloc_hint = 0;
 819        u64 num_bytes;
 820        unsigned long ram_size;
 821        u64 disk_num_bytes;
 822        u64 cur_alloc_size;
 823        u64 blocksize = root->sectorsize;
 824        struct btrfs_key ins;
 825        struct extent_map *em;
 826        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 827        int ret = 0;
 828
 829        BUG_ON(btrfs_is_free_space_inode(inode));
 830        trans = btrfs_join_transaction(root);
 831        if (IS_ERR(trans)) {
 832                extent_clear_unlock_delalloc(inode,
 833                             &BTRFS_I(inode)->io_tree,
 834                             start, end, locked_page,
 835                             EXTENT_CLEAR_UNLOCK_PAGE |
 836                             EXTENT_CLEAR_UNLOCK |
 837                             EXTENT_CLEAR_DELALLOC |
 838                             EXTENT_CLEAR_DIRTY |
 839                             EXTENT_SET_WRITEBACK |
 840                             EXTENT_END_WRITEBACK);
 841                return PTR_ERR(trans);
 842        }
 843        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 844
 845        num_bytes = (end - start + blocksize) & ~(blocksize - 1);
 846        num_bytes = max(blocksize,  num_bytes);
 847        disk_num_bytes = num_bytes;
 848        ret = 0;
 849
 850        /* if this is a small write inside eof, kick off defrag */
 851        if (num_bytes < 64 * 1024 &&
 852            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 853                btrfs_add_inode_defrag(trans, inode);
 854
 855        if (start == 0) {
 856                /* lets try to make an inline extent */
 857                ret = cow_file_range_inline(trans, root, inode,
 858                                            start, end, 0, 0, NULL);
 859                if (ret == 0) {
 860                        extent_clear_unlock_delalloc(inode,
 861                                     &BTRFS_I(inode)->io_tree,
 862                                     start, end, NULL,
 863                                     EXTENT_CLEAR_UNLOCK_PAGE |
 864                                     EXTENT_CLEAR_UNLOCK |
 865                                     EXTENT_CLEAR_DELALLOC |
 866                                     EXTENT_CLEAR_DIRTY |
 867                                     EXTENT_SET_WRITEBACK |
 868                                     EXTENT_END_WRITEBACK);
 869
 870                        *nr_written = *nr_written +
 871                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 872                        *page_started = 1;
 873                        goto out;
 874                } else if (ret < 0) {
 875                        btrfs_abort_transaction(trans, root, ret);
 876                        goto out_unlock;
 877                }
 878        }
 879
 880        BUG_ON(disk_num_bytes >
 881               btrfs_super_total_bytes(root->fs_info->super_copy));
 882
 883        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 884        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 885
 886        while (disk_num_bytes > 0) {
 887                unsigned long op;
 888
 889                cur_alloc_size = disk_num_bytes;
 890                ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
 891                                           root->sectorsize, 0, alloc_hint,
 892                                           &ins, 1);
 893                if (ret < 0) {
 894                        btrfs_abort_transaction(trans, root, ret);
 895                        goto out_unlock;
 896                }
 897
 898                em = alloc_extent_map();
 899                BUG_ON(!em); /* -ENOMEM */
 900                em->start = start;
 901                em->orig_start = em->start;
 902                ram_size = ins.offset;
 903                em->len = ins.offset;
 904
 905                em->block_start = ins.objectid;
 906                em->block_len = ins.offset;
 907                em->bdev = root->fs_info->fs_devices->latest_bdev;
 908                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 909
 910                while (1) {
 911                        write_lock(&em_tree->lock);
 912                        ret = add_extent_mapping(em_tree, em);
 913                        write_unlock(&em_tree->lock);
 914                        if (ret != -EEXIST) {
 915                                free_extent_map(em);
 916                                break;
 917                        }
 918                        btrfs_drop_extent_cache(inode, start,
 919                                                start + ram_size - 1, 0);
 920                }
 921
 922                cur_alloc_size = ins.offset;
 923                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
 924                                               ram_size, cur_alloc_size, 0);
 925                BUG_ON(ret); /* -ENOMEM */
 926
 927                if (root->root_key.objectid ==
 928                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 929                        ret = btrfs_reloc_clone_csums(inode, start,
 930                                                      cur_alloc_size);
 931                        if (ret) {
 932                                btrfs_abort_transaction(trans, root, ret);
 933                                goto out_unlock;
 934                        }
 935                }
 936
 937                if (disk_num_bytes < cur_alloc_size)
 938                        break;
 939
 940                /* we're not doing compressed IO, don't unlock the first
 941                 * page (which the caller expects to stay locked), don't
 942                 * clear any dirty bits and don't set any writeback bits
 943                 *
 944                 * Do set the Private2 bit so we know this page was properly
 945                 * setup for writepage
 946                 */
 947                op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
 948                op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
 949                        EXTENT_SET_PRIVATE2;
 950
 951                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 952                                             start, start + ram_size - 1,
 953                                             locked_page, op);
 954                disk_num_bytes -= cur_alloc_size;
 955                num_bytes -= cur_alloc_size;
 956                alloc_hint = ins.objectid + ins.offset;
 957                start += cur_alloc_size;
 958        }
 959        ret = 0;
 960out:
 961        btrfs_end_transaction(trans, root);
 962
 963        return ret;
 964out_unlock:
 965        extent_clear_unlock_delalloc(inode,
 966                     &BTRFS_I(inode)->io_tree,
 967                     start, end, locked_page,
 968                     EXTENT_CLEAR_UNLOCK_PAGE |
 969                     EXTENT_CLEAR_UNLOCK |
 970                     EXTENT_CLEAR_DELALLOC |
 971                     EXTENT_CLEAR_DIRTY |
 972                     EXTENT_SET_WRITEBACK |
 973                     EXTENT_END_WRITEBACK);
 974
 975        goto out;
 976}
 977
 978/*
 979 * work queue call back to started compression on a file and pages
 980 */
 981static noinline void async_cow_start(struct btrfs_work *work)
 982{
 983        struct async_cow *async_cow;
 984        int num_added = 0;
 985        async_cow = container_of(work, struct async_cow, work);
 986
 987        compress_file_range(async_cow->inode, async_cow->locked_page,
 988                            async_cow->start, async_cow->end, async_cow,
 989                            &num_added);
 990        if (num_added == 0) {
 991                btrfs_add_delayed_iput(async_cow->inode);
 992                async_cow->inode = NULL;
 993        }
 994}
 995
 996/*
 997 * work queue call back to submit previously compressed pages
 998 */
 999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001        struct async_cow *async_cow;
1002        struct btrfs_root *root;
1003        unsigned long nr_pages;
1004
1005        async_cow = container_of(work, struct async_cow, work);
1006
1007        root = async_cow->root;
1008        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009                PAGE_CACHE_SHIFT;
1010
1011        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1012            5 * 1024 * 1024 &&
1013            waitqueue_active(&root->fs_info->async_submit_wait))
1014                wake_up(&root->fs_info->async_submit_wait);
1015
1016        if (async_cow->inode)
1017                submit_compressed_extents(async_cow->inode, async_cow);
1018}
1019
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022        struct async_cow *async_cow;
1023        async_cow = container_of(work, struct async_cow, work);
1024        if (async_cow->inode)
1025                btrfs_add_delayed_iput(async_cow->inode);
1026        kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030                                u64 start, u64 end, int *page_started,
1031                                unsigned long *nr_written)
1032{
1033        struct async_cow *async_cow;
1034        struct btrfs_root *root = BTRFS_I(inode)->root;
1035        unsigned long nr_pages;
1036        u64 cur_end;
1037        int limit = 10 * 1024 * 1024;
1038
1039        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040                         1, 0, NULL, GFP_NOFS);
1041        while (start < end) {
1042                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1043                BUG_ON(!async_cow); /* -ENOMEM */
1044                async_cow->inode = igrab(inode);
1045                async_cow->root = root;
1046                async_cow->locked_page = locked_page;
1047                async_cow->start = start;
1048
1049                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1050                        cur_end = end;
1051                else
1052                        cur_end = min(end, start + 512 * 1024 - 1);
1053
1054                async_cow->end = cur_end;
1055                INIT_LIST_HEAD(&async_cow->extents);
1056
1057                async_cow->work.func = async_cow_start;
1058                async_cow->work.ordered_func = async_cow_submit;
1059                async_cow->work.ordered_free = async_cow_free;
1060                async_cow->work.flags = 0;
1061
1062                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063                        PAGE_CACHE_SHIFT;
1064                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066                btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067                                   &async_cow->work);
1068
1069                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070                        wait_event(root->fs_info->async_submit_wait,
1071                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1072                            limit));
1073                }
1074
1075                while (atomic_read(&root->fs_info->async_submit_draining) &&
1076                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1077                        wait_event(root->fs_info->async_submit_wait,
1078                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079                           0));
1080                }
1081
1082                *nr_written += nr_pages;
1083                start = cur_end + 1;
1084        }
1085        *page_started = 1;
1086        return 0;
1087}
1088
1089static noinline int csum_exist_in_range(struct btrfs_root *root,
1090                                        u64 bytenr, u64 num_bytes)
1091{
1092        int ret;
1093        struct btrfs_ordered_sum *sums;
1094        LIST_HEAD(list);
1095
1096        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1097                                       bytenr + num_bytes - 1, &list, 0);
1098        if (ret == 0 && list_empty(&list))
1099                return 0;
1100
1101        while (!list_empty(&list)) {
1102                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103                list_del(&sums->list);
1104                kfree(sums);
1105        }
1106        return 1;
1107}
1108
1109/*
1110 * when nowcow writeback call back.  This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117                                       struct page *locked_page,
1118                              u64 start, u64 end, int *page_started, int force,
1119                              unsigned long *nr_written)
1120{
1121        struct btrfs_root *root = BTRFS_I(inode)->root;
1122        struct btrfs_trans_handle *trans;
1123        struct extent_buffer *leaf;
1124        struct btrfs_path *path;
1125        struct btrfs_file_extent_item *fi;
1126        struct btrfs_key found_key;
1127        u64 cow_start;
1128        u64 cur_offset;
1129        u64 extent_end;
1130        u64 extent_offset;
1131        u64 disk_bytenr;
1132        u64 num_bytes;
1133        int extent_type;
1134        int ret, err;
1135        int type;
1136        int nocow;
1137        int check_prev = 1;
1138        bool nolock;
1139        u64 ino = btrfs_ino(inode);
1140
1141        path = btrfs_alloc_path();
1142        if (!path) {
1143                extent_clear_unlock_delalloc(inode,
1144                             &BTRFS_I(inode)->io_tree,
1145                             start, end, locked_page,
1146                             EXTENT_CLEAR_UNLOCK_PAGE |
1147                             EXTENT_CLEAR_UNLOCK |
1148                             EXTENT_CLEAR_DELALLOC |
1149                             EXTENT_CLEAR_DIRTY |
1150                             EXTENT_SET_WRITEBACK |
1151                             EXTENT_END_WRITEBACK);
1152                return -ENOMEM;
1153        }
1154
1155        nolock = btrfs_is_free_space_inode(inode);
1156
1157        if (nolock)
1158                trans = btrfs_join_transaction_nolock(root);
1159        else
1160                trans = btrfs_join_transaction(root);
1161
1162        if (IS_ERR(trans)) {
1163                extent_clear_unlock_delalloc(inode,
1164                             &BTRFS_I(inode)->io_tree,
1165                             start, end, locked_page,
1166                             EXTENT_CLEAR_UNLOCK_PAGE |
1167                             EXTENT_CLEAR_UNLOCK |
1168                             EXTENT_CLEAR_DELALLOC |
1169                             EXTENT_CLEAR_DIRTY |
1170                             EXTENT_SET_WRITEBACK |
1171                             EXTENT_END_WRITEBACK);
1172                btrfs_free_path(path);
1173                return PTR_ERR(trans);
1174        }
1175
1176        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177
1178        cow_start = (u64)-1;
1179        cur_offset = start;
1180        while (1) {
1181                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182                                               cur_offset, 0);
1183                if (ret < 0) {
1184                        btrfs_abort_transaction(trans, root, ret);
1185                        goto error;
1186                }
1187                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1188                        leaf = path->nodes[0];
1189                        btrfs_item_key_to_cpu(leaf, &found_key,
1190                                              path->slots[0] - 1);
1191                        if (found_key.objectid == ino &&
1192                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1193                                path->slots[0]--;
1194                }
1195                check_prev = 0;
1196next_slot:
1197                leaf = path->nodes[0];
1198                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1199                        ret = btrfs_next_leaf(root, path);
1200                        if (ret < 0) {
1201                                btrfs_abort_transaction(trans, root, ret);
1202                                goto error;
1203                        }
1204                        if (ret > 0)
1205                                break;
1206                        leaf = path->nodes[0];
1207                }
1208
1209                nocow = 0;
1210                disk_bytenr = 0;
1211                num_bytes = 0;
1212                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213
1214                if (found_key.objectid > ino ||
1215                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1216                    found_key.offset > end)
1217                        break;
1218
1219                if (found_key.offset > cur_offset) {
1220                        extent_end = found_key.offset;
1221                        extent_type = 0;
1222                        goto out_check;
1223                }
1224
1225                fi = btrfs_item_ptr(leaf, path->slots[0],
1226                                    struct btrfs_file_extent_item);
1227                extent_type = btrfs_file_extent_type(leaf, fi);
1228
1229                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1230                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1231                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1232                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1233                        extent_end = found_key.offset +
1234                                btrfs_file_extent_num_bytes(leaf, fi);
1235                        if (extent_end <= start) {
1236                                path->slots[0]++;
1237                                goto next_slot;
1238                        }
1239                        if (disk_bytenr == 0)
1240                                goto out_check;
1241                        if (btrfs_file_extent_compression(leaf, fi) ||
1242                            btrfs_file_extent_encryption(leaf, fi) ||
1243                            btrfs_file_extent_other_encoding(leaf, fi))
1244                                goto out_check;
1245                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1246                                goto out_check;
1247                        if (btrfs_extent_readonly(root, disk_bytenr))
1248                                goto out_check;
1249                        if (btrfs_cross_ref_exist(trans, root, ino,
1250                                                  found_key.offset -
1251                                                  extent_offset, disk_bytenr))
1252                                goto out_check;
1253                        disk_bytenr += extent_offset;
1254                        disk_bytenr += cur_offset - found_key.offset;
1255                        num_bytes = min(end + 1, extent_end) - cur_offset;
1256                        /*
1257                         * force cow if csum exists in the range.
1258                         * this ensure that csum for a given extent are
1259                         * either valid or do not exist.
1260                         */
1261                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1262                                goto out_check;
1263                        nocow = 1;
1264                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1265                        extent_end = found_key.offset +
1266                                btrfs_file_extent_inline_len(leaf, fi);
1267                        extent_end = ALIGN(extent_end, root->sectorsize);
1268                } else {
1269                        BUG_ON(1);
1270                }
1271out_check:
1272                if (extent_end <= start) {
1273                        path->slots[0]++;
1274                        goto next_slot;
1275                }
1276                if (!nocow) {
1277                        if (cow_start == (u64)-1)
1278                                cow_start = cur_offset;
1279                        cur_offset = extent_end;
1280                        if (cur_offset > end)
1281                                break;
1282                        path->slots[0]++;
1283                        goto next_slot;
1284                }
1285
1286                btrfs_release_path(path);
1287                if (cow_start != (u64)-1) {
1288                        ret = cow_file_range(inode, locked_page, cow_start,
1289                                        found_key.offset - 1, page_started,
1290                                        nr_written, 1);
1291                        if (ret) {
1292                                btrfs_abort_transaction(trans, root, ret);
1293                                goto error;
1294                        }
1295                        cow_start = (u64)-1;
1296                }
1297
1298                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1299                        struct extent_map *em;
1300                        struct extent_map_tree *em_tree;
1301                        em_tree = &BTRFS_I(inode)->extent_tree;
1302                        em = alloc_extent_map();
1303                        BUG_ON(!em); /* -ENOMEM */
1304                        em->start = cur_offset;
1305                        em->orig_start = em->start;
1306                        em->len = num_bytes;
1307                        em->block_len = num_bytes;
1308                        em->block_start = disk_bytenr;
1309                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1310                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1311                        while (1) {
1312                                write_lock(&em_tree->lock);
1313                                ret = add_extent_mapping(em_tree, em);
1314                                write_unlock(&em_tree->lock);
1315                                if (ret != -EEXIST) {
1316                                        free_extent_map(em);
1317                                        break;
1318                                }
1319                                btrfs_drop_extent_cache(inode, em->start,
1320                                                em->start + em->len - 1, 0);
1321                        }
1322                        type = BTRFS_ORDERED_PREALLOC;
1323                } else {
1324                        type = BTRFS_ORDERED_NOCOW;
1325                }
1326
1327                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1328                                               num_bytes, num_bytes, type);
1329                BUG_ON(ret); /* -ENOMEM */
1330
1331                if (root->root_key.objectid ==
1332                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1333                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1334                                                      num_bytes);
1335                        if (ret) {
1336                                btrfs_abort_transaction(trans, root, ret);
1337                                goto error;
1338                        }
1339                }
1340
1341                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1342                                cur_offset, cur_offset + num_bytes - 1,
1343                                locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1344                                EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1345                                EXTENT_SET_PRIVATE2);
1346                cur_offset = extent_end;
1347                if (cur_offset > end)
1348                        break;
1349        }
1350        btrfs_release_path(path);
1351
1352        if (cur_offset <= end && cow_start == (u64)-1) {
1353                cow_start = cur_offset;
1354                cur_offset = end;
1355        }
1356
1357        if (cow_start != (u64)-1) {
1358                ret = cow_file_range(inode, locked_page, cow_start, end,
1359                                     page_started, nr_written, 1);
1360                if (ret) {
1361                        btrfs_abort_transaction(trans, root, ret);
1362                        goto error;
1363                }
1364        }
1365
1366error:
1367        if (nolock) {
1368                err = btrfs_end_transaction_nolock(trans, root);
1369        } else {
1370                err = btrfs_end_transaction(trans, root);
1371        }
1372        if (!ret)
1373                ret = err;
1374
1375        if (ret && cur_offset < end)
1376                extent_clear_unlock_delalloc(inode,
1377                             &BTRFS_I(inode)->io_tree,
1378                             cur_offset, end, locked_page,
1379                             EXTENT_CLEAR_UNLOCK_PAGE |
1380                             EXTENT_CLEAR_UNLOCK |
1381                             EXTENT_CLEAR_DELALLOC |
1382                             EXTENT_CLEAR_DIRTY |
1383                             EXTENT_SET_WRITEBACK |
1384                             EXTENT_END_WRITEBACK);
1385
1386        btrfs_free_path(path);
1387        return ret;
1388}
1389
1390/*
1391 * extent_io.c call back to do delayed allocation processing
1392 */
1393static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1394                              u64 start, u64 end, int *page_started,
1395                              unsigned long *nr_written)
1396{
1397        int ret;
1398        struct btrfs_root *root = BTRFS_I(inode)->root;
1399
1400        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1401                ret = run_delalloc_nocow(inode, locked_page, start, end,
1402                                         page_started, 1, nr_written);
1403        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1404                ret = run_delalloc_nocow(inode, locked_page, start, end,
1405                                         page_started, 0, nr_written);
1406        } else if (!btrfs_test_opt(root, COMPRESS) &&
1407                   !(BTRFS_I(inode)->force_compress) &&
1408                   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1409                ret = cow_file_range(inode, locked_page, start, end,
1410                                      page_started, nr_written, 1);
1411        } else {
1412                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413                        &BTRFS_I(inode)->runtime_flags);
1414                ret = cow_file_range_async(inode, locked_page, start, end,
1415                                           page_started, nr_written);
1416        }
1417        return ret;
1418}
1419
1420static void btrfs_split_extent_hook(struct inode *inode,
1421                                    struct extent_state *orig, u64 split)
1422{
1423        /* not delalloc, ignore it */
1424        if (!(orig->state & EXTENT_DELALLOC))
1425                return;
1426
1427        spin_lock(&BTRFS_I(inode)->lock);
1428        BTRFS_I(inode)->outstanding_extents++;
1429        spin_unlock(&BTRFS_I(inode)->lock);
1430}
1431
1432/*
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1437 */
1438static void btrfs_merge_extent_hook(struct inode *inode,
1439                                    struct extent_state *new,
1440                                    struct extent_state *other)
1441{
1442        /* not delalloc, ignore it */
1443        if (!(other->state & EXTENT_DELALLOC))
1444                return;
1445
1446        spin_lock(&BTRFS_I(inode)->lock);
1447        BTRFS_I(inode)->outstanding_extents--;
1448        spin_unlock(&BTRFS_I(inode)->lock);
1449}
1450
1451/*
1452 * extent_io.c set_bit_hook, used to track delayed allocation
1453 * bytes in this file, and to maintain the list of inodes that
1454 * have pending delalloc work to be done.
1455 */
1456static void btrfs_set_bit_hook(struct inode *inode,
1457                               struct extent_state *state, int *bits)
1458{
1459
1460        /*
1461         * set_bit and clear bit hooks normally require _irqsave/restore
1462         * but in this case, we are only testing for the DELALLOC
1463         * bit, which is only set or cleared with irqs on
1464         */
1465        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1466                struct btrfs_root *root = BTRFS_I(inode)->root;
1467                u64 len = state->end + 1 - state->start;
1468                bool do_list = !btrfs_is_free_space_inode(inode);
1469
1470                if (*bits & EXTENT_FIRST_DELALLOC) {
1471                        *bits &= ~EXTENT_FIRST_DELALLOC;
1472                } else {
1473                        spin_lock(&BTRFS_I(inode)->lock);
1474                        BTRFS_I(inode)->outstanding_extents++;
1475                        spin_unlock(&BTRFS_I(inode)->lock);
1476                }
1477
1478                spin_lock(&root->fs_info->delalloc_lock);
1479                BTRFS_I(inode)->delalloc_bytes += len;
1480                root->fs_info->delalloc_bytes += len;
1481                if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1482                        list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1483                                      &root->fs_info->delalloc_inodes);
1484                }
1485                spin_unlock(&root->fs_info->delalloc_lock);
1486        }
1487}
1488
1489/*
1490 * extent_io.c clear_bit_hook, see set_bit_hook for why
1491 */
1492static void btrfs_clear_bit_hook(struct inode *inode,
1493                                 struct extent_state *state, int *bits)
1494{
1495        /*
1496         * set_bit and clear bit hooks normally require _irqsave/restore
1497         * but in this case, we are only testing for the DELALLOC
1498         * bit, which is only set or cleared with irqs on
1499         */
1500        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1501                struct btrfs_root *root = BTRFS_I(inode)->root;
1502                u64 len = state->end + 1 - state->start;
1503                bool do_list = !btrfs_is_free_space_inode(inode);
1504
1505                if (*bits & EXTENT_FIRST_DELALLOC) {
1506                        *bits &= ~EXTENT_FIRST_DELALLOC;
1507                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1508                        spin_lock(&BTRFS_I(inode)->lock);
1509                        BTRFS_I(inode)->outstanding_extents--;
1510                        spin_unlock(&BTRFS_I(inode)->lock);
1511                }
1512
1513                if (*bits & EXTENT_DO_ACCOUNTING)
1514                        btrfs_delalloc_release_metadata(inode, len);
1515
1516                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1517                    && do_list)
1518                        btrfs_free_reserved_data_space(inode, len);
1519
1520                spin_lock(&root->fs_info->delalloc_lock);
1521                root->fs_info->delalloc_bytes -= len;
1522                BTRFS_I(inode)->delalloc_bytes -= len;
1523
1524                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1525                    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1526                        list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1527                }
1528                spin_unlock(&root->fs_info->delalloc_lock);
1529        }
1530}
1531
1532/*
1533 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1534 * we don't create bios that span stripes or chunks
1535 */
1536int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1537                         size_t size, struct bio *bio,
1538                         unsigned long bio_flags)
1539{
1540        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1541        struct btrfs_mapping_tree *map_tree;
1542        u64 logical = (u64)bio->bi_sector << 9;
1543        u64 length = 0;
1544        u64 map_length;
1545        int ret;
1546
1547        if (bio_flags & EXTENT_BIO_COMPRESSED)
1548                return 0;
1549
1550        length = bio->bi_size;
1551        map_tree = &root->fs_info->mapping_tree;
1552        map_length = length;
1553        ret = btrfs_map_block(map_tree, READ, logical,
1554                              &map_length, NULL, 0);
1555        /* Will always return 0 or 1 with map_multi == NULL */
1556        BUG_ON(ret < 0);
1557        if (map_length < length + size)
1558                return 1;
1559        return 0;
1560}
1561
1562/*
1563 * in order to insert checksums into the metadata in large chunks,
1564 * we wait until bio submission time.   All the pages in the bio are
1565 * checksummed and sums are attached onto the ordered extent record.
1566 *
1567 * At IO completion time the cums attached on the ordered extent record
1568 * are inserted into the btree
1569 */
1570static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1571                                    struct bio *bio, int mirror_num,
1572                                    unsigned long bio_flags,
1573                                    u64 bio_offset)
1574{
1575        struct btrfs_root *root = BTRFS_I(inode)->root;
1576        int ret = 0;
1577
1578        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1579        BUG_ON(ret); /* -ENOMEM */
1580        return 0;
1581}
1582
1583/*
1584 * in order to insert checksums into the metadata in large chunks,
1585 * we wait until bio submission time.   All the pages in the bio are
1586 * checksummed and sums are attached onto the ordered extent record.
1587 *
1588 * At IO completion time the cums attached on the ordered extent record
1589 * are inserted into the btree
1590 */
1591static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1592                          int mirror_num, unsigned long bio_flags,
1593                          u64 bio_offset)
1594{
1595        struct btrfs_root *root = BTRFS_I(inode)->root;
1596        return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1597}
1598
1599/*
1600 * extent_io.c submission hook. This does the right thing for csum calculation
1601 * on write, or reading the csums from the tree before a read
1602 */
1603static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1604                          int mirror_num, unsigned long bio_flags,
1605                          u64 bio_offset)
1606{
1607        struct btrfs_root *root = BTRFS_I(inode)->root;
1608        int ret = 0;
1609        int skip_sum;
1610        int metadata = 0;
1611
1612        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1613
1614        if (btrfs_is_free_space_inode(inode))
1615                metadata = 2;
1616
1617        if (!(rw & REQ_WRITE)) {
1618                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1619                if (ret)
1620                        return ret;
1621
1622                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1623                        return btrfs_submit_compressed_read(inode, bio,
1624                                                    mirror_num, bio_flags);
1625                } else if (!skip_sum) {
1626                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1627                        if (ret)
1628                                return ret;
1629                }
1630                goto mapit;
1631        } else if (!skip_sum) {
1632                /* csum items have already been cloned */
1633                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1634                        goto mapit;
1635                /* we're doing a write, do the async checksumming */
1636                return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1637                                   inode, rw, bio, mirror_num,
1638                                   bio_flags, bio_offset,
1639                                   __btrfs_submit_bio_start,
1640                                   __btrfs_submit_bio_done);
1641        }
1642
1643mapit:
1644        return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1645}
1646
1647/*
1648 * given a list of ordered sums record them in the inode.  This happens
1649 * at IO completion time based on sums calculated at bio submission time.
