linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75
  76#include <asm/switch_to.h>
  77#include <asm/tlb.h>
  78#include <asm/irq_regs.h>
  79#include <asm/mutex.h>
  80#ifdef CONFIG_PARAVIRT
  81#include <asm/paravirt.h>
  82#endif
  83
  84#include "sched.h"
  85#include "../workqueue_sched.h"
  86#include "../smpboot.h"
  87
  88#define CREATE_TRACE_POINTS
  89#include <trace/events/sched.h>
  90
  91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  92{
  93        unsigned long delta;
  94        ktime_t soft, hard, now;
  95
  96        for (;;) {
  97                if (hrtimer_active(period_timer))
  98                        break;
  99
 100                now = hrtimer_cb_get_time(period_timer);
 101                hrtimer_forward(period_timer, now, period);
 102
 103                soft = hrtimer_get_softexpires(period_timer);
 104                hard = hrtimer_get_expires(period_timer);
 105                delta = ktime_to_ns(ktime_sub(hard, soft));
 106                __hrtimer_start_range_ns(period_timer, soft, delta,
 107                                         HRTIMER_MODE_ABS_PINNED, 0);
 108        }
 109}
 110
 111DEFINE_MUTEX(sched_domains_mutex);
 112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 113
 114static void update_rq_clock_task(struct rq *rq, s64 delta);
 115
 116void update_rq_clock(struct rq *rq)
 117{
 118        s64 delta;
 119
 120        if (rq->skip_clock_update > 0)
 121                return;
 122
 123        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 124        rq->clock += delta;
 125        update_rq_clock_task(rq, delta);
 126}
 127
 128/*
 129 * Debugging: various feature bits
 130 */
 131
 132#define SCHED_FEAT(name, enabled)       \
 133        (1UL << __SCHED_FEAT_##name) * enabled |
 134
 135const_debug unsigned int sysctl_sched_features =
 136#include "features.h"
 137        0;
 138
 139#undef SCHED_FEAT
 140
 141#ifdef CONFIG_SCHED_DEBUG
 142#define SCHED_FEAT(name, enabled)       \
 143        #name ,
 144
 145static const char * const sched_feat_names[] = {
 146#include "features.h"
 147};
 148
 149#undef SCHED_FEAT
 150
 151static int sched_feat_show(struct seq_file *m, void *v)
 152{
 153        int i;
 154
 155        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 156                if (!(sysctl_sched_features & (1UL << i)))
 157                        seq_puts(m, "NO_");
 158                seq_printf(m, "%s ", sched_feat_names[i]);
 159        }
 160        seq_puts(m, "\n");
 161
 162        return 0;
 163}
 164
 165#ifdef HAVE_JUMP_LABEL
 166
 167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 168#define jump_label_key__false STATIC_KEY_INIT_FALSE
 169
 170#define SCHED_FEAT(name, enabled)       \
 171        jump_label_key__##enabled ,
 172
 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 174#include "features.h"
 175};
 176
 177#undef SCHED_FEAT
 178
 179static void sched_feat_disable(int i)
 180{
 181        if (static_key_enabled(&sched_feat_keys[i]))
 182                static_key_slow_dec(&sched_feat_keys[i]);
 183}
 184
 185static void sched_feat_enable(int i)
 186{
 187        if (!static_key_enabled(&sched_feat_keys[i]))
 188                static_key_slow_inc(&sched_feat_keys[i]);
 189}
 190#else
 191static void sched_feat_disable(int i) { };
 192static void sched_feat_enable(int i) { };
 193#endif /* HAVE_JUMP_LABEL */
 194
 195static ssize_t
 196sched_feat_write(struct file *filp, const char __user *ubuf,
 197                size_t cnt, loff_t *ppos)
 198{
 199        char buf[64];
 200        char *cmp;
 201        int neg = 0;
 202        int i;
 203
 204        if (cnt > 63)
 205                cnt = 63;
 206
 207        if (copy_from_user(&buf, ubuf, cnt))
 208                return -EFAULT;
 209
 210        buf[cnt] = 0;
 211        cmp = strstrip(buf);
 212
 213        if (strncmp(cmp, "NO_", 3) == 0) {
 214                neg = 1;
 215                cmp += 3;
 216        }
 217
 218        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 219                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 220                        if (neg) {
 221                                sysctl_sched_features &= ~(1UL << i);
 222                                sched_feat_disable(i);
 223                        } else {
 224                                sysctl_sched_features |= (1UL << i);
 225                                sched_feat_enable(i);
 226                        }
 227                        break;
 228                }
 229        }
 230
 231        if (i == __SCHED_FEAT_NR)
 232                return -EINVAL;
 233
 234        *ppos += cnt;
 235
 236        return cnt;
 237}
 238
 239static int sched_feat_open(struct inode *inode, struct file *filp)
 240{
 241        return single_open(filp, sched_feat_show, NULL);
 242}
 243
 244static const struct file_operations sched_feat_fops = {
 245        .open           = sched_feat_open,
 246        .write          = sched_feat_write,
 247        .read           = seq_read,
 248        .llseek         = seq_lseek,
 249        .release        = single_release,
 250};
 251
 252static __init int sched_init_debug(void)
 253{
 254        debugfs_create_file("sched_features", 0644, NULL, NULL,
 255                        &sched_feat_fops);
 256
 257        return 0;
 258}
 259late_initcall(sched_init_debug);
 260#endif /* CONFIG_SCHED_DEBUG */
 261
 262/*
 263 * Number of tasks to iterate in a single balance run.
 264 * Limited because this is done with IRQs disabled.
 265 */
 266const_debug unsigned int sysctl_sched_nr_migrate = 32;
 267
 268/*
 269 * period over which we average the RT time consumption, measured
 270 * in ms.
 271 *
 272 * default: 1s
 273 */
 274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 275
 276/*
 277 * period over which we measure -rt task cpu usage in us.
 278 * default: 1s
 279 */
 280unsigned int sysctl_sched_rt_period = 1000000;
 281
 282__read_mostly int scheduler_running;
 283
 284/*
 285 * part of the period that we allow rt tasks to run in us.
 286 * default: 0.95s
 287 */
 288int sysctl_sched_rt_runtime = 950000;
 289
 290
 291
 292/*
 293 * __task_rq_lock - lock the rq @p resides on.
 294 */
 295static inline struct rq *__task_rq_lock(struct task_struct *p)
 296        __acquires(rq->lock)
 297{
 298        struct rq *rq;
 299
 300        lockdep_assert_held(&p->pi_lock);
 301
 302        for (;;) {
 303                rq = task_rq(p);
 304                raw_spin_lock(&rq->lock);
 305                if (likely(rq == task_rq(p)))
 306                        return rq;
 307                raw_spin_unlock(&rq->lock);
 308        }
 309}
 310
 311/*
 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 313 */
 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 315        __acquires(p->pi_lock)
 316        __acquires(rq->lock)
 317{
 318        struct rq *rq;
 319
 320        for (;;) {
 321                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 322                rq = task_rq(p);
 323                raw_spin_lock(&rq->lock);
 324                if (likely(rq == task_rq(p)))
 325                        return rq;
 326                raw_spin_unlock(&rq->lock);
 327                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 328        }
 329}
 330
 331static void __task_rq_unlock(struct rq *rq)
 332        __releases(rq->lock)
 333{
 334        raw_spin_unlock(&rq->lock);
 335}
 336
 337static inline void
 338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 339        __releases(rq->lock)
 340        __releases(p->pi_lock)
 341{
 342        raw_spin_unlock(&rq->lock);
 343        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 344}
 345
 346/*
 347 * this_rq_lock - lock this runqueue and disable interrupts.
 348 */
 349static struct rq *this_rq_lock(void)
 350        __acquires(rq->lock)
 351{
 352        struct rq *rq;
 353
 354        local_irq_disable();
 355        rq = this_rq();
 356        raw_spin_lock(&rq->lock);
 357
 358        return rq;
 359}
 360
 361#ifdef CONFIG_SCHED_HRTICK
 362/*
 363 * Use HR-timers to deliver accurate preemption points.
 364 *
 365 * Its all a bit involved since we cannot program an hrt while holding the
 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 367 * reschedule event.
 368 *
 369 * When we get rescheduled we reprogram the hrtick_timer outside of the
 370 * rq->lock.
 371 */
 372
 373static void hrtick_clear(struct rq *rq)
 374{
 375        if (hrtimer_active(&rq->hrtick_timer))
 376                hrtimer_cancel(&rq->hrtick_timer);
 377}
 378
 379/*
 380 * High-resolution timer tick.
 381 * Runs from hardirq context with interrupts disabled.
 382 */
 383static enum hrtimer_restart hrtick(struct hrtimer *timer)
 384{
 385        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 386
 387        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 388
 389        raw_spin_lock(&rq->lock);
 390        update_rq_clock(rq);
 391        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 392        raw_spin_unlock(&rq->lock);
 393
 394        return HRTIMER_NORESTART;
 395}
 396
 397#ifdef CONFIG_SMP
 398/*
 399 * called from hardirq (IPI) context
 400 */
 401static void __hrtick_start(void *arg)
 402{
 403        struct rq *rq = arg;
 404
 405        raw_spin_lock(&rq->lock);
 406        hrtimer_restart(&rq->hrtick_timer);
 407        rq->hrtick_csd_pending = 0;
 408        raw_spin_unlock(&rq->lock);
 409}
 410
 411/*
 412 * Called to set the hrtick timer state.
 413 *
 414 * called with rq->lock held and irqs disabled
 415 */
 416void hrtick_start(struct rq *rq, u64 delay)
 417{
 418        struct hrtimer *timer = &rq->hrtick_timer;
 419        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 420
 421        hrtimer_set_expires(timer, time);
 422
 423        if (rq == this_rq()) {
 424                hrtimer_restart(timer);
 425        } else if (!rq->hrtick_csd_pending) {
 426                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 427                rq->hrtick_csd_pending = 1;
 428        }
 429}
 430
 431static int
 432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 433{
 434        int cpu = (int)(long)hcpu;
 435
 436        switch (action) {
 437        case CPU_UP_CANCELED:
 438        case CPU_UP_CANCELED_FROZEN:
 439        case CPU_DOWN_PREPARE:
 440        case CPU_DOWN_PREPARE_FROZEN:
 441        case CPU_DEAD:
 442        case CPU_DEAD_FROZEN:
 443                hrtick_clear(cpu_rq(cpu));
 444                return NOTIFY_OK;
 445        }
 446
 447        return NOTIFY_DONE;
 448}
 449
 450static __init void init_hrtick(void)
 451{
 452        hotcpu_notifier(hotplug_hrtick, 0);
 453}
 454#else
 455/*
 456 * Called to set the hrtick timer state.
 457 *
 458 * called with rq->lock held and irqs disabled
 459 */
 460void hrtick_start(struct rq *rq, u64 delay)
 461{
 462        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 463                        HRTIMER_MODE_REL_PINNED, 0);
 464}
 465
 466static inline void init_hrtick(void)
 467{
 468}
 469#endif /* CONFIG_SMP */
 470
 471static void init_rq_hrtick(struct rq *rq)
 472{
 473#ifdef CONFIG_SMP
 474        rq->hrtick_csd_pending = 0;
 475
 476        rq->hrtick_csd.flags = 0;
 477        rq->hrtick_csd.func = __hrtick_start;
 478        rq->hrtick_csd.info = rq;
 479#endif
 480
 481        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 482        rq->hrtick_timer.function = hrtick;
 483}
 484#else   /* CONFIG_SCHED_HRTICK */
 485static inline void hrtick_clear(struct rq *rq)
 486{
 487}
 488
 489static inline void init_rq_hrtick(struct rq *rq)
 490{
 491}
 492
 493static inline void init_hrtick(void)
 494{
 495}
 496#endif  /* CONFIG_SCHED_HRTICK */
 497
 498/*
 499 * resched_task - mark a task 'to be rescheduled now'.
 500 *
 501 * On UP this means the setting of the need_resched flag, on SMP it
 502 * might also involve a cross-CPU call to trigger the scheduler on
 503 * the target CPU.
 504 */
 505#ifdef CONFIG_SMP
 506
 507#ifndef tsk_is_polling
 508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 509#endif
 510
 511void resched_task(struct task_struct *p)
 512{
 513        int cpu;
 514
 515        assert_raw_spin_locked(&task_rq(p)->lock);
 516
 517        if (test_tsk_need_resched(p))
 518                return;
 519
 520        set_tsk_need_resched(p);
 521
 522        cpu = task_cpu(p);
 523        if (cpu == smp_processor_id())
 524                return;
 525
 526        /* NEED_RESCHED must be visible before we test polling */
 527        smp_mb();
 528        if (!tsk_is_polling(p))
 529                smp_send_reschedule(cpu);
 530}
 531
 532void resched_cpu(int cpu)
 533{
 534        struct rq *rq = cpu_rq(cpu);
 535        unsigned long flags;
 536
 537        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 538                return;
 539        resched_task(cpu_curr(cpu));
 540        raw_spin_unlock_irqrestore(&rq->lock, flags);
 541}
 542
 543#ifdef CONFIG_NO_HZ
 544/*
 545 * In the semi idle case, use the nearest busy cpu for migrating timers
 546 * from an idle cpu.  This is good for power-savings.
