linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
  70#include <linux/compat.h>
  71
  72#include "audit.h"
  73
  74/* flags stating the success for a syscall */
  75#define AUDITSC_INVALID 0
  76#define AUDITSC_SUCCESS 1
  77#define AUDITSC_FAILURE 2
  78
  79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  80 * for saving names from getname().  If we get more names we will allocate
  81 * a name dynamically and also add those to the list anchored by names_list. */
  82#define AUDIT_NAMES     5
  83
  84/* Indicates that audit should log the full pathname. */
  85#define AUDIT_NAME_FULL -1
  86
  87/* no execve audit message should be longer than this (userspace limits) */
  88#define MAX_EXECVE_AUDIT_LEN 7500
  89
  90/* number of audit rules */
  91int audit_n_rules;
  92
  93/* determines whether we collect data for signals sent */
  94int audit_signals;
  95
  96struct audit_cap_data {
  97        kernel_cap_t            permitted;
  98        kernel_cap_t            inheritable;
  99        union {
 100                unsigned int    fE;             /* effective bit of a file capability */
 101                kernel_cap_t    effective;      /* effective set of a process */
 102        };
 103};
 104
 105/* When fs/namei.c:getname() is called, we store the pointer in name and
 106 * we don't let putname() free it (instead we free all of the saved
 107 * pointers at syscall exit time).
 108 *
 109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 110struct audit_names {
 111        struct list_head list;          /* audit_context->names_list */
 112        const char      *name;
 113        unsigned long   ino;
 114        dev_t           dev;
 115        umode_t         mode;
 116        uid_t           uid;
 117        gid_t           gid;
 118        dev_t           rdev;
 119        u32             osid;
 120        struct audit_cap_data fcap;
 121        unsigned int    fcap_ver;
 122        int             name_len;       /* number of name's characters to log */
 123        bool            name_put;       /* call __putname() for this name */
 124        /*
 125         * This was an allocated audit_names and not from the array of
 126         * names allocated in the task audit context.  Thus this name
 127         * should be freed on syscall exit
 128         */
 129        bool            should_free;
 130};
 131
 132struct audit_aux_data {
 133        struct audit_aux_data   *next;
 134        int                     type;
 135};
 136
 137#define AUDIT_AUX_IPCPERM       0
 138
 139/* Number of target pids per aux struct. */
 140#define AUDIT_AUX_PIDS  16
 141
 142struct audit_aux_data_execve {
 143        struct audit_aux_data   d;
 144        int argc;
 145        int envc;
 146        struct mm_struct *mm;
 147};
 148
 149struct audit_aux_data_pids {
 150        struct audit_aux_data   d;
 151        pid_t                   target_pid[AUDIT_AUX_PIDS];
 152        uid_t                   target_auid[AUDIT_AUX_PIDS];
 153        uid_t                   target_uid[AUDIT_AUX_PIDS];
 154        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 155        u32                     target_sid[AUDIT_AUX_PIDS];
 156        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 157        int                     pid_count;
 158};
 159
 160struct audit_aux_data_bprm_fcaps {
 161        struct audit_aux_data   d;
 162        struct audit_cap_data   fcap;
 163        unsigned int            fcap_ver;
 164        struct audit_cap_data   old_pcap;
 165        struct audit_cap_data   new_pcap;
 166};
 167
 168struct audit_aux_data_capset {
 169        struct audit_aux_data   d;
 170        pid_t                   pid;
 171        struct audit_cap_data   cap;
 172};
 173
 174struct audit_tree_refs {
 175        struct audit_tree_refs *next;
 176        struct audit_chunk *c[31];
 177};
 178
 179/* The per-task audit context. */
 180struct audit_context {
 181        int                 dummy;      /* must be the first element */
 182        int                 in_syscall; /* 1 if task is in a syscall */
 183        enum audit_state    state, current_state;
 184        unsigned int        serial;     /* serial number for record */
 185        int                 major;      /* syscall number */
 186        struct timespec     ctime;      /* time of syscall entry */
 187        unsigned long       argv[4];    /* syscall arguments */
 188        long                return_code;/* syscall return code */
 189        u64                 prio;
 190        int                 return_valid; /* return code is valid */
 191        /*
 192         * The names_list is the list of all audit_names collected during this
 193         * syscall.  The first AUDIT_NAMES entries in the names_list will
 194         * actually be from the preallocated_names array for performance
 195         * reasons.  Except during allocation they should never be referenced
 196         * through the preallocated_names array and should only be found/used
 197         * by running the names_list.
 198         */
 199        struct audit_names  preallocated_names[AUDIT_NAMES];
 200        int                 name_count; /* total records in names_list */
 201        struct list_head    names_list; /* anchor for struct audit_names->list */
 202        char *              filterkey;  /* key for rule that triggered record */
 203        struct path         pwd;
 204        struct audit_context *previous; /* For nested syscalls */
 205        struct audit_aux_data *aux;
 206        struct audit_aux_data *aux_pids;
 207        struct sockaddr_storage *sockaddr;
 208        size_t sockaddr_len;
 209                                /* Save things to print about task_struct */
 210        pid_t               pid, ppid;
 211        uid_t               uid, euid, suid, fsuid;
 212        gid_t               gid, egid, sgid, fsgid;
 213        unsigned long       personality;
 214        int                 arch;
 215
 216        pid_t               target_pid;
 217        uid_t               target_auid;
 218        uid_t               target_uid;
 219        unsigned int        target_sessionid;
 220        u32                 target_sid;
 221        char                target_comm[TASK_COMM_LEN];
 222
 223        struct audit_tree_refs *trees, *first_trees;
 224        struct list_head killed_trees;
 225        int tree_count;
 226
 227        int type;
 228        union {
 229                struct {
 230                        int nargs;
 231                        long args[6];
 232                } socketcall;
 233                struct {
 234                        uid_t                   uid;
 235                        gid_t                   gid;
 236                        umode_t                 mode;
 237                        u32                     osid;
 238                        int                     has_perm;
 239                        uid_t                   perm_uid;
 240                        gid_t                   perm_gid;
 241                        umode_t                 perm_mode;
 242                        unsigned long           qbytes;
 243                } ipc;
 244                struct {
 245                        mqd_t                   mqdes;
 246                        struct mq_attr          mqstat;
 247                } mq_getsetattr;
 248                struct {
 249                        mqd_t                   mqdes;
 250                        int                     sigev_signo;
 251                } mq_notify;
 252                struct {
 253                        mqd_t                   mqdes;
 254                        size_t                  msg_len;
 255                        unsigned int            msg_prio;
 256                        struct timespec         abs_timeout;
 257                } mq_sendrecv;
 258                struct {
 259                        int                     oflag;
 260                        umode_t                 mode;
 261                        struct mq_attr          attr;
 262                } mq_open;
 263                struct {
 264                        pid_t                   pid;
 265                        struct audit_cap_data   cap;
 266                } capset;
 267                struct {
 268                        int                     fd;
 269                        int                     flags;
 270                } mmap;
 271        };
 272        int fds[2];
 273
 274#if AUDIT_DEBUG
 275        int                 put_count;
 276        int                 ino_count;
 277#endif
 278};
 279
 280static inline int open_arg(int flags, int mask)
 281{
 282        int n = ACC_MODE(flags);
 283        if (flags & (O_TRUNC | O_CREAT))
 284                n |= AUDIT_PERM_WRITE;
 285        return n & mask;
 286}
 287
 288static int audit_match_perm(struct audit_context *ctx, int mask)
 289{
 290        unsigned n;
 291        if (unlikely(!ctx))
 292                return 0;
 293        n = ctx->major;
 294
 295        switch (audit_classify_syscall(ctx->arch, n)) {
 296        case 0: /* native */
 297                if ((mask & AUDIT_PERM_WRITE) &&
 298                     audit_match_class(AUDIT_CLASS_WRITE, n))
 299                        return 1;
 300                if ((mask & AUDIT_PERM_READ) &&
 301                     audit_match_class(AUDIT_CLASS_READ, n))
 302                        return 1;
 303                if ((mask & AUDIT_PERM_ATTR) &&
 304                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 305                        return 1;
 306                return 0;
 307        case 1: /* 32bit on biarch */
 308                if ((mask & AUDIT_PERM_WRITE) &&
 309                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 310                        return 1;
 311                if ((mask & AUDIT_PERM_READ) &&
 312                     audit_match_class(AUDIT_CLASS_READ_32, n))
 313                        return 1;
 314                if ((mask & AUDIT_PERM_ATTR) &&
 315                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 316                        return 1;
 317                return 0;
 318        case 2: /* open */
 319                return mask & ACC_MODE(ctx->argv[1]);
 320        case 3: /* openat */
 321                return mask & ACC_MODE(ctx->argv[2]);
 322        case 4: /* socketcall */
 323                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 324        case 5: /* execve */
 325                return mask & AUDIT_PERM_EXEC;
 326        default:
 327                return 0;
 328        }
 329}
 330
 331static int audit_match_filetype(struct audit_context *ctx, int val)
 332{
 333        struct audit_names *n;
 334        umode_t mode = (umode_t)val;
 335
 336        if (unlikely(!ctx))
 337                return 0;
 338
 339        list_for_each_entry(n, &ctx->names_list, list) {
 340                if ((n->ino != -1) &&
 341                    ((n->mode & S_IFMT) == mode))
 342                        return 1;
 343        }
 344
 345        return 0;
 346}
 347
 348/*
 349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 350 * ->first_trees points to its beginning, ->trees - to the current end of data.
 351 * ->tree_count is the number of free entries in array pointed to by ->trees.
 352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 353 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 354 * it's going to remain 1-element for almost any setup) until we free context itself.