1650 */
1651static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1652                             struct inode *inode, u64 file_offset,
1653                             struct list_head *list)
1654{
1655        struct btrfs_ordered_sum *sum;
1656
1657        list_for_each_entry(sum, list, list) {
1658                btrfs_csum_file_blocks(trans,
1659                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1660        }
1661        return 0;
1662}
1663
1664int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1665                              struct extent_state **cached_state)
1666{
1667        if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1668                WARN_ON(1);
1669        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1670                                   cached_state, GFP_NOFS);
1671}
1672
1673/* see btrfs_writepage_start_hook for details on why this is required */
1674struct btrfs_writepage_fixup {
1675        struct page *page;
1676        struct btrfs_work work;
1677};
1678
1679static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1680{
1681        struct btrfs_writepage_fixup *fixup;
1682        struct btrfs_ordered_extent *ordered;
1683        struct extent_state *cached_state = NULL;
1684        struct page *page;
1685        struct inode *inode;
1686        u64 page_start;
1687        u64 page_end;
1688        int ret;
1689
1690        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1691        page = fixup->page;
1692again:
1693        lock_page(page);
1694        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1695                ClearPageChecked(page);
1696                goto out_page;
1697        }
1698
1699        inode = page->mapping->host;
1700        page_start = page_offset(page);
1701        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1702
1703        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1704                         &cached_state);
1705
1706        /* already ordered? We're done */
1707        if (PagePrivate2(page))
1708                goto out;
1709
1710        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1711        if (ordered) {
1712                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1713                                     page_end, &cached_state, GFP_NOFS);
1714                unlock_page(page);
1715                btrfs_start_ordered_extent(inode, ordered, 1);
1716                btrfs_put_ordered_extent(ordered);
1717                goto again;
1718        }
1719
1720        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1721        if (ret) {
1722                mapping_set_error(page->mapping, ret);
1723                end_extent_writepage(page, ret, page_start, page_end);
1724                ClearPageChecked(page);
1725                goto out;
1726         }
1727
1728        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1729        ClearPageChecked(page);
1730        set_page_dirty(page);
1731out:
1732        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1733                             &cached_state, GFP_NOFS);
1734out_page:
1735        unlock_page(page);
1736        page_cache_release(page);
1737        kfree(fixup);
1738}
1739
1740/*
1741 * There are a few paths in the higher layers of the kernel that directly
1742 * set the page dirty bit without asking the filesystem if it is a
1743 * good idea.  This causes problems because we want to make sure COW
1744 * properly happens and the data=ordered rules are followed.
1745 *
1746 * In our case any range that doesn't have the ORDERED bit set
1747 * hasn't been properly setup for IO.  We kick off an async process
1748 * to fix it up.  The async helper will wait for ordered extents, set
1749 * the delalloc bit and make it safe to write the page.
1750 */
1751static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1752{
1753        struct inode *inode = page->mapping->host;
1754        struct btrfs_writepage_fixup *fixup;
1755        struct btrfs_root *root = BTRFS_I(inode)->root;
1756
1757        /* this page is properly in the ordered list */
1758        if (TestClearPagePrivate2(page))
1759                return 0;
1760
1761        if (PageChecked(page))
1762                return -EAGAIN;
1763
1764        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1765        if (!fixup)
1766                return -EAGAIN;
1767
1768        SetPageChecked(page);
1769        page_cache_get(page);
1770        fixup->work.func = btrfs_writepage_fixup_worker;
1771        fixup->page = page;
1772        btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1773        return -EBUSY;
1774}
1775
1776static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1777                                       struct inode *inode, u64 file_pos,
1778                                       u64 disk_bytenr, u64 disk_num_bytes,
1779                                       u64 num_bytes, u64 ram_bytes,
1780                                       u8 compression, u8 encryption,
1781                                       u16 other_encoding, int extent_type)
1782{
1783        struct btrfs_root *root = BTRFS_I(inode)->root;
1784        struct btrfs_file_extent_item *fi;
1785        struct btrfs_path *path;
1786        struct extent_buffer *leaf;
1787        struct btrfs_key ins;
1788        u64 hint;
1789        int ret;
1790
1791        path = btrfs_alloc_path();
1792        if (!path)
1793                return -ENOMEM;
1794
1795        path->leave_spinning = 1;
1796
1797        /*
1798         * we may be replacing one extent in the tree with another.
1799         * The new extent is pinned in the extent map, and we don't want
1800         * to drop it from the cache until it is completely in the btree.
1801         *
1802         * So, tell btrfs_drop_extents to leave this extent in the cache.
1803         * the caller is expected to unpin it and allow it to be merged
1804         * with the others.
1805         */
1806        ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1807                                 &hint, 0);
1808        if (ret)
1809                goto out;
1810
1811        ins.objectid = btrfs_ino(inode);
1812        ins.offset = file_pos;
1813        ins.type = BTRFS_EXTENT_DATA_KEY;
1814        ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1815        if (ret)
1816                goto out;
1817        leaf = path->nodes[0];
1818        fi = btrfs_item_ptr(leaf, path->slots[0],
1819                            struct btrfs_file_extent_item);
1820        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1821        btrfs_set_file_extent_type(leaf, fi, extent_type);
1822        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1823        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1824        btrfs_set_file_extent_offset(leaf, fi, 0);
1825        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1826        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1827        btrfs_set_file_extent_compression(leaf, fi, compression);
1828        btrfs_set_file_extent_encryption(leaf, fi, encryption);
1829        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1830
1831        btrfs_unlock_up_safe(path, 1);
1832        btrfs_set_lock_blocking(leaf);
1833
1834        btrfs_mark_buffer_dirty(leaf);
1835
1836        inode_add_bytes(inode, num_bytes);
1837
1838        ins.objectid = disk_bytenr;
1839        ins.offset = disk_num_bytes;
1840        ins.type = BTRFS_EXTENT_ITEM_KEY;
1841        ret = btrfs_alloc_reserved_file_extent(trans, root,
1842                                        root->root_key.objectid,
1843                                        btrfs_ino(inode), file_pos, &ins);
1844out:
1845        btrfs_free_path(path);
1846
1847        return ret;
1848}
1849
1850/*
1851 * helper function for btrfs_finish_ordered_io, this
1852 * just reads in some of the csum leaves to prime them into ram
1853 * before we start the transaction.  It limits the amount of btree
1854 * reads required while inside the transaction.
1855 */
1856/* as ordered data IO finishes, this gets called so we can finish
1857 * an ordered extent if the range of bytes in the file it covers are
1858 * fully written.
1859 */
1860static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1861{
1862        struct inode *inode = ordered_extent->inode;
1863        struct btrfs_root *root = BTRFS_I(inode)->root;
1864        struct btrfs_trans_handle *trans = NULL;
1865        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1866        struct extent_state *cached_state = NULL;
1867        int compress_type = 0;
1868        int ret;
1869        bool nolock;
1870
1871        nolock = btrfs_is_free_space_inode(inode);
1872
1873        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1874                ret = -EIO;
1875                goto out;
1876        }
1877
1878        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1879                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1880                ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1881                if (!ret) {
1882                        if (nolock)
1883                                trans = btrfs_join_transaction_nolock(root);
1884                        else
1885                                trans = btrfs_join_transaction(root);
1886                        if (IS_ERR(trans)) {
1887                                ret = PTR_ERR(trans);
1888                                trans = NULL;
1889                                goto out;
1890                        }
1891                        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1892                        ret = btrfs_update_inode_fallback(trans, root, inode);
1893                        if (ret) /* -ENOMEM or corruption */
1894                                btrfs_abort_transaction(trans, root, ret);
1895                }
1896                goto out;
1897        }
1898
1899        lock_extent_bits(io_tree, ordered_extent->file_offset,
1900                         ordered_extent->file_offset + ordered_extent->len - 1,
1901                         0, &cached_state);
1902
1903        if (nolock)
1904                trans = btrfs_join_transaction_nolock(root);
1905        else
1906                trans = btrfs_join_transaction(root);
1907        if (IS_ERR(trans)) {
1908                ret = PTR_ERR(trans);
1909                trans = NULL;
1910                goto out_unlock;
1911        }
1912        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1913
1914        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1915                compress_type = ordered_extent->compress_type;
1916        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1917                BUG_ON(compress_type);
1918                ret = btrfs_mark_extent_written(trans, inode,
1919                                                ordered_extent->file_offset,
1920                                                ordered_extent->file_offset +
1921                                                ordered_extent->len);
1922        } else {
1923                BUG_ON(root == root->fs_info->tree_root);
1924                ret = insert_reserved_file_extent(trans, inode,
1925                                                ordered_extent->file_offset,
1926                                                ordered_extent->start,
1927                                                ordered_extent->disk_len,
1928                                                ordered_extent->len,
1929                                                ordered_extent->len,
1930                                                compress_type, 0, 0,
1931                                                BTRFS_FILE_EXTENT_REG);
1932                unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1933                                   ordered_extent->file_offset,
1934                                   ordered_extent->len);
1935        }
1936
1937        if (ret < 0) {
1938                btrfs_abort_transaction(trans, root, ret);
1939                goto out_unlock;
1940        }
1941
1942        add_pending_csums(trans, inode, ordered_extent->file_offset,
1943                          &ordered_extent->list);
1944
1945        ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1946        if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1947                ret = btrfs_update_inode_fallback(trans, root, inode);
1948                if (ret) { /* -ENOMEM or corruption */
1949                        btrfs_abort_transaction(trans, root, ret);
1950                        goto out_unlock;
1951                }
1952        }
1953        ret = 0;
1954out_unlock:
1955        unlock_extent_cached(io_tree, ordered_extent->file_offset,
1956                             ordered_extent->file_offset +
1957                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
1958out:
1959        if (root != root->fs_info->tree_root)
1960                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1961        if (trans) {
1962                if (nolock)
1963                        btrfs_end_transaction_nolock(trans, root);
1964                else
1965                        btrfs_end_transaction(trans, root);
1966        }
1967
1968        if (ret)
1969                clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1970                                      ordered_extent->file_offset +
1971                                      ordered_extent->len - 1, NULL, GFP_NOFS);
1972
1973        /*
1974         * This needs to be dont to make sure anybody waiting knows we are done
1975         * upating everything for this ordered extent.
1976         */
1977        btrfs_remove_ordered_extent(inode, ordered_extent);
1978
1979        /* once for us */
1980        btrfs_put_ordered_extent(ordered_extent);
1981        /* once for the tree */
1982        btrfs_put_ordered_extent(ordered_extent);
1983
1984        return ret;
1985}
1986
1987static void finish_ordered_fn(struct btrfs_work *work)
1988{
1989        struct btrfs_ordered_extent *ordered_extent;
1990        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1991        btrfs_finish_ordered_io(ordered_extent);
1992}
1993
1994static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1995                                struct extent_state *state, int uptodate)
1996{
1997        struct inode *inode = page->mapping->host;
1998        struct btrfs_root *root = BTRFS_I(inode)->root;
1999        struct btrfs_ordered_extent *ordered_extent = NULL;
2000        struct btrfs_workers *workers;
2001
2002        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2003
2004        ClearPagePrivate2(page);
2005        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2006                                            end - start + 1, uptodate))
2007                return 0;
2008
2009        ordered_extent->work.func = finish_ordered_fn;
2010        ordered_extent->work.flags = 0;
2011
2012        if (btrfs_is_free_space_inode(inode))
2013                workers = &root->fs_info->endio_freespace_worker;
2014        else
2015                workers = &root->fs_info->endio_write_workers;
2016        btrfs_queue_worker(workers, &ordered_extent->work);
2017
2018        return 0;
2019}
2020
2021/*
2022 * when reads are done, we need to check csums to verify the data is correct
2023 * if there's a match, we allow the bio to finish.  If not, the code in
2024 * extent_io.c will try to find good copies for us.
2025 */
2026static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2027                               struct extent_state *state, int mirror)
2028{
2029        size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2030        struct inode *inode = page->mapping->host;
2031        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2032        char *kaddr;
2033        u64 private = ~(u32)0;
2034        int ret;
2035        struct btrfs_root *root = BTRFS_I(inode)->root;
2036        u32 csum = ~(u32)0;
2037
2038        if (PageChecked(page)) {
2039                ClearPageChecked(page);
2040                goto good;
2041        }
2042
2043        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2044                goto good;
2045
2046        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2047            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2048                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2049                                  GFP_NOFS);
2050                return 0;
2051        }
2052
2053        if (state && state->start == start) {
2054                private = state->private;
2055                ret = 0;
2056        } else {
2057                ret = get_state_private(io_tree, start, &private);
2058        }
2059        kaddr = kmap_atomic(page);
2060        if (ret)
2061                goto zeroit;
2062
2063        csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2064        btrfs_csum_final(csum, (char *)&csum);
2065        if (csum != private)
2066                goto zeroit;
2067
2068        kunmap_atomic(kaddr);
2069good:
2070        return 0;
2071
2072zeroit:
2073        printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2074                       "private %llu\n",
2075                       (unsigned long long)btrfs_ino(page->mapping->host),
2076                       (unsigned long long)start, csum,
2077                       (unsigned long long)private);
2078        memset(kaddr + offset, 1, end - start + 1);
2079        flush_dcache_page(page);
2080        kunmap_atomic(kaddr);
2081        if (private == 0)
2082                return 0;
2083        return -EIO;
2084}
2085
2086struct delayed_iput {
2087        struct list_head list;
2088        struct inode *inode;
2089};
2090
2091/* JDM: If this is fs-wide, why can't we add a pointer to
2092 * btrfs_inode instead and avoid the allocation? */
2093void btrfs_add_delayed_iput(struct inode *inode)
2094{
2095        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2096        struct delayed_iput *delayed;
2097
2098        if (atomic_add_unless(&inode->i_count, -1, 1))
2099                return;
2100
2101        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2102        delayed->inode = inode;
2103
2104        spin_lock(&fs_info->delayed_iput_lock);
2105        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2106        spin_unlock(&fs_info->delayed_iput_lock);
2107}
2108
2109void btrfs_run_delayed_iputs(struct btrfs_root *root)
2110{
2111        LIST_HEAD(list);
2112        struct btrfs_fs_info *fs_info = root->fs_info;
2113        struct delayed_iput *delayed;
2114        int empty;
2115
2116        spin_lock(&fs_info->delayed_iput_lock);
2117        empty = list_empty(&fs_info->delayed_iputs);
2118        spin_unlock(&fs_info->delayed_iput_lock);
2119        if (empty)
2120                return;
2121
2122        down_read(&root->fs_info->cleanup_work_sem);
2123        spin_lock(&fs_info->delayed_iput_lock);
2124        list_splice_init(&fs_info->delayed_iputs, &list);
2125        spin_unlock(&fs_info->delayed_iput_lock);
2126
2127        while (!list_empty(&list)) {
2128                delayed = list_entry(list.next, struct delayed_iput, list);
2129                list_del(&delayed->list);
2130                iput(delayed->inode);
2131                kfree(delayed);
2132        }
2133        up_read(&root->fs_info->cleanup_work_sem);
2134}
2135
2136enum btrfs_orphan_cleanup_state {
2137        ORPHAN_CLEANUP_STARTED  = 1,
2138        ORPHAN_CLEANUP_DONE     = 2,
2139};
2140
2141/*
2142 * This is called in transaction commit time. If there are no orphan
2143 * files in the subvolume, it removes orphan item and frees block_rsv
2144 * structure.
2145 */
2146void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147                              struct btrfs_root *root)
2148{
2149        struct btrfs_block_rsv *block_rsv;
2150        int ret;
2151
2152        if (atomic_read(&root->orphan_inodes) ||
2153            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2154                return;
2155
2156        spin_lock(&root->orphan_lock);
2157        if (atomic_read(&root->orphan_inodes)) {
2158                spin_unlock(&root->orphan_lock);
2159                return;
2160        }
2161
2162        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2163                spin_unlock(&root->orphan_lock);
2164                return;
2165        }
2166
2167        block_rsv = root->orphan_block_rsv;
2168        root->orphan_block_rsv = NULL;
2169        spin_unlock(&root->orphan_lock);
2170
2171        if (root->orphan_item_inserted &&
2172            btrfs_root_refs(&root->root_item) > 0) {
2173                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2174                                            root->root_key.objectid);
2175                BUG_ON(ret);
2176                root->orphan_item_inserted = 0;
2177        }
2178
2179        if (block_rsv) {
2180                WARN_ON(block_rsv->size > 0);
2181                btrfs_free_block_rsv(root, block_rsv);
2182        }
2183}
2184
2185/*
2186 * This creates an orphan entry for the given inode in case something goes
2187 * wrong in the middle of an unlink/truncate.
2188 *
2189 * NOTE: caller of this function should reserve 5 units of metadata for
2190 *       this function.
2191 */
2192int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193{
2194        struct btrfs_root *root = BTRFS_I(inode)->root;
2195        struct btrfs_block_rsv *block_rsv = NULL;
2196        int reserve = 0;
2197        int insert = 0;
2198        int ret;
2199
2200        if (!root->orphan_block_rsv) {
2201                block_rsv = btrfs_alloc_block_rsv(root);
2202                if (!block_rsv)
2203                        return -ENOMEM;
2204        }
2205
2206        spin_lock(&root->orphan_lock);
2207        if (!root->orphan_block_rsv) {
2208                root->orphan_block_rsv = block_rsv;
2209        } else if (block_rsv) {
2210                btrfs_free_block_rsv(root, block_rsv);
2211                block_rsv = NULL;
2212        }
2213
2214        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2215                              &BTRFS_I(inode)->runtime_flags)) {
2216#if 0
2217                /*
2218                 * For proper ENOSPC handling, we should do orphan
2219                 * cleanup when mounting. But this introduces backward
2220                 * compatibility issue.
2221                 */
2222                if (!xchg(&root->orphan_item_inserted, 1))
2223                        insert = 2;
2224                else
2225                        insert = 1;
2226#endif
2227                insert = 1;
2228                atomic_dec(&root->orphan_inodes);
2229        }
2230
2231        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2232                              &BTRFS_I(inode)->runtime_flags))
2233                reserve = 1;
2234        spin_unlock(&root->orphan_lock);
2235
2236        /* grab metadata reservation from transaction handle */
2237        if (reserve) {
2238                ret = btrfs_orphan_reserve_metadata(trans, inode);
2239                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2240        }
2241
2242        /* insert an orphan item to track this unlinked/truncated file */
2243        if (insert >= 1) {
2244                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2245                if (ret && ret != -EEXIST) {
2246                        clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2247                                  &BTRFS_I(inode)->runtime_flags);
2248                        btrfs_abort_transaction(trans, root, ret);
2249                        return ret;
2250                }
2251                ret = 0;
2252        }
2253
2254        /* insert an orphan item to track subvolume contains orphan files */
2255        if (insert >= 2) {
2256                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2257                                               root->root_key.objectid);
2258                if (ret && ret != -EEXIST) {
2259                        btrfs_abort_transaction(trans, root, ret);
2260                        return ret;
2261                }
2262        }
2263        return 0;
2264}
2265
2266/*
2267 * We have done the truncate/delete so we can go ahead and remove the orphan
2268 * item for this particular inode.
2269 */
2270int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2271{
2272        struct btrfs_root *root = BTRFS_I(inode)->root;
2273        int delete_item = 0;
2274        int release_rsv = 0;
2275        int ret = 0;
2276
2277        spin_lock(&root->orphan_lock);
2278        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2279                               &BTRFS_I(inode)->runtime_flags))
2280                delete_item = 1;
2281
2282        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2283                               &BTRFS_I(inode)->runtime_flags))
2284                release_rsv = 1;
2285        spin_unlock(&root->orphan_lock);
2286
2287        if (trans && delete_item) {
2288                ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2289                BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2290        }
2291
2292        if (release_rsv) {
2293                btrfs_orphan_release_metadata(inode);
2294                atomic_dec(&root->orphan_inodes);
2295        }
2296
2297        return 0;
2298}
2299
2300/*
2301 * this cleans up any orphans that may be left on the list from the last use
2302 * of this root.
2303 */
2304int btrfs_orphan_cleanup(struct btrfs_root *root)
2305{
2306        struct btrfs_path *path;
2307        struct extent_buffer *leaf;
2308        struct btrfs_key key, found_key;
2309        struct btrfs_trans_handle *trans;
2310        struct inode *inode;
2311        u64 last_objectid = 0;
2312        int ret = 0, nr_unlink = 0, nr_truncate = 0;
2313
2314        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2315                return 0;
2316
2317        path = btrfs_alloc_path();
2318        if (!path) {
2319                ret = -ENOMEM;
2320                goto out;
2321        }
2322        path->reada = -1;
2323
2324        key.objectid = BTRFS_ORPHAN_OBJECTID;
2325        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2326        key.offset = (u64)-1;
2327
2328        while (1) {
2329                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2330                if (ret < 0)
2331                        goto out;
2332
2333                /*
2334                 * if ret == 0 means we found what we were searching for, which
2335                 * is weird, but possible, so only screw with path if we didn't
2336                 * find the key and see if we have stuff that matches
2337                 */
2338                if (ret > 0) {
2339                        ret = 0;
2340                        if (path->slots[0] == 0)
2341                                break;
2342                        path->slots[0]--;
2343                }
2344
2345                /* pull out the item */
2346                leaf = path->nodes[0];
2347                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2348
2349                /* make sure the item matches what we want */
2350                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2351                        break;
2352                if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2353                        break;
2354
2355                /* release the path since we're done with it */
2356                btrfs_release_path(path);
2357
2358                /*
2359                 * this is where we are basically btrfs_lookup, without the
2360                 * crossing root thing.  we store the inode number in the
2361                 * offset of the orphan item.
2362                 */
2363
2364                if (found_key.offset == last_objectid) {
2365                        printk(KERN_ERR "btrfs: Error removing orphan entry, "
2366                               "stopping orphan cleanup\n");
2367                        ret = -EINVAL;
2368                        goto out;
2369                }
2370
2371                last_objectid = found_key.offset;
2372
2373                found_key.objectid = found_key.offset;
2374                found_key.type = BTRFS_INODE_ITEM_KEY;
2375                found_key.offset = 0;
2376                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2377                ret = PTR_RET(inode);
2378                if (ret && ret != -ESTALE)
2379                        goto out;
2380
2381                if (ret == -ESTALE && root == root->fs_info->tree_root) {
2382                        struct btrfs_root *dead_root;
2383                        struct btrfs_fs_info *fs_info = root->fs_info;
2384                        int is_dead_root = 0;
2385
2386                        /*
2387                         * this is an orphan in the tree root. Currently these
2388                         * could come from 2 sources:
2389                         *  a) a snapshot deletion in progress
2390                         *  b) a free space cache inode
2391                         * We need to distinguish those two, as the snapshot
2392                         * orphan must not get deleted.
2393                         * find_dead_roots already ran before us, so if this
2394                         * is a snapshot deletion, we should find the root
2395                         * in the dead_roots list
2396                         */
2397                        spin_lock(&fs_info->trans_lock);
2398                        list_for_each_entry(dead_root, &fs_info->dead_roots,
2399                                            root_list) {
2400                                if (dead_root->root_key.objectid ==
2401                                    found_key.objectid) {
2402                                        is_dead_root = 1;
2403                                        break;
2404                                }
2405                        }
2406                        spin_unlock(&fs_info->trans_lock);
2407                        if (is_dead_root) {
2408                                /* prevent this orphan from being found again */
2409                                key.offset = found_key.objectid - 1;
2410                                continue;
2411                        }
2412                }
2413                /*
2414                 * Inode is already gone but the orphan item is still there,
2415                 * kill the orphan item.
2416                 */
2417                if (ret == -ESTALE) {
2418                        trans = btrfs_start_transaction(root, 1);
2419                        if (IS_ERR(trans)) {
2420                                ret = PTR_ERR(trans);
2421                                goto out;
2422                        }
2423                        printk(KERN_ERR "auto deleting %Lu\n",
2424                               found_key.objectid);
2425                        ret = btrfs_del_orphan_item(trans, root,
2426                                                    found_key.objectid);
2427                        BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2428                        btrfs_end_transaction(trans, root);
2429                        continue;
2430                }
2431
2432                /*
2433                 * add this inode to the orphan list so btrfs_orphan_del does
2434                 * the proper thing when we hit it
2435                 */
2436                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2437                        &BTRFS_I(inode)->runtime_flags);
2438
2439                /* if we have links, this was a truncate, lets do that */
2440                if (inode->i_nlink) {
2441                        if (!S_ISREG(inode->i_mode)) {
2442                                WARN_ON(1);
2443                                iput(inode);
2444                                continue;
2445                        }
2446                        nr_truncate++;
2447                        ret = btrfs_truncate(inode);
2448                } else {
2449                        nr_unlink++;
2450                }
2451
2452                /* this will do delete_inode and everything for us */
2453                iput(inode);
2454                if (ret)
2455                        goto out;
2456        }
2457        /* release the path since we're done with it */
2458        btrfs_release_path(path);
2459
2460        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2461
2462        if (root->orphan_block_rsv)
2463                btrfs_block_rsv_release(root, root->orphan_block_rsv,
2464                                        (u64)-1);
2465
2466        if (root->orphan_block_rsv || root->orphan_item_inserted) {
2467                trans = btrfs_join_transaction(root);
2468                if (!IS_ERR(trans))
2469                        btrfs_end_transaction(trans, root);
2470        }
2471
2472        if (nr_unlink)
2473                printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2474        if (nr_truncate)
2475                printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2476
2477out:
2478        if (ret)
2479                printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2480        btrfs_free_path(path);
2481        return ret;
2482}
2483
2484/*
2485 * very simple check to peek ahead in the leaf looking for xattrs.  If we
2486 * don't find any xattrs, we know there can't be any acls.