 547 *
 548 * We don't do similar optimization for completely idle system, as
 549 * selecting an idle cpu will add more delays to the timers than intended
 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 551 */
 552int get_nohz_timer_target(void)
 553{
 554        int cpu = smp_processor_id();
 555        int i;
 556        struct sched_domain *sd;
 557
 558        rcu_read_lock();
 559        for_each_domain(cpu, sd) {
 560                for_each_cpu(i, sched_domain_span(sd)) {
 561                        if (!idle_cpu(i)) {
 562                                cpu = i;
 563                                goto unlock;
 564                        }
 565                }
 566        }
 567unlock:
 568        rcu_read_unlock();
 569        return cpu;
 570}
 571/*
 572 * When add_timer_on() enqueues a timer into the timer wheel of an
 573 * idle CPU then this timer might expire before the next timer event
 574 * which is scheduled to wake up that CPU. In case of a completely
 575 * idle system the next event might even be infinite time into the
 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 577 * leaves the inner idle loop so the newly added timer is taken into
 578 * account when the CPU goes back to idle and evaluates the timer
 579 * wheel for the next timer event.
 580 */
 581void wake_up_idle_cpu(int cpu)
 582{
 583        struct rq *rq = cpu_rq(cpu);
 584
 585        if (cpu == smp_processor_id())
 586                return;
 587
 588        /*
 589         * This is safe, as this function is called with the timer
 590         * wheel base lock of (cpu) held. When the CPU is on the way
 591         * to idle and has not yet set rq->curr to idle then it will
 592         * be serialized on the timer wheel base lock and take the new
 593         * timer into account automatically.
 594         */
 595        if (rq->curr != rq->idle)
 596                return;
 597
 598        /*
 599         * We can set TIF_RESCHED on the idle task of the other CPU
 600         * lockless. The worst case is that the other CPU runs the
 601         * idle task through an additional NOOP schedule()
 602         */
 603        set_tsk_need_resched(rq->idle);
 604
 605        /* NEED_RESCHED must be visible before we test polling */
 606        smp_mb();
 607        if (!tsk_is_polling(rq->idle))
 608                smp_send_reschedule(cpu);
 609}
 610
 611static inline bool got_nohz_idle_kick(void)
 612{
 613        int cpu = smp_processor_id();
 614        return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 615}
 616
 617#else /* CONFIG_NO_HZ */
 618
 619static inline bool got_nohz_idle_kick(void)
 620{
 621        return false;
 622}
 623
 624#endif /* CONFIG_NO_HZ */
 625
 626void sched_avg_update(struct rq *rq)
 627{
 628        s64 period = sched_avg_period();
 629
 630        while ((s64)(rq->clock - rq->age_stamp) > period) {
 631                /*
 632                 * Inline assembly required to prevent the compiler
 633                 * optimising this loop into a divmod call.
 634                 * See __iter_div_u64_rem() for another example of this.
 635                 */
 636                asm("" : "+rm" (rq->age_stamp));
 637                rq->age_stamp += period;
 638                rq->rt_avg /= 2;
 639        }
 640}
 641
 642#else /* !CONFIG_SMP */
 643void resched_task(struct task_struct *p)
 644{
 645        assert_raw_spin_locked(&task_rq(p)->lock);
 646        set_tsk_need_resched(p);
 647}
 648#endif /* CONFIG_SMP */
 649
 650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 651                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 652/*
 653 * Iterate task_group tree rooted at *from, calling @down when first entering a
 654 * node and @up when leaving it for the final time.
 655 *
 656 * Caller must hold rcu_lock or sufficient equivalent.
 657 */
 658int walk_tg_tree_from(struct task_group *from,
 659                             tg_visitor down, tg_visitor up, void *data)
 660{
 661        struct task_group *parent, *child;
 662        int ret;
 663
 664        parent = from;
 665
 666down:
 667        ret = (*down)(parent, data);
 668        if (ret)
 669                goto out;
 670        list_for_each_entry_rcu(child, &parent->children, siblings) {
 671                parent = child;
 672                goto down;
 673
 674up:
 675                continue;
 676        }
 677        ret = (*up)(parent, data);
 678        if (ret || parent == from)
 679                goto out;
 680
 681        child = parent;
 682        parent = parent->parent;
 683        if (parent)
 684                goto up;
 685out:
 686        return ret;
 687}
 688
 689int tg_nop(struct task_group *tg, void *data)
 690{
 691        return 0;
 692}
 693#endif
 694
 695static void set_load_weight(struct task_struct *p)
 696{
 697        int prio = p->static_prio - MAX_RT_PRIO;
 698        struct load_weight *load = &p->se.load;
 699
 700        /*
 701         * SCHED_IDLE tasks get minimal weight:
 702         */
 703        if (p->policy == SCHED_IDLE) {
 704                load->weight = scale_load(WEIGHT_IDLEPRIO);
 705                load->inv_weight = WMULT_IDLEPRIO;
 706                return;
 707        }
 708
 709        load->weight = scale_load(prio_to_weight[prio]);
 710        load->inv_weight = prio_to_wmult[prio];
 711}
 712
 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 714{
 715        update_rq_clock(rq);
 716        sched_info_queued(p);
 717        p->sched_class->enqueue_task(rq, p, flags);
 718}
 719
 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 721{
 722        update_rq_clock(rq);
 723        sched_info_dequeued(p);
 724        p->sched_class->dequeue_task(rq, p, flags);
 725}
 726
 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
 728{
 729        if (task_contributes_to_load(p))
 730                rq->nr_uninterruptible--;
 731
 732        enqueue_task(rq, p, flags);
 733}
 734
 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 736{
 737        if (task_contributes_to_load(p))
 738                rq->nr_uninterruptible++;
 739
 740        dequeue_task(rq, p, flags);
 741}
 742
 743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 744
 745/*
 746 * There are no locks covering percpu hardirq/softirq time.
 747 * They are only modified in account_system_vtime, on corresponding CPU
 748 * with interrupts disabled. So, writes are safe.
 749 * They are read and saved off onto struct rq in update_rq_clock().
 750 * This may result in other CPU reading this CPU's irq time and can
 751 * race with irq/account_system_vtime on this CPU. We would either get old
 752 * or new value with a side effect of accounting a slice of irq time to wrong
 753 * task when irq is in progress while we read rq->clock. That is a worthy
 754 * compromise in place of having locks on each irq in account_system_time.
 755 */
 756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
 757static DEFINE_PER_CPU(u64, cpu_softirq_time);
 758
 759static DEFINE_PER_CPU(u64, irq_start_time);
 760static int sched_clock_irqtime;
 761
 762void enable_sched_clock_irqtime(void)
 763{
 764        sched_clock_irqtime = 1;
 765}
 766
 767void disable_sched_clock_irqtime(void)
 768{
 769        sched_clock_irqtime = 0;
 770}
 771
 772#ifndef CONFIG_64BIT
 773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 774
 775static inline void irq_time_write_begin(void)
 776{
 777        __this_cpu_inc(irq_time_seq.sequence);
 778        smp_wmb();
 779}
 780
 781static inline void irq_time_write_end(void)
 782{
 783        smp_wmb();
 784        __this_cpu_inc(irq_time_seq.sequence);
 785}
 786
 787static inline u64 irq_time_read(int cpu)
 788{
 789        u64 irq_time;
 790        unsigned seq;
 791
 792        do {
 793                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
 794                irq_time = per_cpu(cpu_softirq_time, cpu) +
 795                           per_cpu(cpu_hardirq_time, cpu);
 796        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 797
 798        return irq_time;
 799}
 800#else /* CONFIG_64BIT */
 801static inline void irq_time_write_begin(void)
 802{
 803}
 804
 805static inline void irq_time_write_end(void)
 806{
 807}
 808
 809static inline u64 irq_time_read(int cpu)
 810{
 811        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 812}
 813#endif /* CONFIG_64BIT */
 814
 815/*
 816 * Called before incrementing preempt_count on {soft,}irq_enter
 817 * and before decrementing preempt_count on {soft,}irq_exit.
 818 */
 819void account_system_vtime(struct task_struct *curr)
 820{
 821        unsigned long flags;
 822        s64 delta;
 823        int cpu;
 824
 825        if (!sched_clock_irqtime)
 826                return;
 827
 828        local_irq_save(flags);
 829
 830        cpu = smp_processor_id();
 831        delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 832        __this_cpu_add(irq_start_time, delta);
 833
 834        irq_time_write_begin();
 835        /*
 836         * We do not account for softirq time from ksoftirqd here.
 837         * We want to continue accounting softirq time to ksoftirqd thread
 838         * in that case, so as not to confuse scheduler with a special task
 839         * that do not consume any time, but still wants to run.
 840         */
 841        if (hardirq_count())
 842                __this_cpu_add(cpu_hardirq_time, delta);
 843        else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 844                __this_cpu_add(cpu_softirq_time, delta);
 845
 846        irq_time_write_end();
 847        local_irq_restore(flags);
 848}
 849EXPORT_SYMBOL_GPL(account_system_vtime);
 850
 851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 852
 853#ifdef CONFIG_PARAVIRT
 854static inline u64 steal_ticks(u64 steal)
 855{
 856        if (unlikely(steal > NSEC_PER_SEC))
 857                return div_u64(steal, TICK_NSEC);
 858
 859        return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
 860}
 861#endif
 862
 863static void update_rq_clock_task(struct rq *rq, s64 delta)
 864{
 865/*
 866 * In theory, the compile should just see 0 here, and optimize out the call
 867 * to sched_rt_avg_update. But I don't trust it...
 868 */
 869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 870        s64 steal = 0, irq_delta = 0;
 871#endif
 872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 873        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 874
 875        /*
 876         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 877         * this case when a previous update_rq_clock() happened inside a
 878         * {soft,}irq region.
 879         *
 880         * When this happens, we stop ->clock_task and only update the
 881         * prev_irq_time stamp to account for the part that fit, so that a next
 882         * update will consume the rest. This ensures ->clock_task is
 883         * monotonic.
 884         *
 885         * It does however cause some slight miss-attribution of {soft,}irq
 886         * time, a more accurate solution would be to update the irq_time using
 887         * the current rq->clock timestamp, except that would require using
 888         * atomic ops.
 889         */
 890        if (irq_delta > delta)
 891                irq_delta = delta;
 892
 893        rq->prev_irq_time += irq_delta;
 894        delta -= irq_delta;
 895#endif
 896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 897        if (static_key_false((&paravirt_steal_rq_enabled))) {
 898                u64 st;
 899
 900                steal = paravirt_steal_clock(cpu_of(rq));
 901                steal -= rq->prev_steal_time_rq;
 902
 903                if (unlikely(steal > delta))
 904                        steal = delta;
 905
 906                st = steal_ticks(steal);
 907                steal = st * TICK_NSEC;
 908
 909                rq->prev_steal_time_rq += steal;
 910
 911                delta -= steal;
 912        }
 913#endif
 914
 915        rq->clock_task += delta;
 916
 917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 918        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 919                sched_rt_avg_update(rq, irq_delta + steal);
 920#endif
 921}
 922
 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 924static int irqtime_account_hi_update(void)
 925{
 926        u64 *cpustat = kcpustat_this_cpu->cpustat;
 927        unsigned long flags;
 928        u64 latest_ns;
 929        int ret = 0;
 930
 931        local_irq_save(flags);
 932        latest_ns = this_cpu_read(cpu_hardirq_time);
 933        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 934                ret = 1;
 935        local_irq_restore(flags);
 936        return ret;
 937}
 938
 939static int irqtime_account_si_update(void)
 940{
 941        u64 *cpustat = kcpustat_this_cpu->cpustat;
 942        unsigned long flags;
 943        u64 latest_ns;
 944        int ret = 0;
 945
 946        local_irq_save(flags);
 947        latest_ns = this_cpu_read(cpu_softirq_time);
 948        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 949                ret = 1;
 950        local_irq_restore(flags);
 951        return ret;
 952}
 953
 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 955
 956#define sched_clock_irqtime     (0)
 957
 958#endif
 959
 960void sched_set_stop_task(int cpu, struct task_struct *stop)
 961{
 962        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 963        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 964
 965        if (stop) {
 966                /*
 967                 * Make it appear like a SCHED_FIFO task, its something
 968                 * userspace knows about and won't get confused about.
 969                 *
 970                 * Also, it will make PI more or less work without too
 971                 * much confusion -- but then, stop work should not
 972                 * rely on PI working anyway.
 973                 */
 974                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 975
 976                stop->sched_class = &stop_sched_class;
 977        }
 978
 979        cpu_rq(cpu)->stop = stop;
 980
 981        if (old_stop) {
 982                /*
 983                 * Reset it back to a normal scheduling class so that
 984                 * it can die in pieces.