 355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 356 */
 357
 358#ifdef CONFIG_AUDIT_TREE
 359static void audit_set_auditable(struct audit_context *ctx)
 360{
 361        if (!ctx->prio) {
 362                ctx->prio = 1;
 363                ctx->current_state = AUDIT_RECORD_CONTEXT;
 364        }
 365}
 366
 367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 368{
 369        struct audit_tree_refs *p = ctx->trees;
 370        int left = ctx->tree_count;
 371        if (likely(left)) {
 372                p->c[--left] = chunk;
 373                ctx->tree_count = left;
 374                return 1;
 375        }
 376        if (!p)
 377                return 0;
 378        p = p->next;
 379        if (p) {
 380                p->c[30] = chunk;
 381                ctx->trees = p;
 382                ctx->tree_count = 30;
 383                return 1;
 384        }
 385        return 0;
 386}
 387
 388static int grow_tree_refs(struct audit_context *ctx)
 389{
 390        struct audit_tree_refs *p = ctx->trees;
 391        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 392        if (!ctx->trees) {
 393                ctx->trees = p;
 394                return 0;
 395        }
 396        if (p)
 397                p->next = ctx->trees;
 398        else
 399                ctx->first_trees = ctx->trees;
 400        ctx->tree_count = 31;
 401        return 1;
 402}
 403#endif
 404
 405static void unroll_tree_refs(struct audit_context *ctx,
 406                      struct audit_tree_refs *p, int count)
 407{
 408#ifdef CONFIG_AUDIT_TREE
 409        struct audit_tree_refs *q;
 410        int n;
 411        if (!p) {
 412                /* we started with empty chain */
 413                p = ctx->first_trees;
 414                count = 31;
 415                /* if the very first allocation has failed, nothing to do */
 416                if (!p)
 417                        return;
 418        }
 419        n = count;
 420        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 421                while (n--) {
 422                        audit_put_chunk(q->c[n]);
 423                        q->c[n] = NULL;
 424                }
 425        }
 426        while (n-- > ctx->tree_count) {
 427                audit_put_chunk(q->c[n]);
 428                q->c[n] = NULL;
 429        }
 430        ctx->trees = p;
 431        ctx->tree_count = count;
 432#endif
 433}
 434
 435static void free_tree_refs(struct audit_context *ctx)
 436{
 437        struct audit_tree_refs *p, *q;
 438        for (p = ctx->first_trees; p; p = q) {
 439                q = p->next;
 440                kfree(p);
 441        }
 442}
 443
 444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 445{
 446#ifdef CONFIG_AUDIT_TREE
 447        struct audit_tree_refs *p;
 448        int n;
 449        if (!tree)
 450                return 0;
 451        /* full ones */
 452        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 453                for (n = 0; n < 31; n++)
 454                        if (audit_tree_match(p->c[n], tree))
 455                                return 1;
 456        }
 457        /* partial */
 458        if (p) {
 459                for (n = ctx->tree_count; n < 31; n++)
 460                        if (audit_tree_match(p->c[n], tree))
 461                                return 1;
 462        }
 463#endif
 464        return 0;
 465}
 466
 467static int audit_compare_id(uid_t uid1,
 468                            struct audit_names *name,
 469                            unsigned long name_offset,
 470                            struct audit_field *f,
 471                            struct audit_context *ctx)
 472{
 473        struct audit_names *n;
 474        unsigned long addr;
 475        uid_t uid2;
 476        int rc;
 477
 478        BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
 479
 480        if (name) {
 481                addr = (unsigned long)name;
 482                addr += name_offset;
 483
 484                uid2 = *(uid_t *)addr;
 485                rc = audit_comparator(uid1, f->op, uid2);
 486                if (rc)
 487                        return rc;
 488        }
 489
 490        if (ctx) {
 491                list_for_each_entry(n, &ctx->names_list, list) {
 492                        addr = (unsigned long)n;
 493                        addr += name_offset;
 494
 495                        uid2 = *(uid_t *)addr;
 496
 497                        rc = audit_comparator(uid1, f->op, uid2);
 498                        if (rc)
 499                                return rc;
 500                }
 501        }
 502        return 0;
 503}
 504
 505static int audit_field_compare(struct task_struct *tsk,
 506                               const struct cred *cred,
 507                               struct audit_field *f,
 508                               struct audit_context *ctx,
 509                               struct audit_names *name)
 510{
 511        switch (f->val) {
 512        /* process to file object comparisons */
 513        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 514                return audit_compare_id(cred->uid,
 515                                        name, offsetof(struct audit_names, uid),
 516                                        f, ctx);
 517        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 518                return audit_compare_id(cred->gid,
 519                                        name, offsetof(struct audit_names, gid),
 520                                        f, ctx);
 521        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 522                return audit_compare_id(cred->euid,
 523                                        name, offsetof(struct audit_names, uid),
 524                                        f, ctx);
 525        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 526                return audit_compare_id(cred->egid,
 527                                        name, offsetof(struct audit_names, gid),
 528                                        f, ctx);
 529        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 530                return audit_compare_id(tsk->loginuid,
 531                                        name, offsetof(struct audit_names, uid),
 532                                        f, ctx);
 533        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 534                return audit_compare_id(cred->suid,
 535                                        name, offsetof(struct audit_names, uid),
 536                                        f, ctx);
 537        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 538                return audit_compare_id(cred->sgid,
 539                                        name, offsetof(struct audit_names, gid),
 540                                        f, ctx);
 541        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 542                return audit_compare_id(cred->fsuid,
 543                                        name, offsetof(struct audit_names, uid),
 544                                        f, ctx);
 545        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 546                return audit_compare_id(cred->fsgid,
 547                                        name, offsetof(struct audit_names, gid),
 548                                        f, ctx);
 549        /* uid comparisons */
 550        case AUDIT_COMPARE_UID_TO_AUID:
 551                return audit_comparator(cred->uid, f->op, tsk->loginuid);
 552        case AUDIT_COMPARE_UID_TO_EUID:
 553                return audit_comparator(cred->uid, f->op, cred->euid);
 554        case AUDIT_COMPARE_UID_TO_SUID:
 555                return audit_comparator(cred->uid, f->op, cred->suid);
 556        case AUDIT_COMPARE_UID_TO_FSUID:
 557                return audit_comparator(cred->uid, f->op, cred->fsuid);
 558        /* auid comparisons */
 559        case AUDIT_COMPARE_AUID_TO_EUID:
 560                return audit_comparator(tsk->loginuid, f->op, cred->euid);
 561        case AUDIT_COMPARE_AUID_TO_SUID:
 562                return audit_comparator(tsk->loginuid, f->op, cred->suid);
 563        case AUDIT_COMPARE_AUID_TO_FSUID:
 564                return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
 565        /* euid comparisons */
 566        case AUDIT_COMPARE_EUID_TO_SUID:
 567                return audit_comparator(cred->euid, f->op, cred->suid);
 568        case AUDIT_COMPARE_EUID_TO_FSUID:
 569                return audit_comparator(cred->euid, f->op, cred->fsuid);
 570        /* suid comparisons */
 571        case AUDIT_COMPARE_SUID_TO_FSUID:
 572                return audit_comparator(cred->suid, f->op, cred->fsuid);
 573        /* gid comparisons */
 574        case AUDIT_COMPARE_GID_TO_EGID:
 575                return audit_comparator(cred->gid, f->op, cred->egid);
 576        case AUDIT_COMPARE_GID_TO_SGID:
 577                return audit_comparator(cred->gid, f->op, cred->sgid);
 578        case AUDIT_COMPARE_GID_TO_FSGID:
 579                return audit_comparator(cred->gid, f->op, cred->fsgid);
 580        /* egid comparisons */
 581        case AUDIT_COMPARE_EGID_TO_SGID:
 582                return audit_comparator(cred->egid, f->op, cred->sgid);
 583        case AUDIT_COMPARE_EGID_TO_FSGID:
 584                return audit_comparator(cred->egid, f->op, cred->fsgid);
 585        /* sgid comparison */
 586        case AUDIT_COMPARE_SGID_TO_FSGID:
 587                return audit_comparator(cred->sgid, f->op, cred->fsgid);
 588        default:
 589                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 590                return 0;
 591        }
 592        return 0;
 593}
 594
 595/* Determine if any context name data matches a rule's watch data */
 596/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 597 * otherwise.
 598 *
 599 * If task_creation is true, this is an explicit indication that we are
 600 * filtering a task rule at task creation time.  This and tsk == current are
 601 * the only situations where tsk->cred may be accessed without an rcu read lock.
