1#ifndef _LINUX_JIFFIES_H 2#define _LINUX_JIFFIES_H 3 4#include <linux/math64.h> 5#include <linux/kernel.h> 6#include <linux/types.h> 7#include <linux/time.h> 8#include <linux/timex.h> 9#include <asm/param.h> /* for HZ */ 10 11/* 12 * The following defines establish the engineering parameters of the PLL 13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 16 * nearest power of two in order to avoid hardware multiply operations. 17 */ 18#if HZ >= 12 && HZ < 24 19# define SHIFT_HZ 4 20#elif HZ >= 24 && HZ < 48 21# define SHIFT_HZ 5 22#elif HZ >= 48 && HZ < 96 23# define SHIFT_HZ 6 24#elif HZ >= 96 && HZ < 192 25# define SHIFT_HZ 7 26#elif HZ >= 192 && HZ < 384 27# define SHIFT_HZ 8 28#elif HZ >= 384 && HZ < 768 29# define SHIFT_HZ 9 30#elif HZ >= 768 && HZ < 1536 31# define SHIFT_HZ 10 32#elif HZ >= 1536 && HZ < 3072 33# define SHIFT_HZ 11 34#elif HZ >= 3072 && HZ < 6144 35# define SHIFT_HZ 12 36#elif HZ >= 6144 && HZ < 12288 37# define SHIFT_HZ 13 38#else 39# error Invalid value of HZ. 40#endif 41 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 43 * improve accuracy by shifting LSH bits, hence calculating: 44 * (NOM << LSH) / DEN 45 * This however means trouble for large NOM, because (NOM << LSH) may no 46 * longer fit in 32 bits. The following way of calculating this gives us 47 * some slack, under the following conditions: 48 * - (NOM / DEN) fits in (32 - LSH) bits. 49 * - (NOM % DEN) fits in (32 - LSH) bits. 50 */ 51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 53 54#ifdef CLOCK_TICK_RATE 55/* LATCH is used in the interval timer and ftape setup. */ 56# define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 57 58/* 59 * HZ is the requested value. However the CLOCK_TICK_RATE may not allow 60 * for exactly HZ. So SHIFTED_HZ is high res HZ ("<< 8" is for accuracy) 61 */ 62# define SHIFTED_HZ (SH_DIV(CLOCK_TICK_RATE, LATCH, 8)) 63#else 64# define SHIFTED_HZ (HZ << 8) 65#endif 66 67/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 68#define TICK_NSEC (SH_DIV(1000000UL * 1000, SHIFTED_HZ, 8)) 69 70/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 71#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 72 73/* 74 * TICK_USEC_TO_NSEC is the time between ticks in nsec assuming SHIFTED_HZ and 75 * a value TUSEC for TICK_USEC (can be set bij adjtimex) 76 */ 77#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV(TUSEC * USER_HZ * 1000, SHIFTED_HZ, 8)) 78 79/* some arch's have a small-data section that can be accessed register-relative 80 * but that can only take up to, say, 4-byte variables. jiffies being part of 81 * an 8-byte variable may not be correctly accessed unless we force the issue 82 */ 83#define __jiffy_data __attribute__((section(".data"))) 84 85/* 86 * The 64-bit value is not atomic - you MUST NOT read it 87 * without sampling the sequence number in xtime_lock. 88 * get_jiffies_64() will do this for you as appropriate. 89 */ 90extern u64 __jiffy_data jiffies_64; 91extern unsigned long volatile __jiffy_data jiffies; 92 93#if (BITS_PER_LONG < 64) 94u64 get_jiffies_64(void); 95#else 96static inline u64 get_jiffies_64(void) 97{ 98 return (u64)jiffies; 99} 100#endif 101 102/* 103 * These inlines deal with timer wrapping correctly. You are 104 * strongly encouraged to use them 105 * 1. Because people otherwise forget 106 * 2. Because if the timer wrap changes in future you won't have to 107 * alter your driver code. 108 * 109 * time_after(a,b) returns true if the time a is after time b. 110 * 111 * Do this with "<0" and ">=0" to only test the sign of the result. A 112 * good compiler would generate better code (and a really good compiler 113 * wouldn't care). Gcc is currently neither. 114 */ 115#define time_after(a,b) \ 116 (typecheck(unsigned long, a) && \ 117 typecheck(unsigned long, b) && \ 118 ((long)(b) - (long)(a) < 0)) 119#define time_before(a,b) time_after(b,a) 120 121#define time_after_eq(a,b) \ 122 (typecheck(unsigned long, a) && \ 123 typecheck(unsigned long, b) && \ 124 ((long)(a) - (long)(b) >= 0)) 125#define time_before_eq(a,b) time_after_eq(b,a) 126 127/* 128 * Calculate whether a is in the range of [b, c]. 