 985                 */
 986                old_stop->sched_class = &rt_sched_class;
 987        }
 988}
 989
 990/*
 991 * __normal_prio - return the priority that is based on the static prio
 992 */
 993static inline int __normal_prio(struct task_struct *p)
 994{
 995        return p->static_prio;
 996}
 997
 998/*
 999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005static inline int normal_prio(struct task_struct *p)
1006{
1007        int prio;
1008
1009        if (task_has_rt_policy(p))
1010                prio = MAX_RT_PRIO-1 - p->rt_priority;
1011        else
1012                prio = __normal_prio(p);
1013        return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023static int effective_prio(struct task_struct *p)
1024{
1025        p->normal_prio = normal_prio(p);
1026        /*
1027         * If we are RT tasks or we were boosted to RT priority,
1028         * keep the priority unchanged. Otherwise, update priority
1029         * to the normal priority:
1030         */
1031        if (!rt_prio(p->prio))
1032                return p->normal_prio;
1033        return p->prio;
1034}
1035
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040inline int task_curr(const struct task_struct *p)
1041{
1042        return cpu_curr(task_cpu(p)) == p;
1043}
1044
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046                                       const struct sched_class *prev_class,
1047                                       int oldprio)
1048{
1049        if (prev_class != p->sched_class) {
1050                if (prev_class->switched_from)
1051                        prev_class->switched_from(rq, p);
1052                p->sched_class->switched_to(rq, p);
1053        } else if (oldprio != p->prio)
1054                p->sched_class->prio_changed(rq, p, oldprio);
1055}
1056
1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058{
1059        const struct sched_class *class;
1060
1061        if (p->sched_class == rq->curr->sched_class) {
1062                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063        } else {
1064                for_each_class(class) {
1065                        if (class == rq->curr->sched_class)
1066                                break;
1067                        if (class == p->sched_class) {
1068                                resched_task(rq->curr);
1069                                break;
1070                        }
1071                }
1072        }
1073
1074        /*
1075         * A queue event has occurred, and we're going to schedule.  In
1076         * this case, we can save a useless back to back clock update.
1077         */
1078        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079                rq->skip_clock_update = 1;
1080}
1081
1082#ifdef CONFIG_SMP
1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084{
1085#ifdef CONFIG_SCHED_DEBUG
1086        /*
1087         * We should never call set_task_cpu() on a blocked task,
1088         * ttwu() will sort out the placement.
1089         */
1090        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091                        !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093#ifdef CONFIG_LOCKDEP
1094        /*
1095         * The caller should hold either p->pi_lock or rq->lock, when changing
1096         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097         *
1098         * sched_move_task() holds both and thus holding either pins the cgroup,
1099         * see task_group().
1100         *
1101         * Furthermore, all task_rq users should acquire both locks, see
1102         * task_rq_lock().
1103         */
1104        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105                                      lockdep_is_held(&task_rq(p)->lock)));
1106#endif
1107#endif
1108
1109        trace_sched_migrate_task(p, new_cpu);
1110
1111        if (task_cpu(p) != new_cpu) {
1112                p->se.nr_migrations++;
1113                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114        }
1115
1116        __set_task_cpu(p, new_cpu);
1117}
1118
1119struct migration_arg {
1120        struct task_struct *task;
1121        int dest_cpu;
1122};
1123
1124static int migration_cpu_stop(void *data);
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144        unsigned long flags;
1145        int running, on_rq;
1146        unsigned long ncsw;
1147        struct rq *rq;
1148
1149        for (;;) {
1150                /*
1151                 * We do the initial early heuristics without holding
1152                 * any task-queue locks at all. We'll only try to get
1153                 * the runqueue lock when things look like they will
1154                 * work out!
1155                 */
1156                rq = task_rq(p);
1157
1158                /*
1159                 * If the task is actively running on another CPU
1160                 * still, just relax and busy-wait without holding
1161                 * any locks.
1162                 *
1163                 * NOTE! Since we don't hold any locks, it's not
1164                 * even sure that "rq" stays as the right runqueue!
1165                 * But we don't care, since "task_running()" will
1166                 * return false if the runqueue has changed and p
1167                 * is actually now running somewhere else!
1168                 */
1169                while (task_running(rq, p)) {
1170                        if (match_state && unlikely(p->state != match_state))
1171                                return 0;
1172                        cpu_relax();
1173                }
1174
1175                /*
1176                 * Ok, time to look more closely! We need the rq
1177                 * lock now, to be *sure*. If we're wrong, we'll
1178                 * just go back and repeat.
1179                 */
1180                rq = task_rq_lock(p, &flags);
1181                trace_sched_wait_task(p);
1182                running = task_running(rq, p);
1183                on_rq = p->on_rq;
1184                ncsw = 0;
1185                if (!match_state || p->state == match_state)
1186                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187                task_rq_unlock(rq, p, &flags);
1188
1189                /*
1190                 * If it changed from the expected state, bail out now.
1191                 */
1192                if (unlikely(!ncsw))
1193                        break;
1194
1195                /*
1196                 * Was it really running after all now that we
1197                 * checked with the proper locks actually held?
1198                 *
1199                 * Oops. Go back and try again..
1200                 */
1201                if (unlikely(running)) {
1202                        cpu_relax();
1203                        continue;
1204                }
1205
1206                /*
1207                 * It's not enough that it's not actively running,
1208                 * it must be off the runqueue _entirely_, and not
1209                 * preempted!
1210                 *
1211                 * So if it was still runnable (but just not actively
1212                 * running right now), it's preempted, and we should
1213                 * yield - it could be a while.
1214                 */
1215                if (unlikely(on_rq)) {
1216                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218                        set_current_state(TASK_UNINTERRUPTIBLE);
1219                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220                        continue;
1221                }
1222
1223                /*
1224                 * Ahh, all good. It wasn't running, and it wasn't
1225                 * runnable, which means that it will never become
1226                 * running in the future either. We're all done!
1227                 */
1228                break;
1229        }
1230
1231        return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249        int cpu;
1250
1251        preempt_disable();
1252        cpu = task_cpu(p);
1253        if ((cpu != smp_processor_id()) && task_curr(p))
1254                smp_send_reschedule(cpu);
1255        preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266        const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267        enum { cpuset, possible, fail } state = cpuset;
1268        int dest_cpu;
1269
1270        /* Look for allowed, online CPU in same node. */
1271        for_each_cpu(dest_cpu, nodemask) {
1272                if (!cpu_online(dest_cpu))
1273                        continue;
1274                if (!cpu_active(dest_cpu))
1275                        continue;
1276                if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277                        return dest_cpu;
1278        }
1279
1280        for (;;) {
1281                /* Any allowed, online CPU? */
1282                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283                        if (!cpu_online(dest_cpu))
1284                                continue;
1285                        if (!cpu_active(dest_cpu))
1286                                continue;
1287                        goto out;
1288                }
1289
1290                switch (state) {
1291                case cpuset:
1292                        /* No more Mr. Nice Guy. */
1293                        cpuset_cpus_allowed_fallback(p);
1294                        state = possible;
1295                        break;
1296
1297                case possible:
1298                        do_set_cpus_allowed(p, cpu_possible_mask);
1299                        state = fail;
1300                        break;
1301
1302                case fail:
1303                        BUG();
1304                        break;
1305                }
1306        }
1307
1308out:
1309        if (state != cpuset) {
1310                /*
1311                 * Don't tell them about moving exiting tasks or
1312                 * kernel threads (both mm NULL), since they never
1313                 * leave kernel.
1314                 */
1315                if (p->mm && printk_ratelimit()) {
1316                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317                                        task_pid_nr(p), p->comm, cpu);
1318                }
1319        }
1320
1321        return dest_cpu;
1322}
1323
1324/*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327static inline
1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329{
1330        int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331
1332        /*
1333         * In order not to call set_task_cpu() on a blocking task we need
1334         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335         * cpu.
1336         *
1337         * Since this is common to all placement strategies, this lives here.
1338         *
1339         * [ this allows ->select_task() to simply return task_cpu(p) and
1340         *   not worry about this generic constraint ]
1341         */
1342        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343                     !cpu_online(cpu)))
1344                cpu = select_fallback_rq(task_cpu(p), p);
1345
1346        return cpu;
1347}
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351        s64 diff = sample - *avg;
1352        *avg += diff >> 3;
1353}
1354#endif
1355
1356static void
1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358{
1359#ifdef CONFIG_SCHEDSTATS
1360        struct rq *rq = this_rq();
1361
1362#ifdef CONFIG_SMP
1363        int this_cpu = smp_processor_id();
1364
1365        if (cpu == this_cpu) {
1366                schedstat_inc(rq, ttwu_local);
1367                schedstat_inc(p, se.statistics.nr_wakeups_local);
1368        } else {
1369                struct sched_domain *sd;
1370
1371                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372                rcu_read_lock();
1373                for_each_domain(this_cpu, sd) {
1374                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375                                schedstat_inc(sd, ttwu_wake_remote);
1376                                break;
1377                        }
1378                }
1379                rcu_read_unlock();
1380        }
1381
1382        if (wake_flags & WF_MIGRATED)
1383                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385#endif /* CONFIG_SMP */
1386
1387        schedstat_inc(rq, ttwu_count);
1388        schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390        if (wake_flags & WF_SYNC)
1391                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
1398        activate_task(rq, p, en_flags);
1399        p->on_rq = 1;
1400
1401        /* if a worker is waking up, notify workqueue */
1402        if (p->flags & PF_WQ_WORKER)
1403                wq_worker_waking_up(p, cpu_of(rq));
1404}
1405
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409static void
1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411{
1412        trace_sched_wakeup(p, true);
1413        check_preempt_curr(rq, p, wake_flags);
1414
1415        p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417        if (p->sched_class->task_woken)
1418                p->sched_class->task_woken(rq, p);
1419
1420        if (rq->idle_stamp) {
1421                u64 delta = rq->clock - rq->idle_stamp;
1422                u64 max = 2*sysctl_sched_migration_cost;
1423
1424                if (delta > max)
1425                        rq->avg_idle = max;
1426                else
1427                        update_avg(&rq->avg_idle, delta);
1428                rq->idle_stamp = 0;
1429        }
1430#endif
1431}
1432
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437        if (p->sched_contributes_to_load)
1438                rq->nr_uninterruptible--;
1439#endif
1440
1441        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442        ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453        struct rq *rq;
1454        int ret = 0;
1455
1456        rq = __task_rq_lock(p);
1457        if (p->on_rq) {
1458                ttwu_do_wakeup(rq, p, wake_flags);
1459                ret = 1;
1460        }
1461        __task_rq_unlock(rq);
1462
1463        return ret;
1464}
1465
1466#ifdef CONFIG_SMP
1467static void sched_ttwu_pending(void)
1468{
1469        struct rq *rq = this_rq();
1470        struct llist_node *llist = llist_del_all(&rq->wake_list);
1471        struct task_struct *p;
1472
1473        raw_spin_lock(&rq->lock);
1474
1475        while (llist) {
1476                p = llist_entry(llist, struct task_struct, wake_entry);
1477                llist = llist_next(llist);
1478                ttwu_do_activate(rq, p, 0);
1479        }
1480
1481        raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
1486        if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487                return;
1488
1489        /*
1490         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491         * traditionally all their work was done from the interrupt return
1492         * path. Now that we actually do some work, we need to make sure
1493         * we do call them.
1494         *
1495         * Some archs already do call them, luckily irq_enter/exit nest
1496         * properly.
1497         *
1498         * Arguably we should visit all archs and update all handlers,
1499         * however a fair share of IPIs are still resched only so this would
1500         * somewhat pessimize the simple resched case.
1501         */
1502        irq_enter();
1503        sched_ttwu_pending();
1504
1505        /*
1506         * Check if someone kicked us for doing the nohz idle load balance.
1507         */
1508        if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509                this_rq()->idle_balance = 1;
1510                raise_softirq_irqoff(SCHED_SOFTIRQ);
1511        }
1512        irq_exit();
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
1517        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518                smp_send_reschedule(cpu);
1519}
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524        struct rq *rq;
1525        int ret = 0;
1526
1527        rq = __task_rq_lock(p);
1528        if (p->on_cpu) {
1529                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530                ttwu_do_wakeup(rq, p, wake_flags);
1531                ret = 1;
1532        }
1533        __task_rq_unlock(rq);
1534
1535        return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540bool cpus_share_cache(int this_cpu, int that_cpu)
1541{
1542        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
1544#endif /* CONFIG_SMP */
1545
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548        struct rq *rq = cpu_rq(cpu);
1549
1550#if defined(CONFIG_SMP)
1551        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553                ttwu_queue_remote(p, cpu);
1554                return;
1555        }
1556#endif
1557
1558        raw_spin_lock(&rq->lock);
1559        ttwu_do_activate(rq, p, 0);
1560        raw_spin_unlock(&rq->lock);
1561}
1562
1563/**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580{
1581        unsigned long flags;
1582        int cpu, success = 0;
1583
1584        smp_wmb();
1585        raw_spin_lock_irqsave(&p->pi_lock, flags);
1586        if (!(p->state & state))
1587                goto out;
1588
1589        success = 1; /* we're going to change ->state */
1590        cpu = task_cpu(p);
1591
1592        if (p->on_rq && ttwu_remote(p, wake_flags))
1593                goto stat;
1594
1595#ifdef CONFIG_SMP
1596        /*
1597         * If the owning (remote) cpu is still in the middle of schedule() with
1598         * this task as prev, wait until its done referencing the task.