2487 *
2488 * slot is the slot the inode is in, objectid is the objectid of the inode
2489 */
2490static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2491                                          int slot, u64 objectid)
2492{
2493        u32 nritems = btrfs_header_nritems(leaf);
2494        struct btrfs_key found_key;
2495        int scanned = 0;
2496
2497        slot++;
2498        while (slot < nritems) {
2499                btrfs_item_key_to_cpu(leaf, &found_key, slot);
2500
2501                /* we found a different objectid, there must not be acls */
2502                if (found_key.objectid != objectid)
2503                        return 0;
2504
2505                /* we found an xattr, assume we've got an acl */
2506                if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2507                        return 1;
2508
2509                /*
2510                 * we found a key greater than an xattr key, there can't
2511                 * be any acls later on
2512                 */
2513                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2514                        return 0;
2515
2516                slot++;
2517                scanned++;
2518
2519                /*
2520                 * it goes inode, inode backrefs, xattrs, extents,
2521                 * so if there are a ton of hard links to an inode there can
2522                 * be a lot of backrefs.  Don't waste time searching too hard,
2523                 * this is just an optimization
2524                 */
2525                if (scanned >= 8)
2526                        break;
2527        }
2528        /* we hit the end of the leaf before we found an xattr or
2529         * something larger than an xattr.  We have to assume the inode
2530         * has acls
2531         */
2532        return 1;
2533}
2534
2535/*
2536 * read an inode from the btree into the in-memory inode
2537 */
2538static void btrfs_read_locked_inode(struct inode *inode)
2539{
2540        struct btrfs_path *path;
2541        struct extent_buffer *leaf;
2542        struct btrfs_inode_item *inode_item;
2543        struct btrfs_timespec *tspec;
2544        struct btrfs_root *root = BTRFS_I(inode)->root;
2545        struct btrfs_key location;
2546        int maybe_acls;
2547        u32 rdev;
2548        int ret;
2549        bool filled = false;
2550
2551        ret = btrfs_fill_inode(inode, &rdev);
2552        if (!ret)
2553                filled = true;
2554
2555        path = btrfs_alloc_path();
2556        if (!path)
2557                goto make_bad;
2558
2559        path->leave_spinning = 1;
2560        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2561
2562        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2563        if (ret)
2564                goto make_bad;
2565
2566        leaf = path->nodes[0];
2567
2568        if (filled)
2569                goto cache_acl;
2570
2571        inode_item = btrfs_item_ptr(leaf, path->slots[0],
2572                                    struct btrfs_inode_item);
2573        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2574        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2575        inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2576        inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2577        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2578
2579        tspec = btrfs_inode_atime(inode_item);
2580        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2581        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2582
2583        tspec = btrfs_inode_mtime(inode_item);
2584        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2585        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2586
2587        tspec = btrfs_inode_ctime(inode_item);
2588        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2589        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2590
2591        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2592        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2593        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2594        inode->i_generation = BTRFS_I(inode)->generation;
2595        inode->i_rdev = 0;
2596        rdev = btrfs_inode_rdev(leaf, inode_item);
2597
2598        BTRFS_I(inode)->index_cnt = (u64)-1;
2599        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2600cache_acl:
2601        /*
2602         * try to precache a NULL acl entry for files that don't have
2603         * any xattrs or acls
2604         */
2605        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2606                                           btrfs_ino(inode));
2607        if (!maybe_acls)
2608                cache_no_acl(inode);
2609
2610        btrfs_free_path(path);
2611
2612        switch (inode->i_mode & S_IFMT) {
2613        case S_IFREG:
2614                inode->i_mapping->a_ops = &btrfs_aops;
2615                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2616                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2617                inode->i_fop = &btrfs_file_operations;
2618                inode->i_op = &btrfs_file_inode_operations;
2619                break;
2620        case S_IFDIR:
2621                inode->i_fop = &btrfs_dir_file_operations;
2622                if (root == root->fs_info->tree_root)
2623                        inode->i_op = &btrfs_dir_ro_inode_operations;
2624                else
2625                        inode->i_op = &btrfs_dir_inode_operations;
2626                break;
2627        case S_IFLNK:
2628                inode->i_op = &btrfs_symlink_inode_operations;
2629                inode->i_mapping->a_ops = &btrfs_symlink_aops;
2630                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2631                break;
2632        default:
2633                inode->i_op = &btrfs_special_inode_operations;
2634                init_special_inode(inode, inode->i_mode, rdev);
2635                break;
2636        }
2637
2638        btrfs_update_iflags(inode);
2639        return;
2640
2641make_bad:
2642        btrfs_free_path(path);
2643        make_bad_inode(inode);
2644}
2645
2646/*
2647 * given a leaf and an inode, copy the inode fields into the leaf
2648 */
2649static void fill_inode_item(struct btrfs_trans_handle *trans,
2650                            struct extent_buffer *leaf,
2651                            struct btrfs_inode_item *item,
2652                            struct inode *inode)
2653{
2654        btrfs_set_inode_uid(leaf, item, inode->i_uid);
2655        btrfs_set_inode_gid(leaf, item, inode->i_gid);
2656        btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2657        btrfs_set_inode_mode(leaf, item, inode->i_mode);
2658        btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2659
2660        btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2661                               inode->i_atime.tv_sec);
2662        btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2663                                inode->i_atime.tv_nsec);
2664
2665        btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2666                               inode->i_mtime.tv_sec);
2667        btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2668                                inode->i_mtime.tv_nsec);
2669
2670        btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2671                               inode->i_ctime.tv_sec);
2672        btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2673                                inode->i_ctime.tv_nsec);
2674
2675        btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2676        btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2677        btrfs_set_inode_sequence(leaf, item, inode->i_version);
2678        btrfs_set_inode_transid(leaf, item, trans->transid);
2679        btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2680        btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2681        btrfs_set_inode_block_group(leaf, item, 0);
2682}
2683
2684/*
2685 * copy everything in the in-memory inode into the btree.
2686 */
2687static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2688                                struct btrfs_root *root, struct inode *inode)
2689{
2690        struct btrfs_inode_item *inode_item;
2691        struct btrfs_path *path;
2692        struct extent_buffer *leaf;
2693        int ret;
2694
2695        path = btrfs_alloc_path();
2696        if (!path)
2697                return -ENOMEM;
2698
2699        path->leave_spinning = 1;
2700        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2701                                 1);
2702        if (ret) {
2703                if (ret > 0)
2704                        ret = -ENOENT;
2705                goto failed;
2706        }
2707
2708        btrfs_unlock_up_safe(path, 1);
2709        leaf = path->nodes[0];
2710        inode_item = btrfs_item_ptr(leaf, path->slots[0],
2711                                    struct btrfs_inode_item);
2712
2713        fill_inode_item(trans, leaf, inode_item, inode);
2714        btrfs_mark_buffer_dirty(leaf);
2715        btrfs_set_inode_last_trans(trans, inode);
2716        ret = 0;
2717failed:
2718        btrfs_free_path(path);
2719        return ret;
2720}
2721
2722/*
2723 * copy everything in the in-memory inode into the btree.
2724 */
2725noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2726                                struct btrfs_root *root, struct inode *inode)
2727{
2728        int ret;
2729
2730        /*
2731         * If the inode is a free space inode, we can deadlock during commit
2732         * if we put it into the delayed code.
2733         *
2734         * The data relocation inode should also be directly updated
2735         * without delay
2736         */
2737        if (!btrfs_is_free_space_inode(inode)
2738            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2739                btrfs_update_root_times(trans, root);
2740
2741                ret = btrfs_delayed_update_inode(trans, root, inode);
2742                if (!ret)
2743                        btrfs_set_inode_last_trans(trans, inode);
2744                return ret;
2745        }
2746
2747        return btrfs_update_inode_item(trans, root, inode);
2748}
2749
2750static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2751                                struct btrfs_root *root, struct inode *inode)
2752{
2753        int ret;
2754
2755        ret = btrfs_update_inode(trans, root, inode);
2756        if (ret == -ENOSPC)
2757                return btrfs_update_inode_item(trans, root, inode);
2758        return ret;
2759}
2760
2761/*
2762 * unlink helper that gets used here in inode.c and in the tree logging
2763 * recovery code.  It remove a link in a directory with a given name, and
2764 * also drops the back refs in the inode to the directory
2765 */
2766static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2767                                struct btrfs_root *root,
2768                                struct inode *dir, struct inode *inode,
2769                                const char *name, int name_len)
2770{
2771        struct btrfs_path *path;
2772        int ret = 0;
2773        struct extent_buffer *leaf;
2774        struct btrfs_dir_item *di;
2775        struct btrfs_key key;
2776        u64 index;
2777        u64 ino = btrfs_ino(inode);
2778        u64 dir_ino = btrfs_ino(dir);
2779
2780        path = btrfs_alloc_path();
2781        if (!path) {
2782                ret = -ENOMEM;
2783                goto out;
2784        }
2785
2786        path->leave_spinning = 1;
2787        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2788                                    name, name_len, -1);
2789        if (IS_ERR(di)) {
2790                ret = PTR_ERR(di);
2791                goto err;
2792        }
2793        if (!di) {
2794                ret = -ENOENT;
2795                goto err;
2796        }
2797        leaf = path->nodes[0];
2798        btrfs_dir_item_key_to_cpu(leaf, di, &key);
2799        ret = btrfs_delete_one_dir_name(trans, root, path, di);
2800        if (ret)
2801                goto err;
2802        btrfs_release_path(path);
2803
2804        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2805                                  dir_ino, &index);
2806        if (ret) {
2807                printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2808                       "inode %llu parent %llu\n", name_len, name,
2809                       (unsigned long long)ino, (unsigned long long)dir_ino);
2810                btrfs_abort_transaction(trans, root, ret);
2811                goto err;
2812        }
2813
2814        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2815        if (ret) {
2816                btrfs_abort_transaction(trans, root, ret);
2817                goto err;
2818        }
2819
2820        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2821                                         inode, dir_ino);
2822        if (ret != 0 && ret != -ENOENT) {
2823                btrfs_abort_transaction(trans, root, ret);
2824                goto err;
2825        }
2826
2827        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2828                                           dir, index);
2829        if (ret == -ENOENT)
2830                ret = 0;
2831err:
2832        btrfs_free_path(path);
2833        if (ret)
2834                goto out;
2835
2836        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2837        inode_inc_iversion(inode);
2838        inode_inc_iversion(dir);
2839        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2840        ret = btrfs_update_inode(trans, root, dir);
2841out:
2842        return ret;
2843}
2844
2845int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2846                       struct btrfs_root *root,
2847                       struct inode *dir, struct inode *inode,
2848                       const char *name, int name_len)
2849{
2850        int ret;
2851        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2852        if (!ret) {
2853                btrfs_drop_nlink(inode);
2854                ret = btrfs_update_inode(trans, root, inode);
2855        }
2856        return ret;
2857}
2858                
2859
2860/* helper to check if there is any shared block in the path */
2861static int check_path_shared(struct btrfs_root *root,
2862                             struct btrfs_path *path)
2863{
2864        struct extent_buffer *eb;
2865        int level;
2866        u64 refs = 1;
2867
2868        for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2869                int ret;
2870
2871                if (!path->nodes[level])
2872                        break;
2873                eb = path->nodes[level];
2874                if (!btrfs_block_can_be_shared(root, eb))
2875                        continue;
2876                ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2877                                               &refs, NULL);
2878                if (refs > 1)
2879                        return 1;
2880        }
2881        return 0;
2882}
2883
2884/*
2885 * helper to start transaction for unlink and rmdir.
2886 *
2887 * unlink and rmdir are special in btrfs, they do not always free space.
2888 * so in enospc case, we should make sure they will free space before
2889 * allowing them to use the global metadata reservation.
2890 */
2891static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2892                                                       struct dentry *dentry)
2893{
2894        struct btrfs_trans_handle *trans;
2895        struct btrfs_root *root = BTRFS_I(dir)->root;
2896        struct btrfs_path *path;
2897        struct btrfs_inode_ref *ref;
2898        struct btrfs_dir_item *di;
2899        struct inode *inode = dentry->d_inode;
2900        u64 index;
2901        int check_link = 1;
2902        int err = -ENOSPC;
2903        int ret;
2904        u64 ino = btrfs_ino(inode);
2905        u64 dir_ino = btrfs_ino(dir);
2906
2907        /*
2908         * 1 for the possible orphan item
2909         * 1 for the dir item
2910         * 1 for the dir index
2911         * 1 for the inode ref
2912         * 1 for the inode ref in the tree log
2913         * 2 for the dir entries in the log
2914         * 1 for the inode
2915         */
2916        trans = btrfs_start_transaction(root, 8);
2917        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2918                return trans;
2919
2920        if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2921                return ERR_PTR(-ENOSPC);
2922
2923        /* check if there is someone else holds reference */
2924        if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2925                return ERR_PTR(-ENOSPC);
2926
2927        if (atomic_read(&inode->i_count) > 2)
2928                return ERR_PTR(-ENOSPC);
2929
2930        if (xchg(&root->fs_info->enospc_unlink, 1))
2931                return ERR_PTR(-ENOSPC);
2932
2933        path = btrfs_alloc_path();
2934        if (!path) {
2935                root->fs_info->enospc_unlink = 0;
2936                return ERR_PTR(-ENOMEM);
2937        }
2938
2939        /* 1 for the orphan item */
2940        trans = btrfs_start_transaction(root, 1);
2941        if (IS_ERR(trans)) {
2942                btrfs_free_path(path);
2943                root->fs_info->enospc_unlink = 0;
2944                return trans;
2945        }
2946
2947        path->skip_locking = 1;
2948        path->search_commit_root = 1;
2949
2950        ret = btrfs_lookup_inode(trans, root, path,
2951                                &BTRFS_I(dir)->location, 0);
2952        if (ret < 0) {
2953                err = ret;
2954                goto out;
2955        }
2956        if (ret == 0) {
2957                if (check_path_shared(root, path))
2958                        goto out;
2959        } else {
2960                check_link = 0;
2961        }
2962        btrfs_release_path(path);
2963
2964        ret = btrfs_lookup_inode(trans, root, path,
2965                                &BTRFS_I(inode)->location, 0);
2966        if (ret < 0) {
2967                err = ret;
2968                goto out;
2969        }
2970        if (ret == 0) {
2971                if (check_path_shared(root, path))
2972                        goto out;
2973        } else {
2974                check_link = 0;
2975        }
2976        btrfs_release_path(path);
2977
2978        if (ret == 0 && S_ISREG(inode->i_mode)) {
2979                ret = btrfs_lookup_file_extent(trans, root, path,
2980                                               ino, (u64)-1, 0);
2981                if (ret < 0) {
2982                        err = ret;
2983                        goto out;
2984                }
2985                BUG_ON(ret == 0); /* Corruption */
2986                if (check_path_shared(root, path))
2987                        goto out;
2988                btrfs_release_path(path);
2989        }
2990
2991        if (!check_link) {
2992                err = 0;
2993                goto out;
2994        }
2995
2996        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2997                                dentry->d_name.name, dentry->d_name.len, 0);
2998        if (IS_ERR(di)) {
2999                err = PTR_ERR(di);
3000                goto out;
3001        }
3002        if (di) {
3003                if (check_path_shared(root, path))
3004                        goto out;
3005        } else {
3006                err = 0;
3007                goto out;
3008        }
3009        btrfs_release_path(path);
3010
3011        ref = btrfs_lookup_inode_ref(trans, root, path,
3012                                dentry->d_name.name, dentry->d_name.len,
3013                                ino, dir_ino, 0);
3014        if (IS_ERR(ref)) {
3015                err = PTR_ERR(ref);
3016                goto out;
3017        }
3018        BUG_ON(!ref); /* Logic error */
3019        if (check_path_shared(root, path))
3020                goto out;
3021        index = btrfs_inode_ref_index(path->nodes[0], ref);
3022        btrfs_release_path(path);
3023
3024        /*
3025         * This is a commit root search, if we can lookup inode item and other
3026         * relative items in the commit root, it means the transaction of
3027         * dir/file creation has been committed, and the dir index item that we
3028         * delay to insert has also been inserted into the commit root. So
3029         * we needn't worry about the delayed insertion of the dir index item
3030         * here.
3031         */
3032        di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3033                                dentry->d_name.name, dentry->d_name.len, 0);
3034        if (IS_ERR(di)) {
3035                err = PTR_ERR(di);
3036                goto out;
3037        }
3038        BUG_ON(ret == -ENOENT);
3039        if (check_path_shared(root, path))
3040                goto out;
3041
3042        err = 0;
3043out:
3044        btrfs_free_path(path);
3045        /* Migrate the orphan reservation over */
3046        if (!err)
3047                err = btrfs_block_rsv_migrate(trans->block_rsv,
3048                                &root->fs_info->global_block_rsv,
3049                                trans->bytes_reserved);
3050
3051        if (err) {
3052                btrfs_end_transaction(trans, root);
3053                root->fs_info->enospc_unlink = 0;
3054                return ERR_PTR(err);
3055        }
3056
3057        trans->block_rsv = &root->fs_info->global_block_rsv;
3058        return trans;
3059}
3060
3061static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3062                               struct btrfs_root *root)
3063{
3064        if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3065                btrfs_block_rsv_release(root, trans->block_rsv,
3066                                        trans->bytes_reserved);
3067                trans->block_rsv = &root->fs_info->trans_block_rsv;
3068                BUG_ON(!root->fs_info->enospc_unlink);
3069                root->fs_info->enospc_unlink = 0;
3070        }
3071        btrfs_end_transaction(trans, root);
3072}
3073
3074static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3075{
3076        struct btrfs_root *root = BTRFS_I(dir)->root;
3077        struct btrfs_trans_handle *trans;
3078        struct inode *inode = dentry->d_inode;
3079        int ret;
3080        unsigned long nr = 0;
3081
3082        trans = __unlink_start_trans(dir, dentry);
3083        if (IS_ERR(trans))
3084                return PTR_ERR(trans);
3085
3086        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3087
3088        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3089                                 dentry->d_name.name, dentry->d_name.len);
3090        if (ret)
3091                goto out;
3092
3093        if (inode->i_nlink == 0) {
3094                ret = btrfs_orphan_add(trans, inode);
3095                if (ret)
3096                        goto out;
3097        }
3098
3099out:
3100        nr = trans->blocks_used;
3101        __unlink_end_trans(trans, root);
3102        btrfs_btree_balance_dirty(root, nr);
3103        return ret;
3104}
3105
3106int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3107                        struct btrfs_root *root,
3108                        struct inode *dir, u64 objectid,
3109                        const char *name, int name_len)
3110{
3111        struct btrfs_path *path;
3112        struct extent_buffer *leaf;
3113        struct btrfs_dir_item *di;
3114        struct btrfs_key key;
3115        u64 index;
3116        int ret;
3117        u64 dir_ino = btrfs_ino(dir);
3118
3119        path = btrfs_alloc_path();
3120        if (!path)
3121                return -ENOMEM;
3122
3123        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3124                                   name, name_len, -1);
3125        if (IS_ERR_OR_NULL(di)) {
3126                if (!di)
3127                        ret = -ENOENT;
3128                else
3129                        ret = PTR_ERR(di);
3130                goto out;
3131        }
3132
3133        leaf = path->nodes[0];
3134        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3135        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3136        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3137        if (ret) {
3138                btrfs_abort_transaction(trans, root, ret);
3139                goto out;
3140        }
3141        btrfs_release_path(path);
3142
3143        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3144                                 objectid, root->root_key.objectid,
3145                                 dir_ino, &index, name, name_len);
3146        if (ret < 0) {
3147                if (ret != -ENOENT) {
3148                        btrfs_abort_transaction(trans, root, ret);
3149                        goto out;
3150                }
3151                di = btrfs_search_dir_index_item(root, path, dir_ino,
3152                                                 name, name_len);
3153                if (IS_ERR_OR_NULL(di)) {
3154                        if (!di)
3155                                ret = -ENOENT;
3156                        else
3157                                ret = PTR_ERR(di);
3158                        btrfs_abort_transaction(trans, root, ret);
3159                        goto out;
3160                }
3161
3162                leaf = path->nodes[0];
3163                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3164                btrfs_release_path(path);
3165                index = key.offset;
3166        }
3167        btrfs_release_path(path);
3168
3169        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3170        if (ret) {
3171                btrfs_abort_transaction(trans, root, ret);
3172                goto out;
3173        }
3174
3175        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3176        inode_inc_iversion(dir);
3177        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3178        ret = btrfs_update_inode_fallback(trans, root, dir);
3179        if (ret)
3180                btrfs_abort_transaction(trans, root, ret);
3181out:
3182        btrfs_free_path(path);
3183        return ret;
3184}
3185
3186static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3187{
3188        struct inode *inode = dentry->d_inode;
3189        int err = 0;
3190        struct btrfs_root *root = BTRFS_I(dir)->root;
3191        struct btrfs_trans_handle *trans;
3192        unsigned long nr = 0;
3193
3194        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3195            btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3196                return -ENOTEMPTY;
3197
3198        trans = __unlink_start_trans(dir, dentry);
3199        if (IS_ERR(trans))
3200                return PTR_ERR(trans);
3201
3202        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3203                err = btrfs_unlink_subvol(trans, root, dir,
3204                                          BTRFS_I(inode)->location.objectid,
3205                                          dentry->d_name.name,
3206                                          dentry->d_name.len);
3207                goto out;
3208        }
3209
3210        err = btrfs_orphan_add(trans, inode);
3211        if (err)
3212                goto out;
3213
3214        /* now the directory is empty */
3215        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3216                                 dentry->d_name.name, dentry->d_name.len);
3217        if (!err)
3218                btrfs_i_size_write(inode, 0);
3219out:
3220        nr = trans->blocks_used;
3221        __unlink_end_trans(trans, root);
3222        btrfs_btree_balance_dirty(root, nr);
3223
3224        return err;
3225}
3226
3227/*
3228 * this can truncate away extent items, csum items and directory items.
3229 * It starts at a high offset and removes keys until it can't find
3230 * any higher than new_size
3231 *
3232 * csum items that cross the new i_size are truncated to the new size
3233 * as well.
3234 *
3235 * min_type is the minimum key type to truncate down to.  If set to 0, this
3236 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3237 */
3238int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3239                               struct btrfs_root *root,
3240                               struct inode *inode,
3241                               u64 new_size, u32 min_type)
3242{
3243        struct btrfs_path *path;
3244        struct extent_buffer *leaf;
3245        struct btrfs_file_extent_item *fi;
3246        struct btrfs_key key;
3247        struct btrfs_key found_key;
3248        u64 extent_start = 0;
3249        u64 extent_num_bytes = 0;
3250        u64 extent_offset = 0;
3251        u64 item_end = 0;
3252        u64 mask = root->sectorsize - 1;
3253        u32 found_type = (u8)-1;
3254        int found_extent;
3255        int del_item;
3256        int pending_del_nr = 0;
3257        int pending_del_slot = 0;
3258        int extent_type = -1;
3259        int ret;
3260        int err = 0;
3261        u64 ino = btrfs_ino(inode);
3262
3263        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3264
3265        path = btrfs_alloc_path();
3266        if (!path)
3267                return -ENOMEM;
3268        path->reada = -1;
3269
3270        if (root->ref_cows || root == root->fs_info->tree_root)
3271                btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3272
3273        /*
3274         * This function is also used to drop the items in the log tree before
3275         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3276         * it is used to drop the loged items. So we shouldn't kill the delayed
3277         * items.
3278         */
3279        if (min_type == 0 && root == BTRFS_I(inode)->root)
3280                btrfs_kill_delayed_inode_items(inode);
3281
3282        key.objectid = ino;
3283        key.offset = (u64)-1;
3284        key.type = (u8)-1;
3285
3286search_again:
3287        path->leave_spinning = 1;
3288        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3289        if (ret < 0) {
3290                err = ret;
3291                goto out;
3292        }
3293
3294        if (ret > 0) {
3295                /* there are no items in the tree for us to truncate, we're
3296                 * done
3297                 */
3298                if (path->slots[0] == 0)
3299                        goto out;
3300                path->slots[0]--;
3301        }
3302
3303        while (1) {
3304                fi = NULL;
3305                leaf = path->nodes[0];
3306                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3307                found_type = btrfs_key_type(&found_key);
3308
3309                if (found_key.objectid != ino)
3310                        break;
3311
3312                if (found_type < min_type)
3313                        break;
3314
3315                item_end = found_key.offset;
3316                if (found_type == BTRFS_EXTENT_DATA_KEY) {
3317                        fi = btrfs_item_ptr(leaf, path->slots[0],
3318                                            struct btrfs_file_extent_item);
3319                        extent_type = btrfs_file_extent_type(leaf, fi);
3320                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321                                item_end +=
3322                                    btrfs_file_extent_num_bytes(leaf, fi);
3323                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3324                                item_end += btrfs_file_extent_inline_len(leaf,
3325                                                                         fi);
3326                        }
3327                        item_end--;
3328                }
3329                if (found_type > min_type) {
3330                        del_item = 1;
3331                } else {
3332                        if (item_end < new_size)
3333                                break;
3334                        if (found_key.offset >= new_size)
3335                                del_item = 1;
3336                        else
3337                                del_item = 0;
3338                }
3339                found_extent = 0;
3340                /* FIXME, shrink the extent if the ref count is only 1 */
3341                if (found_type != BTRFS_EXTENT_DATA_KEY)
3342                        goto delete;
3343
3344                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3345                        u64 num_dec;
3346                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3347                        if (!del_item) {
3348                                u64 orig_num_bytes =
3349                                        btrfs_file_extent_num_bytes(leaf, fi);
3350                                extent_num_bytes = new_size -
3351                                        found_key.offset + root->sectorsize - 1;
3352                                extent_num_bytes = extent_num_bytes &
3353                                        ~((u64)root->sectorsize - 1);
3354                                btrfs_set_file_extent_num_bytes(leaf, fi,
3355                                                         extent_num_bytes);
3356                                num_dec = (orig_num_bytes -
3357                                           extent_num_bytes);
3358                                if (root->ref_cows && extent_start != 0)
3359                                        inode_sub_bytes(inode, num_dec);
3360                                btrfs_mark_buffer_dirty(leaf);
3361                        } else {
3362                                extent_num_bytes =
3363                                        btrfs_file_extent_disk_num_bytes(leaf,
3364                                                                         fi);
3365                                extent_offset = found_key.offset -
3366                                        btrfs_file_extent_offset(leaf, fi);
3367
3368                                /* FIXME blocksize != 4096 */
3369                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3370                                if (extent_start != 0) {
3371                                        found_extent = 1;
3372                                        if (root->ref_cows)
3373                                                inode_sub_bytes(inode, num_dec);
3374                                }
3375                        }
3376                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3377                        /*
3378                         * we can't truncate inline items that have had
3379                         * special encodings
3380                         */
3381                        if (!del_item &&
3382                            btrfs_file_extent_compression(leaf, fi) == 0 &&
3383                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
3384                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3385                                u32 size = new_size - found_key.offset;
3386
3387                                if (root->ref_cows) {
3388                                        inode_sub_bytes(inode, item_end + 1 -
3389                                                        new_size);
3390                                }
3391                                size =
3392                                    btrfs_file_extent_calc_inline_size(size);
3393                                btrfs_truncate_item(trans, root, path,
3394                                                    size, 1);
3395                        } else if (root->ref_cows) {
3396                                inode_sub_bytes(inode, item_end + 1 -
3397                                                found_key.offset);
3398                        }
3399                }
3400delete:
3401                if (del_item) {
3402                        if (!pending_del_nr) {
3403                                /* no pending yet, add ourselves */
3404                                pending_del_slot = path->slots[0];
3405                                pending_del_nr = 1;
3406                        } else if (pending_del_nr &&
3407                                   path->slots[0] + 1 == pending_del_slot) {
3408                                /* hop on the pending chunk */
3409                                pending_del_nr++;
3410                                pending_del_slot = path->slots[0];
3411                        } else {
3412                                BUG();
3413                        }
3414                } else {
3415                        break;
3416                }
3417                if (found_extent && (root->ref_cows ||
3418                                     root == root->fs_info->tree_root)) {
3419                        btrfs_set_path_blocking(path);
3420                        ret = btrfs_free_extent(trans, root, extent_start,
3421                                                extent_num_bytes, 0,
3422                                                btrfs_header_owner(leaf),
3423                                                ino, extent_offset, 0);
3424                        BUG_ON(ret);
3425                }
3426
3427                if (found_type == BTRFS_INODE_ITEM_KEY)
3428                        break;
3429
3430                if (path->slots[0] == 0 ||
3431                    path->slots[0] != pending_del_slot) {
3432                        if (root->ref_cows &&
3433                            BTRFS_I(inode)->location.objectid !=
3434                                                BTRFS_FREE_INO_OBJECTID) {
3435                                err = -EAGAIN;
3436                                goto out;
3437                        }
3438                        if (pending_del_nr) {
3439                                ret = btrfs_del_items(trans, root, path,
3440                                                pending_del_slot,
3441                                                pending_del_nr);
3442                                if (ret) {
3443                                        btrfs_abort_transaction(trans,
3444                                                                root, ret);
3445                                        goto error;
3446                                }
3447                                pending_del_nr = 0;
3448                        }
3449                        btrfs_release_path(path);
3450                        goto search_again;
3451                } else {
3452                        path->slots[0]--;
3453                }
3454        }
3455out:
3456        if (pending_del_nr) {
3457                ret = btrfs_del_items(trans, root, path, pending_del_slot,
3458                                      pending_del_nr);
3459                if (ret)
3460                        btrfs_abort_transaction(trans, root, ret);
3461        }
3462error:
3463        btrfs_free_path(path);
3464        return err;
3465}
3466
3467/*
3468 * taken from block_truncate_page, but does cow as it zeros out
3469 * any bytes left in the last page in the file.