129 */ 130#define time_in_range(a,b,c) \ 131 (time_after_eq(a,b) && \ 132 time_before_eq(a,c)) 133 134/* 135 * Calculate whether a is in the range of [b, c). 136 */ 137#define time_in_range_open(a,b,c) \ 138 (time_after_eq(a,b) && \ 139 time_before(a,c)) 140 141/* Same as above, but does so with platform independent 64bit types. 142 * These must be used when utilizing jiffies_64 (i.e. return value of 143 * get_jiffies_64() */ 144#define time_after64(a,b) \ 145 (typecheck(__u64, a) && \ 146 typecheck(__u64, b) && \ 147 ((__s64)(b) - (__s64)(a) < 0)) 148#define time_before64(a,b) time_after64(b,a) 149 150#define time_after_eq64(a,b) \ 151 (typecheck(__u64, a) && \ 152 typecheck(__u64, b) && \ 153 ((__s64)(a) - (__s64)(b) >= 0)) 154#define time_before_eq64(a,b) time_after_eq64(b,a) 155 156/* 157 * These four macros compare jiffies and 'a' for convenience. 158 */ 159 160/* time_is_before_jiffies(a) return true if a is before jiffies */ 161#define time_is_before_jiffies(a) time_after(jiffies, a) 162 163/* time_is_after_jiffies(a) return true if a is after jiffies */ 164#define time_is_after_jiffies(a) time_before(jiffies, a) 165 166/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 167#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 168 169/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 170#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 171 172/* 173 * Have the 32 bit jiffies value wrap 5 minutes after boot 174 * so jiffies wrap bugs show up earlier. 175 */ 176#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 177 178/* 179 * Change timeval to jiffies, trying to avoid the 180 * most obvious overflows.. 181 * 182 * And some not so obvious. 183 * 184 * Note that we don't want to return LONG_MAX, because 185 * for various timeout reasons we often end up having 186 * to wait "jiffies+1" in order to guarantee that we wait 187 * at _least_ "jiffies" - so "jiffies+1" had better still 188 * be positive. 189 */ 190#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 191 192extern unsigned long preset_lpj; 193 194/* 195 * We want to do realistic conversions of time so we need to use the same 196 * values the update wall clock code uses as the jiffies size. This value 197 * is: TICK_NSEC (which is defined in timex.h). This 198 * is a constant and is in nanoseconds. We will use scaled math 199 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 200 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 201 * constants and so are computed at compile time. SHIFT_HZ (computed in 202 * timex.h) adjusts the scaling for different HZ values. 203 204 * Scaled math??? What is that? 205 * 206 * Scaled math is a way to do integer math on values that would, 207 * otherwise, either overflow, underflow, or cause undesired div 208 * instructions to appear in the execution path. In short, we "scale" 209 * up the operands so they take more bits (more precision, less 210 * underflow), do the desired operation and then "scale" the result back 211 * by the same amount. If we do the scaling by shifting we avoid the 212 * costly mpy and the dastardly div instructions. 213 214 * Suppose, for example, we want to convert from seconds to jiffies 215 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 216 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 217 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 218 * might calculate at compile time, however, the result will only have 219 * about 3-4 bits of precision (less for smaller values of HZ). 