1599         */
1600        while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602                /*
1603                 * In case the architecture enables interrupts in
1604                 * context_switch(), we cannot busy wait, since that
1605                 * would lead to deadlocks when an interrupt hits and
1606                 * tries to wake up @prev. So bail and do a complete
1607                 * remote wakeup.
1608                 */
1609                if (ttwu_activate_remote(p, wake_flags))
1610                        goto stat;
1611#else
1612                cpu_relax();
1613#endif
1614        }
1615        /*
1616         * Pairs with the smp_wmb() in finish_lock_switch().
1617         */
1618        smp_rmb();
1619
1620        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621        p->state = TASK_WAKING;
1622
1623        if (p->sched_class->task_waking)
1624                p->sched_class->task_waking(p);
1625
1626        cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627        if (task_cpu(p) != cpu) {
1628                wake_flags |= WF_MIGRATED;
1629                set_task_cpu(p, cpu);
1630        }
1631#endif /* CONFIG_SMP */
1632
1633        ttwu_queue(p, cpu);
1634stat:
1635        ttwu_stat(p, cpu, wake_flags);
1636out:
1637        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639        return success;
1640}
1641
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652        struct rq *rq = task_rq(p);
1653
1654        BUG_ON(rq != this_rq());
1655        BUG_ON(p == current);
1656        lockdep_assert_held(&rq->lock);
1657
1658        if (!raw_spin_trylock(&p->pi_lock)) {
1659                raw_spin_unlock(&rq->lock);
1660                raw_spin_lock(&p->pi_lock);
1661                raw_spin_lock(&rq->lock);
1662        }
1663
1664        if (!(p->state & TASK_NORMAL))
1665                goto out;
1666
1667        if (!p->on_rq)
1668                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670        ttwu_do_wakeup(rq, p, 0);
1671        ttwu_stat(p, smp_processor_id(), 0);
1672out:
1673        raw_spin_unlock(&p->pi_lock);
1674}
1675
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes.  Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687int wake_up_process(struct task_struct *p)
1688{
1689        return try_to_wake_up(p, TASK_ALL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695        return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
1706        p->on_rq                        = 0;
1707
1708        p->se.on_rq                     = 0;
1709        p->se.exec_start                = 0;
1710        p->se.sum_exec_runtime          = 0;
1711        p->se.prev_sum_exec_runtime     = 0;
1712        p->se.nr_migrations             = 0;
1713        p->se.vruntime                  = 0;
1714        INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720        INIT_LIST_HEAD(&p->rt.run_list);
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723        INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
1730void sched_fork(struct task_struct *p)
1731{
1732        unsigned long flags;
1733        int cpu = get_cpu();
1734
1735        __sched_fork(p);
1736        /*
1737         * We mark the process as running here. This guarantees that
1738         * nobody will actually run it, and a signal or other external
1739         * event cannot wake it up and insert it on the runqueue either.
1740         */
1741        p->state = TASK_RUNNING;
1742
1743        /*
1744         * Make sure we do not leak PI boosting priority to the child.
1745         */
1746        p->prio = current->normal_prio;
1747
1748        /*
1749         * Revert to default priority/policy on fork if requested.
1750         */
1751        if (unlikely(p->sched_reset_on_fork)) {
1752                if (task_has_rt_policy(p)) {
1753                        p->policy = SCHED_NORMAL;
1754                        p->static_prio = NICE_TO_PRIO(0);
1755                        p->rt_priority = 0;
1756                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757                        p->static_prio = NICE_TO_PRIO(0);
1758
1759                p->prio = p->normal_prio = __normal_prio(p);
1760                set_load_weight(p);
1761
1762                /*
1763                 * We don't need the reset flag anymore after the fork. It has
1764                 * fulfilled its duty:
1765                 */
1766                p->sched_reset_on_fork = 0;
1767        }
1768
1769        if (!rt_prio(p->prio))
1770                p->sched_class = &fair_sched_class;
1771
1772        if (p->sched_class->task_fork)
1773                p->sched_class->task_fork(p);
1774
1775        /*
1776         * The child is not yet in the pid-hash so no cgroup attach races,
1777         * and the cgroup is pinned to this child due to cgroup_fork()
1778         * is ran before sched_fork().
1779         *
1780         * Silence PROVE_RCU.
1781         */
1782        raw_spin_lock_irqsave(&p->pi_lock, flags);
1783        set_task_cpu(p, cpu);
1784        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787        if (likely(sched_info_on()))
1788                memset(&p->sched_info, 0, sizeof(p->sched_info));
1789#endif
1790#if defined(CONFIG_SMP)
1791        p->on_cpu = 0;
1792#endif
1793#ifdef CONFIG_PREEMPT_COUNT
1794        /* Want to start with kernel preemption disabled. */
1795        task_thread_info(p)->preempt_count = 1;
1796#endif
1797#ifdef CONFIG_SMP
1798        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799#endif
1800
1801        put_cpu();
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811void wake_up_new_task(struct task_struct *p)
1812{
1813        unsigned long flags;
1814        struct rq *rq;
1815
1816        raw_spin_lock_irqsave(&p->pi_lock, flags);
1817#ifdef CONFIG_SMP
1818        /*
1819         * Fork balancing, do it here and not earlier because:
1820         *  - cpus_allowed can change in the fork path
1821         *  - any previously selected cpu might disappear through hotplug
1822         */
1823        set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824#endif
1825
1826        rq = __task_rq_lock(p);
1827        activate_task(rq, p, 0);
1828        p->on_rq = 1;
1829        trace_sched_wakeup_new(p, true);
1830        check_preempt_curr(rq, p, WF_FORK);
1831#ifdef CONFIG_SMP
1832        if (p->sched_class->task_woken)
1833                p->sched_class->task_woken(rq, p);
1834#endif
1835        task_rq_unlock(rq, p, &flags);
1836}
1837
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858        hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864        struct preempt_notifier *notifier;
1865        struct hlist_node *node;
1866
1867        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873                                 struct task_struct *next)
1874{
1875        struct preempt_notifier *notifier;
1876        struct hlist_node *node;
1877
1878        hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879                notifier->ops->sched_out(notifier, next);
1880}
1881
1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890                                 struct task_struct *next)
1891{
1892}
1893
1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911                    struct task_struct *next)
1912{
1913        trace_sched_switch(prev, next);
1914        sched_info_switch(prev, next);
1915        perf_event_task_sched_out(prev, next);
1916        fire_sched_out_preempt_notifiers(prev, next);
1917        prepare_lock_switch(rq, next);
1918        prepare_arch_switch(next);
1919}
1920
1921/**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937        __releases(rq->lock)
1938{
1939        struct mm_struct *mm = rq->prev_mm;
1940        long prev_state;
1941
1942        rq->prev_mm = NULL;
1943
1944        /*
1945         * A task struct has one reference for the use as "current".
1946         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947         * schedule one last time. The schedule call will never return, and
1948         * the scheduled task must drop that reference.
1949         * The test for TASK_DEAD must occur while the runqueue locks are
1950         * still held, otherwise prev could be scheduled on another cpu, die
1951         * there before we look at prev->state, and then the reference would
1952         * be dropped twice.
1953         *              Manfred Spraul <manfred@colorfullife.com>
1954         */
1955        prev_state = prev->state;
1956        finish_arch_switch(prev);
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958        local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960        perf_event_task_sched_in(prev, current);
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962        local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964        finish_lock_switch(rq, prev);
1965        finish_arch_post_lock_switch();
1966
1967        fire_sched_in_preempt_notifiers(current);
1968        if (mm)
1969                mmdrop(mm);
1970        if (unlikely(prev_state == TASK_DEAD)) {
1971                /*
1972                 * Remove function-return probe instances associated with this
1973                 * task and put them back on the free list.
1974                 */
1975                kprobe_flush_task(prev);
1976                put_task_struct(prev);
1977        }
1978}
1979
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985        if (prev->sched_class->pre_schedule)
1986                prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992        if (rq->post_schedule) {
1993                unsigned long flags;
1994
1995                raw_spin_lock_irqsave(&rq->lock, flags);
1996                if (rq->curr->sched_class->post_schedule)
1997                        rq->curr->sched_class->post_schedule(rq);
1998                raw_spin_unlock_irqrestore(&rq->lock, flags);
1999
2000                rq->post_schedule = 0;
2001        }
2002}
2003
2004#else
2005
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
2012}
2013
2014#endif
2015
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020asmlinkage void schedule_tail(struct task_struct *prev)
2021        __releases(rq->lock)
2022{
2023        struct rq *rq = this_rq();
2024
2025        finish_task_switch(rq, prev);
2026
2027        /*
2028         * FIXME: do we need to worry about rq being invalidated by the
2029         * task_switch?
2030         */
2031        post_schedule(rq);
2032
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034        /* In this case, finish_task_switch does not reenable preemption */
2035        preempt_enable();
2036#endif
2037        if (current->set_child_tid)
2038                put_user(task_pid_vnr(current), current->set_child_tid);
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045static inline void
2046context_switch(struct rq *rq, struct task_struct *prev,
2047               struct task_struct *next)
2048{
2049        struct mm_struct *mm, *oldmm;
2050
2051        prepare_task_switch(rq, prev, next);
2052
2053        mm = next->mm;
2054        oldmm = prev->active_mm;
2055        /*
2056         * For paravirt, this is coupled with an exit in switch_to to
2057         * combine the page table reload and the switch backend into
2058         * one hypercall.
2059         */
2060        arch_start_context_switch(prev);
2061
2062        if (!mm) {
2063                next->active_mm = oldmm;
2064                atomic_inc(&oldmm->mm_count);
2065                enter_lazy_tlb(oldmm, next);
2066        } else
2067                switch_mm(oldmm, mm, next);
2068
2069        if (!prev->mm) {
2070                prev->active_mm = NULL;
2071                rq->prev_mm = oldmm;
2072        }
2073        /*
2074         * Since the runqueue lock will be released by the next
2075         * task (which is an invalid locking op but in the case
2076         * of the scheduler it's an obvious special-case), so we
2077         * do an early lockdep release here:
2078         */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081#endif
2082
2083        /* Here we just switch the register state and the stack. */
2084        switch_to(prev, next, prev);
2085
2086        barrier();
2087        /*
2088         * this_rq must be evaluated again because prev may have moved
2089         * CPUs since it called schedule(), thus the 'rq' on its stack
2090         * frame will be invalid.
2091         */
2092        finish_task_switch(this_rq(), prev);
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104        unsigned long i, sum = 0;
2105
2106        for_each_online_cpu(i)
2107                sum += cpu_rq(i)->nr_running;
2108
2109        return sum;
2110}
2111
2112unsigned long nr_uninterruptible(void)
2113{
2114        unsigned long i, sum = 0;
2115
2116        for_each_possible_cpu(i)
2117                sum += cpu_rq(i)->nr_uninterruptible;
2118
2119        /*
2120         * Since we read the counters lockless, it might be slightly
2121         * inaccurate. Do not allow it to go below zero though:
2122         */
2123        if (unlikely((long)sum < 0))
2124                sum = 0;
2125
2126        return sum;
2127}
2128
2129unsigned long long nr_context_switches(void)
2130{
2131        int i;
2132        unsigned long long sum = 0;
2133
2134        for_each_possible_cpu(i)
2135                sum += cpu_rq(i)->nr_switches;
2136
2137        return sum;
2138}
2139
2140unsigned long nr_iowait(void)
2141{
2142        unsigned long i, sum = 0;
2143
2144        for_each_possible_cpu(i)
2145                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146
2147        return sum;
2148}
2149
2150unsigned long nr_iowait_cpu(int cpu)
2151{
2152        struct rq *this = cpu_rq(cpu);
2153        return atomic_read(&this->nr_iowait);
2154}
2155
2156unsigned long this_cpu_load(void)
2157{
2158        struct rq *this = this_rq();
2159        return this->cpu_load[0];
2160}
2161
2162
2163/*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 *   nr_active = 0;
2175 *   for_each_possible_cpu(cpu)
2176 *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2183 *    serious number of cpus, therefore we need to take a distributed approach
2184 *    to calculating nr_active.
2185 *
2186 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 *    So assuming nr_active := 0 when we start out -- true per definition, we
2190 *    can simply take per-cpu deltas and fold those into a global accumulate
2191 *    to obtain the same result. See calc_load_fold_active().
2192 *
2193 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 *    across the machine, we assume 10 ticks is sufficient time for every
2195 *    cpu to have completed this task.
2196 *
2197 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2198 *    again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 *    this would add another cross-cpu cacheline miss and atomic operation
2202 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2203 *    when it went into uninterruptible state and decrement on whatever cpu
2204 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2205 *    all cpus yields the correct result.