3470 */
3471static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3472{
3473        struct inode *inode = mapping->host;
3474        struct btrfs_root *root = BTRFS_I(inode)->root;
3475        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3476        struct btrfs_ordered_extent *ordered;
3477        struct extent_state *cached_state = NULL;
3478        char *kaddr;
3479        u32 blocksize = root->sectorsize;
3480        pgoff_t index = from >> PAGE_CACHE_SHIFT;
3481        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3482        struct page *page;
3483        gfp_t mask = btrfs_alloc_write_mask(mapping);
3484        int ret = 0;
3485        u64 page_start;
3486        u64 page_end;
3487
3488        if ((offset & (blocksize - 1)) == 0)
3489                goto out;
3490        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3491        if (ret)
3492                goto out;
3493
3494        ret = -ENOMEM;
3495again:
3496        page = find_or_create_page(mapping, index, mask);
3497        if (!page) {
3498                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3499                goto out;
3500        }
3501
3502        page_start = page_offset(page);
3503        page_end = page_start + PAGE_CACHE_SIZE - 1;
3504
3505        if (!PageUptodate(page)) {
3506                ret = btrfs_readpage(NULL, page);
3507                lock_page(page);
3508                if (page->mapping != mapping) {
3509                        unlock_page(page);
3510                        page_cache_release(page);
3511                        goto again;
3512                }
3513                if (!PageUptodate(page)) {
3514                        ret = -EIO;
3515                        goto out_unlock;
3516                }
3517        }
3518        wait_on_page_writeback(page);
3519
3520        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3521        set_page_extent_mapped(page);
3522
3523        ordered = btrfs_lookup_ordered_extent(inode, page_start);
3524        if (ordered) {
3525                unlock_extent_cached(io_tree, page_start, page_end,
3526                                     &cached_state, GFP_NOFS);
3527                unlock_page(page);
3528                page_cache_release(page);
3529                btrfs_start_ordered_extent(inode, ordered, 1);
3530                btrfs_put_ordered_extent(ordered);
3531                goto again;
3532        }
3533
3534        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3535                          EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3536                          0, 0, &cached_state, GFP_NOFS);
3537
3538        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3539                                        &cached_state);
3540        if (ret) {
3541                unlock_extent_cached(io_tree, page_start, page_end,
3542                                     &cached_state, GFP_NOFS);
3543                goto out_unlock;
3544        }
3545
3546        ret = 0;
3547        if (offset != PAGE_CACHE_SIZE) {
3548                kaddr = kmap(page);
3549                memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3550                flush_dcache_page(page);
3551                kunmap(page);
3552        }
3553        ClearPageChecked(page);
3554        set_page_dirty(page);
3555        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3556                             GFP_NOFS);
3557
3558out_unlock:
3559        if (ret)
3560                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3561        unlock_page(page);
3562        page_cache_release(page);
3563out:
3564        return ret;
3565}
3566
3567/*
3568 * This function puts in dummy file extents for the area we're creating a hole
3569 * for.  So if we are truncating this file to a larger size we need to insert
3570 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3571 * the range between oldsize and size
3572 */
3573int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3574{
3575        struct btrfs_trans_handle *trans;
3576        struct btrfs_root *root = BTRFS_I(inode)->root;
3577        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3578        struct extent_map *em = NULL;
3579        struct extent_state *cached_state = NULL;
3580        u64 mask = root->sectorsize - 1;
3581        u64 hole_start = (oldsize + mask) & ~mask;
3582        u64 block_end = (size + mask) & ~mask;
3583        u64 last_byte;
3584        u64 cur_offset;
3585        u64 hole_size;
3586        int err = 0;
3587
3588        if (size <= hole_start)
3589                return 0;
3590
3591        while (1) {
3592                struct btrfs_ordered_extent *ordered;
3593                btrfs_wait_ordered_range(inode, hole_start,
3594                                         block_end - hole_start);
3595                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3596                                 &cached_state);
3597                ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3598                if (!ordered)
3599                        break;
3600                unlock_extent_cached(io_tree, hole_start, block_end - 1,
3601                                     &cached_state, GFP_NOFS);
3602                btrfs_put_ordered_extent(ordered);
3603        }
3604
3605        cur_offset = hole_start;
3606        while (1) {
3607                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3608                                block_end - cur_offset, 0);
3609                if (IS_ERR(em)) {
3610                        err = PTR_ERR(em);
3611                        break;
3612                }
3613                last_byte = min(extent_map_end(em), block_end);
3614                last_byte = (last_byte + mask) & ~mask;
3615                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3616                        u64 hint_byte = 0;
3617                        hole_size = last_byte - cur_offset;
3618
3619                        trans = btrfs_start_transaction(root, 3);
3620                        if (IS_ERR(trans)) {
3621                                err = PTR_ERR(trans);
3622                                break;
3623                        }
3624
3625                        err = btrfs_drop_extents(trans, inode, cur_offset,
3626                                                 cur_offset + hole_size,
3627                                                 &hint_byte, 1);
3628                        if (err) {
3629                                btrfs_abort_transaction(trans, root, err);
3630                                btrfs_end_transaction(trans, root);
3631                                break;
3632                        }
3633
3634                        err = btrfs_insert_file_extent(trans, root,
3635                                        btrfs_ino(inode), cur_offset, 0,
3636                                        0, hole_size, 0, hole_size,
3637                                        0, 0, 0);
3638                        if (err) {
3639                                btrfs_abort_transaction(trans, root, err);
3640                                btrfs_end_transaction(trans, root);
3641                                break;
3642                        }
3643
3644                        btrfs_drop_extent_cache(inode, hole_start,
3645                                        last_byte - 1, 0);
3646
3647                        btrfs_update_inode(trans, root, inode);
3648                        btrfs_end_transaction(trans, root);
3649                }
3650                free_extent_map(em);
3651                em = NULL;
3652                cur_offset = last_byte;
3653                if (cur_offset >= block_end)
3654                        break;
3655        }
3656
3657        free_extent_map(em);
3658        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3659                             GFP_NOFS);
3660        return err;
3661}
3662
3663static int btrfs_setsize(struct inode *inode, loff_t newsize)
3664{
3665        struct btrfs_root *root = BTRFS_I(inode)->root;
3666        struct btrfs_trans_handle *trans;
3667        loff_t oldsize = i_size_read(inode);
3668        int ret;
3669
3670        if (newsize == oldsize)
3671                return 0;
3672
3673        if (newsize > oldsize) {
3674                truncate_pagecache(inode, oldsize, newsize);
3675                ret = btrfs_cont_expand(inode, oldsize, newsize);
3676                if (ret)
3677                        return ret;
3678
3679                trans = btrfs_start_transaction(root, 1);
3680                if (IS_ERR(trans))
3681                        return PTR_ERR(trans);
3682
3683                i_size_write(inode, newsize);
3684                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3685                ret = btrfs_update_inode(trans, root, inode);
3686                btrfs_end_transaction(trans, root);
3687        } else {
3688
3689                /*
3690                 * We're truncating a file that used to have good data down to
3691                 * zero. Make sure it gets into the ordered flush list so that
3692                 * any new writes get down to disk quickly.
3693                 */
3694                if (newsize == 0)
3695                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3696                                &BTRFS_I(inode)->runtime_flags);
3697
3698                /* we don't support swapfiles, so vmtruncate shouldn't fail */
3699                truncate_setsize(inode, newsize);
3700                ret = btrfs_truncate(inode);
3701        }
3702
3703        return ret;
3704}
3705
3706static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3707{
3708        struct inode *inode = dentry->d_inode;
3709        struct btrfs_root *root = BTRFS_I(inode)->root;
3710        int err;
3711
3712        if (btrfs_root_readonly(root))
3713                return -EROFS;
3714
3715        err = inode_change_ok(inode, attr);
3716        if (err)
3717                return err;
3718
3719        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3720                err = btrfs_setsize(inode, attr->ia_size);
3721                if (err)
3722                        return err;
3723        }
3724
3725        if (attr->ia_valid) {
3726                setattr_copy(inode, attr);
3727                inode_inc_iversion(inode);
3728                err = btrfs_dirty_inode(inode);
3729
3730                if (!err && attr->ia_valid & ATTR_MODE)
3731                        err = btrfs_acl_chmod(inode);
3732        }
3733
3734        return err;
3735}
3736
3737void btrfs_evict_inode(struct inode *inode)
3738{
3739        struct btrfs_trans_handle *trans;
3740        struct btrfs_root *root = BTRFS_I(inode)->root;
3741        struct btrfs_block_rsv *rsv, *global_rsv;
3742        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3743        unsigned long nr;
3744        int ret;
3745
3746        trace_btrfs_inode_evict(inode);
3747
3748        truncate_inode_pages(&inode->i_data, 0);
3749        if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3750                               btrfs_is_free_space_inode(inode)))
3751                goto no_delete;
3752
3753        if (is_bad_inode(inode)) {
3754                btrfs_orphan_del(NULL, inode);
3755                goto no_delete;
3756        }
3757        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3758        btrfs_wait_ordered_range(inode, 0, (u64)-1);
3759
3760        if (root->fs_info->log_root_recovering) {
3761                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3762                                 &BTRFS_I(inode)->runtime_flags));
3763                goto no_delete;
3764        }
3765
3766        if (inode->i_nlink > 0) {
3767                BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3768                goto no_delete;
3769        }
3770
3771        rsv = btrfs_alloc_block_rsv(root);
3772        if (!rsv) {
3773                btrfs_orphan_del(NULL, inode);
3774                goto no_delete;
3775        }
3776        rsv->size = min_size;
3777        global_rsv = &root->fs_info->global_block_rsv;
3778
3779        btrfs_i_size_write(inode, 0);
3780
3781        /*
3782         * This is a bit simpler than btrfs_truncate since
3783         *
3784         * 1) We've already reserved our space for our orphan item in the
3785         *    unlink.
3786         * 2) We're going to delete the inode item, so we don't need to update
3787         *    it at all.
3788         *
3789         * So we just need to reserve some slack space in case we add bytes when
3790         * doing the truncate.
3791         */
3792        while (1) {
3793                ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3794
3795                /*
3796                 * Try and steal from the global reserve since we will
3797                 * likely not use this space anyway, we want to try as
3798                 * hard as possible to get this to work.
3799                 */
3800                if (ret)
3801                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3802
3803                if (ret) {
3804                        printk(KERN_WARNING "Could not get space for a "
3805                               "delete, will truncate on mount %d\n", ret);
3806                        btrfs_orphan_del(NULL, inode);
3807                        btrfs_free_block_rsv(root, rsv);
3808                        goto no_delete;
3809                }
3810
3811                trans = btrfs_start_transaction(root, 0);
3812                if (IS_ERR(trans)) {
3813                        btrfs_orphan_del(NULL, inode);
3814                        btrfs_free_block_rsv(root, rsv);
3815                        goto no_delete;
3816                }
3817
3818                trans->block_rsv = rsv;
3819
3820                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3821                if (ret != -EAGAIN)
3822                        break;
3823
3824                nr = trans->blocks_used;
3825                btrfs_end_transaction(trans, root);
3826                trans = NULL;
3827                btrfs_btree_balance_dirty(root, nr);
3828        }
3829
3830        btrfs_free_block_rsv(root, rsv);
3831
3832        if (ret == 0) {
3833                trans->block_rsv = root->orphan_block_rsv;
3834                ret = btrfs_orphan_del(trans, inode);
3835                BUG_ON(ret);
3836        }
3837
3838        trans->block_rsv = &root->fs_info->trans_block_rsv;
3839        if (!(root == root->fs_info->tree_root ||
3840              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3841                btrfs_return_ino(root, btrfs_ino(inode));
3842
3843        nr = trans->blocks_used;
3844        btrfs_end_transaction(trans, root);
3845        btrfs_btree_balance_dirty(root, nr);
3846no_delete:
3847        clear_inode(inode);
3848        return;
3849}
3850
3851/*
3852 * this returns the key found in the dir entry in the location pointer.
3853 * If no dir entries were found, location->objectid is 0.
3854 */
3855static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3856                               struct btrfs_key *location)
3857{
3858        const char *name = dentry->d_name.name;
3859        int namelen = dentry->d_name.len;
3860        struct btrfs_dir_item *di;
3861        struct btrfs_path *path;
3862        struct btrfs_root *root = BTRFS_I(dir)->root;
3863        int ret = 0;
3864
3865        path = btrfs_alloc_path();
3866        if (!path)
3867                return -ENOMEM;
3868
3869        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3870                                    namelen, 0);
3871        if (IS_ERR(di))
3872                ret = PTR_ERR(di);
3873
3874        if (IS_ERR_OR_NULL(di))
3875                goto out_err;
3876
3877        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3878out:
3879        btrfs_free_path(path);
3880        return ret;
3881out_err:
3882        location->objectid = 0;
3883        goto out;
3884}
3885
3886/*
3887 * when we hit a tree root in a directory, the btrfs part of the inode
3888 * needs to be changed to reflect the root directory of the tree root.  This
3889 * is kind of like crossing a mount point.
3890 */
3891static int fixup_tree_root_location(struct btrfs_root *root,
3892                                    struct inode *dir,
3893                                    struct dentry *dentry,
3894                                    struct btrfs_key *location,
3895                                    struct btrfs_root **sub_root)
3896{
3897        struct btrfs_path *path;
3898        struct btrfs_root *new_root;
3899        struct btrfs_root_ref *ref;
3900        struct extent_buffer *leaf;
3901        int ret;
3902        int err = 0;
3903
3904        path = btrfs_alloc_path();
3905        if (!path) {
3906                err = -ENOMEM;
3907                goto out;
3908        }
3909
3910        err = -ENOENT;
3911        ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3912                                  BTRFS_I(dir)->root->root_key.objectid,
3913                                  location->objectid);
3914        if (ret) {
3915                if (ret < 0)
3916                        err = ret;
3917                goto out;
3918        }
3919
3920        leaf = path->nodes[0];
3921        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3922        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3923            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3924                goto out;
3925
3926        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3927                                   (unsigned long)(ref + 1),
3928                                   dentry->d_name.len);
3929        if (ret)
3930                goto out;
3931
3932        btrfs_release_path(path);
3933
3934        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3935        if (IS_ERR(new_root)) {
3936                err = PTR_ERR(new_root);
3937                goto out;
3938        }
3939
3940        if (btrfs_root_refs(&new_root->root_item) == 0) {
3941                err = -ENOENT;
3942                goto out;
3943        }
3944
3945        *sub_root = new_root;
3946        location->objectid = btrfs_root_dirid(&new_root->root_item);
3947        location->type = BTRFS_INODE_ITEM_KEY;
3948        location->offset = 0;
3949        err = 0;
3950out:
3951        btrfs_free_path(path);
3952        return err;
3953}
3954
3955static void inode_tree_add(struct inode *inode)
3956{
3957        struct btrfs_root *root = BTRFS_I(inode)->root;
3958        struct btrfs_inode *entry;
3959        struct rb_node **p;
3960        struct rb_node *parent;
3961        u64 ino = btrfs_ino(inode);
3962again:
3963        p = &root->inode_tree.rb_node;
3964        parent = NULL;
3965
3966        if (inode_unhashed(inode))
3967                return;
3968
3969        spin_lock(&root->inode_lock);
3970        while (*p) {
3971                parent = *p;
3972                entry = rb_entry(parent, struct btrfs_inode, rb_node);
3973
3974                if (ino < btrfs_ino(&entry->vfs_inode))
3975                        p = &parent->rb_left;
3976                else if (ino > btrfs_ino(&entry->vfs_inode))
3977                        p = &parent->rb_right;
3978                else {
3979                        WARN_ON(!(entry->vfs_inode.i_state &
3980                                  (I_WILL_FREE | I_FREEING)));
3981                        rb_erase(parent, &root->inode_tree);
3982                        RB_CLEAR_NODE(parent);
3983                        spin_unlock(&root->inode_lock);
3984                        goto again;
3985                }
3986        }
3987        rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3988        rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3989        spin_unlock(&root->inode_lock);
3990}
3991
3992static void inode_tree_del(struct inode *inode)
3993{
3994        struct btrfs_root *root = BTRFS_I(inode)->root;
3995        int empty = 0;
3996
3997        spin_lock(&root->inode_lock);
3998        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3999                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4000                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4001                empty = RB_EMPTY_ROOT(&root->inode_tree);
4002        }
4003        spin_unlock(&root->inode_lock);
4004
4005        /*
4006         * Free space cache has inodes in the tree root, but the tree root has a
4007         * root_refs of 0, so this could end up dropping the tree root as a
4008         * snapshot, so we need the extra !root->fs_info->tree_root check to
4009         * make sure we don't drop it.
4010         */
4011        if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4012            root != root->fs_info->tree_root) {
4013                synchronize_srcu(&root->fs_info->subvol_srcu);
4014                spin_lock(&root->inode_lock);
4015                empty = RB_EMPTY_ROOT(&root->inode_tree);
4016                spin_unlock(&root->inode_lock);
4017                if (empty)
4018                        btrfs_add_dead_root(root);
4019        }
4020}
4021
4022void btrfs_invalidate_inodes(struct btrfs_root *root)
4023{
4024        struct rb_node *node;
4025        struct rb_node *prev;
4026        struct btrfs_inode *entry;
4027        struct inode *inode;
4028        u64 objectid = 0;
4029
4030        WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4031
4032        spin_lock(&root->inode_lock);
4033again:
4034        node = root->inode_tree.rb_node;
4035        prev = NULL;
4036        while (node) {
4037                prev = node;
4038                entry = rb_entry(node, struct btrfs_inode, rb_node);
4039
4040                if (objectid < btrfs_ino(&entry->vfs_inode))
4041                        node = node->rb_left;
4042                else if (objectid > btrfs_ino(&entry->vfs_inode))
4043                        node = node->rb_right;
4044                else
4045                        break;
4046        }
4047        if (!node) {
4048                while (prev) {
4049                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4050                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4051                                node = prev;
4052                                break;
4053                        }
4054                        prev = rb_next(prev);
4055                }
4056        }
4057        while (node) {
4058                entry = rb_entry(node, struct btrfs_inode, rb_node);
4059                objectid = btrfs_ino(&entry->vfs_inode) + 1;
4060                inode = igrab(&entry->vfs_inode);
4061                if (inode) {
4062                        spin_unlock(&root->inode_lock);
4063                        if (atomic_read(&inode->i_count) > 1)
4064                                d_prune_aliases(inode);
4065                        /*
4066                         * btrfs_drop_inode will have it removed from
4067                         * the inode cache when its usage count
4068                         * hits zero.
4069                         */
4070                        iput(inode);
4071                        cond_resched();
4072                        spin_lock(&root->inode_lock);
4073                        goto again;
4074                }
4075
4076                if (cond_resched_lock(&root->inode_lock))
4077                        goto again;
4078
4079                node = rb_next(node);
4080        }
4081        spin_unlock(&root->inode_lock);
4082}
4083
4084static int btrfs_init_locked_inode(struct inode *inode, void *p)
4085{
4086        struct btrfs_iget_args *args = p;
4087        inode->i_ino = args->ino;
4088        BTRFS_I(inode)->root = args->root;
4089        return 0;
4090}
4091
4092static int btrfs_find_actor(struct inode *inode, void *opaque)
4093{
4094        struct btrfs_iget_args *args = opaque;
4095        return args->ino == btrfs_ino(inode) &&
4096                args->root == BTRFS_I(inode)->root;
4097}
4098
4099static struct inode *btrfs_iget_locked(struct super_block *s,
4100                                       u64 objectid,
4101                                       struct btrfs_root *root)
4102{
4103        struct inode *inode;
4104        struct btrfs_iget_args args;
4105        args.ino = objectid;
4106        args.root = root;
4107
4108        inode = iget5_locked(s, objectid, btrfs_find_actor,
4109                             btrfs_init_locked_inode,
4110                             (void *)&args);
4111        return inode;
4112}
4113
4114/* Get an inode object given its location and corresponding root.
4115 * Returns in *is_new if the inode was read from disk
4116 */
4117struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4118                         struct btrfs_root *root, int *new)
4119{
4120        struct inode *inode;
4121
4122        inode = btrfs_iget_locked(s, location->objectid, root);
4123        if (!inode)
4124                return ERR_PTR(-ENOMEM);
4125
4126        if (inode->i_state & I_NEW) {
4127                BTRFS_I(inode)->root = root;
4128                memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4129                btrfs_read_locked_inode(inode);
4130                if (!is_bad_inode(inode)) {
4131                        inode_tree_add(inode);
4132                        unlock_new_inode(inode);
4133                        if (new)
4134                                *new = 1;
4135                } else {
4136                        unlock_new_inode(inode);
4137                        iput(inode);
4138                        inode = ERR_PTR(-ESTALE);
4139                }
4140        }
4141
4142        return inode;
4143}
4144
4145static struct inode *new_simple_dir(struct super_block *s,
4146                                    struct btrfs_key *key,
4147                                    struct btrfs_root *root)
4148{
4149        struct inode *inode = new_inode(s);
4150
4151        if (!inode)
4152                return ERR_PTR(-ENOMEM);
4153
4154        BTRFS_I(inode)->root = root;
4155        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4156        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4157
4158        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4159        inode->i_op = &btrfs_dir_ro_inode_operations;
4160        inode->i_fop = &simple_dir_operations;
4161        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4162        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4163
4164        return inode;
4165}
4166
4167struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4168{
4169        struct inode *inode;
4170        struct btrfs_root *root = BTRFS_I(dir)->root;
4171        struct btrfs_root *sub_root = root;
4172        struct btrfs_key location;
4173        int index;
4174        int ret = 0;
4175
4176        if (dentry->d_name.len > BTRFS_NAME_LEN)
4177                return ERR_PTR(-ENAMETOOLONG);
4178
4179        if (unlikely(d_need_lookup(dentry))) {
4180                memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4181                kfree(dentry->d_fsdata);
4182                dentry->d_fsdata = NULL;
4183                /* This thing is hashed, drop it for now */
4184                d_drop(dentry);
4185        } else {
4186                ret = btrfs_inode_by_name(dir, dentry, &location);
4187        }
4188
4189        if (ret < 0)
4190                return ERR_PTR(ret);
4191
4192        if (location.objectid == 0)
4193                return NULL;
4194
4195        if (location.type == BTRFS_INODE_ITEM_KEY) {
4196                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4197                return inode;
4198        }
4199
4200        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4201
4202        index = srcu_read_lock(&root->fs_info->subvol_srcu);
4203        ret = fixup_tree_root_location(root, dir, dentry,
4204                                       &location, &sub_root);
4205        if (ret < 0) {
4206                if (ret != -ENOENT)
4207                        inode = ERR_PTR(ret);
4208                else
4209                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
4210        } else {
4211                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4212        }
4213        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4214
4215        if (!IS_ERR(inode) && root != sub_root) {
4216                down_read(&root->fs_info->cleanup_work_sem);
4217                if (!(inode->i_sb->s_flags & MS_RDONLY))
4218                        ret = btrfs_orphan_cleanup(sub_root);
4219                up_read(&root->fs_info->cleanup_work_sem);
4220                if (ret)
4221                        inode = ERR_PTR(ret);
4222        }
4223
4224        return inode;
4225}
4226
4227static int btrfs_dentry_delete(const struct dentry *dentry)
4228{
4229        struct btrfs_root *root;
4230        struct inode *inode = dentry->d_inode;
4231
4232        if (!inode && !IS_ROOT(dentry))
4233                inode = dentry->d_parent->d_inode;
4234
4235        if (inode) {
4236                root = BTRFS_I(inode)->root;
4237                if (btrfs_root_refs(&root->root_item) == 0)
4238                        return 1;
4239
4240                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4241                        return 1;
4242        }
4243        return 0;
4244}
4245
4246static void btrfs_dentry_release(struct dentry *dentry)
4247{
4248        if (dentry->d_fsdata)
4249                kfree(dentry->d_fsdata);
4250}
4251
4252static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4253                                   unsigned int flags)
4254{
4255        struct dentry *ret;
4256
4257        ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4258        if (unlikely(d_need_lookup(dentry))) {
4259                spin_lock(&dentry->d_lock);
4260                dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4261                spin_unlock(&dentry->d_lock);
4262        }
4263        return ret;
4264}
4265
4266unsigned char btrfs_filetype_table[] = {
4267        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4268};
4269
4270static int btrfs_real_readdir(struct file *filp, void *dirent,
4271                              filldir_t filldir)
4272{
4273        struct inode *inode = filp->f_dentry->d_inode;
4274        struct btrfs_root *root = BTRFS_I(inode)->root;
4275        struct btrfs_item *item;
4276        struct btrfs_dir_item *di;
4277        struct btrfs_key key;
4278        struct btrfs_key found_key;
4279        struct btrfs_path *path;
4280        struct list_head ins_list;
4281        struct list_head del_list;
4282        int ret;
4283        struct extent_buffer *leaf;
4284        int slot;
4285        unsigned char d_type;
4286        int over = 0;
4287        u32 di_cur;
4288        u32 di_total;
4289        u32 di_len;
4290        int key_type = BTRFS_DIR_INDEX_KEY;
4291        char tmp_name[32];
4292        char *name_ptr;
4293        int name_len;
4294        int is_curr = 0;        /* filp->f_pos points to the current index? */
4295
4296        /* FIXME, use a real flag for deciding about the key type */
4297        if (root->fs_info->tree_root == root)
4298                key_type = BTRFS_DIR_ITEM_KEY;
4299
4300        /* special case for "." */
4301        if (filp->f_pos == 0) {
4302                over = filldir(dirent, ".", 1,
4303                               filp->f_pos, btrfs_ino(inode), DT_DIR);
4304                if (over)
4305                        return 0;
4306                filp->f_pos = 1;
4307        }
4308        /* special case for .., just use the back ref */
4309        if (filp->f_pos == 1) {
4310                u64 pino = parent_ino(filp->f_path.dentry);
4311                over = filldir(dirent, "..", 2,
4312                               filp->f_pos, pino, DT_DIR);
4313                if (over)
4314                        return 0;
4315                filp->f_pos = 2;
4316        }
4317        path = btrfs_alloc_path();
4318        if (!path)
4319                return -ENOMEM;
4320
4321        path->reada = 1;
4322
4323        if (key_type == BTRFS_DIR_INDEX_KEY) {
4324                INIT_LIST_HEAD(&ins_list);
4325                INIT_LIST_HEAD(&del_list);
4326                btrfs_get_delayed_items(inode, &ins_list, &del_list);
4327        }
4328
4329        btrfs_set_key_type(&key, key_type);
4330        key.offset = filp->f_pos;
4331        key.objectid = btrfs_ino(inode);
4332
4333        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4334        if (ret < 0)
4335                goto err;
4336
4337        while (1) {
4338                leaf = path->nodes[0];
4339                slot = path->slots[0];
4340                if (slot >= btrfs_header_nritems(leaf)) {
4341                        ret = btrfs_next_leaf(root, path);
4342                        if (ret < 0)
4343                                goto err;
4344                        else if (ret > 0)
4345                                break;
4346                        continue;
4347                }
4348
4349                item = btrfs_item_nr(leaf, slot);
4350                btrfs_item_key_to_cpu(leaf, &found_key, slot);
4351
4352                if (found_key.objectid != key.objectid)
4353                        break;
4354                if (btrfs_key_type(&found_key) != key_type)
4355                        break;
4356                if (found_key.offset < filp->f_pos)
4357                        goto next;
4358                if (key_type == BTRFS_DIR_INDEX_KEY &&
4359                    btrfs_should_delete_dir_index(&del_list,
4360                                                  found_key.offset))
4361                        goto next;
4362
4363                filp->f_pos = found_key.offset;
4364                is_curr = 1;
4365
4366                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4367                di_cur = 0;
4368                di_total = btrfs_item_size(leaf, item);
4369
4370                while (di_cur < di_total) {
4371                        struct btrfs_key location;
4372
4373                        if (verify_dir_item(root, leaf, di))
4374                                break;
4375
4376                        name_len = btrfs_dir_name_len(leaf, di);
4377                        if (name_len <= sizeof(tmp_name)) {
4378                                name_ptr = tmp_name;
4379                        } else {
4380                                name_ptr = kmalloc(name_len, GFP_NOFS);
4381                                if (!name_ptr) {
4382                                        ret = -ENOMEM;
4383                                        goto err;
4384                                }
4385                        }
4386                        read_extent_buffer(leaf, name_ptr,
4387                                           (unsigned long)(di + 1), name_len);
4388
4389                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4390                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
4391
4392
4393                        /* is this a reference to our own snapshot? If so
4394                         * skip it.