220 * 221 * So, we scale as follows: 222 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 223 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 224 * Then we make SCALE a power of two so: 225 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 226 * Now we define: 227 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 228 * jiff = (sec * SEC_CONV) >> SCALE; 229 * 230 * Often the math we use will expand beyond 32-bits so we tell C how to 231 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 232 * which should take the result back to 32-bits. We want this expansion 233 * to capture as much precision as possible. At the same time we don't 234 * want to overflow so we pick the SCALE to avoid this. In this file, 235 * that means using a different scale for each range of HZ values (as 236 * defined in timex.h). 237 * 238 * For those who want to know, gcc will give a 64-bit result from a "*" 239 * operator if the result is a long long AND at least one of the 240 * operands is cast to long long (usually just prior to the "*" so as 241 * not to confuse it into thinking it really has a 64-bit operand, 242 * which, buy the way, it can do, but it takes more code and at least 2 243 * mpys). 244 245 * We also need to be aware that one second in nanoseconds is only a 246 * couple of bits away from overflowing a 32-bit word, so we MUST use 247 * 64-bits to get the full range time in nanoseconds. 248 249 */ 250 251/* 252 * Here are the scales we will use. One for seconds, nanoseconds and 253 * microseconds. 254 * 255 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 256 * check if the sign bit is set. If not, we bump the shift count by 1. 257 * (Gets an extra bit of precision where we can use it.) 258 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 259 * Haven't tested others. 260 261 * Limits of cpp (for #if expressions) only long (no long long), but 262 * then we only need the most signicant bit. 263 */ 264 265#define SEC_JIFFIE_SC (31 - SHIFT_HZ) 266#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 267#undef SEC_JIFFIE_SC 268#define SEC_JIFFIE_SC (32 - SHIFT_HZ) 269#endif 270#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 271#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) 272#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 273 TICK_NSEC -1) / (u64)TICK_NSEC)) 274 275#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 276 TICK_NSEC -1) / (u64)TICK_NSEC)) 277#define USEC_CONVERSION \ 278 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ 279 TICK_NSEC -1) / (u64)TICK_NSEC)) 280/* 281 * USEC_ROUND is used in the timeval to jiffie conversion. See there 282 * for more details. It is the scaled resolution rounding value. Note 283 * that it is a 64-bit value. Since, when it is applied, we are already 284 * in jiffies (albit scaled), it is nothing but the bits we will shift 285 * off. 286 */ 287#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) 288/* 289 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 290 * into seconds. The 64-bit case will overflow if we are not careful, 291 * so use the messy SH_DIV macro to do it. Still all constants. 292 */ 293#if BITS_PER_LONG < 64 294# define MAX_SEC_IN_JIFFIES \ 295 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 296#else /* take care of overflow on 64 bits machines */ 297# define MAX_SEC_IN_JIFFIES \ 298 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 299 300#endif 301 302/* 303 * Convert various time units to each other: 304 */ 305extern unsigned int jiffies_to_msecs(const unsigned long j); 306extern unsigned int jiffies_to_usecs(const unsigned long j); 307extern unsigned long msecs_to_jiffies(const unsigned int m); 308extern unsigned long usecs_to_jiffies(const unsigned int u); 309extern unsigned long timespec_to_jiffies(const struct timespec *value); 310extern void jiffies_to_timespec(const unsigned long jiffies, 311 struct timespec *value); 312extern unsigned long timeval_to_jiffies(const struct timeval *value); 313extern void jiffies_to_timeval(const unsigned long jiffies, 314 struct timeval *value); 315extern clock_t jiffies_to_clock_t(unsigned long x); 316extern unsigned long clock_t_to_jiffies(unsigned long x); 317extern u64 jiffies_64_to_clock_t(u64 x); 318extern u64 nsec_to_clock_t(u64 x); 319extern u64 nsecs_to_jiffies64(u64 n); 320extern unsigned long nsecs_to_jiffies(u64 n); 321 322#define TIMESTAMP_SIZE 30 323 324#endif 325