2206 *
2207 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
2210/* Variables and functions for calc_load */
2211static atomic_long_t calc_load_tasks;
2212static unsigned long calc_load_update;
2213unsigned long avenrun[3];
2214EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216/**
2217 * get_avenrun - get the load average array
2218 * @loads:      pointer to dest load array
2219 * @offset:     offset to add
2220 * @shift:      shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225{
2226        loads[0] = (avenrun[0] + offset) << shift;
2227        loads[1] = (avenrun[1] + offset) << shift;
2228        loads[2] = (avenrun[2] + offset) << shift;
2229}
2230
2231static long calc_load_fold_active(struct rq *this_rq)
2232{
2233        long nr_active, delta = 0;
2234
2235        nr_active = this_rq->nr_running;
2236        nr_active += (long) this_rq->nr_uninterruptible;
2237
2238        if (nr_active != this_rq->calc_load_active) {
2239                delta = nr_active - this_rq->calc_load_active;
2240                this_rq->calc_load_active = nr_active;
2241        }
2242
2243        return delta;
2244}
2245
2246/*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
2249static unsigned long
2250calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251{
2252        load *= exp;
2253        load += active * (FIXED_1 - exp);
2254        load += 1UL << (FSHIFT - 1);
2255        return load >> FSHIFT;
2256}
2257
2258#ifdef CONFIG_NO_HZ
2259/*
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 *  - When we go NO_HZ idle during the window, we can negate our sample
2273 *    contribution, causing under-accounting.
2274 *
2275 *    We avoid this by keeping two idle-delta counters and flipping them
2276 *    when the window starts, thus separating old and new NO_HZ load.
2277 *
2278 *    The only trick is the slight shift in index flip for read vs write.
2279 *
2280 *        0s            5s            10s           15s
2281 *          +10           +10           +10           +10
2282 *        |-|-----------|-|-----------|-|-----------|-|
2283 *    r:0 0 1           1 0           0 1           1 0
2284 *    w:0 1 1           0 0           1 1           0 0
2285 *
2286 *    This ensures we'll fold the old idle contribution in this window while
2287 *    accumlating the new one.
2288 *
2289 *  - When we wake up from NO_HZ idle during the window, we push up our
2290 *    contribution, since we effectively move our sample point to a known
2291 *    busy state.
2292 *
2293 *    This is solved by pushing the window forward, and thus skipping the
2294 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2295 *    was in effect at the time the window opened). This also solves the issue
2296 *    of having to deal with a cpu having been in NOHZ idle for multiple
2297 *    LOAD_FREQ intervals.
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
2301static atomic_long_t calc_load_idle[2];
2302static int calc_load_idx;
2303
2304static inline int calc_load_write_idx(void)
2305{
2306        int idx = calc_load_idx;
2307
2308        /*
2309         * See calc_global_nohz(), if we observe the new index, we also
2310         * need to observe the new update time.
2311         */
2312        smp_rmb();
2313
2314        /*
2315         * If the folding window started, make sure we start writing in the
2316         * next idle-delta.
2317         */
2318        if (!time_before(jiffies, calc_load_update))
2319                idx++;
2320
2321        return idx & 1;
2322}
2323
2324static inline int calc_load_read_idx(void)
2325{
2326        return calc_load_idx & 1;
2327}
2328
2329void calc_load_enter_idle(void)
2330{
2331        struct rq *this_rq = this_rq();
2332        long delta;
2333
2334        /*
2335         * We're going into NOHZ mode, if there's any pending delta, fold it
2336         * into the pending idle delta.
2337         */
2338        delta = calc_load_fold_active(this_rq);
2339        if (delta) {
2340                int idx = calc_load_write_idx();
2341                atomic_long_add(delta, &calc_load_idle[idx]);
2342        }
2343}
2344
2345void calc_load_exit_idle(void)
2346{
2347        struct rq *this_rq = this_rq();
2348
2349        /*
2350         * If we're still before the sample window, we're done.
2351         */
2352        if (time_before(jiffies, this_rq->calc_load_update))
2353                return;
2354
2355        /*
2356         * We woke inside or after the sample window, this means we're already
2357         * accounted through the nohz accounting, so skip the entire deal and
2358         * sync up for the next window.
2359         */
2360        this_rq->calc_load_update = calc_load_update;
2361        if (time_before(jiffies, this_rq->calc_load_update + 10))
2362                this_rq->calc_load_update += LOAD_FREQ;
2363}
2364
2365static long calc_load_fold_idle(void)
2366{
2367        int idx = calc_load_read_idx();
2368        long delta = 0;
2369
2370        if (atomic_long_read(&calc_load_idle[idx]))
2371                delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372
2373        return delta;
2374}
2375
2376/**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x:         base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n:         power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391static unsigned long
2392fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393{
2394        unsigned long result = 1UL << frac_bits;
2395
2396        if (n) for (;;) {
2397                if (n & 1) {
2398                        result *= x;
2399                        result += 1UL << (frac_bits - 1);
2400                        result >>= frac_bits;
2401                }
2402                n >>= 1;
2403                if (!n)
2404                        break;
2405                x *= x;
2406                x += 1UL << (frac_bits - 1);
2407                x >>= frac_bits;
2408        }
2409
2410        return result;
2411}
2412
2413/*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 *  ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 *    = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 *              n         1 - x^(n+1)
2433 *     S_n := \Sum x^i = -------------
2434 *             i=0          1 - x
2435 */
2436static unsigned long
2437calc_load_n(unsigned long load, unsigned long exp,
2438            unsigned long active, unsigned int n)
2439{
2440
2441        return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442}
2443
2444/*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
2453static void calc_global_nohz(void)
2454{
2455        long delta, active, n;
2456
2457        if (!time_before(jiffies, calc_load_update + 10)) {
2458                /*
2459                 * Catch-up, fold however many we are behind still
2460                 */
2461                delta = jiffies - calc_load_update - 10;
2462                n = 1 + (delta / LOAD_FREQ);
2463
2464                active = atomic_long_read(&calc_load_tasks);
2465                active = active > 0 ? active * FIXED_1 : 0;
2466
2467                avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468                avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469                avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470
2471                calc_load_update += n * LOAD_FREQ;
2472        }
2473
2474        /*
2475         * Flip the idle index...
2476         *
2477         * Make sure we first write the new time then flip the index, so that
2478         * calc_load_write_idx() will see the new time when it reads the new
2479         * index, this avoids a double flip messing things up.
2480         */
2481        smp_wmb();
2482        calc_load_idx++;
2483}
2484#else /* !CONFIG_NO_HZ */
2485
2486static inline long calc_load_fold_idle(void) { return 0; }
2487static inline void calc_global_nohz(void) { }
2488
2489#endif /* CONFIG_NO_HZ */
2490
2491/*
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
2494 */
2495void calc_global_load(unsigned long ticks)
2496{
2497        long active, delta;
2498
2499        if (time_before(jiffies, calc_load_update + 10))
2500                return;
2501
2502        /*
2503         * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504         */
2505        delta = calc_load_fold_idle();
2506        if (delta)
2507                atomic_long_add(delta, &calc_load_tasks);
2508
2509        active = atomic_long_read(&calc_load_tasks);
2510        active = active > 0 ? active * FIXED_1 : 0;
2511
2512        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513        avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514        avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515
2516        calc_load_update += LOAD_FREQ;
2517
2518        /*
2519         * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520         */
2521        calc_global_nohz();
2522}
2523
2524/*
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
2527 */
2528static void calc_load_account_active(struct rq *this_rq)
2529{
2530        long delta;
2531
2532        if (time_before(jiffies, this_rq->calc_load_update))
2533                return;
2534
2535        delta  = calc_load_fold_active(this_rq);
2536        if (delta)
2537                atomic_long_add(delta, &calc_load_tasks);
2538
2539        this_rq->calc_load_update += LOAD_FREQ;
2540}
2541
2542/*
2543 * End of global load-average stuff
2544 */
2545
2546/*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573#define DEGRADE_SHIFT           7
2574static const unsigned char
2575                degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576static const unsigned char
2577                degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578                                        {0, 0, 0, 0, 0, 0, 0, 0},
2579                                        {64, 32, 8, 0, 0, 0, 0, 0},
2580                                        {96, 72, 40, 12, 1, 0, 0},
2581                                        {112, 98, 75, 43, 15, 1, 0},
2582                                        {120, 112, 98, 76, 45, 16, 2} };
2583
2584/*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589static unsigned long
2590decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591{
2592        int j = 0;
2593
2594        if (!missed_updates)
2595                return load;
2596
2597        if (missed_updates >= degrade_zero_ticks[idx])
2598                return 0;
2599
2600        if (idx == 1)
2601                return load >> missed_updates;
2602
2603        while (missed_updates) {
2604                if (missed_updates % 2)
2605                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607                missed_updates >>= 1;
2608                j++;
2609        }
2610        return load;
2611}
2612
2613/*
2614 * Update rq->cpu_load[] statistics. This function is usually called every
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
2617 */
2618static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619                              unsigned long pending_updates)
2620{
2621        int i, scale;
2622
2623        this_rq->nr_load_updates++;
2624
2625        /* Update our load: */
2626        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628                unsigned long old_load, new_load;
2629
2630                /* scale is effectively 1 << i now, and >> i divides by scale */
2631
2632                old_load = this_rq->cpu_load[i];
2633                old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634                new_load = this_load;
2635                /*
2636                 * Round up the averaging division if load is increasing. This
2637                 * prevents us from getting stuck on 9 if the load is 10, for
2638                 * example.
2639                 */
2640                if (new_load > old_load)
2641                        new_load += scale - 1;
2642
2643                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644        }
2645
2646        sched_avg_update(this_rq);
2647}
2648
2649#ifdef CONFIG_NO_HZ
2650/*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
2663/*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667void update_idle_cpu_load(struct rq *this_rq)
2668{
2669        unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670        unsigned long load = this_rq->load.weight;
2671        unsigned long pending_updates;
2672
2673        /*
2674         * bail if there's load or we're actually up-to-date.
2675         */
2676        if (load || curr_jiffies == this_rq->last_load_update_tick)
2677                return;
2678
2679        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680        this_rq->last_load_update_tick = curr_jiffies;
2681
2682        __update_cpu_load(this_rq, load, pending_updates);
2683}
2684
2685/*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688void update_cpu_load_nohz(void)
2689{
2690        struct rq *this_rq = this_rq();
2691        unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692        unsigned long pending_updates;
2693
2694        if (curr_jiffies == this_rq->last_load_update_tick)
2695                return;
2696
2697        raw_spin_lock(&this_rq->lock);
2698        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699        if (pending_updates) {
2700                this_rq->last_load_update_tick = curr_jiffies;
2701                /*
2702                 * We were idle, this means load 0, the current load might be
2703                 * !0 due to remote wakeups and the sort.
2704                 */
2705                __update_cpu_load(this_rq, 0, pending_updates);
2706        }
2707        raw_spin_unlock(&this_rq->lock);
2708}
2709#endif /* CONFIG_NO_HZ */
2710
2711/*
2712 * Called from scheduler_tick()
2713 */
2714static void update_cpu_load_active(struct rq *this_rq)
2715{
2716        /*
2717         * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718         */
2719        this_rq->last_load_update_tick = jiffies;
2720        __update_cpu_load(this_rq, this_rq->load.weight, 1);
2721
2722        calc_load_account_active(this_rq);
2723}
2724
2725#ifdef CONFIG_SMP
2726
2727/*
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
2730 */
2731void sched_exec(void)
2732{
2733        struct task_struct *p = current;
2734        unsigned long flags;
2735        int dest_cpu;
2736
2737        raw_spin_lock_irqsave(&p->pi_lock, flags);
2738        dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739        if (dest_cpu == smp_processor_id())
2740                goto unlock;
2741
2742        if (likely(cpu_active(dest_cpu))) {
2743                struct migration_arg arg = { p, dest_cpu };
2744
2745                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747                return;
2748        }
2749unlock:
2750        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751}
2752
2753#endif
2754
2755DEFINE_PER_CPU(struct kernel_stat, kstat);
2756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757
2758EXPORT_PER_CPU_SYMBOL(kstat);
2759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760
2761/*
2762 * Return any ns on the sched_clock that have not yet been accounted in
2763 * @p in case that task is currently running.
2764 *
2765 * Called with task_rq_lock() held on @rq.
2766 */
2767static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768{
2769        u64 ns = 0;
2770
2771        if (task_current(rq, p)) {
2772                update_rq_clock(rq);
2773                ns = rq->clock_task - p->se.exec_start;
2774                if ((s64)ns < 0)
2775                        ns = 0;
2776        }
2777
2778        return ns;
2779}
2780
2781unsigned long long task_delta_exec(struct task_struct *p)
2782{
2783        unsigned long flags;
2784        struct rq *rq;
2785        u64 ns = 0;
2786
2787        rq = task_rq_lock(p, &flags);
2788        ns = do_task_delta_exec(p, rq);
2789        task_rq_unlock(rq, p, &flags);
2790
2791        return ns;
2792}
2793
2794/*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799unsigned long long task_sched_runtime(struct task_struct *p)
2800{
2801        unsigned long flags;
2802        struct rq *rq;
2803        u64 ns = 0;
2804
2805        rq = task_rq_lock(p, &flags);
2806        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807        task_rq_unlock(rq, p, &flags);
2808
2809        return ns;
2810}
2811
2812#ifdef CONFIG_CGROUP_CPUACCT
2813struct cgroup_subsys cpuacct_subsys;
2814struct cpuacct root_cpuacct;
2815#endif
2816
2817static inline void task_group_account_field(struct task_struct *p, int index,
2818                                            u64 tmp)
2819{
2820#ifdef CONFIG_CGROUP_CPUACCT
2821        struct kernel_cpustat *kcpustat;
2822        struct cpuacct *ca;
2823#endif
2824        /*
2825         * Since all updates are sure to touch the root cgroup, we
2826         * get ourselves ahead and touch it first. If the root cgroup
2827         * is the only cgroup, then nothing else should be necessary.