 602 */
 603static int audit_filter_rules(struct task_struct *tsk,
 604                              struct audit_krule *rule,
 605                              struct audit_context *ctx,
 606                              struct audit_names *name,
 607                              enum audit_state *state,
 608                              bool task_creation)
 609{
 610        const struct cred *cred;
 611        int i, need_sid = 1;
 612        u32 sid;
 613
 614        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 615
 616        for (i = 0; i < rule->field_count; i++) {
 617                struct audit_field *f = &rule->fields[i];
 618                struct audit_names *n;
 619                int result = 0;
 620
 621                switch (f->type) {
 622                case AUDIT_PID:
 623                        result = audit_comparator(tsk->pid, f->op, f->val);
 624                        break;
 625                case AUDIT_PPID:
 626                        if (ctx) {
 627                                if (!ctx->ppid)
 628                                        ctx->ppid = sys_getppid();
 629                                result = audit_comparator(ctx->ppid, f->op, f->val);
 630                        }
 631                        break;
 632                case AUDIT_UID:
 633                        result = audit_comparator(cred->uid, f->op, f->val);
 634                        break;
 635                case AUDIT_EUID:
 636                        result = audit_comparator(cred->euid, f->op, f->val);
 637                        break;
 638                case AUDIT_SUID:
 639                        result = audit_comparator(cred->suid, f->op, f->val);
 640                        break;
 641                case AUDIT_FSUID:
 642                        result = audit_comparator(cred->fsuid, f->op, f->val);
 643                        break;
 644                case AUDIT_GID:
 645                        result = audit_comparator(cred->gid, f->op, f->val);
 646                        break;
 647                case AUDIT_EGID:
 648                        result = audit_comparator(cred->egid, f->op, f->val);
 649                        break;
 650                case AUDIT_SGID:
 651                        result = audit_comparator(cred->sgid, f->op, f->val);
 652                        break;
 653                case AUDIT_FSGID:
 654                        result = audit_comparator(cred->fsgid, f->op, f->val);
 655                        break;
 656                case AUDIT_PERS:
 657                        result = audit_comparator(tsk->personality, f->op, f->val);
 658                        break;
 659                case AUDIT_ARCH:
 660                        if (ctx)
 661                                result = audit_comparator(ctx->arch, f->op, f->val);
 662                        break;
 663
 664                case AUDIT_EXIT:
 665                        if (ctx && ctx->return_valid)
 666                                result = audit_comparator(ctx->return_code, f->op, f->val);
 667                        break;
 668                case AUDIT_SUCCESS:
 669                        if (ctx && ctx->return_valid) {
 670                                if (f->val)
 671                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 672                                else
 673                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 674                        }
 675                        break;
 676                case AUDIT_DEVMAJOR:
 677                        if (name) {
 678                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 679                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 680                                        ++result;
 681                        } else if (ctx) {
 682                                list_for_each_entry(n, &ctx->names_list, list) {
 683                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 684                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 685                                                ++result;
 686                                                break;
 687                                        }
 688                                }
 689                        }
 690                        break;
 691                case AUDIT_DEVMINOR:
 692                        if (name) {
 693                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 694                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 695                                        ++result;
 696                        } else if (ctx) {
 697                                list_for_each_entry(n, &ctx->names_list, list) {
 698                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 699                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 700                                                ++result;
 701                                                break;
 702                                        }
 703                                }
 704                        }
 705                        break;
 706                case AUDIT_INODE:
 707                        if (name)
 708                                result = (name->ino == f->val);
 709                        else if (ctx) {
 710                                list_for_each_entry(n, &ctx->names_list, list) {
 711                                        if (audit_comparator(n->ino, f->op, f->val)) {
 712                                                ++result;
 713                                                break;
 714                                        }
 715                                }
 716                        }
 717                        break;
 718                case AUDIT_OBJ_UID:
 719                        if (name) {
 720                                result = audit_comparator(name->uid, f->op, f->val);
 721                        } else if (ctx) {
 722                                list_for_each_entry(n, &ctx->names_list, list) {
 723                                        if (audit_comparator(n->uid, f->op, f->val)) {
 724                                                ++result;
 725                                                break;
 726                                        }
 727                                }
 728                        }
 729                        break;
 730                case AUDIT_OBJ_GID:
 731                        if (name) {
 732                                result = audit_comparator(name->gid, f->op, f->val);
 733                        } else if (ctx) {
 734                                list_for_each_entry(n, &ctx->names_list, list) {
 735                                        if (audit_comparator(n->gid, f->op, f->val)) {
 736                                                ++result;
 737                                                break;
 738                                        }
 739                                }
 740                        }
 741                        break;
 742                case AUDIT_WATCH:
 743                        if (name)
 744                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 745                        break;
 746                case AUDIT_DIR:
 747                        if (ctx)
 748                                result = match_tree_refs(ctx, rule->tree);
 749                        break;
 750                case AUDIT_LOGINUID:
 751                        result = 0;
 752                        if (ctx)
 753                                result = audit_comparator(tsk->loginuid, f->op, f->val);
 754                        break;
 755                case AUDIT_SUBJ_USER:
 756                case AUDIT_SUBJ_ROLE:
 757                case AUDIT_SUBJ_TYPE:
 758                case AUDIT_SUBJ_SEN:
 759                case AUDIT_SUBJ_CLR:
 760                        /* NOTE: this may return negative values indicating
 761                           a temporary error.  We simply treat this as a
 762                           match for now to avoid losing information that
 763                           may be wanted.   An error message will also be
 764                           logged upon error */
 765                        if (f->lsm_rule) {
 766                                if (need_sid) {
 767                                        security_task_getsecid(tsk, &sid);
 768                                        need_sid = 0;
 769                                }
 770                                result = security_audit_rule_match(sid, f->type,
 771                                                                  f->op,
 772                                                                  f->lsm_rule,
 773                                                                  ctx);
 774                        }
 775                        break;
 776                case AUDIT_OBJ_USER:
 777                case AUDIT_OBJ_ROLE:
 778                case AUDIT_OBJ_TYPE:
 779                case AUDIT_OBJ_LEV_LOW:
 780                case AUDIT_OBJ_LEV_HIGH:
 781                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 782                           also applies here */
 783                        if (f->lsm_rule) {
 784                                /* Find files that match */
 785                                if (name) {
 786                                        result = security_audit_rule_match(
 787                                                   name->osid, f->type, f->op,
 788                                                   f->lsm_rule, ctx);
 789                                } else if (ctx) {
 790                                        list_for_each_entry(n, &ctx->names_list, list) {
 791                                                if (security_audit_rule_match(n->osid, f->type,
 792                                                                              f->op, f->lsm_rule,
 793                                                                              ctx)) {
 794                                                        ++result;
 795                                                        break;
 796                                                }
 797                                        }
 798                                }
 799                                /* Find ipc objects that match */
 800                                if (!ctx || ctx->type != AUDIT_IPC)
 801                                        break;
 802                                if (security_audit_rule_match(ctx->ipc.osid,
 803                                                              f->type, f->op,
 804                                                              f->lsm_rule, ctx))
 805                                        ++result;
 806                        }
 807                        break;
 808                case AUDIT_ARG0:
 809                case AUDIT_ARG1:
 810                case AUDIT_ARG2:
 811                case AUDIT_ARG3:
 812                        if (ctx)
 813                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 814                        break;
 815                case AUDIT_FILTERKEY:
 816                        /* ignore this field for filtering */
 817                        result = 1;
 818                        break;
 819                case AUDIT_PERM:
 820                        result = audit_match_perm(ctx, f->val);
 821                        break;
 822                case AUDIT_FILETYPE:
 823                        result = audit_match_filetype(ctx, f->val);
 824                        break;
 825                case AUDIT_FIELD_COMPARE:
 826                        result = audit_field_compare(tsk, cred, f, ctx, name);
 827                        break;
 828                }
 829                if (!result)
 830                        return 0;
 831        }
 832
 833        if (ctx) {
 834                if (rule->prio <= ctx->prio)
 835                        return 0;
 836                if (rule->filterkey) {
 837                        kfree(ctx->filterkey);
 838                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 839                }
 840                ctx->prio = rule->prio;
 841        }
 842        switch (rule->action) {
 843        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 844        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 845        }
 846        return 1;
 847}
 848
 849/* At process creation time, we can determine if system-call auditing is
 850 * completely disabled for this task.  Since we only have the task
 851 * structure at this point, we can only check uid and gid.
 852 */
 853static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 854{
 855        struct audit_entry *e;
 856        enum audit_state   state;
 857
 858        rcu_read_lock();
 859        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 860                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 861                                       &state, true)) {
 862                        if (state == AUDIT_RECORD_CONTEXT)
 863                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 864                        rcu_read_unlock();
 865                        return state;
 866                }
 867        }
 868        rcu_read_unlock();
 869        return AUDIT_BUILD_CONTEXT;
 870}
 871
 872/* At syscall entry and exit time, this filter is called if the
 873 * audit_state is not low enough that auditing cannot take place, but is
 874 * also not high enough that we already know we have to write an audit
 875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 876 */
 877static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 878                                             struct audit_context *ctx,
 879                                             struct list_head *list)
 880{
 881        struct audit_entry *e;
 882        enum audit_state state;
 883
 884        if (audit_pid && tsk->tgid == audit_pid)
 885                return AUDIT_DISABLED;
 886
 887        rcu_read_lock();
 888        if (!list_empty(list)) {
 889                int word = AUDIT_WORD(ctx->major);
 890                int bit  = AUDIT_BIT(ctx->major);
 891
 892                list_for_each_entry_rcu(e, list, list) {
 893                        if ((e->rule.mask[word] & bit) == bit &&
 894                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 895                                               &state, false)) {
 896                                rcu_read_unlock();
 897                                ctx->current_state = state;
 898                                return state;
 899                        }
 900                }
 901        }
 902        rcu_read_unlock();
 903        return AUDIT_BUILD_CONTEXT;
 904}
 905
 906/*
 907 * Given an audit_name check the inode hash table to see if they match.
 908 * Called holding the rcu read lock to protect the use of audit_inode_hash
 909 */
 910static int audit_filter_inode_name(struct task_struct *tsk,
 911                                   struct audit_names *n,
 912                                   struct audit_context *ctx) {
 913        int word, bit;
 914        int h = audit_hash_ino((u32)n->ino);
 915        struct list_head *list = &audit_inode_hash[h];
 916        struct audit_entry *e;
 917        enum audit_state state;
 918
 919        word = AUDIT_WORD(ctx->major);
 920        bit  = AUDIT_BIT(ctx->major);
 921
 922        if (list_empty(list))
 923                return 0;
 924
 925        list_for_each_entry_rcu(e, list, list) {
 926                if ((e->rule.mask[word] & bit) == bit &&
 927                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 928                        ctx->current_state = state;
 929                        return 1;
 930                }
 931        }
 932
 933        return 0;
 934}
 935
 936/* At syscall exit time, this filter is called if any audit_names have been
 937 * collected during syscall processing.  We only check rules in sublists at hash
 938 * buckets applicable to the inode numbers in audit_names.