4395                         *
4396                         * In contrast to old kernels, we insert the snapshot's
4397                         * dir item and dir index after it has been created, so
4398                         * we won't find a reference to our own snapshot. We
4399                         * still keep the following code for backward
4400                         * compatibility.
4401                         */
4402                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
4403                            location.objectid == root->root_key.objectid) {
4404                                over = 0;
4405                                goto skip;
4406                        }
4407                        over = filldir(dirent, name_ptr, name_len,
4408                                       found_key.offset, location.objectid,
4409                                       d_type);
4410
4411skip:
4412                        if (name_ptr != tmp_name)
4413                                kfree(name_ptr);
4414
4415                        if (over)
4416                                goto nopos;
4417                        di_len = btrfs_dir_name_len(leaf, di) +
4418                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4419                        di_cur += di_len;
4420                        di = (struct btrfs_dir_item *)((char *)di + di_len);
4421                }
4422next:
4423                path->slots[0]++;
4424        }
4425
4426        if (key_type == BTRFS_DIR_INDEX_KEY) {
4427                if (is_curr)
4428                        filp->f_pos++;
4429                ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4430                                                      &ins_list);
4431                if (ret)
4432                        goto nopos;
4433        }
4434
4435        /* Reached end of directory/root. Bump pos past the last item. */
4436        if (key_type == BTRFS_DIR_INDEX_KEY)
4437                /*
4438                 * 32-bit glibc will use getdents64, but then strtol -
4439                 * so the last number we can serve is this.
4440                 */
4441                filp->f_pos = 0x7fffffff;
4442        else
4443                filp->f_pos++;
4444nopos:
4445        ret = 0;
4446err:
4447        if (key_type == BTRFS_DIR_INDEX_KEY)
4448                btrfs_put_delayed_items(&ins_list, &del_list);
4449        btrfs_free_path(path);
4450        return ret;
4451}
4452
4453int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4454{
4455        struct btrfs_root *root = BTRFS_I(inode)->root;
4456        struct btrfs_trans_handle *trans;
4457        int ret = 0;
4458        bool nolock = false;
4459
4460        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4461                return 0;
4462
4463        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4464                nolock = true;
4465
4466        if (wbc->sync_mode == WB_SYNC_ALL) {
4467                if (nolock)
4468                        trans = btrfs_join_transaction_nolock(root);
4469                else
4470                        trans = btrfs_join_transaction(root);
4471                if (IS_ERR(trans))
4472                        return PTR_ERR(trans);
4473                if (nolock)
4474                        ret = btrfs_end_transaction_nolock(trans, root);
4475                else
4476                        ret = btrfs_commit_transaction(trans, root);
4477        }
4478        return ret;
4479}
4480
4481/*
4482 * This is somewhat expensive, updating the tree every time the
4483 * inode changes.  But, it is most likely to find the inode in cache.
4484 * FIXME, needs more benchmarking...there are no reasons other than performance
4485 * to keep or drop this code.
4486 */
4487int btrfs_dirty_inode(struct inode *inode)
4488{
4489        struct btrfs_root *root = BTRFS_I(inode)->root;
4490        struct btrfs_trans_handle *trans;
4491        int ret;
4492
4493        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4494                return 0;
4495
4496        trans = btrfs_join_transaction(root);
4497        if (IS_ERR(trans))
4498                return PTR_ERR(trans);
4499
4500        ret = btrfs_update_inode(trans, root, inode);
4501        if (ret && ret == -ENOSPC) {
4502                /* whoops, lets try again with the full transaction */
4503                btrfs_end_transaction(trans, root);
4504                trans = btrfs_start_transaction(root, 1);
4505                if (IS_ERR(trans))
4506                        return PTR_ERR(trans);
4507
4508                ret = btrfs_update_inode(trans, root, inode);
4509        }
4510        btrfs_end_transaction(trans, root);
4511        if (BTRFS_I(inode)->delayed_node)
4512                btrfs_balance_delayed_items(root);
4513
4514        return ret;
4515}
4516
4517/*
4518 * This is a copy of file_update_time.  We need this so we can return error on
4519 * ENOSPC for updating the inode in the case of file write and mmap writes.
4520 */
4521static int btrfs_update_time(struct inode *inode, struct timespec *now,
4522                             int flags)
4523{
4524        struct btrfs_root *root = BTRFS_I(inode)->root;
4525
4526        if (btrfs_root_readonly(root))
4527                return -EROFS;
4528
4529        if (flags & S_VERSION)
4530                inode_inc_iversion(inode);
4531        if (flags & S_CTIME)
4532                inode->i_ctime = *now;
4533        if (flags & S_MTIME)
4534                inode->i_mtime = *now;
4535        if (flags & S_ATIME)
4536                inode->i_atime = *now;
4537        return btrfs_dirty_inode(inode);
4538}
4539
4540/*
4541 * find the highest existing sequence number in a directory
4542 * and then set the in-memory index_cnt variable to reflect
4543 * free sequence numbers
4544 */
4545static int btrfs_set_inode_index_count(struct inode *inode)
4546{
4547        struct btrfs_root *root = BTRFS_I(inode)->root;
4548        struct btrfs_key key, found_key;
4549        struct btrfs_path *path;
4550        struct extent_buffer *leaf;
4551        int ret;
4552
4553        key.objectid = btrfs_ino(inode);
4554        btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4555        key.offset = (u64)-1;
4556
4557        path = btrfs_alloc_path();
4558        if (!path)
4559                return -ENOMEM;
4560
4561        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4562        if (ret < 0)
4563                goto out;
4564        /* FIXME: we should be able to handle this */
4565        if (ret == 0)
4566                goto out;
4567        ret = 0;
4568
4569        /*
4570         * MAGIC NUMBER EXPLANATION:
4571         * since we search a directory based on f_pos we have to start at 2
4572         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4573         * else has to start at 2
4574         */
4575        if (path->slots[0] == 0) {
4576                BTRFS_I(inode)->index_cnt = 2;
4577                goto out;
4578        }
4579
4580        path->slots[0]--;
4581
4582        leaf = path->nodes[0];
4583        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4584
4585        if (found_key.objectid != btrfs_ino(inode) ||
4586            btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4587                BTRFS_I(inode)->index_cnt = 2;
4588                goto out;
4589        }
4590
4591        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4592out:
4593        btrfs_free_path(path);
4594        return ret;
4595}
4596
4597/*
4598 * helper to find a free sequence number in a given directory.  This current
4599 * code is very simple, later versions will do smarter things in the btree
4600 */
4601int btrfs_set_inode_index(struct inode *dir, u64 *index)
4602{
4603        int ret = 0;
4604
4605        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4606                ret = btrfs_inode_delayed_dir_index_count(dir);
4607                if (ret) {
4608                        ret = btrfs_set_inode_index_count(dir);
4609                        if (ret)
4610                                return ret;
4611                }
4612        }
4613
4614        *index = BTRFS_I(dir)->index_cnt;
4615        BTRFS_I(dir)->index_cnt++;
4616
4617        return ret;
4618}
4619
4620static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4621                                     struct btrfs_root *root,
4622                                     struct inode *dir,
4623                                     const char *name, int name_len,
4624                                     u64 ref_objectid, u64 objectid,
4625                                     umode_t mode, u64 *index)
4626{
4627        struct inode *inode;
4628        struct btrfs_inode_item *inode_item;
4629        struct btrfs_key *location;
4630        struct btrfs_path *path;
4631        struct btrfs_inode_ref *ref;
4632        struct btrfs_key key[2];
4633        u32 sizes[2];
4634        unsigned long ptr;
4635        int ret;
4636        int owner;
4637
4638        path = btrfs_alloc_path();
4639        if (!path)
4640                return ERR_PTR(-ENOMEM);
4641
4642        inode = new_inode(root->fs_info->sb);
4643        if (!inode) {
4644                btrfs_free_path(path);
4645                return ERR_PTR(-ENOMEM);
4646        }
4647
4648        /*
4649         * we have to initialize this early, so we can reclaim the inode
4650         * number if we fail afterwards in this function.
4651         */
4652        inode->i_ino = objectid;
4653
4654        if (dir) {
4655                trace_btrfs_inode_request(dir);
4656
4657                ret = btrfs_set_inode_index(dir, index);
4658                if (ret) {
4659                        btrfs_free_path(path);
4660                        iput(inode);
4661                        return ERR_PTR(ret);
4662                }
4663        }
4664        /*
4665         * index_cnt is ignored for everything but a dir,
4666         * btrfs_get_inode_index_count has an explanation for the magic
4667         * number
4668         */
4669        BTRFS_I(inode)->index_cnt = 2;
4670        BTRFS_I(inode)->root = root;
4671        BTRFS_I(inode)->generation = trans->transid;
4672        inode->i_generation = BTRFS_I(inode)->generation;
4673
4674        if (S_ISDIR(mode))
4675                owner = 0;
4676        else
4677                owner = 1;
4678
4679        key[0].objectid = objectid;
4680        btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4681        key[0].offset = 0;
4682
4683        key[1].objectid = objectid;
4684        btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4685        key[1].offset = ref_objectid;
4686
4687        sizes[0] = sizeof(struct btrfs_inode_item);
4688        sizes[1] = name_len + sizeof(*ref);
4689
4690        path->leave_spinning = 1;
4691        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4692        if (ret != 0)
4693                goto fail;
4694
4695        inode_init_owner(inode, dir, mode);
4696        inode_set_bytes(inode, 0);
4697        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4698        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4699                                  struct btrfs_inode_item);
4700        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4701                             sizeof(*inode_item));
4702        fill_inode_item(trans, path->nodes[0], inode_item, inode);
4703
4704        ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4705                             struct btrfs_inode_ref);
4706        btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4707        btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4708        ptr = (unsigned long)(ref + 1);
4709        write_extent_buffer(path->nodes[0], name, ptr, name_len);
4710
4711        btrfs_mark_buffer_dirty(path->nodes[0]);
4712        btrfs_free_path(path);
4713
4714        location = &BTRFS_I(inode)->location;
4715        location->objectid = objectid;
4716        location->offset = 0;
4717        btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4718
4719        btrfs_inherit_iflags(inode, dir);
4720
4721        if (S_ISREG(mode)) {
4722                if (btrfs_test_opt(root, NODATASUM))
4723                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4724                if (btrfs_test_opt(root, NODATACOW) ||
4725                    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4726                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4727        }
4728
4729        insert_inode_hash(inode);
4730        inode_tree_add(inode);
4731
4732        trace_btrfs_inode_new(inode);
4733        btrfs_set_inode_last_trans(trans, inode);
4734
4735        btrfs_update_root_times(trans, root);
4736
4737        return inode;
4738fail:
4739        if (dir)
4740                BTRFS_I(dir)->index_cnt--;
4741        btrfs_free_path(path);
4742        iput(inode);
4743        return ERR_PTR(ret);
4744}
4745
4746static inline u8 btrfs_inode_type(struct inode *inode)
4747{
4748        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4749}
4750
4751/*
4752 * utility function to add 'inode' into 'parent_inode' with
4753 * a give name and a given sequence number.
4754 * if 'add_backref' is true, also insert a backref from the
4755 * inode to the parent directory.
4756 */
4757int btrfs_add_link(struct btrfs_trans_handle *trans,
4758                   struct inode *parent_inode, struct inode *inode,
4759                   const char *name, int name_len, int add_backref, u64 index)
4760{
4761        int ret = 0;
4762        struct btrfs_key key;
4763        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4764        u64 ino = btrfs_ino(inode);
4765        u64 parent_ino = btrfs_ino(parent_inode);
4766
4767        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4768                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4769        } else {
4770                key.objectid = ino;
4771                btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4772                key.offset = 0;
4773        }
4774
4775        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4776                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4777                                         key.objectid, root->root_key.objectid,
4778                                         parent_ino, index, name, name_len);
4779        } else if (add_backref) {
4780                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4781                                             parent_ino, index);
4782        }
4783
4784        /* Nothing to clean up yet */
4785        if (ret)
4786                return ret;
4787
4788        ret = btrfs_insert_dir_item(trans, root, name, name_len,
4789                                    parent_inode, &key,
4790                                    btrfs_inode_type(inode), index);
4791        if (ret == -EEXIST)
4792                goto fail_dir_item;
4793        else if (ret) {
4794                btrfs_abort_transaction(trans, root, ret);
4795                return ret;
4796        }
4797
4798        btrfs_i_size_write(parent_inode, parent_inode->i_size +
4799                           name_len * 2);
4800        inode_inc_iversion(parent_inode);
4801        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4802        ret = btrfs_update_inode(trans, root, parent_inode);
4803        if (ret)
4804                btrfs_abort_transaction(trans, root, ret);
4805        return ret;
4806
4807fail_dir_item:
4808        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4809                u64 local_index;
4810                int err;
4811                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4812                                 key.objectid, root->root_key.objectid,
4813                                 parent_ino, &local_index, name, name_len);
4814
4815        } else if (add_backref) {
4816                u64 local_index;
4817                int err;
4818
4819                err = btrfs_del_inode_ref(trans, root, name, name_len,
4820                                          ino, parent_ino, &local_index);
4821        }
4822        return ret;
4823}
4824
4825static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4826                            struct inode *dir, struct dentry *dentry,
4827                            struct inode *inode, int backref, u64 index)
4828{
4829        int err = btrfs_add_link(trans, dir, inode,
4830                                 dentry->d_name.name, dentry->d_name.len,
4831                                 backref, index);
4832        if (err > 0)
4833                err = -EEXIST;
4834        return err;
4835}
4836
4837static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4838                        umode_t mode, dev_t rdev)
4839{
4840        struct btrfs_trans_handle *trans;
4841        struct btrfs_root *root = BTRFS_I(dir)->root;
4842        struct inode *inode = NULL;
4843        int err;
4844        int drop_inode = 0;
4845        u64 objectid;
4846        unsigned long nr = 0;
4847        u64 index = 0;
4848
4849        if (!new_valid_dev(rdev))
4850                return -EINVAL;
4851
4852        /*
4853         * 2 for inode item and ref
4854         * 2 for dir items
4855         * 1 for xattr if selinux is on
4856         */
4857        trans = btrfs_start_transaction(root, 5);
4858        if (IS_ERR(trans))
4859                return PTR_ERR(trans);
4860
4861        err = btrfs_find_free_ino(root, &objectid);
4862        if (err)
4863                goto out_unlock;
4864
4865        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4866                                dentry->d_name.len, btrfs_ino(dir), objectid,
4867                                mode, &index);
4868        if (IS_ERR(inode)) {
4869                err = PTR_ERR(inode);
4870                goto out_unlock;
4871        }
4872
4873        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4874        if (err) {
4875                drop_inode = 1;
4876                goto out_unlock;
4877        }
4878
4879        /*
4880        * If the active LSM wants to access the inode during
4881        * d_instantiate it needs these. Smack checks to see
4882        * if the filesystem supports xattrs by looking at the
4883        * ops vector.
4884        */
4885
4886        inode->i_op = &btrfs_special_inode_operations;
4887        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4888        if (err)
4889                drop_inode = 1;
4890        else {
4891                init_special_inode(inode, inode->i_mode, rdev);
4892                btrfs_update_inode(trans, root, inode);
4893                d_instantiate(dentry, inode);
4894        }
4895out_unlock:
4896        nr = trans->blocks_used;
4897        btrfs_end_transaction(trans, root);
4898        btrfs_btree_balance_dirty(root, nr);
4899        if (drop_inode) {
4900                inode_dec_link_count(inode);
4901                iput(inode);
4902        }
4903        return err;
4904}
4905
4906static int btrfs_create(struct inode *dir, struct dentry *dentry,
4907                        umode_t mode, bool excl)
4908{
4909        struct btrfs_trans_handle *trans;
4910        struct btrfs_root *root = BTRFS_I(dir)->root;
4911        struct inode *inode = NULL;
4912        int drop_inode = 0;
4913        int err;
4914        unsigned long nr = 0;
4915        u64 objectid;
4916        u64 index = 0;
4917
4918        /*
4919         * 2 for inode item and ref
4920         * 2 for dir items
4921         * 1 for xattr if selinux is on
4922         */
4923        trans = btrfs_start_transaction(root, 5);
4924        if (IS_ERR(trans))
4925                return PTR_ERR(trans);
4926
4927        err = btrfs_find_free_ino(root, &objectid);
4928        if (err)
4929                goto out_unlock;
4930
4931        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4932                                dentry->d_name.len, btrfs_ino(dir), objectid,
4933                                mode, &index);
4934        if (IS_ERR(inode)) {
4935                err = PTR_ERR(inode);
4936                goto out_unlock;
4937        }
4938
4939        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4940        if (err) {
4941                drop_inode = 1;
4942                goto out_unlock;
4943        }
4944
4945        /*
4946        * If the active LSM wants to access the inode during
4947        * d_instantiate it needs these. Smack checks to see
4948        * if the filesystem supports xattrs by looking at the
4949        * ops vector.
4950        */
4951        inode->i_fop = &btrfs_file_operations;
4952        inode->i_op = &btrfs_file_inode_operations;
4953
4954        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4955        if (err)
4956                drop_inode = 1;
4957        else {
4958                inode->i_mapping->a_ops = &btrfs_aops;
4959                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4960                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4961                d_instantiate(dentry, inode);
4962        }
4963out_unlock:
4964        nr = trans->blocks_used;
4965        btrfs_end_transaction(trans, root);
4966        if (drop_inode) {
4967                inode_dec_link_count(inode);
4968                iput(inode);
4969        }
4970        btrfs_btree_balance_dirty(root, nr);
4971        return err;
4972}
4973
4974static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4975                      struct dentry *dentry)
4976{
4977        struct btrfs_trans_handle *trans;
4978        struct btrfs_root *root = BTRFS_I(dir)->root;
4979        struct inode *inode = old_dentry->d_inode;
4980        u64 index;
4981        unsigned long nr = 0;
4982        int err;
4983        int drop_inode = 0;
4984
4985        /* do not allow sys_link's with other subvols of the same device */
4986        if (root->objectid != BTRFS_I(inode)->root->objectid)
4987                return -EXDEV;
4988
4989        if (inode->i_nlink == ~0U)
4990                return -EMLINK;
4991
4992        err = btrfs_set_inode_index(dir, &index);
4993        if (err)
4994                goto fail;
4995
4996        /*
4997         * 2 items for inode and inode ref
4998         * 2 items for dir items
4999         * 1 item for parent inode
5000         */
5001        trans = btrfs_start_transaction(root, 5);
5002        if (IS_ERR(trans)) {
5003                err = PTR_ERR(trans);
5004                goto fail;
5005        }
5006
5007        btrfs_inc_nlink(inode);
5008        inode_inc_iversion(inode);
5009        inode->i_ctime = CURRENT_TIME;
5010        ihold(inode);
5011
5012        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5013
5014        if (err) {
5015                drop_inode = 1;
5016        } else {
5017                struct dentry *parent = dentry->d_parent;
5018                err = btrfs_update_inode(trans, root, inode);
5019                if (err)
5020                        goto fail;
5021                d_instantiate(dentry, inode);
5022                btrfs_log_new_name(trans, inode, NULL, parent);
5023        }
5024
5025        nr = trans->blocks_used;
5026        btrfs_end_transaction(trans, root);
5027fail:
5028        if (drop_inode) {
5029                inode_dec_link_count(inode);
5030                iput(inode);
5031        }
5032        btrfs_btree_balance_dirty(root, nr);
5033        return err;
5034}
5035
5036static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5037{
5038        struct inode *inode = NULL;
5039        struct btrfs_trans_handle *trans;
5040        struct btrfs_root *root = BTRFS_I(dir)->root;
5041        int err = 0;
5042        int drop_on_err = 0;
5043        u64 objectid = 0;
5044        u64 index = 0;
5045        unsigned long nr = 1;
5046
5047        /*
5048         * 2 items for inode and ref
5049         * 2 items for dir items
5050         * 1 for xattr if selinux is on
5051         */
5052        trans = btrfs_start_transaction(root, 5);
5053        if (IS_ERR(trans))
5054                return PTR_ERR(trans);
5055
5056        err = btrfs_find_free_ino(root, &objectid);
5057        if (err)
5058                goto out_fail;
5059
5060        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5061                                dentry->d_name.len, btrfs_ino(dir), objectid,
5062                                S_IFDIR | mode, &index);
5063        if (IS_ERR(inode)) {
5064                err = PTR_ERR(inode);
5065                goto out_fail;
5066        }
5067
5068        drop_on_err = 1;
5069
5070        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5071        if (err)
5072                goto out_fail;
5073
5074        inode->i_op = &btrfs_dir_inode_operations;
5075        inode->i_fop = &btrfs_dir_file_operations;
5076
5077        btrfs_i_size_write(inode, 0);
5078        err = btrfs_update_inode(trans, root, inode);
5079        if (err)
5080                goto out_fail;
5081
5082        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5083                             dentry->d_name.len, 0, index);
5084        if (err)
5085                goto out_fail;
5086
5087        d_instantiate(dentry, inode);
5088        drop_on_err = 0;
5089
5090out_fail:
5091        nr = trans->blocks_used;
5092        btrfs_end_transaction(trans, root);
5093        if (drop_on_err)
5094                iput(inode);
5095        btrfs_btree_balance_dirty(root, nr);
5096        return err;
5097}
5098
5099/* helper for btfs_get_extent.  Given an existing extent in the tree,
5100 * and an extent that you want to insert, deal with overlap and insert
5101 * the new extent into the tree.
5102 */
5103static int merge_extent_mapping(struct extent_map_tree *em_tree,
5104                                struct extent_map *existing,
5105                                struct extent_map *em,
5106                                u64 map_start, u64 map_len)
5107{
5108        u64 start_diff;
5109
5110        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5111        start_diff = map_start - em->start;
5112        em->start = map_start;
5113        em->len = map_len;
5114        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5115            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5116                em->block_start += start_diff;
5117                em->block_len -= start_diff;
5118        }
5119        return add_extent_mapping(em_tree, em);
5120}
5121
5122static noinline int uncompress_inline(struct btrfs_path *path,
5123                                      struct inode *inode, struct page *page,
5124                                      size_t pg_offset, u64 extent_offset,
5125                                      struct btrfs_file_extent_item *item)
5126{
5127        int ret;
5128        struct extent_buffer *leaf = path->nodes[0];
5129        char *tmp;
5130        size_t max_size;
5131        unsigned long inline_size;
5132        unsigned long ptr;
5133        int compress_type;
5134
5135        WARN_ON(pg_offset != 0);
5136        compress_type = btrfs_file_extent_compression(leaf, item);
5137        max_size = btrfs_file_extent_ram_bytes(leaf, item);
5138        inline_size = btrfs_file_extent_inline_item_len(leaf,
5139                                        btrfs_item_nr(leaf, path->slots[0]));
5140        tmp = kmalloc(inline_size, GFP_NOFS);
5141        if (!tmp)
5142                return -ENOMEM;
5143        ptr = btrfs_file_extent_inline_start(item);
5144
5145        read_extent_buffer(leaf, tmp, ptr, inline_size);
5146
5147        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5148        ret = btrfs_decompress(compress_type, tmp, page,
5149                               extent_offset, inline_size, max_size);
5150        if (ret) {
5151                char *kaddr = kmap_atomic(page);
5152                unsigned long copy_size = min_t(u64,
5153                                  PAGE_CACHE_SIZE - pg_offset,
5154                                  max_size - extent_offset);
5155                memset(kaddr + pg_offset, 0, copy_size);
5156                kunmap_atomic(kaddr);
5157        }
5158        kfree(tmp);
5159        return 0;
5160}
5161
5162/*
5163 * a bit scary, this does extent mapping from logical file offset to the disk.
5164 * the ugly parts come from merging extents from the disk with the in-ram
5165 * representation.  This gets more complex because of the data=ordered code,
5166 * where the in-ram extents might be locked pending data=ordered completion.
5167 *
5168 * This also copies inline extents directly into the page.