2828         *
2829         */
2830        __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831
2832#ifdef CONFIG_CGROUP_CPUACCT
2833        if (unlikely(!cpuacct_subsys.active))
2834                return;
2835
2836        rcu_read_lock();
2837        ca = task_ca(p);
2838        while (ca && (ca != &root_cpuacct)) {
2839                kcpustat = this_cpu_ptr(ca->cpustat);
2840                kcpustat->cpustat[index] += tmp;
2841                ca = parent_ca(ca);
2842        }
2843        rcu_read_unlock();
2844#endif
2845}
2846
2847
2848/*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
2851 * @cputime: the cpu time spent in user space since the last update
2852 * @cputime_scaled: cputime scaled by cpu frequency
2853 */
2854void account_user_time(struct task_struct *p, cputime_t cputime,
2855                       cputime_t cputime_scaled)
2856{
2857        int index;
2858
2859        /* Add user time to process. */
2860        p->utime += cputime;
2861        p->utimescaled += cputime_scaled;
2862        account_group_user_time(p, cputime);
2863
2864        index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865
2866        /* Add user time to cpustat. */
2867        task_group_account_field(p, index, (__force u64) cputime);
2868
2869        /* Account for user time used */
2870        acct_update_integrals(p);
2871}
2872
2873/*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
2877 * @cputime_scaled: cputime scaled by cpu frequency
2878 */
2879static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880                               cputime_t cputime_scaled)
2881{
2882        u64 *cpustat = kcpustat_this_cpu->cpustat;
2883
2884        /* Add guest time to process. */
2885        p->utime += cputime;
2886        p->utimescaled += cputime_scaled;
2887        account_group_user_time(p, cputime);
2888        p->gtime += cputime;
2889
2890        /* Add guest time to cpustat. */
2891        if (TASK_NICE(p) > 0) {
2892                cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893                cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894        } else {
2895                cpustat[CPUTIME_USER] += (__force u64) cputime;
2896                cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897        }
2898}
2899
2900/*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907static inline
2908void __account_system_time(struct task_struct *p, cputime_t cputime,
2909                        cputime_t cputime_scaled, int index)
2910{
2911        /* Add system time to process. */
2912        p->stime += cputime;
2913        p->stimescaled += cputime_scaled;
2914        account_group_system_time(p, cputime);
2915
2916        /* Add system time to cpustat. */
2917        task_group_account_field(p, index, (__force u64) cputime);
2918
2919        /* Account for system time used */
2920        acct_update_integrals(p);
2921}
2922
2923/*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
2928 * @cputime_scaled: cputime scaled by cpu frequency
2929 */
2930void account_system_time(struct task_struct *p, int hardirq_offset,
2931                         cputime_t cputime, cputime_t cputime_scaled)
2932{
2933        int index;
2934
2935        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936                account_guest_time(p, cputime, cputime_scaled);
2937                return;
2938        }
2939
2940        if (hardirq_count() - hardirq_offset)
2941                index = CPUTIME_IRQ;
2942        else if (in_serving_softirq())
2943                index = CPUTIME_SOFTIRQ;
2944        else
2945                index = CPUTIME_SYSTEM;
2946
2947        __account_system_time(p, cputime, cputime_scaled, index);
2948}
2949
2950/*
2951 * Account for involuntary wait time.
2952 * @cputime: the cpu time spent in involuntary wait
2953 */
2954void account_steal_time(cputime_t cputime)
2955{
2956        u64 *cpustat = kcpustat_this_cpu->cpustat;
2957
2958        cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959}
2960
2961/*
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
2964 */
2965void account_idle_time(cputime_t cputime)
2966{
2967        u64 *cpustat = kcpustat_this_cpu->cpustat;
2968        struct rq *rq = this_rq();
2969
2970        if (atomic_read(&rq->nr_iowait) > 0)
2971                cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972        else
2973                cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974}
2975
2976static __always_inline bool steal_account_process_tick(void)
2977{
2978#ifdef CONFIG_PARAVIRT
2979        if (static_key_false(&paravirt_steal_enabled)) {
2980                u64 steal, st = 0;
2981
2982                steal = paravirt_steal_clock(smp_processor_id());
2983                steal -= this_rq()->prev_steal_time;
2984
2985                st = steal_ticks(steal);
2986                this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988                account_steal_time(st);
2989                return st;
2990        }
2991#endif
2992        return false;
2993}
2994
2995#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
2997#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998/*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 *   - check for guest_time
3011 *   - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020                                                struct rq *rq)
3021{
3022        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023        u64 *cpustat = kcpustat_this_cpu->cpustat;
3024
3025        if (steal_account_process_tick())
3026                return;
3027
3028        if (irqtime_account_hi_update()) {
3029                cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030        } else if (irqtime_account_si_update()) {
3031                cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032        } else if (this_cpu_ksoftirqd() == p) {
3033                /*
3034                 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035                 * So, we have to handle it separately here.
3036                 * Also, p->stime needs to be updated for ksoftirqd.
3037                 */
3038                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039                                        CPUTIME_SOFTIRQ);
3040        } else if (user_tick) {
3041                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042        } else if (p == rq->idle) {
3043                account_idle_time(cputime_one_jiffy);
3044        } else if (p->flags & PF_VCPU) { /* System time or guest time */
3045                account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046        } else {
3047                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048                                        CPUTIME_SYSTEM);
3049        }
3050}
3051
3052static void irqtime_account_idle_ticks(int ticks)
3053{
3054        int i;
3055        struct rq *rq = this_rq();
3056
3057        for (i = 0; i < ticks; i++)
3058                irqtime_account_process_tick(current, 0, rq);
3059}
3060#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061static void irqtime_account_idle_ticks(int ticks) {}
3062static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063                                                struct rq *rq) {}
3064#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065
3066/*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071void account_process_tick(struct task_struct *p, int user_tick)
3072{
3073        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074        struct rq *rq = this_rq();
3075
3076        if (sched_clock_irqtime) {
3077                irqtime_account_process_tick(p, user_tick, rq);
3078                return;
3079        }
3080
3081        if (steal_account_process_tick())
3082                return;
3083
3084        if (user_tick)
3085                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088                                    one_jiffy_scaled);
3089        else
3090                account_idle_time(cputime_one_jiffy);
3091}
3092
3093/*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098void account_steal_ticks(unsigned long ticks)
3099{
3100        account_steal_time(jiffies_to_cputime(ticks));
3101}
3102
3103/*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107void account_idle_ticks(unsigned long ticks)
3108{
3109
3110        if (sched_clock_irqtime) {
3111                irqtime_account_idle_ticks(ticks);
3112                return;
3113        }
3114
3115        account_idle_time(jiffies_to_cputime(ticks));
3116}
3117
3118#endif
3119
3120/*
3121 * Use precise platform statistics if available:
3122 */
3123#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125{
3126        *ut = p->utime;
3127        *st = p->stime;
3128}
3129
3130void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131{
3132        struct task_cputime cputime;
3133
3134        thread_group_cputime(p, &cputime);
3135
3136        *ut = cputime.utime;
3137        *st = cputime.stime;
3138}
3139#else
3140
3141#ifndef nsecs_to_cputime
3142# define nsecs_to_cputime(__nsecs)      nsecs_to_jiffies(__nsecs)
3143#endif
3144
3145static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3146{
3147        u64 temp = (__force u64) rtime;
3148
3149        temp *= (__force u64) utime;
3150
3151        if (sizeof(cputime_t) == 4)
3152                temp = div_u64(temp, (__force u32) total);
3153        else
3154                temp = div64_u64(temp, (__force u64) total);
3155
3156        return (__force cputime_t) temp;
3157}
3158
3159void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3160{
3161        cputime_t rtime, utime = p->utime, total = utime + p->stime;
3162
3163        /*
3164         * Use CFS's precise accounting:
3165         */
3166        rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3167
3168        if (total)
3169                utime = scale_utime(utime, rtime, total);
3170        else
3171                utime = rtime;
3172
3173        /*
3174         * Compare with previous values, to keep monotonicity:
3175         */
3176        p->prev_utime = max(p->prev_utime, utime);
3177        p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3178
3179        *ut = p->prev_utime;
3180        *st = p->prev_stime;
3181}
3182
3183/*
3184 * Must be called with siglock held.
3185 */
3186void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3187{
3188        struct signal_struct *sig = p->signal;
3189        struct task_cputime cputime;
3190        cputime_t rtime, utime, total;
3191
3192        thread_group_cputime(p, &cputime);
3193
3194        total = cputime.utime + cputime.stime;
3195        rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3196
3197        if (total)
3198                utime = scale_utime(cputime.utime, rtime, total);
3199        else
3200                utime = rtime;
3201
3202        sig->prev_utime = max(sig->prev_utime, utime);
3203        sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3204
3205        *ut = sig->prev_utime;
3206        *st = sig->prev_stime;
3207}
3208#endif
3209
3210/*
3211 * This function gets called by the timer code, with HZ frequency.
3212 * We call it with interrupts disabled.
3213 */
3214void scheduler_tick(void)
3215{
3216        int cpu = smp_processor_id();
3217        struct rq *rq = cpu_rq(cpu);
3218        struct task_struct *curr = rq->curr;
3219
3220        sched_clock_tick();
3221
3222        raw_spin_lock(&rq->lock);
3223        update_rq_clock(rq);
3224        update_cpu_load_active(rq);
3225        curr->sched_class->task_tick(rq, curr, 0);
3226        raw_spin_unlock(&rq->lock);
3227
3228        perf_event_task_tick();
3229
3230#ifdef CONFIG_SMP
3231        rq->idle_balance = idle_cpu(cpu);
3232        trigger_load_balance(rq, cpu);
3233#endif
3234}
3235
3236notrace unsigned long get_parent_ip(unsigned long addr)
3237{
3238        if (in_lock_functions(addr)) {
3239                addr = CALLER_ADDR2;
3240                if (in_lock_functions(addr))
3241                        addr = CALLER_ADDR3;
3242        }
3243        return addr;
3244}
3245
3246#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247                                defined(CONFIG_PREEMPT_TRACER))
3248
3249void __kprobes add_preempt_count(int val)
3250{
3251#ifdef CONFIG_DEBUG_PREEMPT
3252        /*
3253         * Underflow?
3254         */
3255        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256                return;
3257#endif
3258        preempt_count() += val;
3259#ifdef CONFIG_DEBUG_PREEMPT
3260        /*
3261         * Spinlock count overflowing soon?
3262         */
3263        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264                                PREEMPT_MASK - 10);
3265#endif
3266        if (preempt_count() == val)
3267                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3268}
3269EXPORT_SYMBOL(add_preempt_count);
3270
3271void __kprobes sub_preempt_count(int val)
3272{
3273#ifdef CONFIG_DEBUG_PREEMPT
3274        /*
3275         * Underflow?
3276         */
3277        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278                return;
3279        /*
3280         * Is the spinlock portion underflowing?
3281         */
3282        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283                        !(preempt_count() & PREEMPT_MASK)))
3284                return;
3285#endif
3286
3287        if (preempt_count() == val)
3288                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3289        preempt_count() -= val;
3290}
3291EXPORT_SYMBOL(sub_preempt_count);
3292
3293#endif
3294
3295/*
3296 * Print scheduling while atomic bug:
3297 */
3298static noinline void __schedule_bug(struct task_struct *prev)
3299{
3300        if (oops_in_progress)
3301                return;
3302
3303        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304                prev->comm, prev->pid, preempt_count());
3305
3306        debug_show_held_locks(prev);
3307        print_modules();
3308        if (irqs_disabled())
3309                print_irqtrace_events(prev);
3310        dump_stack();
3311        add_taint(TAINT_WARN);
3312}
3313
3314/*
3315 * Various schedule()-time debugging checks and statistics:
3316 */
3317static inline void schedule_debug(struct task_struct *prev)
3318{
3319        /*
3320         * Test if we are atomic. Since do_exit() needs to call into
3321         * schedule() atomically, we ignore that path for now.
3322         * Otherwise, whine if we are scheduling when we should not be.
3323         */
3324        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3325                __schedule_bug(prev);
3326        rcu_sleep_check();
3327
3328        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3329
3330        schedstat_inc(this_rq(), sched_count);
3331}
3332
3333static void put_prev_task(struct rq *rq, struct task_struct *prev)
3334{
3335        if (prev->on_rq || rq->skip_clock_update < 0)
3336                update_rq_clock(rq);
3337        prev->sched_class->put_prev_task(rq, prev);
3338}
3339
3340/*
3341 * Pick up the highest-prio task:
3342 */
3343static inline struct task_struct *
3344pick_next_task(struct rq *rq)
3345{
3346        const struct sched_class *class;
3347        struct task_struct *p;
3348
3349        /*
3350         * Optimization: we know that if all tasks are in
3351         * the fair class we can call that function directly:
3352         */
3353        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354                p = fair_sched_class.pick_next_task(rq);
3355                if (likely(p))
3356                        return p;
3357        }
3358
3359        for_each_class(class) {
3360                p = class->pick_next_task(rq);
3361                if (p)
3362                        return p;
3363        }
3364
3365        BUG(); /* the idle class will always have a runnable task */
3366}
3367
3368/*
3369 * __schedule() is the main scheduler function.