 939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 940 */
 941void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 942{
 943        struct audit_names *n;
 944
 945        if (audit_pid && tsk->tgid == audit_pid)
 946                return;
 947
 948        rcu_read_lock();
 949
 950        list_for_each_entry(n, &ctx->names_list, list) {
 951                if (audit_filter_inode_name(tsk, n, ctx))
 952                        break;
 953        }
 954        rcu_read_unlock();
 955}
 956
 957static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 958                                                      int return_valid,
 959                                                      long return_code)
 960{
 961        struct audit_context *context = tsk->audit_context;
 962
 963        if (!context)
 964                return NULL;
 965        context->return_valid = return_valid;
 966
 967        /*
 968         * we need to fix up the return code in the audit logs if the actual
 969         * return codes are later going to be fixed up by the arch specific
 970         * signal handlers
 971         *
 972         * This is actually a test for:
 973         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 974         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 975         *
 976         * but is faster than a bunch of ||
 977         */
 978        if (unlikely(return_code <= -ERESTARTSYS) &&
 979            (return_code >= -ERESTART_RESTARTBLOCK) &&
 980            (return_code != -ENOIOCTLCMD))
 981                context->return_code = -EINTR;
 982        else
 983                context->return_code  = return_code;
 984
 985        if (context->in_syscall && !context->dummy) {
 986                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 987                audit_filter_inodes(tsk, context);
 988        }
 989
 990        tsk->audit_context = NULL;
 991        return context;
 992}
 993
 994static inline void audit_free_names(struct audit_context *context)
 995{
 996        struct audit_names *n, *next;
 997
 998#if AUDIT_DEBUG == 2
 999        if (context->put_count + context->ino_count != context->name_count) {
1000                printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001                       " name_count=%d put_count=%d"
1002                       " ino_count=%d [NOT freeing]\n",
1003                       __FILE__, __LINE__,
1004                       context->serial, context->major, context->in_syscall,
1005                       context->name_count, context->put_count,
1006                       context->ino_count);
1007                list_for_each_entry(n, &context->names_list, list) {
1008                        printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009                               n->name, n->name ?: "(null)");
1010                }
1011                dump_stack();
1012                return;
1013        }
1014#endif
1015#if AUDIT_DEBUG
1016        context->put_count  = 0;
1017        context->ino_count  = 0;
1018#endif
1019
1020        list_for_each_entry_safe(n, next, &context->names_list, list) {
1021                list_del(&n->list);
1022                if (n->name && n->name_put)
1023                        __putname(n->name);
1024                if (n->should_free)
1025                        kfree(n);
1026        }
1027        context->name_count = 0;
1028        path_put(&context->pwd);
1029        context->pwd.dentry = NULL;
1030        context->pwd.mnt = NULL;
1031}
1032
1033static inline void audit_free_aux(struct audit_context *context)
1034{
1035        struct audit_aux_data *aux;
1036
1037        while ((aux = context->aux)) {
1038                context->aux = aux->next;
1039                kfree(aux);
1040        }
1041        while ((aux = context->aux_pids)) {
1042                context->aux_pids = aux->next;
1043                kfree(aux);
1044        }
1045}
1046
1047static inline void audit_zero_context(struct audit_context *context,
1048                                      enum audit_state state)
1049{
1050        memset(context, 0, sizeof(*context));
1051        context->state      = state;
1052        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1053}
1054
1055static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056{
1057        struct audit_context *context;
1058
1059        if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060                return NULL;
1061        audit_zero_context(context, state);
1062        INIT_LIST_HEAD(&context->killed_trees);
1063        INIT_LIST_HEAD(&context->names_list);
1064        return context;
1065}
1066
1067/**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary.  Doing so turns on system call auditing for the
1073 * specified task.  This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076int audit_alloc(struct task_struct *tsk)
1077{
1078        struct audit_context *context;
1079        enum audit_state     state;
1080        char *key = NULL;
1081
1082        if (likely(!audit_ever_enabled))
1083                return 0; /* Return if not auditing. */
1084
1085        state = audit_filter_task(tsk, &key);
1086        if (state == AUDIT_DISABLED)
1087                return 0;
1088
1089        if (!(context = audit_alloc_context(state))) {
1090                kfree(key);
1091                audit_log_lost("out of memory in audit_alloc");
1092                return -ENOMEM;
1093        }
1094        context->filterkey = key;
1095
1096        tsk->audit_context  = context;
1097        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098        return 0;
1099}
1100
1101static inline void audit_free_context(struct audit_context *context)
1102{
1103        struct audit_context *previous;
1104        int                  count = 0;
1105
1106        do {
1107                previous = context->previous;
1108                if (previous || (count &&  count < 10)) {
1109                        ++count;
1110                        printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111                               " freeing multiple contexts (%d)\n",
1112                               context->serial, context->major,
1113                               context->name_count, count);
1114                }
1115                audit_free_names(context);
1116                unroll_tree_refs(context, NULL, 0);
1117                free_tree_refs(context);
1118                audit_free_aux(context);
1119                kfree(context->filterkey);
1120                kfree(context->sockaddr);
1121                kfree(context);
1122                context  = previous;
1123        } while (context);
1124        if (count >= 10)
1125                printk(KERN_ERR "audit: freed %d contexts\n", count);
1126}
1127
1128void audit_log_task_context(struct audit_buffer *ab)
1129{
1130        char *ctx = NULL;
1131        unsigned len;
1132        int error;
1133        u32 sid;
1134
1135        security_task_getsecid(current, &sid);
1136        if (!sid)
1137                return;
1138
1139        error = security_secid_to_secctx(sid, &ctx, &len);
1140        if (error) {
1141                if (error != -EINVAL)
1142                        goto error_path;
1143                return;
1144        }
1145
1146        audit_log_format(ab, " subj=%s", ctx);
1147        security_release_secctx(ctx, len);
1148        return;
1149
1150error_path:
1151        audit_panic("error in audit_log_task_context");
1152        return;
1153}
1154
1155EXPORT_SYMBOL(audit_log_task_context);
1156
1157static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158{
1159        char name[sizeof(tsk->comm)];
1160        struct mm_struct *mm = tsk->mm;
1161        struct vm_area_struct *vma;
1162
1163        /* tsk == current */
1164
1165        get_task_comm(name, tsk);
1166        audit_log_format(ab, " comm=");
1167        audit_log_untrustedstring(ab, name);
1168
1169        if (mm) {
1170                down_read(&mm->mmap_sem);
1171                vma = mm->mmap;
1172                while (vma) {
1173                        if ((vma->vm_flags & VM_EXECUTABLE) &&
1174                            vma->vm_file) {
1175                                audit_log_d_path(ab, " exe=",
1176                                                 &vma->vm_file->f_path);
1177                                break;
1178                        }
1179                        vma = vma->vm_next;
1180                }
1181                up_read(&mm->mmap_sem);
1182        }
1183        audit_log_task_context(ab);
1184}
1185
1186static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187                                 uid_t auid, uid_t uid, unsigned int sessionid,
1188                                 u32 sid, char *comm)
1189{
1190        struct audit_buffer *ab;
1191        char *ctx = NULL;
1192        u32 len;
1193        int rc = 0;
1194
1195        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196        if (!ab)
1197                return rc;
1198
1199        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200                         uid, sessionid);
1201        if (security_secid_to_secctx(sid, &ctx, &len)) {
1202                audit_log_format(ab, " obj=(none)");
1203                rc = 1;
1204        } else {
1205                audit_log_format(ab, " obj=%s", ctx);
1206                security_release_secctx(ctx, len);
1207        }
1208        audit_log_format(ab, " ocomm=");
1209        audit_log_untrustedstring(ab, comm);
1210        audit_log_end(ab);
1211
1212        return rc;
1213}
1214
1215/*
1216 * to_send and len_sent accounting are very loose estimates.  We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1219 *
1220 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message.  In one 7500 byte message we can log up to
1223 * about 1000 min size arguments.  That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 */
1226static int audit_log_single_execve_arg(struct audit_context *context,
1227                                        struct audit_buffer **ab,
1228                                        int arg_num,
1229                                        size_t *len_sent,
1230                                        const char __user *p,
1231                                        char *buf)
1232{
1233        char arg_num_len_buf[12];
1234        const char __user *tmp_p = p;
1235        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1236        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237        size_t len, len_left, to_send;
1238        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239        unsigned int i, has_cntl = 0, too_long = 0;
1240        int ret;
1241
1242        /* strnlen_user includes the null we don't want to send */
1243        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1244
1245        /*
1246         * We just created this mm, if we can't find the strings
1247         * we just copied into it something is _very_ wrong. Similar
1248         * for strings that are too long, we should not have created
1249         * any.
1250         */
1251        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252                WARN_ON(1);
1253                send_sig(SIGKILL, current, 0);
1254                return -1;
1255        }
1256
1257        /* walk the whole argument looking for non-ascii chars */
1258        do {
1259                if (len_left > MAX_EXECVE_AUDIT_LEN)
1260                        to_send = MAX_EXECVE_AUDIT_LEN;
1261                else
1262                        to_send = len_left;
1263                ret = copy_from_user(buf, tmp_p, to_send);
1264                /*
1265                 * There is no reason for this copy to be short. We just
1266                 * copied them here, and the mm hasn't been exposed to user-
1267                 * space yet.
1268                 */
1269                if (ret) {
1270                        WARN_ON(1);
1271                        send_sig(SIGKILL, current, 0);
1272                        return -1;
1273                }
1274                buf[to_send] = '\0';
1275                has_cntl = audit_string_contains_control(buf, to_send);
1276                if (has_cntl) {
1277                        /*
1278                         * hex messages get logged as 2 bytes, so we can only
1279                         * send half as much in each message
1280                         */
1281                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282                        break;
1283                }
1284                len_left -= to_send;
1285                tmp_p += to_send;
1286        } while (len_left > 0);
1287
1288        len_left = len;
1289
1290        if (len > max_execve_audit_len)
1291                too_long = 1;
1292
1293        /* rewalk the argument actually logging the message */
1294        for (i = 0; len_left > 0; i++) {
1295                int room_left;
1296
1297                if (len_left > max_execve_audit_len)
1298                        to_send = max_execve_audit_len;
1299                else
1300                        to_send = len_left;
1301
1302                /* do we have space left to send this argument in this ab? */
1303                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304                if (has_cntl)
1305                        room_left -= (to_send * 2);
1306                else
1307                        room_left -= to_send;
1308                if (room_left < 0) {
1309                        *len_sent = 0;
1310                        audit_log_end(*ab);
1311                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312                        if (!*ab)
1313                                return 0;
1314                }
1315
1316                /*
1317                 * first record needs to say how long the original string was
1318                 * so we can be sure nothing was lost.