5169 */
5170
5171struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5172                                    size_t pg_offset, u64 start, u64 len,
5173                                    int create)
5174{
5175        int ret;
5176        int err = 0;
5177        u64 bytenr;
5178        u64 extent_start = 0;
5179        u64 extent_end = 0;
5180        u64 objectid = btrfs_ino(inode);
5181        u32 found_type;
5182        struct btrfs_path *path = NULL;
5183        struct btrfs_root *root = BTRFS_I(inode)->root;
5184        struct btrfs_file_extent_item *item;
5185        struct extent_buffer *leaf;
5186        struct btrfs_key found_key;
5187        struct extent_map *em = NULL;
5188        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5189        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5190        struct btrfs_trans_handle *trans = NULL;
5191        int compress_type;
5192
5193again:
5194        read_lock(&em_tree->lock);
5195        em = lookup_extent_mapping(em_tree, start, len);
5196        if (em)
5197                em->bdev = root->fs_info->fs_devices->latest_bdev;
5198        read_unlock(&em_tree->lock);
5199
5200        if (em) {
5201                if (em->start > start || em->start + em->len <= start)
5202                        free_extent_map(em);
5203                else if (em->block_start == EXTENT_MAP_INLINE && page)
5204                        free_extent_map(em);
5205                else
5206                        goto out;
5207        }
5208        em = alloc_extent_map();
5209        if (!em) {
5210                err = -ENOMEM;
5211                goto out;
5212        }
5213        em->bdev = root->fs_info->fs_devices->latest_bdev;
5214        em->start = EXTENT_MAP_HOLE;
5215        em->orig_start = EXTENT_MAP_HOLE;
5216        em->len = (u64)-1;
5217        em->block_len = (u64)-1;
5218
5219        if (!path) {
5220                path = btrfs_alloc_path();
5221                if (!path) {
5222                        err = -ENOMEM;
5223                        goto out;
5224                }
5225                /*
5226                 * Chances are we'll be called again, so go ahead and do
5227                 * readahead
5228                 */
5229                path->reada = 1;
5230        }
5231
5232        ret = btrfs_lookup_file_extent(trans, root, path,
5233                                       objectid, start, trans != NULL);
5234        if (ret < 0) {
5235                err = ret;
5236                goto out;
5237        }
5238
5239        if (ret != 0) {
5240                if (path->slots[0] == 0)
5241                        goto not_found;
5242                path->slots[0]--;
5243        }
5244
5245        leaf = path->nodes[0];
5246        item = btrfs_item_ptr(leaf, path->slots[0],
5247                              struct btrfs_file_extent_item);
5248        /* are we inside the extent that was found? */
5249        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5250        found_type = btrfs_key_type(&found_key);
5251        if (found_key.objectid != objectid ||
5252            found_type != BTRFS_EXTENT_DATA_KEY) {
5253                goto not_found;
5254        }
5255
5256        found_type = btrfs_file_extent_type(leaf, item);
5257        extent_start = found_key.offset;
5258        compress_type = btrfs_file_extent_compression(leaf, item);
5259        if (found_type == BTRFS_FILE_EXTENT_REG ||
5260            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5261                extent_end = extent_start +
5262                       btrfs_file_extent_num_bytes(leaf, item);
5263        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5264                size_t size;
5265                size = btrfs_file_extent_inline_len(leaf, item);
5266                extent_end = (extent_start + size + root->sectorsize - 1) &
5267                        ~((u64)root->sectorsize - 1);
5268        }
5269
5270        if (start >= extent_end) {
5271                path->slots[0]++;
5272                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5273                        ret = btrfs_next_leaf(root, path);
5274                        if (ret < 0) {
5275                                err = ret;
5276                                goto out;
5277                        }
5278                        if (ret > 0)
5279                                goto not_found;
5280                        leaf = path->nodes[0];
5281                }
5282                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5283                if (found_key.objectid != objectid ||
5284                    found_key.type != BTRFS_EXTENT_DATA_KEY)
5285                        goto not_found;
5286                if (start + len <= found_key.offset)
5287                        goto not_found;
5288                em->start = start;
5289                em->len = found_key.offset - start;
5290                goto not_found_em;
5291        }
5292
5293        if (found_type == BTRFS_FILE_EXTENT_REG ||
5294            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5295                em->start = extent_start;
5296                em->len = extent_end - extent_start;
5297                em->orig_start = extent_start -
5298                                 btrfs_file_extent_offset(leaf, item);
5299                bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5300                if (bytenr == 0) {
5301                        em->block_start = EXTENT_MAP_HOLE;
5302                        goto insert;
5303                }
5304                if (compress_type != BTRFS_COMPRESS_NONE) {
5305                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5306                        em->compress_type = compress_type;
5307                        em->block_start = bytenr;
5308                        em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5309                                                                         item);
5310                } else {
5311                        bytenr += btrfs_file_extent_offset(leaf, item);
5312                        em->block_start = bytenr;
5313                        em->block_len = em->len;
5314                        if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5315                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5316                }
5317                goto insert;
5318        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5319                unsigned long ptr;
5320                char *map;
5321                size_t size;
5322                size_t extent_offset;
5323                size_t copy_size;
5324
5325                em->block_start = EXTENT_MAP_INLINE;
5326                if (!page || create) {
5327                        em->start = extent_start;
5328                        em->len = extent_end - extent_start;
5329                        goto out;
5330                }
5331
5332                size = btrfs_file_extent_inline_len(leaf, item);
5333                extent_offset = page_offset(page) + pg_offset - extent_start;
5334                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5335                                size - extent_offset);
5336                em->start = extent_start + extent_offset;
5337                em->len = (copy_size + root->sectorsize - 1) &
5338                        ~((u64)root->sectorsize - 1);
5339                em->orig_start = EXTENT_MAP_INLINE;
5340                if (compress_type) {
5341                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5342                        em->compress_type = compress_type;
5343                }
5344                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5345                if (create == 0 && !PageUptodate(page)) {
5346                        if (btrfs_file_extent_compression(leaf, item) !=
5347                            BTRFS_COMPRESS_NONE) {
5348                                ret = uncompress_inline(path, inode, page,
5349                                                        pg_offset,
5350                                                        extent_offset, item);
5351                                BUG_ON(ret); /* -ENOMEM */
5352                        } else {
5353                                map = kmap(page);
5354                                read_extent_buffer(leaf, map + pg_offset, ptr,
5355                                                   copy_size);
5356                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5357                                        memset(map + pg_offset + copy_size, 0,
5358                                               PAGE_CACHE_SIZE - pg_offset -
5359                                               copy_size);
5360                                }
5361                                kunmap(page);
5362                        }
5363                        flush_dcache_page(page);
5364                } else if (create && PageUptodate(page)) {
5365                        BUG();
5366                        if (!trans) {
5367                                kunmap(page);
5368                                free_extent_map(em);
5369                                em = NULL;
5370
5371                                btrfs_release_path(path);
5372                                trans = btrfs_join_transaction(root);
5373
5374                                if (IS_ERR(trans))
5375                                        return ERR_CAST(trans);
5376                                goto again;
5377                        }
5378                        map = kmap(page);
5379                        write_extent_buffer(leaf, map + pg_offset, ptr,
5380                                            copy_size);
5381                        kunmap(page);
5382                        btrfs_mark_buffer_dirty(leaf);
5383                }
5384                set_extent_uptodate(io_tree, em->start,
5385                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
5386                goto insert;
5387        } else {
5388                printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5389                WARN_ON(1);
5390        }
5391not_found:
5392        em->start = start;
5393        em->len = len;
5394not_found_em:
5395        em->block_start = EXTENT_MAP_HOLE;
5396        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5397insert:
5398        btrfs_release_path(path);
5399        if (em->start > start || extent_map_end(em) <= start) {
5400                printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5401                       "[%llu %llu]\n", (unsigned long long)em->start,
5402                       (unsigned long long)em->len,
5403                       (unsigned long long)start,
5404                       (unsigned long long)len);
5405                err = -EIO;
5406                goto out;
5407        }
5408
5409        err = 0;
5410        write_lock(&em_tree->lock);
5411        ret = add_extent_mapping(em_tree, em);
5412        /* it is possible that someone inserted the extent into the tree
5413         * while we had the lock dropped.  It is also possible that
5414         * an overlapping map exists in the tree
5415         */
5416        if (ret == -EEXIST) {
5417                struct extent_map *existing;
5418
5419                ret = 0;
5420
5421                existing = lookup_extent_mapping(em_tree, start, len);
5422                if (existing && (existing->start > start ||
5423                    existing->start + existing->len <= start)) {
5424                        free_extent_map(existing);
5425                        existing = NULL;
5426                }
5427                if (!existing) {
5428                        existing = lookup_extent_mapping(em_tree, em->start,
5429                                                         em->len);
5430                        if (existing) {
5431                                err = merge_extent_mapping(em_tree, existing,
5432                                                           em, start,
5433                                                           root->sectorsize);
5434                                free_extent_map(existing);
5435                                if (err) {
5436                                        free_extent_map(em);
5437                                        em = NULL;
5438                                }
5439                        } else {
5440                                err = -EIO;
5441                                free_extent_map(em);
5442                                em = NULL;
5443                        }
5444                } else {
5445                        free_extent_map(em);
5446                        em = existing;
5447                        err = 0;
5448                }
5449        }
5450        write_unlock(&em_tree->lock);
5451out:
5452
5453        trace_btrfs_get_extent(root, em);
5454
5455        if (path)
5456                btrfs_free_path(path);
5457        if (trans) {
5458                ret = btrfs_end_transaction(trans, root);
5459                if (!err)
5460                        err = ret;
5461        }
5462        if (err) {
5463                free_extent_map(em);
5464                return ERR_PTR(err);
5465        }
5466        BUG_ON(!em); /* Error is always set */
5467        return em;
5468}
5469
5470struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5471                                           size_t pg_offset, u64 start, u64 len,
5472                                           int create)
5473{
5474        struct extent_map *em;
5475        struct extent_map *hole_em = NULL;
5476        u64 range_start = start;
5477        u64 end;
5478        u64 found;
5479        u64 found_end;
5480        int err = 0;
5481
5482        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5483        if (IS_ERR(em))
5484                return em;
5485        if (em) {
5486                /*
5487                 * if our em maps to a hole, there might
5488                 * actually be delalloc bytes behind it
5489                 */
5490                if (em->block_start != EXTENT_MAP_HOLE)
5491                        return em;
5492                else
5493                        hole_em = em;
5494        }
5495
5496        /* check to see if we've wrapped (len == -1 or similar) */
5497        end = start + len;
5498        if (end < start)
5499                end = (u64)-1;
5500        else
5501                end -= 1;
5502
5503        em = NULL;
5504
5505        /* ok, we didn't find anything, lets look for delalloc */
5506        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5507                                 end, len, EXTENT_DELALLOC, 1);
5508        found_end = range_start + found;
5509        if (found_end < range_start)
5510                found_end = (u64)-1;
5511
5512        /*
5513         * we didn't find anything useful, return
5514         * the original results from get_extent()
5515         */
5516        if (range_start > end || found_end <= start) {
5517                em = hole_em;
5518                hole_em = NULL;
5519                goto out;
5520        }
5521
5522        /* adjust the range_start to make sure it doesn't
5523         * go backwards from the start they passed in
5524         */
5525        range_start = max(start,range_start);
5526        found = found_end - range_start;
5527
5528        if (found > 0) {
5529                u64 hole_start = start;
5530                u64 hole_len = len;
5531
5532                em = alloc_extent_map();
5533                if (!em) {
5534                        err = -ENOMEM;
5535                        goto out;
5536                }
5537                /*
5538                 * when btrfs_get_extent can't find anything it
5539                 * returns one huge hole
5540                 *
5541                 * make sure what it found really fits our range, and
5542                 * adjust to make sure it is based on the start from
5543                 * the caller
5544                 */
5545                if (hole_em) {
5546                        u64 calc_end = extent_map_end(hole_em);
5547
5548                        if (calc_end <= start || (hole_em->start > end)) {
5549                                free_extent_map(hole_em);
5550                                hole_em = NULL;
5551                        } else {
5552                                hole_start = max(hole_em->start, start);
5553                                hole_len = calc_end - hole_start;
5554                        }
5555                }
5556                em->bdev = NULL;
5557                if (hole_em && range_start > hole_start) {
5558                        /* our hole starts before our delalloc, so we
5559                         * have to return just the parts of the hole
5560                         * that go until  the delalloc starts
5561                         */
5562                        em->len = min(hole_len,
5563                                      range_start - hole_start);
5564                        em->start = hole_start;
5565                        em->orig_start = hole_start;
5566                        /*
5567                         * don't adjust block start at all,
5568                         * it is fixed at EXTENT_MAP_HOLE
5569                         */
5570                        em->block_start = hole_em->block_start;
5571                        em->block_len = hole_len;
5572                } else {
5573                        em->start = range_start;
5574                        em->len = found;
5575                        em->orig_start = range_start;
5576                        em->block_start = EXTENT_MAP_DELALLOC;
5577                        em->block_len = found;
5578                }
5579        } else if (hole_em) {
5580                return hole_em;
5581        }
5582out:
5583
5584        free_extent_map(hole_em);
5585        if (err) {
5586                free_extent_map(em);
5587                return ERR_PTR(err);
5588        }
5589        return em;
5590}
5591
5592static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5593                                                  struct extent_map *em,
5594                                                  u64 start, u64 len)
5595{
5596        struct btrfs_root *root = BTRFS_I(inode)->root;
5597        struct btrfs_trans_handle *trans;
5598        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5599        struct btrfs_key ins;
5600        u64 alloc_hint;
5601        int ret;
5602        bool insert = false;
5603
5604        /*
5605         * Ok if the extent map we looked up is a hole and is for the exact
5606         * range we want, there is no reason to allocate a new one, however if
5607         * it is not right then we need to free this one and drop the cache for
5608         * our range.
5609         */
5610        if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5611            em->len != len) {
5612                free_extent_map(em);
5613                em = NULL;
5614                insert = true;
5615                btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5616        }
5617
5618        trans = btrfs_join_transaction(root);
5619        if (IS_ERR(trans))
5620                return ERR_CAST(trans);
5621
5622        if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5623                btrfs_add_inode_defrag(trans, inode);
5624
5625        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5626
5627        alloc_hint = get_extent_allocation_hint(inode, start, len);
5628        ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5629                                   alloc_hint, &ins, 1);
5630        if (ret) {
5631                em = ERR_PTR(ret);
5632                goto out;
5633        }
5634
5635        if (!em) {
5636                em = alloc_extent_map();
5637                if (!em) {
5638                        em = ERR_PTR(-ENOMEM);
5639                        goto out;
5640                }
5641        }
5642
5643        em->start = start;
5644        em->orig_start = em->start;
5645        em->len = ins.offset;
5646
5647        em->block_start = ins.objectid;
5648        em->block_len = ins.offset;
5649        em->bdev = root->fs_info->fs_devices->latest_bdev;
5650
5651        /*
5652         * We need to do this because if we're using the original em we searched
5653         * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5654         */
5655        em->flags = 0;
5656        set_bit(EXTENT_FLAG_PINNED, &em->flags);
5657
5658        while (insert) {
5659                write_lock(&em_tree->lock);
5660                ret = add_extent_mapping(em_tree, em);
5661                write_unlock(&em_tree->lock);
5662                if (ret != -EEXIST)
5663                        break;
5664                btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5665        }
5666
5667        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5668                                           ins.offset, ins.offset, 0);
5669        if (ret) {
5670                btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5671                em = ERR_PTR(ret);
5672        }
5673out:
5674        btrfs_end_transaction(trans, root);
5675        return em;
5676}
5677
5678/*
5679 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5680 * block must be cow'd
5681 */
5682static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5683                                      struct inode *inode, u64 offset, u64 len)
5684{
5685        struct btrfs_path *path;
5686        int ret;
5687        struct extent_buffer *leaf;
5688        struct btrfs_root *root = BTRFS_I(inode)->root;
5689        struct btrfs_file_extent_item *fi;
5690        struct btrfs_key key;
5691        u64 disk_bytenr;
5692        u64 backref_offset;
5693        u64 extent_end;
5694        u64 num_bytes;
5695        int slot;
5696        int found_type;
5697
5698        path = btrfs_alloc_path();
5699        if (!path)
5700                return -ENOMEM;
5701
5702        ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5703                                       offset, 0);
5704        if (ret < 0)
5705                goto out;
5706
5707        slot = path->slots[0];
5708        if (ret == 1) {
5709                if (slot == 0) {
5710                        /* can't find the item, must cow */
5711                        ret = 0;
5712                        goto out;
5713                }
5714                slot--;
5715        }
5716        ret = 0;
5717        leaf = path->nodes[0];
5718        btrfs_item_key_to_cpu(leaf, &key, slot);
5719        if (key.objectid != btrfs_ino(inode) ||
5720            key.type != BTRFS_EXTENT_DATA_KEY) {
5721                /* not our file or wrong item type, must cow */
5722                goto out;
5723        }
5724
5725        if (key.offset > offset) {
5726                /* Wrong offset, must cow */
5727                goto out;
5728        }
5729
5730        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5731        found_type = btrfs_file_extent_type(leaf, fi);
5732        if (found_type != BTRFS_FILE_EXTENT_REG &&
5733            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5734                /* not a regular extent, must cow */
5735                goto out;
5736        }
5737        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5738        backref_offset = btrfs_file_extent_offset(leaf, fi);
5739
5740        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5741        if (extent_end < offset + len) {
5742                /* extent doesn't include our full range, must cow */
5743                goto out;
5744        }
5745
5746        if (btrfs_extent_readonly(root, disk_bytenr))
5747                goto out;
5748
5749        /*
5750         * look for other files referencing this extent, if we
5751         * find any we must cow
5752         */
5753        if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5754                                  key.offset - backref_offset, disk_bytenr))
5755                goto out;
5756
5757        /*
5758         * adjust disk_bytenr and num_bytes to cover just the bytes
5759         * in this extent we are about to write.  If there
5760         * are any csums in that range we have to cow in order
5761         * to keep the csums correct
5762         */
5763        disk_bytenr += backref_offset;
5764        disk_bytenr += offset - key.offset;
5765        num_bytes = min(offset + len, extent_end) - offset;
5766        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5767                                goto out;
5768        /*
5769         * all of the above have passed, it is safe to overwrite this extent
5770         * without cow
5771         */
5772        ret = 1;
5773out:
5774        btrfs_free_path(path);
5775        return ret;
5776}
5777
5778static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5779                              struct extent_state **cached_state, int writing)
5780{
5781        struct btrfs_ordered_extent *ordered;
5782        int ret = 0;
5783
5784        while (1) {
5785                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5786                                 0, cached_state);
5787                /*
5788                 * We're concerned with the entire range that we're going to be
5789                 * doing DIO to, so we need to make sure theres no ordered
5790                 * extents in this range.
5791                 */
5792                ordered = btrfs_lookup_ordered_range(inode, lockstart,
5793                                                     lockend - lockstart + 1);
5794
5795                /*
5796                 * We need to make sure there are no buffered pages in this
5797                 * range either, we could have raced between the invalidate in
5798                 * generic_file_direct_write and locking the extent.  The
5799                 * invalidate needs to happen so that reads after a write do not
5800                 * get stale data.
5801                 */
5802                if (!ordered && (!writing ||
5803                    !test_range_bit(&BTRFS_I(inode)->io_tree,
5804                                    lockstart, lockend, EXTENT_UPTODATE, 0,
5805                                    *cached_state)))
5806                        break;
5807
5808                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5809                                     cached_state, GFP_NOFS);
5810
5811                if (ordered) {
5812                        btrfs_start_ordered_extent(inode, ordered, 1);
5813                        btrfs_put_ordered_extent(ordered);
5814                } else {
5815                        /* Screw you mmap */
5816                        ret = filemap_write_and_wait_range(inode->i_mapping,
5817                                                           lockstart,
5818                                                           lockend);
5819                        if (ret)
5820                                break;
5821
5822                        /*
5823                         * If we found a page that couldn't be invalidated just
5824                         * fall back to buffered.
5825                         */
5826                        ret = invalidate_inode_pages2_range(inode->i_mapping,
5827                                        lockstart >> PAGE_CACHE_SHIFT,
5828                                        lockend >> PAGE_CACHE_SHIFT);
5829                        if (ret)
5830                                break;
5831                }
5832
5833                cond_resched();
5834        }
5835
5836        return ret;
5837}
5838
5839static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5840                                   struct buffer_head *bh_result, int create)
5841{
5842        struct extent_map *em;
5843        struct btrfs_root *root = BTRFS_I(inode)->root;
5844        struct extent_state *cached_state = NULL;
5845        u64 start = iblock << inode->i_blkbits;
5846        u64 lockstart, lockend;
5847        u64 len = bh_result->b_size;
5848        struct btrfs_trans_handle *trans;
5849        int unlock_bits = EXTENT_LOCKED;
5850        int ret;
5851
5852        if (create) {
5853                ret = btrfs_delalloc_reserve_space(inode, len);
5854                if (ret)
5855                        return ret;
5856                unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5857        } else {
5858                len = min_t(u64, len, root->sectorsize);
5859        }
5860
5861        lockstart = start;
5862        lockend = start + len - 1;
5863
5864        /*
5865         * If this errors out it's because we couldn't invalidate pagecache for
5866         * this range and we need to fallback to buffered.
5867         */
5868        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5869                return -ENOTBLK;
5870
5871        if (create) {
5872                ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5873                                     lockend, EXTENT_DELALLOC, NULL,
5874                                     &cached_state, GFP_NOFS);
5875                if (ret)
5876                        goto unlock_err;
5877        }
5878
5879        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5880        if (IS_ERR(em)) {
5881                ret = PTR_ERR(em);
5882                goto unlock_err;
5883        }
5884
5885        /*
5886         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5887         * io.  INLINE is special, and we could probably kludge it in here, but
5888         * it's still buffered so for safety lets just fall back to the generic
5889         * buffered path.
5890         *
5891         * For COMPRESSED we _have_ to read the entire extent in so we can
5892         * decompress it, so there will be buffering required no matter what we
5893         * do, so go ahead and fallback to buffered.
5894         *
5895         * We return -ENOTBLK because thats what makes DIO go ahead and go back
5896         * to buffered IO.  Don't blame me, this is the price we pay for using
5897         * the generic code.
5898         */
5899        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5900            em->block_start == EXTENT_MAP_INLINE) {
5901                free_extent_map(em);
5902                ret = -ENOTBLK;
5903                goto unlock_err;
5904        }
5905
5906        /* Just a good old fashioned hole, return */
5907        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5908                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5909                free_extent_map(em);
5910                ret = 0;
5911                goto unlock_err;
5912        }
5913
5914        /*
5915         * We don't allocate a new extent in the following cases
5916         *
5917         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5918         * existing extent.
5919         * 2) The extent is marked as PREALLOC.  We're good to go here and can
5920         * just use the extent.
5921         *
5922         */
5923        if (!create) {
5924                len = min(len, em->len - (start - em->start));
5925                lockstart = start + len;
5926                goto unlock;
5927        }
5928
5929        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5930            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5931             em->block_start != EXTENT_MAP_HOLE)) {
5932                int type;
5933                int ret;
5934                u64 block_start;
5935
5936                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5937                        type = BTRFS_ORDERED_PREALLOC;
5938                else
5939                        type = BTRFS_ORDERED_NOCOW;
5940                len = min(len, em->len - (start - em->start));
5941                block_start = em->block_start + (start - em->start);
5942
5943                /*
5944                 * we're not going to log anything, but we do need
5945                 * to make sure the current transaction stays open
5946                 * while we look for nocow cross refs
5947                 */
5948                trans = btrfs_join_transaction(root);
5949                if (IS_ERR(trans))
5950                        goto must_cow;
5951
5952                if (can_nocow_odirect(trans, inode, start, len) == 1) {
5953                        ret = btrfs_add_ordered_extent_dio(inode, start,
5954                                           block_start, len, len, type);
5955                        btrfs_end_transaction(trans, root);
5956                        if (ret) {
5957                                free_extent_map(em);
5958                                goto unlock_err;
5959                        }
5960                        goto unlock;
5961                }
5962                btrfs_end_transaction(trans, root);
5963        }
5964must_cow:
5965        /*
5966         * this will cow the extent, reset the len in case we changed
5967         * it above
5968         */
5969        len = bh_result->b_size;
5970        em = btrfs_new_extent_direct(inode, em, start, len);
5971        if (IS_ERR(em)) {
5972                ret = PTR_ERR(em);
5973                goto unlock_err;
5974        }
5975        len = min(len, em->len - (start - em->start));
5976unlock:
5977        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5978                inode->i_blkbits;
5979        bh_result->b_size = len;
5980        bh_result->b_bdev = em->bdev;
5981        set_buffer_mapped(bh_result);
5982        if (create) {
5983                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5984                        set_buffer_new(bh_result);
5985
5986                /*
5987                 * Need to update the i_size under the extent lock so buffered
5988                 * readers will get the updated i_size when we unlock.
5989                 */
5990                if (start + len > i_size_read(inode))
5991                        i_size_write(inode, start + len);
5992        }
5993
5994        /*
5995         * In the case of write we need to clear and unlock the entire range,
5996         * in the case of read we need to unlock only the end area that we
5997         * aren't using if there is any left over space.
5998         */
5999        if (lockstart < lockend) {
6000                if (create && len < lockend - lockstart) {
6001                        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6002                                         lockstart + len - 1, unlock_bits, 1, 0,
6003                                         &cached_state, GFP_NOFS);
6004                        /*
6005                         * Beside unlock, we also need to cleanup reserved space
6006                         * for the left range by attaching EXTENT_DO_ACCOUNTING.
6007                         */
6008                        clear_extent_bit(&BTRFS_I(inode)->io_tree,
6009                                         lockstart + len, lockend,
6010                                         unlock_bits | EXTENT_DO_ACCOUNTING,
6011                                         1, 0, NULL, GFP_NOFS);
6012                } else {
6013                        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6014                                         lockend, unlock_bits, 1, 0,
6015                                         &cached_state, GFP_NOFS);
6016                }
6017        } else {
6018                free_extent_state(cached_state);
6019        }
6020
6021        free_extent_map(em);
6022
6023        return 0;
6024
6025unlock_err:
6026        if (create)
6027                unlock_bits |= EXTENT_DO_ACCOUNTING;
6028
6029        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6030                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6031        return ret;
6032}
6033
6034struct btrfs_dio_private {
6035        struct inode *inode;
6036        u64 logical_offset;
6037        u64 disk_bytenr;
6038        u64 bytes;
6039        void *private;
6040
6041        /* number of bios pending for this dio */
6042        atomic_t pending_bios;
6043
6044        /* IO errors */
6045        int errors;
6046
6047        struct bio *orig_bio;
6048};
6049
6050static void btrfs_endio_direct_read(struct bio *bio, int err)
6051{
6052        struct btrfs_dio_private *dip = bio->bi_private;
6053        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6054        struct bio_vec *bvec = bio->bi_io_vec;
6055        struct inode *inode = dip->inode;
6056        struct btrfs_root *root = BTRFS_I(inode)->root;
6057        u64 start;
6058
6059        start = dip->logical_offset;
6060        do {
6061                if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6062                        struct page *page = bvec->bv_page;
6063                        char *kaddr;
6064                        u32 csum = ~(u32)0;
6065                        u64 private = ~(u32)0;
6066                        unsigned long flags;
6067
6068                        if (get_state_private(&BTRFS_I(inode)->io_tree,
6069                                              start, &private))
6070                                goto failed;
6071                        local_irq_save(flags);
6072                        kaddr = kmap_atomic(page);
6073                        csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6074                                               csum, bvec->bv_len);
6075                        btrfs_csum_final(csum, (char *)&csum);
6076                        kunmap_atomic(kaddr);
6077                        local_irq_restore(flags);
6078
6079                        flush_dcache_page(bvec->bv_page);
6080                        if (csum != private) {
6081failed:
6082                                printk(KERN_ERR "btrfs csum failed ino %llu off"
6083                                      " %llu csum %u private %u\n",
6084                                      (unsigned long long)btrfs_ino(inode),
6085                                      (unsigned long long)start,
6086                                      csum, (unsigned)private);
6087                                err = -EIO;
6088                        }
6089                }
6090
6091                start += bvec->bv_len;
6092                bvec++;
6093        } while (bvec <= bvec_end);
6094
6095        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6096                      dip->logical_offset + dip->bytes - 1);
6097        bio->bi_private = dip->private;
6098
6099        kfree(dip);
6100
6101        /* If we had a csum failure make sure to clear the uptodate flag */
6102        if (err)
6103                clear_bit(BIO_UPTODATE, &bio->bi_flags);
6104        dio_end_io(bio, err);
6105}
6106
6107static void btrfs_endio_direct_write(struct bio *bio, int err)
6108{
6109        struct btrfs_dio_private *dip = bio->bi_private;
6110        struct inode *inode = dip->inode;
6111        struct btrfs_root *root = BTRFS_I(inode)->root;
6112        struct btrfs_ordered_extent *ordered = NULL;
6113        u64 ordered_offset = dip->logical_offset;
6114        u64 ordered_bytes = dip->bytes;
6115        int ret;
6116
6117        if (err)
6118                goto out_done;
6119again:
6120        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6121                                                   &ordered_offset,
6122                                                   ordered_bytes, !err);
6123        if (!ret)
6124                goto out_test;
6125
6126        ordered->work.func = finish_ordered_fn;
6127        ordered->work.flags = 0;
6128        btrfs_queue_worker(&root->fs_info->endio_write_workers,
6129                           &ordered->work);
6130out_test:
6131        /*
6132         * our bio might span multiple ordered extents.  If we haven't
6133         * completed the accounting for the whole dio, go back and try again
6134         */
6135        if (ordered_offset < dip->logical_offset + dip->bytes) {
6136                ordered_bytes = dip->logical_offset + dip->bytes -
6137                        ordered_offset;
6138                ordered = NULL;
6139                goto again;
6140        }
6141out_done:
6142        bio->bi_private = dip->private;
6143
6144        kfree(dip);
6145
6146        /* If we had an error make sure to clear the uptodate flag */
6147        if (err)
6148                clear_bit(BIO_UPTODATE, &bio->bi_flags);
6149        dio_end_io(bio, err);
6150}
6151
6152static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6153                                    struct bio *bio, int mirror_num,
6154                                    unsigned long bio_flags, u64 offset)
6155{
6156        int ret;
6157        struct btrfs_root *root = BTRFS_I(inode)->root;
6158        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6159        BUG_ON(ret); /* -ENOMEM */
6160        return 0;
6161}
6162
6163static void btrfs_end_dio_bio(struct bio *bio, int err)
6164{
6165        struct btrfs_dio_private *dip = bio->bi_private;
6166
6167        if (err) {
6168                printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6169                      "sector %#Lx len %u err no %d\n",
6170                      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6171                      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6172                dip->errors = 1;
6173
6174                /*
6175                 * before atomic variable goto zero, we must make sure
6176                 * dip->errors is perceived to be set.