3370 */
3371static void __sched __schedule(void)
3372{
3373        struct task_struct *prev, *next;
3374        unsigned long *switch_count;
3375        struct rq *rq;
3376        int cpu;
3377
3378need_resched:
3379        preempt_disable();
3380        cpu = smp_processor_id();
3381        rq = cpu_rq(cpu);
3382        rcu_note_context_switch(cpu);
3383        prev = rq->curr;
3384
3385        schedule_debug(prev);
3386
3387        if (sched_feat(HRTICK))
3388                hrtick_clear(rq);
3389
3390        raw_spin_lock_irq(&rq->lock);
3391
3392        switch_count = &prev->nivcsw;
3393        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3394                if (unlikely(signal_pending_state(prev->state, prev))) {
3395                        prev->state = TASK_RUNNING;
3396                } else {
3397                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398                        prev->on_rq = 0;
3399
3400                        /*
3401                         * If a worker went to sleep, notify and ask workqueue
3402                         * whether it wants to wake up a task to maintain
3403                         * concurrency.
3404                         */
3405                        if (prev->flags & PF_WQ_WORKER) {
3406                                struct task_struct *to_wakeup;
3407
3408                                to_wakeup = wq_worker_sleeping(prev, cpu);
3409                                if (to_wakeup)
3410                                        try_to_wake_up_local(to_wakeup);
3411                        }
3412                }
3413                switch_count = &prev->nvcsw;
3414        }
3415
3416        pre_schedule(rq, prev);
3417
3418        if (unlikely(!rq->nr_running))
3419                idle_balance(cpu, rq);
3420
3421        put_prev_task(rq, prev);
3422        next = pick_next_task(rq);
3423        clear_tsk_need_resched(prev);
3424        rq->skip_clock_update = 0;
3425
3426        if (likely(prev != next)) {
3427                rq->nr_switches++;
3428                rq->curr = next;
3429                ++*switch_count;
3430
3431                context_switch(rq, prev, next); /* unlocks the rq */
3432                /*
3433                 * The context switch have flipped the stack from under us
3434                 * and restored the local variables which were saved when
3435                 * this task called schedule() in the past. prev == current
3436                 * is still correct, but it can be moved to another cpu/rq.
3437                 */
3438                cpu = smp_processor_id();
3439                rq = cpu_rq(cpu);
3440        } else
3441                raw_spin_unlock_irq(&rq->lock);
3442
3443        post_schedule(rq);
3444
3445        sched_preempt_enable_no_resched();
3446        if (need_resched())
3447                goto need_resched;
3448}
3449
3450static inline void sched_submit_work(struct task_struct *tsk)
3451{
3452        if (!tsk->state || tsk_is_pi_blocked(tsk))
3453                return;
3454        /*
3455         * If we are going to sleep and we have plugged IO queued,
3456         * make sure to submit it to avoid deadlocks.
3457         */
3458        if (blk_needs_flush_plug(tsk))
3459                blk_schedule_flush_plug(tsk);
3460}
3461
3462asmlinkage void __sched schedule(void)
3463{
3464        struct task_struct *tsk = current;
3465
3466        sched_submit_work(tsk);
3467        __schedule();
3468}
3469EXPORT_SYMBOL(schedule);
3470
3471/**
3472 * schedule_preempt_disabled - called with preemption disabled
3473 *
3474 * Returns with preemption disabled. Note: preempt_count must be 1
3475 */
3476void __sched schedule_preempt_disabled(void)
3477{
3478        sched_preempt_enable_no_resched();
3479        schedule();
3480        preempt_disable();
3481}
3482
3483#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3484
3485static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3486{
3487        if (lock->owner != owner)
3488                return false;
3489
3490        /*
3491         * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492         * lock->owner still matches owner, if that fails, owner might
3493         * point to free()d memory, if it still matches, the rcu_read_lock()
3494         * ensures the memory stays valid.
3495         */
3496        barrier();
3497
3498        return owner->on_cpu;
3499}
3500
3501/*
3502 * Look out! "owner" is an entirely speculative pointer
3503 * access and not reliable.
3504 */
3505int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3506{
3507        if (!sched_feat(OWNER_SPIN))
3508                return 0;
3509
3510        rcu_read_lock();
3511        while (owner_running(lock, owner)) {
3512                if (need_resched())
3513                        break;
3514
3515                arch_mutex_cpu_relax();
3516        }
3517        rcu_read_unlock();
3518
3519        /*
3520         * We break out the loop above on need_resched() and when the
3521         * owner changed, which is a sign for heavy contention. Return
3522         * success only when lock->owner is NULL.
3523         */
3524        return lock->owner == NULL;
3525}
3526#endif
3527
3528#ifdef CONFIG_PREEMPT
3529/*
3530 * this is the entry point to schedule() from in-kernel preemption
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3533 */
3534asmlinkage void __sched notrace preempt_schedule(void)
3535{
3536        struct thread_info *ti = current_thread_info();
3537
3538        /*
3539         * If there is a non-zero preempt_count or interrupts are disabled,
3540         * we do not want to preempt the current task. Just return..
3541         */
3542        if (likely(ti->preempt_count || irqs_disabled()))
3543                return;
3544
3545        do {
3546                add_preempt_count_notrace(PREEMPT_ACTIVE);
3547                __schedule();
3548                sub_preempt_count_notrace(PREEMPT_ACTIVE);
3549
3550                /*
3551                 * Check again in case we missed a preemption opportunity
3552                 * between schedule and now.
3553                 */
3554                barrier();
3555        } while (need_resched());
3556}
3557EXPORT_SYMBOL(preempt_schedule);
3558
3559/*
3560 * this is the entry point to schedule() from kernel preemption
3561 * off of irq context.
3562 * Note, that this is called and return with irqs disabled. This will
3563 * protect us against recursive calling from irq.
3564 */
3565asmlinkage void __sched preempt_schedule_irq(void)
3566{
3567        struct thread_info *ti = current_thread_info();
3568
3569        /* Catch callers which need to be fixed */
3570        BUG_ON(ti->preempt_count || !irqs_disabled());
3571
3572        do {
3573                add_preempt_count(PREEMPT_ACTIVE);
3574                local_irq_enable();
3575                __schedule();
3576                local_irq_disable();
3577                sub_preempt_count(PREEMPT_ACTIVE);
3578
3579                /*
3580                 * Check again in case we missed a preemption opportunity
3581                 * between schedule and now.
3582                 */
3583                barrier();
3584        } while (need_resched());
3585}
3586
3587#endif /* CONFIG_PREEMPT */
3588
3589int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3590                          void *key)
3591{
3592        return try_to_wake_up(curr->private, mode, wake_flags);
3593}
3594EXPORT_SYMBOL(default_wake_function);
3595
3596/*
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3600 *
3601 * There are circumstances in which we can try to wake a task which has already
3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3604 */
3605static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3606                        int nr_exclusive, int wake_flags, void *key)
3607{
3608        wait_queue_t *curr, *next;
3609
3610        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611                unsigned flags = curr->flags;
3612
3613                if (curr->func(curr, mode, wake_flags, key) &&
3614                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615                        break;
3616        }
3617}
3618
3619/**
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624 * @key: is directly passed to the wakeup function
3625 *
3626 * It may be assumed that this function implies a write memory barrier before
3627 * changing the task state if and only if any tasks are woken up.
3628 */
3629void __wake_up(wait_queue_head_t *q, unsigned int mode,
3630                        int nr_exclusive, void *key)
3631{
3632        unsigned long flags;
3633
3634        spin_lock_irqsave(&q->lock, flags);
3635        __wake_up_common(q, mode, nr_exclusive, 0, key);
3636        spin_unlock_irqrestore(&q->lock, flags);
3637}
3638EXPORT_SYMBOL(__wake_up);
3639
3640/*
3641 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3642 */
3643void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3644{
3645        __wake_up_common(q, mode, nr, 0, NULL);
3646}
3647EXPORT_SYMBOL_GPL(__wake_up_locked);
3648
3649void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3650{
3651        __wake_up_common(q, mode, 1, 0, key);
3652}
3653EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3654
3655/**
3656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3657 * @q: the waitqueue
3658 * @mode: which threads
3659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660 * @key: opaque value to be passed to wakeup targets
3661 *
3662 * The sync wakeup differs that the waker knows that it will schedule
3663 * away soon, so while the target thread will be woken up, it will not
3664 * be migrated to another CPU - ie. the two threads are 'synchronized'
3665 * with each other. This can prevent needless bouncing between CPUs.
3666 *
3667 * On UP it can prevent extra preemption.
3668 *
3669 * It may be assumed that this function implies a write memory barrier before
3670 * changing the task state if and only if any tasks are woken up.
3671 */
3672void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673                        int nr_exclusive, void *key)
3674{
3675        unsigned long flags;
3676        int wake_flags = WF_SYNC;
3677
3678        if (unlikely(!q))
3679                return;
3680
3681        if (unlikely(!nr_exclusive))
3682                wake_flags = 0;
3683
3684        spin_lock_irqsave(&q->lock, flags);
3685        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3686        spin_unlock_irqrestore(&q->lock, flags);
3687}
3688EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3689
3690/*
3691 * __wake_up_sync - see __wake_up_sync_key()
3692 */
3693void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694{
3695        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3696}
3697EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3698
3699/**
3700 * complete: - signals a single thread waiting on this completion
3701 * @x:  holds the state of this particular completion
3702 *
3703 * This will wake up a single thread waiting on this completion. Threads will be
3704 * awakened in the same order in which they were queued.
3705 *
3706 * See also complete_all(), wait_for_completion() and related routines.
3707 *
3708 * It may be assumed that this function implies a write memory barrier before
3709 * changing the task state if and only if any tasks are woken up.
3710 */
3711void complete(struct completion *x)
3712{
3713        unsigned long flags;
3714
3715        spin_lock_irqsave(&x->wait.lock, flags);
3716        x->done++;
3717        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3718        spin_unlock_irqrestore(&x->wait.lock, flags);
3719}
3720EXPORT_SYMBOL(complete);
3721
3722/**
3723 * complete_all: - signals all threads waiting on this completion
3724 * @x:  holds the state of this particular completion
3725 *
3726 * This will wake up all threads waiting on this particular completion event.
3727 *
3728 * It may be assumed that this function implies a write memory barrier before
3729 * changing the task state if and only if any tasks are woken up.
3730 */
3731void complete_all(struct completion *x)
3732{
3733        unsigned long flags;
3734
3735        spin_lock_irqsave(&x->wait.lock, flags);
3736        x->done += UINT_MAX/2;
3737        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3738        spin_unlock_irqrestore(&x->wait.lock, flags);
3739}
3740EXPORT_SYMBOL(complete_all);
3741
3742static inline long __sched
3743do_wait_for_common(struct completion *x, long timeout, int state)
3744{
3745        if (!x->done) {
3746                DECLARE_WAITQUEUE(wait, current);
3747
3748                __add_wait_queue_tail_exclusive(&x->wait, &wait);
3749                do {
3750                        if (signal_pending_state(state, current)) {
3751                                timeout = -ERESTARTSYS;
3752                                break;
3753                        }
3754                        __set_current_state(state);
3755                        spin_unlock_irq(&x->wait.lock);
3756                        timeout = schedule_timeout(timeout);
3757                        spin_lock_irq(&x->wait.lock);
3758                } while (!x->done && timeout);
3759                __remove_wait_queue(&x->wait, &wait);
3760                if (!x->done)
3761                        return timeout;
3762        }
3763        x->done--;
3764        return timeout ?: 1;
3765}
3766
3767static long __sched
3768wait_for_common(struct completion *x, long timeout, int state)
3769{
3770        might_sleep();
3771
3772        spin_lock_irq(&x->wait.lock);
3773        timeout = do_wait_for_common(x, timeout, state);
3774        spin_unlock_irq(&x->wait.lock);
3775        return timeout;
3776}
3777
3778/**
3779 * wait_for_completion: - waits for completion of a task
3780 * @x:  holds the state of this particular completion
3781 *
3782 * This waits to be signaled for completion of a specific task. It is NOT
3783 * interruptible and there is no timeout.
3784 *
3785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786 * and interrupt capability. Also see complete().
3787 */
3788void __sched wait_for_completion(struct completion *x)
3789{
3790        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3791}
3792EXPORT_SYMBOL(wait_for_completion);
3793
3794/**
3795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796 * @x:  holds the state of this particular completion
3797 * @timeout:  timeout value in jiffies
3798 *
3799 * This waits for either a completion of a specific task to be signaled or for a
3800 * specified timeout to expire. The timeout is in jiffies. It is not
3801 * interruptible.
3802 *
3803 * The return value is 0 if timed out, and positive (at least 1, or number of
3804 * jiffies left till timeout) if completed.