1319                 */
1320                if ((i == 0) && (too_long))
1321                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322                                         has_cntl ? 2*len : len);
1323
1324                /*
1325                 * normally arguments are small enough to fit and we already
1326                 * filled buf above when we checked for control characters
1327                 * so don't bother with another copy_from_user
1328                 */
1329                if (len >= max_execve_audit_len)
1330                        ret = copy_from_user(buf, p, to_send);
1331                else
1332                        ret = 0;
1333                if (ret) {
1334                        WARN_ON(1);
1335                        send_sig(SIGKILL, current, 0);
1336                        return -1;
1337                }
1338                buf[to_send] = '\0';
1339
1340                /* actually log it */
1341                audit_log_format(*ab, " a%d", arg_num);
1342                if (too_long)
1343                        audit_log_format(*ab, "[%d]", i);
1344                audit_log_format(*ab, "=");
1345                if (has_cntl)
1346                        audit_log_n_hex(*ab, buf, to_send);
1347                else
1348                        audit_log_string(*ab, buf);
1349
1350                p += to_send;
1351                len_left -= to_send;
1352                *len_sent += arg_num_len;
1353                if (has_cntl)
1354                        *len_sent += to_send * 2;
1355                else
1356                        *len_sent += to_send;
1357        }
1358        /* include the null we didn't log */
1359        return len + 1;
1360}
1361
1362static void audit_log_execve_info(struct audit_context *context,
1363                                  struct audit_buffer **ab,
1364                                  struct audit_aux_data_execve *axi)
1365{
1366        int i, len;
1367        size_t len_sent = 0;
1368        const char __user *p;
1369        char *buf;
1370
1371        if (axi->mm != current->mm)
1372                return; /* execve failed, no additional info */
1373
1374        p = (const char __user *)axi->mm->arg_start;
1375
1376        audit_log_format(*ab, "argc=%d", axi->argc);
1377
1378        /*
1379         * we need some kernel buffer to hold the userspace args.  Just
1380         * allocate one big one rather than allocating one of the right size
1381         * for every single argument inside audit_log_single_execve_arg()
1382         * should be <8k allocation so should be pretty safe.
1383         */
1384        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385        if (!buf) {
1386                audit_panic("out of memory for argv string\n");
1387                return;
1388        }
1389
1390        for (i = 0; i < axi->argc; i++) {
1391                len = audit_log_single_execve_arg(context, ab, i,
1392                                                  &len_sent, p, buf);
1393                if (len <= 0)
1394                        break;
1395                p += len;
1396        }
1397        kfree(buf);
1398}
1399
1400static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401{
1402        int i;
1403
1404        audit_log_format(ab, " %s=", prefix);
1405        CAP_FOR_EACH_U32(i) {
1406                audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407        }
1408}
1409
1410static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411{
1412        kernel_cap_t *perm = &name->fcap.permitted;
1413        kernel_cap_t *inh = &name->fcap.inheritable;
1414        int log = 0;
1415
1416        if (!cap_isclear(*perm)) {
1417                audit_log_cap(ab, "cap_fp", perm);
1418                log = 1;
1419        }
1420        if (!cap_isclear(*inh)) {
1421                audit_log_cap(ab, "cap_fi", inh);
1422                log = 1;
1423        }
1424
1425        if (log)
1426                audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427}
1428
1429static void show_special(struct audit_context *context, int *call_panic)
1430{
1431        struct audit_buffer *ab;
1432        int i;
1433
1434        ab = audit_log_start(context, GFP_KERNEL, context->type);
1435        if (!ab)
1436                return;
1437
1438        switch (context->type) {
1439        case AUDIT_SOCKETCALL: {
1440                int nargs = context->socketcall.nargs;
1441                audit_log_format(ab, "nargs=%d", nargs);
1442                for (i = 0; i < nargs; i++)
1443                        audit_log_format(ab, " a%d=%lx", i,
1444                                context->socketcall.args[i]);
1445                break; }
1446        case AUDIT_IPC: {
1447                u32 osid = context->ipc.osid;
1448
1449                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450                         context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451                if (osid) {
1452                        char *ctx = NULL;
1453                        u32 len;
1454                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1455                                audit_log_format(ab, " osid=%u", osid);
1456                                *call_panic = 1;
1457                        } else {
1458                                audit_log_format(ab, " obj=%s", ctx);
1459                                security_release_secctx(ctx, len);
1460                        }
1461                }
1462                if (context->ipc.has_perm) {
1463                        audit_log_end(ab);
1464                        ab = audit_log_start(context, GFP_KERNEL,
1465                                             AUDIT_IPC_SET_PERM);
1466                        audit_log_format(ab,
1467                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468                                context->ipc.qbytes,
1469                                context->ipc.perm_uid,
1470                                context->ipc.perm_gid,
1471                                context->ipc.perm_mode);
1472                        if (!ab)
1473                                return;
1474                }
1475                break; }
1476        case AUDIT_MQ_OPEN: {
1477                audit_log_format(ab,
1478                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479                        "mq_msgsize=%ld mq_curmsgs=%ld",
1480                        context->mq_open.oflag, context->mq_open.mode,
1481                        context->mq_open.attr.mq_flags,
1482                        context->mq_open.attr.mq_maxmsg,
1483                        context->mq_open.attr.mq_msgsize,
1484                        context->mq_open.attr.mq_curmsgs);
1485                break; }
1486        case AUDIT_MQ_SENDRECV: {
1487                audit_log_format(ab,
1488                        "mqdes=%d msg_len=%zd msg_prio=%u "
1489                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490                        context->mq_sendrecv.mqdes,
1491                        context->mq_sendrecv.msg_len,
1492                        context->mq_sendrecv.msg_prio,
1493                        context->mq_sendrecv.abs_timeout.tv_sec,
1494                        context->mq_sendrecv.abs_timeout.tv_nsec);
1495                break; }
1496        case AUDIT_MQ_NOTIFY: {
1497                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498                                context->mq_notify.mqdes,
1499                                context->mq_notify.sigev_signo);
1500                break; }
1501        case AUDIT_MQ_GETSETATTR: {
1502                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503                audit_log_format(ab,
1504                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505                        "mq_curmsgs=%ld ",
1506                        context->mq_getsetattr.mqdes,
1507                        attr->mq_flags, attr->mq_maxmsg,
1508                        attr->mq_msgsize, attr->mq_curmsgs);
1509                break; }
1510        case AUDIT_CAPSET: {
1511                audit_log_format(ab, "pid=%d", context->capset.pid);
1512                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515                break; }
1516        case AUDIT_MMAP: {
1517                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518                                 context->mmap.flags);
1519                break; }
1520        }
1521        audit_log_end(ab);
1522}
1523
1524static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525                           int record_num, int *call_panic)
1526{
1527        struct audit_buffer *ab;
1528        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529        if (!ab)
1530                return; /* audit_panic has been called */
1531
1532        audit_log_format(ab, "item=%d", record_num);
1533
1534        if (n->name) {
1535                switch (n->name_len) {
1536                case AUDIT_NAME_FULL:
1537                        /* log the full path */
1538                        audit_log_format(ab, " name=");
1539                        audit_log_untrustedstring(ab, n->name);
1540                        break;
1541                case 0:
1542                        /* name was specified as a relative path and the
1543                         * directory component is the cwd */
1544                        audit_log_d_path(ab, " name=", &context->pwd);
1545                        break;
1546                default:
1547                        /* log the name's directory component */
1548                        audit_log_format(ab, " name=");
1549                        audit_log_n_untrustedstring(ab, n->name,
1550                                                    n->name_len);
1551                }
1552        } else
1553                audit_log_format(ab, " name=(null)");
1554
1555        if (n->ino != (unsigned long)-1) {
1556                audit_log_format(ab, " inode=%lu"
1557                                 " dev=%02x:%02x mode=%#ho"
1558                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1559                                 n->ino,
1560                                 MAJOR(n->dev),
1561                                 MINOR(n->dev),
1562                                 n->mode,
1563                                 n->uid,
1564                                 n->gid,
1565                                 MAJOR(n->rdev),
1566                                 MINOR(n->rdev));
1567        }
1568        if (n->osid != 0) {
1569                char *ctx = NULL;
1570                u32 len;
1571                if (security_secid_to_secctx(
1572                        n->osid, &ctx, &len)) {
1573                        audit_log_format(ab, " osid=%u", n->osid);
1574                        *call_panic = 2;
1575                } else {
1576                        audit_log_format(ab, " obj=%s", ctx);
1577                        security_release_secctx(ctx, len);
1578                }
1579        }
1580
1581        audit_log_fcaps(ab, n);
1582
1583        audit_log_end(ab);
1584}
1585
1586static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587{
1588        const struct cred *cred;
1589        int i, call_panic = 0;
1590        struct audit_buffer *ab;
1591        struct audit_aux_data *aux;
1592        const char *tty;
1593        struct audit_names *n;
1594
1595        /* tsk == current */
1596        context->pid = tsk->pid;
1597        if (!context->ppid)
1598                context->ppid = sys_getppid();
1599        cred = current_cred();
1600        context->uid   = cred->uid;
1601        context->gid   = cred->gid;
1602        context->euid  = cred->euid;
1603        context->suid  = cred->suid;
1604        context->fsuid = cred->fsuid;
1605        context->egid  = cred->egid;
1606        context->sgid  = cred->sgid;
1607        context->fsgid = cred->fsgid;
1608        context->personality = tsk->personality;
1609
1610        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611        if (!ab)