6177                 */
6178                smp_mb__before_atomic_dec();
6179        }
6180
6181        /* if there are more bios still pending for this dio, just exit */
6182        if (!atomic_dec_and_test(&dip->pending_bios))
6183                goto out;
6184
6185        if (dip->errors)
6186                bio_io_error(dip->orig_bio);
6187        else {
6188                set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6189                bio_endio(dip->orig_bio, 0);
6190        }
6191out:
6192        bio_put(bio);
6193}
6194
6195static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6196                                       u64 first_sector, gfp_t gfp_flags)
6197{
6198        int nr_vecs = bio_get_nr_vecs(bdev);
6199        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6200}
6201
6202static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6203                                         int rw, u64 file_offset, int skip_sum,
6204                                         int async_submit)
6205{
6206        int write = rw & REQ_WRITE;
6207        struct btrfs_root *root = BTRFS_I(inode)->root;
6208        int ret;
6209
6210        bio_get(bio);
6211
6212        if (!write) {
6213                ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6214                if (ret)
6215                        goto err;
6216        }
6217
6218        if (skip_sum)
6219                goto map;
6220
6221        if (write && async_submit) {
6222                ret = btrfs_wq_submit_bio(root->fs_info,
6223                                   inode, rw, bio, 0, 0,
6224                                   file_offset,
6225                                   __btrfs_submit_bio_start_direct_io,
6226                                   __btrfs_submit_bio_done);
6227                goto err;
6228        } else if (write) {
6229                /*
6230                 * If we aren't doing async submit, calculate the csum of the
6231                 * bio now.
6232                 */
6233                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6234                if (ret)
6235                        goto err;
6236        } else if (!skip_sum) {
6237                ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6238                if (ret)
6239                        goto err;
6240        }
6241
6242map:
6243        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6244err:
6245        bio_put(bio);
6246        return ret;
6247}
6248
6249static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6250                                    int skip_sum)
6251{
6252        struct inode *inode = dip->inode;
6253        struct btrfs_root *root = BTRFS_I(inode)->root;
6254        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6255        struct bio *bio;
6256        struct bio *orig_bio = dip->orig_bio;
6257        struct bio_vec *bvec = orig_bio->bi_io_vec;
6258        u64 start_sector = orig_bio->bi_sector;
6259        u64 file_offset = dip->logical_offset;
6260        u64 submit_len = 0;
6261        u64 map_length;
6262        int nr_pages = 0;
6263        int ret = 0;
6264        int async_submit = 0;
6265
6266        map_length = orig_bio->bi_size;
6267        ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6268                              &map_length, NULL, 0);
6269        if (ret) {
6270                bio_put(orig_bio);
6271                return -EIO;
6272        }
6273
6274        if (map_length >= orig_bio->bi_size) {
6275                bio = orig_bio;
6276                goto submit;
6277        }
6278
6279        async_submit = 1;
6280        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6281        if (!bio)
6282                return -ENOMEM;
6283        bio->bi_private = dip;
6284        bio->bi_end_io = btrfs_end_dio_bio;
6285        atomic_inc(&dip->pending_bios);
6286
6287        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6288                if (unlikely(map_length < submit_len + bvec->bv_len ||
6289                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6290                                 bvec->bv_offset) < bvec->bv_len)) {
6291                        /*
6292                         * inc the count before we submit the bio so
6293                         * we know the end IO handler won't happen before
6294                         * we inc the count. Otherwise, the dip might get freed
6295                         * before we're done setting it up
6296                         */
6297                        atomic_inc(&dip->pending_bios);
6298                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
6299                                                     file_offset, skip_sum,
6300                                                     async_submit);
6301                        if (ret) {
6302                                bio_put(bio);
6303                                atomic_dec(&dip->pending_bios);
6304                                goto out_err;
6305                        }
6306
6307                        start_sector += submit_len >> 9;
6308                        file_offset += submit_len;
6309
6310                        submit_len = 0;
6311                        nr_pages = 0;
6312
6313                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6314                                                  start_sector, GFP_NOFS);
6315                        if (!bio)
6316                                goto out_err;
6317                        bio->bi_private = dip;
6318                        bio->bi_end_io = btrfs_end_dio_bio;
6319
6320                        map_length = orig_bio->bi_size;
6321                        ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6322                                              &map_length, NULL, 0);
6323                        if (ret) {
6324                                bio_put(bio);
6325                                goto out_err;
6326                        }
6327                } else {
6328                        submit_len += bvec->bv_len;
6329                        nr_pages ++;
6330                        bvec++;
6331                }
6332        }
6333
6334submit:
6335        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6336                                     async_submit);
6337        if (!ret)
6338                return 0;
6339
6340        bio_put(bio);
6341out_err:
6342        dip->errors = 1;
6343        /*
6344         * before atomic variable goto zero, we must
6345         * make sure dip->errors is perceived to be set.
6346         */
6347        smp_mb__before_atomic_dec();
6348        if (atomic_dec_and_test(&dip->pending_bios))
6349                bio_io_error(dip->orig_bio);
6350
6351        /* bio_end_io() will handle error, so we needn't return it */
6352        return 0;
6353}
6354
6355static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6356                                loff_t file_offset)
6357{
6358        struct btrfs_root *root = BTRFS_I(inode)->root;
6359        struct btrfs_dio_private *dip;
6360        struct bio_vec *bvec = bio->bi_io_vec;
6361        int skip_sum;
6362        int write = rw & REQ_WRITE;
6363        int ret = 0;
6364
6365        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6366
6367        dip = kmalloc(sizeof(*dip), GFP_NOFS);
6368        if (!dip) {
6369                ret = -ENOMEM;
6370                goto free_ordered;
6371        }
6372
6373        dip->private = bio->bi_private;
6374        dip->inode = inode;
6375        dip->logical_offset = file_offset;
6376
6377        dip->bytes = 0;
6378        do {
6379                dip->bytes += bvec->bv_len;
6380                bvec++;
6381        } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6382
6383        dip->disk_bytenr = (u64)bio->bi_sector << 9;
6384        bio->bi_private = dip;
6385        dip->errors = 0;
6386        dip->orig_bio = bio;
6387        atomic_set(&dip->pending_bios, 0);
6388
6389        if (write)
6390                bio->bi_end_io = btrfs_endio_direct_write;
6391        else
6392                bio->bi_end_io = btrfs_endio_direct_read;
6393
6394        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6395        if (!ret)
6396                return;
6397free_ordered:
6398        /*
6399         * If this is a write, we need to clean up the reserved space and kill
6400         * the ordered extent.
6401         */
6402        if (write) {
6403                struct btrfs_ordered_extent *ordered;
6404                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6405                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6406                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6407                        btrfs_free_reserved_extent(root, ordered->start,
6408                                                   ordered->disk_len);
6409                btrfs_put_ordered_extent(ordered);
6410                btrfs_put_ordered_extent(ordered);
6411        }
6412        bio_endio(bio, ret);
6413}
6414
6415static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6416                        const struct iovec *iov, loff_t offset,
6417                        unsigned long nr_segs)
6418{
6419        int seg;
6420        int i;
6421        size_t size;
6422        unsigned long addr;
6423        unsigned blocksize_mask = root->sectorsize - 1;
6424        ssize_t retval = -EINVAL;
6425        loff_t end = offset;
6426
6427        if (offset & blocksize_mask)
6428                goto out;
6429
6430        /* Check the memory alignment.  Blocks cannot straddle pages */
6431        for (seg = 0; seg < nr_segs; seg++) {
6432                addr = (unsigned long)iov[seg].iov_base;
6433                size = iov[seg].iov_len;
6434                end += size;
6435                if ((addr & blocksize_mask) || (size & blocksize_mask))
6436                        goto out;
6437
6438                /* If this is a write we don't need to check anymore */
6439                if (rw & WRITE)
6440                        continue;
6441
6442                /*
6443                 * Check to make sure we don't have duplicate iov_base's in this
6444                 * iovec, if so return EINVAL, otherwise we'll get csum errors
6445                 * when reading back.
6446                 */
6447                for (i = seg + 1; i < nr_segs; i++) {
6448                        if (iov[seg].iov_base == iov[i].iov_base)
6449                                goto out;
6450                }
6451        }
6452        retval = 0;
6453out:
6454        return retval;
6455}
6456
6457static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6458                        const struct iovec *iov, loff_t offset,
6459                        unsigned long nr_segs)
6460{
6461        struct file *file = iocb->ki_filp;
6462        struct inode *inode = file->f_mapping->host;
6463
6464        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6465                            offset, nr_segs))
6466                return 0;
6467
6468        return __blockdev_direct_IO(rw, iocb, inode,
6469                   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6470                   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6471                   btrfs_submit_direct, 0);
6472}
6473
6474static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6475                __u64 start, __u64 len)
6476{
6477        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6478}
6479
6480int btrfs_readpage(struct file *file, struct page *page)
6481{
6482        struct extent_io_tree *tree;
6483        tree = &BTRFS_I(page->mapping->host)->io_tree;
6484        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6485}
6486
6487static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6488{
6489        struct extent_io_tree *tree;
6490
6491
6492        if (current->flags & PF_MEMALLOC) {
6493                redirty_page_for_writepage(wbc, page);
6494                unlock_page(page);
6495                return 0;
6496        }
6497        tree = &BTRFS_I(page->mapping->host)->io_tree;
6498        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6499}
6500
6501int btrfs_writepages(struct address_space *mapping,
6502                     struct writeback_control *wbc)
6503{
6504        struct extent_io_tree *tree;
6505
6506        tree = &BTRFS_I(mapping->host)->io_tree;
6507        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6508}
6509
6510static int
6511btrfs_readpages(struct file *file, struct address_space *mapping,
6512                struct list_head *pages, unsigned nr_pages)
6513{
6514        struct extent_io_tree *tree;
6515        tree = &BTRFS_I(mapping->host)->io_tree;
6516        return extent_readpages(tree, mapping, pages, nr_pages,
6517                                btrfs_get_extent);
6518}
6519static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6520{
6521        struct extent_io_tree *tree;
6522        struct extent_map_tree *map;
6523        int ret;
6524
6525        tree = &BTRFS_I(page->mapping->host)->io_tree;
6526        map = &BTRFS_I(page->mapping->host)->extent_tree;
6527        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6528        if (ret == 1) {
6529                ClearPagePrivate(page);
6530                set_page_private(page, 0);
6531                page_cache_release(page);
6532        }
6533        return ret;
6534}
6535
6536static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6537{
6538        if (PageWriteback(page) || PageDirty(page))
6539                return 0;
6540        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6541}
6542
6543static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6544{
6545        struct inode *inode = page->mapping->host;
6546        struct extent_io_tree *tree;
6547        struct btrfs_ordered_extent *ordered;
6548        struct extent_state *cached_state = NULL;
6549        u64 page_start = page_offset(page);
6550        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6551
6552        /*
6553         * we have the page locked, so new writeback can't start,
6554         * and the dirty bit won't be cleared while we are here.
6555         *
6556         * Wait for IO on this page so that we can safely clear
6557         * the PagePrivate2 bit and do ordered accounting
6558         */
6559        wait_on_page_writeback(page);
6560
6561        tree = &BTRFS_I(inode)->io_tree;
6562        if (offset) {
6563                btrfs_releasepage(page, GFP_NOFS);
6564                return;
6565        }
6566        lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6567        ordered = btrfs_lookup_ordered_extent(inode,
6568                                           page_offset(page));
6569        if (ordered) {
6570                /*
6571                 * IO on this page will never be started, so we need
6572                 * to account for any ordered extents now
6573                 */
6574                clear_extent_bit(tree, page_start, page_end,
6575                                 EXTENT_DIRTY | EXTENT_DELALLOC |
6576                                 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6577                                 &cached_state, GFP_NOFS);
6578                /*
6579                 * whoever cleared the private bit is responsible
6580                 * for the finish_ordered_io
6581                 */
6582                if (TestClearPagePrivate2(page) &&
6583                    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6584                                                   PAGE_CACHE_SIZE, 1)) {
6585                        btrfs_finish_ordered_io(ordered);
6586                }
6587                btrfs_put_ordered_extent(ordered);
6588                cached_state = NULL;
6589                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6590        }
6591        clear_extent_bit(tree, page_start, page_end,
6592                 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6593                 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6594        __btrfs_releasepage(page, GFP_NOFS);
6595
6596        ClearPageChecked(page);
6597        if (PagePrivate(page)) {
6598                ClearPagePrivate(page);
6599                set_page_private(page, 0);
6600                page_cache_release(page);
6601        }
6602}
6603
6604/*
6605 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6606 * called from a page fault handler when a page is first dirtied. Hence we must
6607 * be careful to check for EOF conditions here. We set the page up correctly
6608 * for a written page which means we get ENOSPC checking when writing into
6609 * holes and correct delalloc and unwritten extent mapping on filesystems that
6610 * support these features.
6611 *
6612 * We are not allowed to take the i_mutex here so we have to play games to
6613 * protect against truncate races as the page could now be beyond EOF.  Because
6614 * vmtruncate() writes the inode size before removing pages, once we have the
6615 * page lock we can determine safely if the page is beyond EOF. If it is not
6616 * beyond EOF, then the page is guaranteed safe against truncation until we
6617 * unlock the page.
6618 */
6619int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6620{
6621        struct page *page = vmf->page;
6622        struct inode *inode = fdentry(vma->vm_file)->d_inode;
6623        struct btrfs_root *root = BTRFS_I(inode)->root;
6624        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6625        struct btrfs_ordered_extent *ordered;
6626        struct extent_state *cached_state = NULL;
6627        char *kaddr;
6628        unsigned long zero_start;
6629        loff_t size;
6630        int ret;
6631        int reserved = 0;
6632        u64 page_start;
6633        u64 page_end;
6634
6635        sb_start_pagefault(inode->i_sb);
6636        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6637        if (!ret) {
6638                ret = file_update_time(vma->vm_file);
6639                reserved = 1;
6640        }
6641        if (ret) {
6642                if (ret == -ENOMEM)
6643                        ret = VM_FAULT_OOM;
6644                else /* -ENOSPC, -EIO, etc */
6645                        ret = VM_FAULT_SIGBUS;
6646                if (reserved)
6647                        goto out;
6648                goto out_noreserve;
6649        }
6650
6651        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6652again:
6653        lock_page(page);
6654        size = i_size_read(inode);
6655        page_start = page_offset(page);
6656        page_end = page_start + PAGE_CACHE_SIZE - 1;
6657
6658        if ((page->mapping != inode->i_mapping) ||
6659            (page_start >= size)) {
6660                /* page got truncated out from underneath us */
6661                goto out_unlock;
6662        }
6663        wait_on_page_writeback(page);
6664
6665        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6666        set_page_extent_mapped(page);
6667
6668        /*
6669         * we can't set the delalloc bits if there are pending ordered
6670         * extents.  Drop our locks and wait for them to finish
6671         */
6672        ordered = btrfs_lookup_ordered_extent(inode, page_start);
6673        if (ordered) {
6674                unlock_extent_cached(io_tree, page_start, page_end,
6675                                     &cached_state, GFP_NOFS);
6676                unlock_page(page);
6677                btrfs_start_ordered_extent(inode, ordered, 1);
6678                btrfs_put_ordered_extent(ordered);
6679                goto again;
6680        }
6681
6682        /*
6683         * XXX - page_mkwrite gets called every time the page is dirtied, even
6684         * if it was already dirty, so for space accounting reasons we need to
6685         * clear any delalloc bits for the range we are fixing to save.  There
6686         * is probably a better way to do this, but for now keep consistent with
6687         * prepare_pages in the normal write path.
6688         */
6689        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6690                          EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6691                          0, 0, &cached_state, GFP_NOFS);
6692
6693        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6694                                        &cached_state);
6695        if (ret) {
6696                unlock_extent_cached(io_tree, page_start, page_end,
6697                                     &cached_state, GFP_NOFS);
6698                ret = VM_FAULT_SIGBUS;
6699                goto out_unlock;
6700        }
6701        ret = 0;
6702
6703        /* page is wholly or partially inside EOF */
6704        if (page_start + PAGE_CACHE_SIZE > size)
6705                zero_start = size & ~PAGE_CACHE_MASK;
6706        else
6707                zero_start = PAGE_CACHE_SIZE;
6708
6709        if (zero_start != PAGE_CACHE_SIZE) {
6710                kaddr = kmap(page);
6711                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6712                flush_dcache_page(page);
6713                kunmap(page);
6714        }
6715        ClearPageChecked(page);
6716        set_page_dirty(page);
6717        SetPageUptodate(page);
6718
6719        BTRFS_I(inode)->last_trans = root->fs_info->generation;
6720        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6721
6722        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6723
6724out_unlock:
6725        if (!ret) {
6726                sb_end_pagefault(inode->i_sb);
6727                return VM_FAULT_LOCKED;
6728        }
6729        unlock_page(page);
6730out:
6731        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6732out_noreserve:
6733        sb_end_pagefault(inode->i_sb);
6734        return ret;
6735}
6736
6737static int btrfs_truncate(struct inode *inode)
6738{
6739        struct btrfs_root *root = BTRFS_I(inode)->root;
6740        struct btrfs_block_rsv *rsv;
6741        int ret;
6742        int err = 0;
6743        struct btrfs_trans_handle *trans;
6744        unsigned long nr;
6745        u64 mask = root->sectorsize - 1;
6746        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6747
6748        ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6749        if (ret)
6750                return ret;
6751
6752        btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6753        btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6754
6755        /*
6756         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6757         * 3 things going on here
6758         *
6759         * 1) We need to reserve space for our orphan item and the space to
6760         * delete our orphan item.  Lord knows we don't want to have a dangling
6761         * orphan item because we didn't reserve space to remove it.
6762         *
6763         * 2) We need to reserve space to update our inode.
6764         *
6765         * 3) We need to have something to cache all the space that is going to
6766         * be free'd up by the truncate operation, but also have some slack
6767         * space reserved in case it uses space during the truncate (thank you
6768         * very much snapshotting).
6769         *
6770         * And we need these to all be seperate.  The fact is we can use alot of
6771         * space doing the truncate, and we have no earthly idea how much space
6772         * we will use, so we need the truncate reservation to be seperate so it
6773         * doesn't end up using space reserved for updating the inode or
6774         * removing the orphan item.  We also need to be able to stop the
6775         * transaction and start a new one, which means we need to be able to
6776         * update the inode several times, and we have no idea of knowing how
6777         * many times that will be, so we can't just reserve 1 item for the
6778         * entirety of the opration, so that has to be done seperately as well.
6779         * Then there is the orphan item, which does indeed need to be held on
6780         * to for the whole operation, and we need nobody to touch this reserved
6781         * space except the orphan code.
6782         *
6783         * So that leaves us with
6784         *
6785         * 1) root->orphan_block_rsv - for the orphan deletion.
6786         * 2) rsv - for the truncate reservation, which we will steal from the
6787         * transaction reservation.
6788         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6789         * updating the inode.
6790         */
6791        rsv = btrfs_alloc_block_rsv(root);
6792        if (!rsv)
6793                return -ENOMEM;
6794        rsv->size = min_size;
6795
6796        /*
6797         * 1 for the truncate slack space
6798         * 1 for the orphan item we're going to add
6799         * 1 for the orphan item deletion
6800         * 1 for updating the inode.
6801         */
6802        trans = btrfs_start_transaction(root, 4);
6803        if (IS_ERR(trans)) {
6804                err = PTR_ERR(trans);
6805                goto out;
6806        }
6807
6808        /* Migrate the slack space for the truncate to our reserve */
6809        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6810                                      min_size);
6811        BUG_ON(ret);
6812
6813        ret = btrfs_orphan_add(trans, inode);
6814        if (ret) {
6815                btrfs_end_transaction(trans, root);
6816                goto out;
6817        }
6818
6819        /*
6820         * setattr is responsible for setting the ordered_data_close flag,
6821         * but that is only tested during the last file release.  That
6822         * could happen well after the next commit, leaving a great big
6823         * window where new writes may get lost if someone chooses to write
6824         * to this file after truncating to zero
6825         *
6826         * The inode doesn't have any dirty data here, and so if we commit
6827         * this is a noop.  If someone immediately starts writing to the inode
6828         * it is very likely we'll catch some of their writes in this
6829         * transaction, and the commit will find this file on the ordered
6830         * data list with good things to send down.
6831         *
6832         * This is a best effort solution, there is still a window where
6833         * using truncate to replace the contents of the file will
6834         * end up with a zero length file after a crash.
6835         */
6836        if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6837                                           &BTRFS_I(inode)->runtime_flags))
6838                btrfs_add_ordered_operation(trans, root, inode);
6839
6840        while (1) {
6841                ret = btrfs_block_rsv_refill(root, rsv, min_size);
6842                if (ret) {
6843                        /*
6844                         * This can only happen with the original transaction we
6845                         * started above, every other time we shouldn't have a
6846                         * transaction started yet.
6847                         */
6848                        if (ret == -EAGAIN)
6849                                goto end_trans;
6850                        err = ret;
6851                        break;
6852                }
6853
6854                if (!trans) {
6855                        /* Just need the 1 for updating the inode */
6856                        trans = btrfs_start_transaction(root, 1);
6857                        if (IS_ERR(trans)) {
6858                                ret = err = PTR_ERR(trans);
6859                                trans = NULL;
6860                                break;
6861                        }
6862                }
6863
6864                trans->block_rsv = rsv;
6865
6866                ret = btrfs_truncate_inode_items(trans, root, inode,
6867                                                 inode->i_size,
6868                                                 BTRFS_EXTENT_DATA_KEY);
6869                if (ret != -EAGAIN) {
6870                        err = ret;
6871                        break;
6872                }
6873
6874                trans->block_rsv = &root->fs_info->trans_block_rsv;
6875                ret = btrfs_update_inode(trans, root, inode);
6876                if (ret) {
6877                        err = ret;
6878                        break;
6879                }
6880end_trans:
6881                nr = trans->blocks_used;
6882                btrfs_end_transaction(trans, root);
6883                trans = NULL;
6884                btrfs_btree_balance_dirty(root, nr);
6885        }
6886
6887        if (ret == 0 && inode->i_nlink > 0) {
6888                trans->block_rsv = root->orphan_block_rsv;
6889                ret = btrfs_orphan_del(trans, inode);
6890                if (ret)
6891                        err = ret;
6892        } else if (ret && inode->i_nlink > 0) {
6893                /*
6894                 * Failed to do the truncate, remove us from the in memory
6895                 * orphan list.
6896                 */
6897                ret = btrfs_orphan_del(NULL, inode);
6898        }
6899
6900        if (trans) {
6901                trans->block_rsv = &root->fs_info->trans_block_rsv;
6902                ret = btrfs_update_inode(trans, root, inode);
6903                if (ret && !err)
6904                        err = ret;
6905
6906                nr = trans->blocks_used;
6907                ret = btrfs_end_transaction(trans, root);
6908                btrfs_btree_balance_dirty(root, nr);
6909        }
6910
6911out:
6912        btrfs_free_block_rsv(root, rsv);
6913
6914        if (ret && !err)
6915                err = ret;
6916
6917        return err;
6918}
6919
6920/*
6921 * create a new subvolume directory/inode (helper for the ioctl).