1612                return;         /* audit_panic has been called */
1613        audit_log_format(ab, "arch=%x syscall=%d",
1614                         context->arch, context->major);
1615        if (context->personality != PER_LINUX)
1616                audit_log_format(ab, " per=%lx", context->personality);
1617        if (context->return_valid)
1618                audit_log_format(ab, " success=%s exit=%ld",
1619                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620                                 context->return_code);
1621
1622        spin_lock_irq(&tsk->sighand->siglock);
1623        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624                tty = tsk->signal->tty->name;
1625        else
1626                tty = "(none)";
1627        spin_unlock_irq(&tsk->sighand->siglock);
1628
1629        audit_log_format(ab,
1630                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631                  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632                  " euid=%u suid=%u fsuid=%u"
1633                  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634                  context->argv[0],
1635                  context->argv[1],
1636                  context->argv[2],
1637                  context->argv[3],
1638                  context->name_count,
1639                  context->ppid,
1640                  context->pid,
1641                  tsk->loginuid,
1642                  context->uid,
1643                  context->gid,
1644                  context->euid, context->suid, context->fsuid,
1645                  context->egid, context->sgid, context->fsgid, tty,
1646                  tsk->sessionid);
1647
1648
1649        audit_log_task_info(ab, tsk);
1650        audit_log_key(ab, context->filterkey);
1651        audit_log_end(ab);
1652
1653        for (aux = context->aux; aux; aux = aux->next) {
1654
1655                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656                if (!ab)
1657                        continue; /* audit_panic has been called */
1658
1659                switch (aux->type) {
1660
1661                case AUDIT_EXECVE: {
1662                        struct audit_aux_data_execve *axi = (void *)aux;
1663                        audit_log_execve_info(context, &ab, axi);
1664                        break; }
1665
1666                case AUDIT_BPRM_FCAPS: {
1667                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678                        break; }
1679
1680                }
1681                audit_log_end(ab);
1682        }
1683
1684        if (context->type)
1685                show_special(context, &call_panic);
1686
1687        if (context->fds[0] >= 0) {
1688                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689                if (ab) {
1690                        audit_log_format(ab, "fd0=%d fd1=%d",
1691                                        context->fds[0], context->fds[1]);
1692                        audit_log_end(ab);
1693                }
1694        }
1695
1696        if (context->sockaddr_len) {
1697                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698                if (ab) {
1699                        audit_log_format(ab, "saddr=");
1700                        audit_log_n_hex(ab, (void *)context->sockaddr,
1701                                        context->sockaddr_len);
1702                        audit_log_end(ab);
1703                }
1704        }
1705
1706        for (aux = context->aux_pids; aux; aux = aux->next) {
1707                struct audit_aux_data_pids *axs = (void *)aux;
1708
1709                for (i = 0; i < axs->pid_count; i++)
1710                        if (audit_log_pid_context(context, axs->target_pid[i],
1711                                                  axs->target_auid[i],
1712                                                  axs->target_uid[i],
1713                                                  axs->target_sessionid[i],
1714                                                  axs->target_sid[i],
1715                                                  axs->target_comm[i]))
1716                                call_panic = 1;
1717        }
1718
1719        if (context->target_pid &&
1720            audit_log_pid_context(context, context->target_pid,
1721                                  context->target_auid, context->target_uid,
1722                                  context->target_sessionid,
1723                                  context->target_sid, context->target_comm))
1724                        call_panic = 1;
1725
1726        if (context->pwd.dentry && context->pwd.mnt) {
1727                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728                if (ab) {
1729                        audit_log_d_path(ab, " cwd=", &context->pwd);
1730                        audit_log_end(ab);
1731                }
1732        }
1733
1734        i = 0;
1735        list_for_each_entry(n, &context->names_list, list)
1736                audit_log_name(context, n, i++, &call_panic);
1737
1738        /* Send end of event record to help user space know we are finished */
1739        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740        if (ab)
1741                audit_log_end(ab);
1742        if (call_panic)
1743                audit_panic("error converting sid to string");
1744}
1745
1746/**
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1749 *
1750 * Called from copy_process and do_exit
1751 */
1752void __audit_free(struct task_struct *tsk)
1753{
1754        struct audit_context *context;
1755
1756        context = audit_get_context(tsk, 0, 0);
1757        if (!context)
1758                return;
1759
1760        /* Check for system calls that do not go through the exit
1761         * function (e.g., exit_group), then free context block.
1762         * We use GFP_ATOMIC here because we might be doing this
1763         * in the context of the idle thread */
1764        /* that can happen only if we are called from do_exit() */
1765        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766                audit_log_exit(context, tsk);
1767        if (!list_empty(&context->killed_trees))
1768                audit_kill_trees(&context->killed_trees);
1769
1770        audit_free_context(context);
1771}
1772
1773/**
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1781 *
1782 * Fill in audit context at syscall entry.  This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built.  If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1788 * be written).
1789 */
1790void __audit_syscall_entry(int arch, int major,
1791                         unsigned long a1, unsigned long a2,
1792                         unsigned long a3, unsigned long a4)
1793{
1794        struct task_struct *tsk = current;
1795        struct audit_context *context = tsk->audit_context;
1796        enum audit_state     state;
1797
1798        if (!context)
1799                return;
1800
1801        /*
1802         * This happens only on certain architectures that make system
1803         * calls in kernel_thread via the entry.S interface, instead of
1804         * with direct calls.  (If you are porting to a new
1805         * architecture, hitting this condition can indicate that you
1806         * got the _exit/_leave calls backward in entry.S.)
1807         *
1808         * i386     no
1809         * x86_64   no
1810         * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1811         *
1812         * This also happens with vm86 emulation in a non-nested manner
1813         * (entries without exits), so this case must be caught.
1814         */
1815        if (context->in_syscall) {
1816                struct audit_context *newctx;
1817
1818#if AUDIT_DEBUG
1819                printk(KERN_ERR
1820                       "audit(:%d) pid=%d in syscall=%d;"
1821                       " entering syscall=%d\n",
1822                       context->serial, tsk->pid, context->major, major);
1823#endif
1824                newctx = audit_alloc_context(context->state);
1825                if (newctx) {
1826                        newctx->previous   = context;
1827                        context            = newctx;
1828                        tsk->audit_context = newctx;
1829                } else  {
1830                        /* If we can't alloc a new context, the best we
1831                         * can do is to leak memory (any pending putname
1832                         * will be lost).  The only other alternative is
1833                         * to abandon auditing. */
1834                        audit_zero_context(context, context->state);
1835                }
1836        }
1837        BUG_ON(context->in_syscall || context->name_count);
1838
1839        if (!audit_enabled)
1840                return;
1841
1842        context->arch       = arch;
1843        context->major      = major;
1844        context->argv[0]    = a1;
1845        context->argv[1]    = a2;
1846        context->argv[2]    = a3;
1847        context->argv[3]    = a4;
1848
1849        state = context->state;
1850        context->dummy = !audit_n_rules;
1851        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852                context->prio = 0;
1853                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854        }
1855        if (state == AUDIT_DISABLED)
1856                return;
1857
1858        context->serial     = 0;
1859        context->ctime      = CURRENT_TIME;
1860        context->in_syscall = 1;
1861        context->current_state  = state;
1862        context->ppid       = 0;
1863}
1864
1865/**
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1869 *
1870 * Tear down after system call.  If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information.  In call cases,
1874 * free the names stored from getname().
1875 */
1876void __audit_syscall_exit(int success, long return_code)
1877{
1878        struct task_struct *tsk = current;
1879        struct audit_context *context;
1880
1881        if (success)
1882                success = AUDITSC_SUCCESS;
1883        else
1884                success = AUDITSC_FAILURE;
1885
1886        context = audit_get_context(tsk, success, return_code);
1887        if (!context)
1888                return;
1889
1890        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891                audit_log_exit(context, tsk);
1892
1893        context->in_syscall = 0;
1894        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895
1896        if (!list_empty(&context->killed_trees))
1897                audit_kill_trees(&context->killed_trees);
1898
1899        if (context->previous) {
1900                struct audit_context *new_context = context->previous;
1901                context->previous  = NULL;
1902                audit_free_context(context);
1903                tsk->audit_context = new_context;
1904        } else {
1905                audit_free_names(context);
1906                unroll_tree_refs(context, NULL, 0);
1907                audit_free_aux(context);
1908                context->aux = NULL;
1909                context->aux_pids = NULL;
1910                context->target_pid = 0;
1911                context->target_sid = 0;
1912                context->sockaddr_len = 0;
1913                context->type = 0;
1914                context->fds[0] = -1;
1915                if (context->state != AUDIT_RECORD_CONTEXT) {
1916                        kfree(context->filterkey);
1917                        context->filterkey = NULL;
1918                }
1919                tsk->audit_context = context;
1920        }
1921}
1922
1923static inline void handle_one(const struct inode *inode)
1924{
1925#ifdef CONFIG_AUDIT_TREE
1926        struct audit_context *context;
1927        struct audit_tree_refs *p;
1928        struct audit_chunk *chunk;
1929        int count;
1930        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931                return;
1932        context = current->audit_context;
1933        p = context->trees;
1934        count = context->tree_count;
1935        rcu_read_lock();
1936        chunk = audit_tree_lookup(inode);
1937        rcu_read_unlock();
1938        if (!chunk)
1939                return;
1940        if (likely(put_tree_ref(context, chunk)))
1941                return;
1942        if (unlikely(!grow_tree_refs(context))) {
1943                printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944                audit_set_auditable(context);
1945                audit_put_chunk(chunk);
1946                unroll_tree_refs(context, p, count);
1947                return;
1948        }
1949        put_tree_ref(context, chunk);
1950#endif
1951}
1952
1953static void handle_path(const struct dentry *dentry)
1954{
1955#ifdef CONFIG_AUDIT_TREE
1956        struct audit_context *context;
1957        struct audit_tree_refs *p;
1958        const struct dentry *d, *parent;
1959        struct audit_chunk *drop;
1960        unsigned long seq;
1961        int count;
1962
1963        context = current->audit_context;
1964        p = context->trees;
1965        count = context->tree_count;
1966retry:
1967        drop = NULL;
1968        d = dentry;
1969        rcu_read_lock();
1970        seq = read_seqbegin(&rename_lock);
1971        for(;;) {
1972                struct inode *inode = d->d_inode;
1973                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974                        struct audit_chunk *chunk;
1975                        chunk = audit_tree_lookup(inode);
1976                        if (chunk) {
1977                                if (unlikely(!put_tree_ref(context, chunk))) {
1978                                        drop = chunk;
1979                                        break;
1980                                }
1981                        }
1982                }
1983                parent = d->d_parent;
1984                if (parent == d)
1985                        break;
1986                d = parent;
1987        }
1988        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1989                rcu_read_unlock();
1990                if (!drop) {
1991                        /* just a race with rename */
1992                        unroll_tree_refs(context, p, count);
1993                        goto retry;
1994                }
1995                audit_put_chunk(drop);
1996                if (grow_tree_refs(context)) {
1997                        /* OK, got more space */
1998                        unroll_tree_refs(context, p, count);
1999                        goto retry;
2000                }
2001                /* too bad */
2002                printk(KERN_WARNING
2003                        "out of memory, audit has lost a tree reference\n");
2004                unroll_tree_refs(context, p, count);
2005                audit_set_auditable(context);
2006                return;
2007        }
2008        rcu_read_unlock();
2009#endif
2010}
2011
2012static struct audit_names *audit_alloc_name(struct audit_context *context)
2013{
2014        struct audit_names *aname;
2015
2016        if (context->name_count < AUDIT_NAMES) {
2017                aname = &context->preallocated_names[context->name_count];
2018                memset(aname, 0, sizeof(*aname));
2019        } else {
2020                aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021                if (!aname)
2022                        return NULL;
2023                aname->should_free = true;
2024        }
2025
2026        aname->ino = (unsigned long)-1;
2027        list_add_tail(&aname->list, &context->names_list);
2028
2029        context->name_count++;
2030#if AUDIT_DEBUG
2031        context->ino_count++;
2032#endif
2033        return aname;
2034}
2035
2036/**
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2039 *
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2042 */
2043void __audit_getname(const char *name)
2044{
2045        struct audit_context *context = current->audit_context;
2046        struct audit_names *n;
2047
2048        if (!context->in_syscall) {
2049#if AUDIT_DEBUG == 2
2050                printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051                       __FILE__, __LINE__, context->serial, name);
2052                dump_stack();
2053#endif
2054                return;
2055        }
2056
2057        n = audit_alloc_name(context);
2058        if (!n)
2059                return;
2060
2061        n->name = name;
2062        n->name_len = AUDIT_NAME_FULL;
2063        n->name_put = true;
2064
2065        if (!context->pwd.dentry)
2066                get_fs_pwd(current->fs, &context->pwd);
2067}
2068
2069/* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2071 *
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2075 */
2076void audit_putname(const char *name)
2077{
2078        struct audit_context *context = current->audit_context;
2079
2080        BUG_ON(!context);
2081        if (!context->in_syscall) {
2082#if AUDIT_DEBUG == 2
2083                printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084                       __FILE__, __LINE__, context->serial, name);
2085                if (context->name_count) {
2086                        struct audit_names *n;
2087                        int i;
2088
2089                        list_for_each_entry(n, &context->names_list, list)
2090                                printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091                                       n->name, n->name ?: "(null)");
2092                        }
2093#endif
2094                __putname(name);
2095        }
2096#if AUDIT_DEBUG
2097        else {
2098                ++context->put_count;
2099                if (context->put_count > context->name_count) {
2100                        printk(KERN_ERR "%s:%d(:%d): major=%d"
2101                               " in_syscall=%d putname(%p) name_count=%d"
2102                               " put_count=%d\n",
2103                               __FILE__, __LINE__,
2104                               context->serial, context->major,
2105                               context->in_syscall, name, context->name_count,
2106                               context->put_count);
2107                        dump_stack();
2108                }
2109        }
2110#endif
2111}
2112
2113static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114{
2115        struct cpu_vfs_cap_data caps;
2116        int rc;
2117
2118        if (!dentry)
2119                return 0;
2120
2121        rc = get_vfs_caps_from_disk(dentry, &caps);
2122        if (rc)
2123                return rc;
2124
2125        name->fcap.permitted = caps.permitted;
2126        name->fcap.inheritable = caps.inheritable;
2127        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129
2130        return 0;
2131}
2132
2133
2134/* Copy inode data into an audit_names. */
2135static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136                             const struct inode *inode)
2137{
2138        name->ino   = inode->i_ino;
2139        name->dev   = inode->i_sb->s_dev;
2140        name->mode  = inode->i_mode;
2141        name->uid   = inode->i_uid;
2142        name->gid   = inode->i_gid;
2143        name->rdev  = inode->i_rdev;
2144        security_inode_getsecid(inode, &name->osid);
2145        audit_copy_fcaps(name, dentry);
2146}
2147
2148/**
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2152 *
2153 * Called from fs/namei.c:path_lookup().
2154 */
2155void __audit_inode(const char *name, const struct dentry *dentry)
2156{
2157        struct audit_context *context = current->audit_context;
2158        const struct inode *inode = dentry->d_inode;
2159        struct audit_names *n;
2160
2161        if (!context->in_syscall)
2162                return;
2163
2164        list_for_each_entry_reverse(n, &context->names_list, list) {
2165                if (n->name && (n->name == name))
2166                        goto out;
2167        }
2168
2169        /* unable to find the name from a previous getname() */
2170        n = audit_alloc_name(context);
2171        if (!n)
2172                return;
2173out:
2174        handle_path(dentry);
2175        audit_copy_inode(n, dentry, inode);
2176}
2177
2178/**
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2182 *
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created.  Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2190 */
2191void __audit_inode_child(const struct dentry *dentry,
2192                         const struct inode *parent)
2193{
2194        struct audit_context *context = current->audit_context;
2195        const char *found_parent = NULL, *found_child = NULL;
2196        const struct inode *inode = dentry->d_inode;
2197        const char *dname = dentry->d_name.name;
2198        struct audit_names *n;
2199        int dirlen = 0;
2200
2201        if (!context->in_syscall)
2202                return;
2203
2204        if (inode)
2205                handle_one(inode);
2206
2207        /* parent is more likely, look for it first */
2208        list_for_each_entry(n, &context->names_list, list) {
2209                if (!n->name)
2210                        continue;
2211
2212                if (n->ino == parent->i_ino &&
2213                    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214                        n->name_len = dirlen; /* update parent data in place */
2215                        found_parent = n->name;
2216                        goto add_names;
2217                }
2218        }
2219
2220        /* no matching parent, look for matching child */
2221        list_for_each_entry(n, &context->names_list, list) {
2222                if (!n->name)
2223                        continue;
2224
2225                /* strcmp() is the more likely scenario */
2226                if (!strcmp(dname, n->name) ||
2227                     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228                        if (inode)
2229                                audit_copy_inode(n, NULL, inode);
2230                        else
2231                                n->ino = (unsigned long)-1;
2232                        found_child = n->name;
2233                        goto add_names;
2234                }
2235        }
2236
2237add_names:
2238        if (!found_parent) {
2239                n = audit_alloc_name(context);
2240                if (!n)
2241                        return;
2242                audit_copy_inode(n, NULL, parent);
2243        }
2244
2245        if (!found_child) {
2246                n = audit_alloc_name(context);
2247                if (!n)
2248                        return;
2249
2250                /* Re-use the name belonging to the slot for a matching parent
2251                 * directory. All names for this context are relinquished in
2252                 * audit_free_names() */
2253                if (found_parent) {
2254                        n->name = found_parent;
2255                        n->name_len = AUDIT_NAME_FULL;
2256                        /* don't call __putname() */
2257                        n->name_put = false;
2258                }
2259
2260                if (inode)
2261                        audit_copy_inode(n, NULL, inode);
2262        }
2263}
2264EXPORT_SYMBOL_GPL(__audit_inode_child);
2265
2266/**
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2271 *
2272 * Also sets the context as auditable.
2273 */
2274int auditsc_get_stamp(struct audit_context *ctx,
2275                       struct timespec *t, unsigned int *serial)
2276{
2277        if (!ctx->in_syscall)
2278                return 0;
2279        if (!ctx->serial)
2280                ctx->serial = audit_serial();
2281        t->tv_sec  = ctx->ctime.tv_sec;
2282        t->tv_nsec = ctx->ctime.tv_nsec;
2283        *serial    = ctx->serial;
2284        if (!ctx->prio) {
2285                ctx->prio = 1;
2286                ctx->current_state = AUDIT_RECORD_CONTEXT;
2287        }
2288        return 1;
2289}
2290
2291/* global counter which is incremented every time something logs in */
2292static atomic_t session_id = ATOMIC_INIT(0);
2293
2294/**
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2297 *
2298 * Returns 0.