6922 */
6923int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6924                             struct btrfs_root *new_root, u64 new_dirid)
6925{
6926        struct inode *inode;
6927        int err;
6928        u64 index = 0;
6929
6930        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6931                                new_dirid, new_dirid,
6932                                S_IFDIR | (~current_umask() & S_IRWXUGO),
6933                                &index);
6934        if (IS_ERR(inode))
6935                return PTR_ERR(inode);
6936        inode->i_op = &btrfs_dir_inode_operations;
6937        inode->i_fop = &btrfs_dir_file_operations;
6938
6939        set_nlink(inode, 1);
6940        btrfs_i_size_write(inode, 0);
6941
6942        err = btrfs_update_inode(trans, new_root, inode);
6943
6944        iput(inode);
6945        return err;
6946}
6947
6948struct inode *btrfs_alloc_inode(struct super_block *sb)
6949{
6950        struct btrfs_inode *ei;
6951        struct inode *inode;
6952
6953        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6954        if (!ei)
6955                return NULL;
6956
6957        ei->root = NULL;
6958        ei->generation = 0;
6959        ei->last_trans = 0;
6960        ei->last_sub_trans = 0;
6961        ei->logged_trans = 0;
6962        ei->delalloc_bytes = 0;
6963        ei->disk_i_size = 0;
6964        ei->flags = 0;
6965        ei->csum_bytes = 0;
6966        ei->index_cnt = (u64)-1;
6967        ei->last_unlink_trans = 0;
6968
6969        spin_lock_init(&ei->lock);
6970        ei->outstanding_extents = 0;
6971        ei->reserved_extents = 0;
6972
6973        ei->runtime_flags = 0;
6974        ei->force_compress = BTRFS_COMPRESS_NONE;
6975
6976        ei->delayed_node = NULL;
6977
6978        inode = &ei->vfs_inode;
6979        extent_map_tree_init(&ei->extent_tree);
6980        extent_io_tree_init(&ei->io_tree, &inode->i_data);
6981        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6982        ei->io_tree.track_uptodate = 1;
6983        ei->io_failure_tree.track_uptodate = 1;
6984        mutex_init(&ei->log_mutex);
6985        mutex_init(&ei->delalloc_mutex);
6986        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6987        INIT_LIST_HEAD(&ei->delalloc_inodes);
6988        INIT_LIST_HEAD(&ei->ordered_operations);
6989        RB_CLEAR_NODE(&ei->rb_node);
6990
6991        return inode;
6992}
6993
6994static void btrfs_i_callback(struct rcu_head *head)
6995{
6996        struct inode *inode = container_of(head, struct inode, i_rcu);
6997        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6998}
6999
7000void btrfs_destroy_inode(struct inode *inode)
7001{
7002        struct btrfs_ordered_extent *ordered;
7003        struct btrfs_root *root = BTRFS_I(inode)->root;
7004
7005        WARN_ON(!hlist_empty(&inode->i_dentry));
7006        WARN_ON(inode->i_data.nrpages);
7007        WARN_ON(BTRFS_I(inode)->outstanding_extents);
7008        WARN_ON(BTRFS_I(inode)->reserved_extents);
7009        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7010        WARN_ON(BTRFS_I(inode)->csum_bytes);
7011
7012        /*
7013         * This can happen where we create an inode, but somebody else also
7014         * created the same inode and we need to destroy the one we already
7015         * created.
7016         */
7017        if (!root)
7018                goto free;
7019
7020        /*
7021         * Make sure we're properly removed from the ordered operation
7022         * lists.
7023         */
7024        smp_mb();
7025        if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7026                spin_lock(&root->fs_info->ordered_extent_lock);
7027                list_del_init(&BTRFS_I(inode)->ordered_operations);
7028                spin_unlock(&root->fs_info->ordered_extent_lock);
7029        }
7030
7031        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7032                     &BTRFS_I(inode)->runtime_flags)) {
7033                printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7034                       (unsigned long long)btrfs_ino(inode));
7035                atomic_dec(&root->orphan_inodes);
7036        }
7037
7038        while (1) {
7039                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7040                if (!ordered)
7041                        break;
7042                else {
7043                        printk(KERN_ERR "btrfs found ordered "
7044                               "extent %llu %llu on inode cleanup\n",
7045                               (unsigned long long)ordered->file_offset,
7046                               (unsigned long long)ordered->len);
7047                        btrfs_remove_ordered_extent(inode, ordered);
7048                        btrfs_put_ordered_extent(ordered);
7049                        btrfs_put_ordered_extent(ordered);
7050                }
7051        }
7052        inode_tree_del(inode);
7053        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7054free:
7055        btrfs_remove_delayed_node(inode);
7056        call_rcu(&inode->i_rcu, btrfs_i_callback);
7057}
7058
7059int btrfs_drop_inode(struct inode *inode)
7060{
7061        struct btrfs_root *root = BTRFS_I(inode)->root;
7062
7063        if (btrfs_root_refs(&root->root_item) == 0 &&
7064            !btrfs_is_free_space_inode(inode))
7065                return 1;
7066        else
7067                return generic_drop_inode(inode);
7068}
7069
7070static void init_once(void *foo)
7071{
7072        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7073
7074        inode_init_once(&ei->vfs_inode);
7075}
7076
7077void btrfs_destroy_cachep(void)
7078{
7079        if (btrfs_inode_cachep)
7080                kmem_cache_destroy(btrfs_inode_cachep);
7081        if (btrfs_trans_handle_cachep)
7082                kmem_cache_destroy(btrfs_trans_handle_cachep);
7083        if (btrfs_transaction_cachep)
7084                kmem_cache_destroy(btrfs_transaction_cachep);
7085        if (btrfs_path_cachep)
7086                kmem_cache_destroy(btrfs_path_cachep);
7087        if (btrfs_free_space_cachep)
7088                kmem_cache_destroy(btrfs_free_space_cachep);
7089}
7090
7091int btrfs_init_cachep(void)
7092{
7093        btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7094                        sizeof(struct btrfs_inode), 0,
7095                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7096        if (!btrfs_inode_cachep)
7097                goto fail;
7098
7099        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7100                        sizeof(struct btrfs_trans_handle), 0,
7101                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7102        if (!btrfs_trans_handle_cachep)
7103                goto fail;
7104
7105        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7106                        sizeof(struct btrfs_transaction), 0,
7107                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7108        if (!btrfs_transaction_cachep)
7109                goto fail;
7110
7111        btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7112                        sizeof(struct btrfs_path), 0,
7113                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7114        if (!btrfs_path_cachep)
7115                goto fail;
7116
7117        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7118                        sizeof(struct btrfs_free_space), 0,
7119                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7120        if (!btrfs_free_space_cachep)
7121                goto fail;
7122
7123        return 0;
7124fail:
7125        btrfs_destroy_cachep();
7126        return -ENOMEM;
7127}
7128
7129static int btrfs_getattr(struct vfsmount *mnt,
7130                         struct dentry *dentry, struct kstat *stat)
7131{
7132        struct inode *inode = dentry->d_inode;
7133        u32 blocksize = inode->i_sb->s_blocksize;
7134
7135        generic_fillattr(inode, stat);
7136        stat->dev = BTRFS_I(inode)->root->anon_dev;
7137        stat->blksize = PAGE_CACHE_SIZE;
7138        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7139                ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7140        return 0;
7141}
7142
7143/*
7144 * If a file is moved, it will inherit the cow and compression flags of the new
7145 * directory.
7146 */
7147static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7148{
7149        struct btrfs_inode *b_dir = BTRFS_I(dir);
7150        struct btrfs_inode *b_inode = BTRFS_I(inode);
7151
7152        if (b_dir->flags & BTRFS_INODE_NODATACOW)
7153                b_inode->flags |= BTRFS_INODE_NODATACOW;
7154        else
7155                b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7156
7157        if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7158                b_inode->flags |= BTRFS_INODE_COMPRESS;
7159                b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7160        } else {
7161                b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7162                                    BTRFS_INODE_NOCOMPRESS);
7163        }
7164}
7165
7166static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7167                           struct inode *new_dir, struct dentry *new_dentry)
7168{
7169        struct btrfs_trans_handle *trans;
7170        struct btrfs_root *root = BTRFS_I(old_dir)->root;
7171        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7172        struct inode *new_inode = new_dentry->d_inode;
7173        struct inode *old_inode = old_dentry->d_inode;
7174        struct timespec ctime = CURRENT_TIME;
7175        u64 index = 0;
7176        u64 root_objectid;
7177        int ret;
7178        u64 old_ino = btrfs_ino(old_inode);
7179
7180        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7181                return -EPERM;
7182
7183        /* we only allow rename subvolume link between subvolumes */
7184        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7185                return -EXDEV;
7186
7187        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7188            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7189                return -ENOTEMPTY;
7190
7191        if (S_ISDIR(old_inode->i_mode) && new_inode &&
7192            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7193                return -ENOTEMPTY;
7194        /*
7195         * we're using rename to replace one file with another.
7196         * and the replacement file is large.  Start IO on it now so
7197         * we don't add too much work to the end of the transaction
7198         */
7199        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7200            old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7201                filemap_flush(old_inode->i_mapping);
7202
7203        /* close the racy window with snapshot create/destroy ioctl */
7204        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7205                down_read(&root->fs_info->subvol_sem);
7206        /*
7207         * We want to reserve the absolute worst case amount of items.  So if
7208         * both inodes are subvols and we need to unlink them then that would
7209         * require 4 item modifications, but if they are both normal inodes it
7210         * would require 5 item modifications, so we'll assume their normal
7211         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7212         * should cover the worst case number of items we'll modify.
7213         */
7214        trans = btrfs_start_transaction(root, 20);
7215        if (IS_ERR(trans)) {
7216                ret = PTR_ERR(trans);
7217                goto out_notrans;
7218        }
7219
7220        if (dest != root)
7221                btrfs_record_root_in_trans(trans, dest);
7222
7223        ret = btrfs_set_inode_index(new_dir, &index);
7224        if (ret)
7225                goto out_fail;
7226
7227        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7228                /* force full log commit if subvolume involved. */
7229                root->fs_info->last_trans_log_full_commit = trans->transid;
7230        } else {
7231                ret = btrfs_insert_inode_ref(trans, dest,
7232                                             new_dentry->d_name.name,
7233                                             new_dentry->d_name.len,
7234                                             old_ino,
7235                                             btrfs_ino(new_dir), index);
7236                if (ret)
7237                        goto out_fail;
7238                /*
7239                 * this is an ugly little race, but the rename is required
7240                 * to make sure that if we crash, the inode is either at the
7241                 * old name or the new one.  pinning the log transaction lets
7242                 * us make sure we don't allow a log commit to come in after
7243                 * we unlink the name but before we add the new name back in.
7244                 */
7245                btrfs_pin_log_trans(root);
7246        }
7247        /*
7248         * make sure the inode gets flushed if it is replacing
7249         * something.
7250         */
7251        if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7252                btrfs_add_ordered_operation(trans, root, old_inode);
7253
7254        inode_inc_iversion(old_dir);
7255        inode_inc_iversion(new_dir);
7256        inode_inc_iversion(old_inode);
7257        old_dir->i_ctime = old_dir->i_mtime = ctime;
7258        new_dir->i_ctime = new_dir->i_mtime = ctime;
7259        old_inode->i_ctime = ctime;
7260
7261        if (old_dentry->d_parent != new_dentry->d_parent)
7262                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7263
7264        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7265                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7266                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7267                                        old_dentry->d_name.name,
7268                                        old_dentry->d_name.len);
7269        } else {
7270                ret = __btrfs_unlink_inode(trans, root, old_dir,
7271                                        old_dentry->d_inode,
7272                                        old_dentry->d_name.name,
7273                                        old_dentry->d_name.len);
7274                if (!ret)
7275                        ret = btrfs_update_inode(trans, root, old_inode);
7276        }
7277        if (ret) {
7278                btrfs_abort_transaction(trans, root, ret);
7279                goto out_fail;
7280        }
7281
7282        if (new_inode) {
7283                inode_inc_iversion(new_inode);
7284                new_inode->i_ctime = CURRENT_TIME;
7285                if (unlikely(btrfs_ino(new_inode) ==
7286                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7287                        root_objectid = BTRFS_I(new_inode)->location.objectid;
7288                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
7289                                                root_objectid,
7290                                                new_dentry->d_name.name,
7291                                                new_dentry->d_name.len);
7292                        BUG_ON(new_inode->i_nlink == 0);
7293                } else {
7294                        ret = btrfs_unlink_inode(trans, dest, new_dir,
7295                                                 new_dentry->d_inode,
7296                                                 new_dentry->d_name.name,
7297                                                 new_dentry->d_name.len);
7298                }
7299                if (!ret && new_inode->i_nlink == 0) {
7300                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7301                        BUG_ON(ret);
7302                }
7303                if (ret) {
7304                        btrfs_abort_transaction(trans, root, ret);
7305                        goto out_fail;
7306                }
7307        }
7308
7309        fixup_inode_flags(new_dir, old_inode);
7310
7311        ret = btrfs_add_link(trans, new_dir, old_inode,
7312                             new_dentry->d_name.name,
7313                             new_dentry->d_name.len, 0, index);
7314        if (ret) {
7315                btrfs_abort_transaction(trans, root, ret);
7316                goto out_fail;
7317        }
7318
7319        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7320                struct dentry *parent = new_dentry->d_parent;
7321                btrfs_log_new_name(trans, old_inode, old_dir, parent);
7322                btrfs_end_log_trans(root);
7323        }
7324out_fail:
7325        btrfs_end_transaction(trans, root);
7326out_notrans:
7327        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7328                up_read(&root->fs_info->subvol_sem);
7329
7330        return ret;
7331}
7332
7333/*
7334 * some fairly slow code that needs optimization. This walks the list
7335 * of all the inodes with pending delalloc and forces them to disk.
7336 */
7337int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7338{
7339        struct list_head *head = &root->fs_info->delalloc_inodes;
7340        struct btrfs_inode *binode;
7341        struct inode *inode;
7342
7343        if (root->fs_info->sb->s_flags & MS_RDONLY)
7344                return -EROFS;
7345
7346        spin_lock(&root->fs_info->delalloc_lock);
7347        while (!list_empty(head)) {
7348                binode = list_entry(head->next, struct btrfs_inode,
7349                                    delalloc_inodes);
7350                inode = igrab(&binode->vfs_inode);
7351                if (!inode)
7352                        list_del_init(&binode->delalloc_inodes);
7353                spin_unlock(&root->fs_info->delalloc_lock);
7354                if (inode) {
7355                        filemap_flush(inode->i_mapping);
7356                        if (delay_iput)
7357                                btrfs_add_delayed_iput(inode);
7358                        else
7359                                iput(inode);
7360                }
7361                cond_resched();
7362                spin_lock(&root->fs_info->delalloc_lock);
7363        }
7364        spin_unlock(&root->fs_info->delalloc_lock);
7365
7366        /* the filemap_flush will queue IO into the worker threads, but
7367         * we have to make sure the IO is actually started and that
7368         * ordered extents get created before we return
7369         */
7370        atomic_inc(&root->fs_info->async_submit_draining);
7371        while (atomic_read(&root->fs_info->nr_async_submits) ||
7372              atomic_read(&root->fs_info->async_delalloc_pages)) {
7373                wait_event(root->fs_info->async_submit_wait,
7374                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7375                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7376        }
7377        atomic_dec(&root->fs_info->async_submit_draining);
7378        return 0;
7379}
7380
7381static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7382                         const char *symname)
7383{
7384        struct btrfs_trans_handle *trans;
7385        struct btrfs_root *root = BTRFS_I(dir)->root;
7386        struct btrfs_path *path;
7387        struct btrfs_key key;
7388        struct inode *inode = NULL;
7389        int err;
7390        int drop_inode = 0;
7391        u64 objectid;
7392        u64 index = 0 ;
7393        int name_len;
7394        int datasize;
7395        unsigned long ptr;
7396        struct btrfs_file_extent_item *ei;
7397        struct extent_buffer *leaf;
7398        unsigned long nr = 0;
7399
7400        name_len = strlen(symname) + 1;
7401        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7402                return -ENAMETOOLONG;
7403
7404        /*
7405         * 2 items for inode item and ref
7406         * 2 items for dir items
7407         * 1 item for xattr if selinux is on
7408         */
7409        trans = btrfs_start_transaction(root, 5);
7410        if (IS_ERR(trans))
7411                return PTR_ERR(trans);
7412
7413        err = btrfs_find_free_ino(root, &objectid);
7414        if (err)
7415                goto out_unlock;
7416
7417        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7418                                dentry->d_name.len, btrfs_ino(dir), objectid,
7419                                S_IFLNK|S_IRWXUGO, &index);
7420        if (IS_ERR(inode)) {
7421                err = PTR_ERR(inode);
7422                goto out_unlock;
7423        }
7424
7425        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7426        if (err) {
7427                drop_inode = 1;
7428                goto out_unlock;
7429        }
7430
7431        /*
7432        * If the active LSM wants to access the inode during
7433        * d_instantiate it needs these. Smack checks to see
7434        * if the filesystem supports xattrs by looking at the
7435        * ops vector.
7436        */
7437        inode->i_fop = &btrfs_file_operations;
7438        inode->i_op = &btrfs_file_inode_operations;
7439
7440        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7441        if (err)
7442                drop_inode = 1;
7443        else {
7444                inode->i_mapping->a_ops = &btrfs_aops;
7445                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7446                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7447        }
7448        if (drop_inode)
7449                goto out_unlock;
7450
7451        path = btrfs_alloc_path();
7452        if (!path) {
7453                err = -ENOMEM;
7454                drop_inode = 1;
7455                goto out_unlock;
7456        }
7457        key.objectid = btrfs_ino(inode);
7458        key.offset = 0;
7459        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7460        datasize = btrfs_file_extent_calc_inline_size(name_len);
7461        err = btrfs_insert_empty_item(trans, root, path, &key,
7462                                      datasize);
7463        if (err) {
7464                drop_inode = 1;
7465                btrfs_free_path(path);
7466                goto out_unlock;
7467        }
7468        leaf = path->nodes[0];
7469        ei = btrfs_item_ptr(leaf, path->slots[0],
7470                            struct btrfs_file_extent_item);
7471        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7472        btrfs_set_file_extent_type(leaf, ei,
7473                                   BTRFS_FILE_EXTENT_INLINE);
7474        btrfs_set_file_extent_encryption(leaf, ei, 0);
7475        btrfs_set_file_extent_compression(leaf, ei, 0);
7476        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7477        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7478
7479        ptr = btrfs_file_extent_inline_start(ei);
7480        write_extent_buffer(leaf, symname, ptr, name_len);
7481        btrfs_mark_buffer_dirty(leaf);
7482        btrfs_free_path(path);
7483
7484        inode->i_op = &btrfs_symlink_inode_operations;
7485        inode->i_mapping->a_ops = &btrfs_symlink_aops;
7486        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7487        inode_set_bytes(inode, name_len);
7488        btrfs_i_size_write(inode, name_len - 1);
7489        err = btrfs_update_inode(trans, root, inode);
7490        if (err)
7491                drop_inode = 1;
7492
7493out_unlock:
7494        if (!err)
7495                d_instantiate(dentry, inode);
7496        nr = trans->blocks_used;
7497        btrfs_end_transaction(trans, root);
7498        if (drop_inode) {
7499                inode_dec_link_count(inode);
7500                iput(inode);
7501        }
7502        btrfs_btree_balance_dirty(root, nr);
7503        return err;
7504}
7505
7506static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7507                                       u64 start, u64 num_bytes, u64 min_size,
7508                                       loff_t actual_len, u64 *alloc_hint,
7509                                       struct btrfs_trans_handle *trans)
7510{
7511        struct btrfs_root *root = BTRFS_I(inode)->root;
7512        struct btrfs_key ins;
7513        u64 cur_offset = start;
7514        u64 i_size;
7515        int ret = 0;
7516        bool own_trans = true;
7517
7518        if (trans)
7519                own_trans = false;
7520        while (num_bytes > 0) {
7521                if (own_trans) {
7522                        trans = btrfs_start_transaction(root, 3);
7523                        if (IS_ERR(trans)) {
7524                                ret = PTR_ERR(trans);
7525                                break;
7526                        }
7527                }
7528
7529                ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7530                                           0, *alloc_hint, &ins, 1);
7531                if (ret) {
7532                        if (own_trans)
7533                                btrfs_end_transaction(trans, root);
7534                        break;
7535                }
7536
7537                ret = insert_reserved_file_extent(trans, inode,
7538                                                  cur_offset, ins.objectid,
7539                                                  ins.offset, ins.offset,
7540                                                  ins.offset, 0, 0, 0,
7541                                                  BTRFS_FILE_EXTENT_PREALLOC);
7542                if (ret) {
7543                        btrfs_abort_transaction(trans, root, ret);
7544                        if (own_trans)
7545                                btrfs_end_transaction(trans, root);
7546                        break;
7547                }
7548                btrfs_drop_extent_cache(inode, cur_offset,
7549                                        cur_offset + ins.offset -1, 0);
7550
7551                num_bytes -= ins.offset;
7552                cur_offset += ins.offset;
7553                *alloc_hint = ins.objectid + ins.offset;
7554
7555                inode_inc_iversion(inode);
7556                inode->i_ctime = CURRENT_TIME;
7557                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7558                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7559                    (actual_len > inode->i_size) &&
7560                    (cur_offset > inode->i_size)) {
7561                        if (cur_offset > actual_len)
7562                                i_size = actual_len;
7563                        else
7564                                i_size = cur_offset;
7565                        i_size_write(inode, i_size);
7566                        btrfs_ordered_update_i_size(inode, i_size, NULL);
7567                }
7568
7569                ret = btrfs_update_inode(trans, root, inode);
7570
7571                if (ret) {
7572                        btrfs_abort_transaction(trans, root, ret);
7573                        if (own_trans)
7574                                btrfs_end_transaction(trans, root);
7575                        break;
7576                }
7577
7578                if (own_trans)
7579                        btrfs_end_transaction(trans, root);
7580        }
7581        return ret;
7582}
7583
7584int btrfs_prealloc_file_range(struct inode *inode, int mode,
7585                              u64 start, u64 num_bytes, u64 min_size,
7586                              loff_t actual_len, u64 *alloc_hint)
7587{
7588        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7589                                           min_size, actual_len, alloc_hint,
7590                                           NULL);
7591}
7592
7593int btrfs_prealloc_file_range_trans(struct inode *inode,
7594                                    struct btrfs_trans_handle *trans, int mode,
7595                                    u64 start, u64 num_bytes, u64 min_size,
7596                                    loff_t actual_len, u64 *alloc_hint)
7597{
7598        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7599                                           min_size, actual_len, alloc_hint, trans);
7600}
7601
7602static int btrfs_set_page_dirty(struct page *page)
7603{
7604        return __set_page_dirty_nobuffers(page);
7605}
7606
7607static int btrfs_permission(struct inode *inode, int mask)
7608{
7609        struct btrfs_root *root = BTRFS_I(inode)->root;
7610        umode_t mode = inode->i_mode;
7611
7612        if (mask & MAY_WRITE &&
7613            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7614                if (btrfs_root_readonly(root))
7615                        return -EROFS;
7616                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7617                        return -EACCES;
7618        }
7619        return generic_permission(inode, mask);
7620}
7621
7622static const struct inode_operations btrfs_dir_inode_operations = {
7623        .getattr        = btrfs_getattr,
7624        .lookup         = btrfs_lookup,
7625        .create         = btrfs_create,
7626        .unlink         = btrfs_unlink,
7627        .link           = btrfs_link,
7628        .mkdir          = btrfs_mkdir,
7629        .rmdir          = btrfs_rmdir,
7630        .rename         = btrfs_rename,
7631        .symlink        = btrfs_symlink,
7632        .setattr        = btrfs_setattr,
7633        .mknod          = btrfs_mknod,
7634        .setxattr       = btrfs_setxattr,
7635        .getxattr       = btrfs_getxattr,
7636        .listxattr      = btrfs_listxattr,
7637        .removexattr    = btrfs_removexattr,
7638        .permission     = btrfs_permission,
7639        .get_acl        = btrfs_get_acl,
7640};
7641static const struct inode_operations btrfs_dir_ro_inode_operations = {
7642        .lookup         = btrfs_lookup,
7643        .permission     = btrfs_permission,
7644        .get_acl        = btrfs_get_acl,
7645};
7646
7647static const struct file_operations btrfs_dir_file_operations = {
7648        .llseek         = generic_file_llseek,
7649        .read           = generic_read_dir,
7650        .readdir        = btrfs_real_readdir,
7651        .unlocked_ioctl = btrfs_ioctl,
7652#ifdef CONFIG_COMPAT
7653        .compat_ioctl   = btrfs_ioctl,
7654#endif
7655        .release        = btrfs_release_file,
7656        .fsync          = btrfs_sync_file,
7657};
7658
7659static struct extent_io_ops btrfs_extent_io_ops = {
7660        .fill_delalloc = run_delalloc_range,
7661        .submit_bio_hook = btrfs_submit_bio_hook,
7662        .merge_bio_hook = btrfs_merge_bio_hook,
7663        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7664        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7665        .writepage_start_hook = btrfs_writepage_start_hook,
7666        .set_bit_hook = btrfs_set_bit_hook,
7667        .clear_bit_hook = btrfs_clear_bit_hook,
7668        .merge_extent_hook = btrfs_merge_extent_hook,
7669        .split_extent_hook = btrfs_split_extent_hook,
7670};
7671
7672/*
7673 * btrfs doesn't support the bmap operation because swapfiles
7674 * use bmap to make a mapping of extents in the file.  They assume
7675 * these extents won't change over the life of the file and they
7676 * use the bmap result to do IO directly to the drive.
7677 *
7678 * the btrfs bmap call would return logical addresses that aren't
7679 * suitable for IO and they also will change frequently as COW
7680 * operations happen.  So, swapfile + btrfs == corruption.
7681 *
7682 * For now we're avoiding this by dropping bmap.
7683 */
7684static const struct address_space_operations btrfs_aops = {
7685        .readpage       = btrfs_readpage,
7686        .writepage      = btrfs_writepage,
7687        .writepages     = btrfs_writepages,
7688        .readpages      = btrfs_readpages,
7689        .direct_IO      = btrfs_direct_IO,
7690        .invalidatepage = btrfs_invalidatepage,
7691        .releasepage    = btrfs_releasepage,
7692        .set_page_dirty = btrfs_set_page_dirty,
7693        .error_remove_page = generic_error_remove_page,
7694};
7695
7696static const struct address_space_operations btrfs_symlink_aops = {
7697        .readpage       = btrfs_readpage,
7698        .writepage      = btrfs_writepage,
7699        .invalidatepage = btrfs_invalidatepage,
7700        .releasepage    = btrfs_releasepage,
7701};
7702
7703static const struct inode_operations btrfs_file_inode_operations = {
7704        .getattr        = btrfs_getattr,
7705        .setattr        = btrfs_setattr,
7706        .setxattr       = btrfs_setxattr,
7707        .getxattr       = btrfs_getxattr,
7708        .listxattr      = btrfs_listxattr,
7709        .removexattr    = btrfs_removexattr,
7710        .permission     = btrfs_permission,
7711        .fiemap         = btrfs_fiemap,
7712        .get_acl        = btrfs_get_acl,
7713        .update_time    = btrfs_update_time,
7714};
7715static const struct inode_operations btrfs_special_inode_operations = {
7716        .getattr        = btrfs_getattr,
7717        .setattr        = btrfs_setattr,
7718        .permission     = btrfs_permission,
7719        .setxattr       = btrfs_setxattr,
7720        .getxattr       = btrfs_getxattr,
7721        .listxattr      = btrfs_listxattr,
7722        .removexattr    = btrfs_removexattr,
7723        .get_acl        = btrfs_get_acl,
7724        .update_time    = btrfs_update_time,
7725};
7726static const struct inode_operations btrfs_symlink_inode_operations = {
7727        .readlink       = generic_readlink,
7728        .follow_link    = page_follow_link_light,
7729        .put_link       = page_put_link,
7730        .getattr        = btrfs_getattr,
7731        .setattr        = btrfs_setattr,
7732        .permission     = btrfs_permission,
7733        .setxattr       = btrfs_setxattr,
7734        .getxattr       = btrfs_getxattr,
7735        .listxattr      = btrfs_listxattr,
7736        .removexattr    = btrfs_removexattr,
7737        .get_acl        = btrfs_get_acl,
7738        .update_time    = btrfs_update_time,
7739};
7740
7741const struct dentry_operations btrfs_dentry_operations = {
7742        .d_delete       = btrfs_dentry_delete,
7743        .d_release      = btrfs_dentry_release,
7744};
7745