2299 *
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 */
2302int audit_set_loginuid(uid_t loginuid)
2303{
2304        struct task_struct *task = current;
2305        struct audit_context *context = task->audit_context;
2306        unsigned int sessionid;
2307
2308#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309        if (task->loginuid != -1)
2310                return -EPERM;
2311#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312        if (!capable(CAP_AUDIT_CONTROL))
2313                return -EPERM;
2314#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315
2316        sessionid = atomic_inc_return(&session_id);
2317        if (context && context->in_syscall) {
2318                struct audit_buffer *ab;
2319
2320                ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321                if (ab) {
2322                        audit_log_format(ab, "login pid=%d uid=%u "
2323                                "old auid=%u new auid=%u"
2324                                " old ses=%u new ses=%u",
2325                                task->pid, task_uid(task),
2326                                task->loginuid, loginuid,
2327                                task->sessionid, sessionid);
2328                        audit_log_end(ab);
2329                }
2330        }
2331        task->sessionid = sessionid;
2332        task->loginuid = loginuid;
2333        return 0;
2334}
2335
2336/**
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2338 * @oflag: open flag
2339 * @mode: mode bits
2340 * @attr: queue attributes
2341 *
2342 */
2343void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344{
2345        struct audit_context *context = current->audit_context;
2346
2347        if (attr)
2348                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349        else
2350                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351
2352        context->mq_open.oflag = oflag;
2353        context->mq_open.mode = mode;
2354
2355        context->type = AUDIT_MQ_OPEN;
2356}
2357
2358/**
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2364 *
2365 */
2366void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367                        const struct timespec *abs_timeout)
2368{
2369        struct audit_context *context = current->audit_context;
2370        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371
2372        if (abs_timeout)
2373                memcpy(p, abs_timeout, sizeof(struct timespec));
2374        else
2375                memset(p, 0, sizeof(struct timespec));
2376
2377        context->mq_sendrecv.mqdes = mqdes;
2378        context->mq_sendrecv.msg_len = msg_len;
2379        context->mq_sendrecv.msg_prio = msg_prio;
2380
2381        context->type = AUDIT_MQ_SENDRECV;
2382}
2383
2384/**
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2388 *
2389 */
2390
2391void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392{
2393        struct audit_context *context = current->audit_context;
2394
2395        if (notification)
2396                context->mq_notify.sigev_signo = notification->sigev_signo;
2397        else
2398                context->mq_notify.sigev_signo = 0;
2399
2400        context->mq_notify.mqdes = mqdes;
2401        context->type = AUDIT_MQ_NOTIFY;
2402}
2403
2404/**
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2407 * @mqstat: MQ flags
2408 *
2409 */
2410void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411{
2412        struct audit_context *context = current->audit_context;
2413        context->mq_getsetattr.mqdes = mqdes;
2414        context->mq_getsetattr.mqstat = *mqstat;
2415        context->type = AUDIT_MQ_GETSETATTR;
2416}
2417
2418/**
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2421 *
2422 */
2423void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424{
2425        struct audit_context *context = current->audit_context;
2426        context->ipc.uid = ipcp->uid;
2427        context->ipc.gid = ipcp->gid;
2428        context->ipc.mode = ipcp->mode;
2429        context->ipc.has_perm = 0;
2430        security_ipc_getsecid(ipcp, &context->ipc.osid);
2431        context->type = AUDIT_IPC;
2432}
2433
2434/**
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2440 *
2441 * Called only after audit_ipc_obj().
2442 */
2443void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444{
2445        struct audit_context *context = current->audit_context;
2446
2447        context->ipc.qbytes = qbytes;
2448        context->ipc.perm_uid = uid;
2449        context->ipc.perm_gid = gid;
2450        context->ipc.perm_mode = mode;
2451        context->ipc.has_perm = 1;
2452}
2453
2454int __audit_bprm(struct linux_binprm *bprm)
2455{
2456        struct audit_aux_data_execve *ax;
2457        struct audit_context *context = current->audit_context;
2458
2459        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460        if (!ax)
2461                return -ENOMEM;
2462
2463        ax->argc = bprm->argc;
2464        ax->envc = bprm->envc;
2465        ax->mm = bprm->mm;
2466        ax->d.type = AUDIT_EXECVE;
2467        ax->d.next = context->aux;
2468        context->aux = (void *)ax;
2469        return 0;
2470}
2471
2472
2473/**
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2476 * @args: args array
2477 *
2478 */
2479void __audit_socketcall(int nargs, unsigned long *args)
2480{
2481        struct audit_context *context = current->audit_context;
2482
2483        context->type = AUDIT_SOCKETCALL;
2484        context->socketcall.nargs = nargs;
2485        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486}
2487
2488/**
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2492 *
2493 */
2494void __audit_fd_pair(int fd1, int fd2)
2495{
2496        struct audit_context *context = current->audit_context;
2497        context->fds[0] = fd1;
2498        context->fds[1] = fd2;
2499}
2500
2501/**
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2505 *
2506 * Returns 0 for success or NULL context or < 0 on error.
2507 */
2508int __audit_sockaddr(int len, void *a)
2509{
2510        struct audit_context *context = current->audit_context;
2511
2512        if (!context->sockaddr) {
2513                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514                if (!p)
2515                        return -ENOMEM;
2516                context->sockaddr = p;
2517        }
2518
2519        context->sockaddr_len = len;
2520        memcpy(context->sockaddr, a, len);
2521        return 0;
2522}
2523
2524void __audit_ptrace(struct task_struct *t)
2525{
2526        struct audit_context *context = current->audit_context;
2527
2528        context->target_pid = t->pid;
2529        context->target_auid = audit_get_loginuid(t);
2530        context->target_uid = task_uid(t);
2531        context->target_sessionid = audit_get_sessionid(t);
2532        security_task_getsecid(t, &context->target_sid);
2533        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534}
2535
2536/**
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2540 *
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2543 */
2544int __audit_signal_info(int sig, struct task_struct *t)
2545{
2546        struct audit_aux_data_pids *axp;
2547        struct task_struct *tsk = current;
2548        struct audit_context *ctx = tsk->audit_context;
2549        uid_t uid = current_uid(), t_uid = task_uid(t);
2550
2551        if (audit_pid && t->tgid == audit_pid) {
2552                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553                        audit_sig_pid = tsk->pid;
2554                        if (tsk->loginuid != -1)
2555                                audit_sig_uid = tsk->loginuid;
2556                        else
2557                                audit_sig_uid = uid;
2558                        security_task_getsecid(tsk, &audit_sig_sid);
2559                }
2560                if (!audit_signals || audit_dummy_context())
2561                        return 0;
2562        }
2563
2564        /* optimize the common case by putting first signal recipient directly
2565         * in audit_context */
2566        if (!ctx->target_pid) {
2567                ctx->target_pid = t->tgid;
2568                ctx->target_auid = audit_get_loginuid(t);
2569                ctx->target_uid = t_uid;
2570                ctx->target_sessionid = audit_get_sessionid(t);
2571                security_task_getsecid(t, &ctx->target_sid);
2572                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573                return 0;
2574        }
2575
2576        axp = (void *)ctx->aux_pids;
2577        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579                if (!axp)
2580                        return -ENOMEM;
2581
2582                axp->d.type = AUDIT_OBJ_PID;
2583                axp->d.next = ctx->aux_pids;
2584                ctx->aux_pids = (void *)axp;
2585        }
2586        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587
2588        axp->target_pid[axp->pid_count] = t->tgid;
2589        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590        axp->target_uid[axp->pid_count] = t_uid;
2591        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594        axp->pid_count++;
2595
2596        return 0;
2597}
2598
2599/**
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2604 *
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2607 *
2608 * -Eric
2609 */
2610int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611                           const struct cred *new, const struct cred *old)
2612{
2613        struct audit_aux_data_bprm_fcaps *ax;
2614        struct audit_context *context = current->audit_context;
2615        struct cpu_vfs_cap_data vcaps;
2616        struct dentry *dentry;
2617
2618        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619        if (!ax)
2620                return -ENOMEM;
2621
2622        ax->d.type = AUDIT_BPRM_FCAPS;
2623        ax->d.next = context->aux;
2624        context->aux = (void *)ax;
2625
2626        dentry = dget(bprm->file->f_dentry);
2627        get_vfs_caps_from_disk(dentry, &vcaps);
2628        dput(dentry);
2629
2630        ax->fcap.permitted = vcaps.permitted;
2631        ax->fcap.inheritable = vcaps.inheritable;
2632        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634
2635        ax->old_pcap.permitted   = old->cap_permitted;
2636        ax->old_pcap.inheritable = old->cap_inheritable;
2637        ax->old_pcap.effective   = old->cap_effective;
2638
2639        ax->new_pcap.permitted   = new->cap_permitted;
2640        ax->new_pcap.inheritable = new->cap_inheritable;
2641        ax->new_pcap.effective   = new->cap_effective;
2642        return 0;
2643}
2644
2645/**
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2650 *
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2653 */
2654void __audit_log_capset(pid_t pid,
2655                       const struct cred *new, const struct cred *old)
2656{
2657        struct audit_context *context = current->audit_context;
2658        context->capset.pid = pid;
2659        context->capset.cap.effective   = new->cap_effective;
2660        context->capset.cap.inheritable = new->cap_effective;
2661        context->capset.cap.permitted   = new->cap_permitted;
2662        context->type = AUDIT_CAPSET;
2663}
2664
2665void __audit_mmap_fd(int fd, int flags)
2666{
2667        struct audit_context *context = current->audit_context;
2668        context->mmap.fd = fd;
2669        context->mmap.flags = flags;
2670        context->type = AUDIT_MMAP;
2671}
2672
2673static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674{
2675        uid_t auid, uid;
2676        gid_t gid;
2677        unsigned int sessionid;
2678
2679        auid = audit_get_loginuid(current);
2680        sessionid = audit_get_sessionid(current);
2681        current_uid_gid(&uid, &gid);
2682
2683        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684                         auid, uid, gid, sessionid);
2685        audit_log_task_context(ab);
2686        audit_log_format(ab, " pid=%d comm=", current->pid);
2687        audit_log_untrustedstring(ab, current->comm);
2688        audit_log_format(ab, " reason=");
2689        audit_log_string(ab, reason);
2690        audit_log_format(ab, " sig=%ld", signr);
2691}
2692/**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699void audit_core_dumps(long signr)
2700{
2701        struct audit_buffer *ab;
2702
2703        if (!audit_enabled)
2704                return;
2705
2706        if (signr == SIGQUIT)   /* don't care for those */
2707                return;
2708
2709        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710        audit_log_abend(ab, "memory violation", signr);
2711        audit_log_end(ab);
2712}
2713
2714void __audit_seccomp(unsigned long syscall, long signr, int code)
2715{
2716        struct audit_buffer *ab;
2717
2718        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719        audit_log_abend(ab, "seccomp", signr);
2720        audit_log_format(ab, " syscall=%ld", syscall);
2721        audit_log_format(ab, " compat=%d", is_compat_task());
2722        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723        audit_log_format(ab, " code=0x%x", code);
2724        audit_log_end(ab);
2725}
2726
2727struct list_head *audit_killed_trees(void)
2728{
2729        struct audit_context *ctx = current->audit_context;
2730        if (likely(!ctx || !ctx->in_syscall))
2731                return NULL;
2732        return &ctx->killed_trees;
2733}
2734