3805 */
3806unsigned long __sched
3807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3808{
3809        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3810}
3811EXPORT_SYMBOL(wait_for_completion_timeout);
3812
3813/**
3814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815 * @x:  holds the state of this particular completion
3816 *
3817 * This waits for completion of a specific task to be signaled. It is
3818 * interruptible.
3819 *
3820 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3821 */
3822int __sched wait_for_completion_interruptible(struct completion *x)
3823{
3824        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825        if (t == -ERESTARTSYS)
3826                return t;
3827        return 0;
3828}
3829EXPORT_SYMBOL(wait_for_completion_interruptible);
3830
3831/**
3832 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833 * @x:  holds the state of this particular completion
3834 * @timeout:  timeout value in jiffies
3835 *
3836 * This waits for either a completion of a specific task to be signaled or for a
3837 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3838 *
3839 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840 * positive (at least 1, or number of jiffies left till timeout) if completed.
3841 */
3842long __sched
3843wait_for_completion_interruptible_timeout(struct completion *x,
3844                                          unsigned long timeout)
3845{
3846        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3847}
3848EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3849
3850/**
3851 * wait_for_completion_killable: - waits for completion of a task (killable)
3852 * @x:  holds the state of this particular completion
3853 *
3854 * This waits to be signaled for completion of a specific task. It can be
3855 * interrupted by a kill signal.
3856 *
3857 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3858 */
3859int __sched wait_for_completion_killable(struct completion *x)
3860{
3861        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862        if (t == -ERESTARTSYS)
3863                return t;
3864        return 0;
3865}
3866EXPORT_SYMBOL(wait_for_completion_killable);
3867
3868/**
3869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870 * @x:  holds the state of this particular completion
3871 * @timeout:  timeout value in jiffies
3872 *
3873 * This waits for either a completion of a specific task to be
3874 * signaled or for a specified timeout to expire. It can be
3875 * interrupted by a kill signal. The timeout is in jiffies.
3876 *
3877 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878 * positive (at least 1, or number of jiffies left till timeout) if completed.
3879 */
3880long __sched
3881wait_for_completion_killable_timeout(struct completion *x,
3882                                     unsigned long timeout)
3883{
3884        return wait_for_common(x, timeout, TASK_KILLABLE);
3885}
3886EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3887
3888/**
3889 *      try_wait_for_completion - try to decrement a completion without blocking
3890 *      @x:     completion structure
3891 *
3892 *      Returns: 0 if a decrement cannot be done without blocking
3893 *               1 if a decrement succeeded.
3894 *
3895 *      If a completion is being used as a counting completion,
3896 *      attempt to decrement the counter without blocking. This
3897 *      enables us to avoid waiting if the resource the completion
3898 *      is protecting is not available.
3899 */
3900bool try_wait_for_completion(struct completion *x)
3901{
3902        unsigned long flags;
3903        int ret = 1;
3904
3905        spin_lock_irqsave(&x->wait.lock, flags);
3906        if (!x->done)
3907                ret = 0;
3908        else
3909                x->done--;
3910        spin_unlock_irqrestore(&x->wait.lock, flags);
3911        return ret;
3912}
3913EXPORT_SYMBOL(try_wait_for_completion);
3914
3915/**
3916 *      completion_done - Test to see if a completion has any waiters
3917 *      @x:     completion structure
3918 *
3919 *      Returns: 0 if there are waiters (wait_for_completion() in progress)
3920 *               1 if there are no waiters.
3921 *
3922 */
3923bool completion_done(struct completion *x)
3924{
3925        unsigned long flags;
3926        int ret = 1;
3927
3928        spin_lock_irqsave(&x->wait.lock, flags);
3929        if (!x->done)
3930                ret = 0;
3931        spin_unlock_irqrestore(&x->wait.lock, flags);
3932        return ret;
3933}
3934EXPORT_SYMBOL(completion_done);
3935
3936static long __sched
3937sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3938{
3939        unsigned long flags;
3940        wait_queue_t wait;
3941
3942        init_waitqueue_entry(&wait, current);
3943
3944        __set_current_state(state);
3945
3946        spin_lock_irqsave(&q->lock, flags);
3947        __add_wait_queue(q, &wait);
3948        spin_unlock(&q->lock);
3949        timeout = schedule_timeout(timeout);
3950        spin_lock_irq(&q->lock);
3951        __remove_wait_queue(q, &wait);
3952        spin_unlock_irqrestore(&q->lock, flags);
3953
3954        return timeout;
3955}
3956
3957void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958{
3959        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3960}
3961EXPORT_SYMBOL(interruptible_sleep_on);
3962
3963long __sched
3964interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3965{
3966        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3967}
3968EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969
3970void __sched sleep_on(wait_queue_head_t *q)
3971{
3972        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973}
3974EXPORT_SYMBOL(sleep_on);
3975
3976long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3977{
3978        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3979}
3980EXPORT_SYMBOL(sleep_on_timeout);
3981
3982#ifdef CONFIG_RT_MUTEXES
3983
3984/*
3985 * rt_mutex_setprio - set the current priority of a task
3986 * @p: task
3987 * @prio: prio value (kernel-internal form)
3988 *
3989 * This function changes the 'effective' priority of a task. It does
3990 * not touch ->normal_prio like __setscheduler().
3991 *
3992 * Used by the rt_mutex code to implement priority inheritance logic.
3993 */
3994void rt_mutex_setprio(struct task_struct *p, int prio)
3995{
3996        int oldprio, on_rq, running;
3997        struct rq *rq;
3998        const struct sched_class *prev_class;
3999
4000        BUG_ON(prio < 0 || prio > MAX_PRIO);
4001
4002        rq = __task_rq_lock(p);
4003
4004        /*
4005         * Idle task boosting is a nono in general. There is one
4006         * exception, when PREEMPT_RT and NOHZ is active:
4007         *
4008         * The idle task calls get_next_timer_interrupt() and holds
4009         * the timer wheel base->lock on the CPU and another CPU wants
4010         * to access the timer (probably to cancel it). We can safely
4011         * ignore the boosting request, as the idle CPU runs this code
4012         * with interrupts disabled and will complete the lock
4013         * protected section without being interrupted. So there is no
4014         * real need to boost.
4015         */
4016        if (unlikely(p == rq->idle)) {
4017                WARN_ON(p != rq->curr);
4018                WARN_ON(p->pi_blocked_on);
4019                goto out_unlock;
4020        }
4021
4022        trace_sched_pi_setprio(p, prio);
4023        oldprio = p->prio;
4024        prev_class = p->sched_class;
4025        on_rq = p->on_rq;
4026        running = task_current(rq, p);
4027        if (on_rq)
4028                dequeue_task(rq, p, 0);
4029        if (running)
4030                p->sched_class->put_prev_task(rq, p);
4031
4032        if (rt_prio(prio))
4033                p->sched_class = &rt_sched_class;
4034        else
4035                p->sched_class = &fair_sched_class;
4036
4037        p->prio = prio;
4038
4039        if (running)
4040                p->sched_class->set_curr_task(rq);
4041        if (on_rq)
4042                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4043
4044        check_class_changed(rq, p, prev_class, oldprio);
4045out_unlock:
4046        __task_rq_unlock(rq);
4047}
4048#endif
4049void set_user_nice(struct task_struct *p, long nice)
4050{
4051        int old_prio, delta, on_rq;
4052        unsigned long flags;
4053        struct rq *rq;
4054
4055        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056                return;
4057        /*
4058         * We have to be careful, if called from sys_setpriority(),
4059         * the task might be in the middle of scheduling on another CPU.
4060         */
4061        rq = task_rq_lock(p, &flags);
4062        /*
4063         * The RT priorities are set via sched_setscheduler(), but we still
4064         * allow the 'normal' nice value to be set - but as expected
4065         * it wont have any effect on scheduling until the task is
4066         * SCHED_FIFO/SCHED_RR:
4067         */
4068        if (task_has_rt_policy(p)) {
4069                p->static_prio = NICE_TO_PRIO(nice);
4070                goto out_unlock;
4071        }
4072        on_rq = p->on_rq;
4073        if (on_rq)
4074                dequeue_task(rq, p, 0);
4075
4076        p->static_prio = NICE_TO_PRIO(nice);
4077        set_load_weight(p);
4078        old_prio = p->prio;
4079        p->prio = effective_prio(p);
4080        delta = p->prio - old_prio;
4081
4082        if (on_rq) {
4083                enqueue_task(rq, p, 0);
4084                /*
4085                 * If the task increased its priority or is running and
4086                 * lowered its priority, then reschedule its CPU:
4087                 */
4088                if (delta < 0 || (delta > 0 && task_running(rq, p)))
4089                        resched_task(rq->curr);
4090        }
4091out_unlock:
4092        task_rq_unlock(rq, p, &flags);
4093}
4094EXPORT_SYMBOL(set_user_nice);
4095
4096/*
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4100 */
4101int can_nice(const struct task_struct *p, const int nice)
4102{
4103        /* convert nice value [19,-20] to rlimit style value [1,40] */
4104        int nice_rlim = 20 - nice;
4105
4106        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4107                capable(CAP_SYS_NICE));
4108}
4109
4110#ifdef __ARCH_WANT_SYS_NICE
4111
4112/*
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4115 *
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4118 */
4119SYSCALL_DEFINE1(nice, int, increment)
4120{
4121        long nice, retval;
4122
4123        /*
4124         * Setpriority might change our priority at the same moment.
4125         * We don't have to worry. Conceptually one call occurs first
4126         * and we have a single winner.
4127         */
4128        if (increment < -40)
4129                increment = -40;
4130        if (increment > 40)
4131                increment = 40;
4132
4133        nice = TASK_NICE(current) + increment;
4134        if (nice < -20)
4135                nice = -20;
4136        if (nice > 19)
4137                nice = 19;
4138
4139        if (increment < 0 && !can_nice(current, nice))
4140                return -EPERM;
4141
4142        retval = security_task_setnice(current, nice);
4143        if (retval)
4144                return retval;
4145
4146        set_user_nice(current, nice);
4147        return 0;
4148}
4149
4150#endif
4151
4152/**
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4155 *
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4159 */
4160int task_prio(const struct task_struct *p)
4161{
4162        return p->prio - MAX_RT_PRIO;
4163}
4164
4165/**
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4168 */
4169int task_nice(const struct task_struct *p)
4170{
4171        return TASK_NICE(p);
4172}
4173EXPORT_SYMBOL(task_nice);
4174
4175/**
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
4178 */
4179int idle_cpu(int cpu)
4180{
4181        struct rq *rq = cpu_rq(cpu);
4182
4183        if (rq->curr != rq->idle)
4184                return 0;
4185
4186        if (rq->nr_running)
4187                return 0;
4188
4189#ifdef CONFIG_SMP
4190        if (!llist_empty(&rq->wake_list))
4191                return 0;
4192#endif
4193
4194        return 1;
4195}
4196
4197/**
4198 * idle_task - return the idle task for a given cpu.
4199 * @cpu: the processor in question.
4200 */
4201struct task_struct *idle_task(int cpu)
4202{
4203        return cpu_rq(cpu)->idle;
4204}
4205
4206/**
4207 * find_process_by_pid - find a process with a matching PID value.
4208 * @pid: the pid in question.
4209 */
4210static struct task_struct *find_process_by_pid(pid_t pid)
4211{
4212        return pid ? find_task_by_vpid(pid) : current;
4213}
4214
4215/* Actually do priority change: must hold rq lock. */
4216static void
4217__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4218{
4219        p->policy = policy;
4220        p->rt_priority = prio;
4221        p->normal_prio = normal_prio(p);
4222        /* we are holding p->pi_lock already */
4223        p->prio = rt_mutex_getprio(p);
4224        if (rt_prio(p->prio))
4225                p->sched_class = &rt_sched_class;
4226        else
4227                p->sched_class = &fair_sched_class;
4228        set_load_weight(p);
4229}
4230
4231/*
4232 * check the target process has a UID that matches the current process's
4233 */
4234static bool check_same_owner(struct task_struct *p)
4235{
4236        const struct cred *cred = current_cred(), *pcred;
4237        bool match;
4238
4239        rcu_read_lock();
4240        pcred = __task_cred(p);
4241        match = (uid_eq(cred->euid, pcred->euid) ||
4242                 uid_eq(cred->euid, pcred->uid));
4243        rcu_read_unlock();
4244        return match;
4245}
4246
4247static int __sched_setscheduler(struct task_struct *p, int policy,
4248                                const struct sched_param *param, bool user)
4249{
4250        int retval, oldprio, oldpolicy = -1, on_rq, running;
4251        unsigned long flags;
4252        const struct sched_class *prev_class;
4253        struct rq *rq;
4254        int reset_on_fork;
4255
4256        /* may grab non-irq protected spin_locks */
4257        BUG_ON(in_interrupt());
4258recheck:
4259        /* double check policy once rq lock held */
4260        if (policy < 0) {
4261                reset_on_fork = p->sched_reset_on_fork;
4262                policy = oldpolicy = p->policy;
4263        } else {
4264                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265                policy &= ~SCHED_RESET_ON_FORK;
4266
4267                if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269                                policy != SCHED_IDLE)
4270                        return -EINVAL;
4271        }
4272
4273        /*
4274         * Valid priorities for SCHED_FIFO and SCHED_RR are
4275         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276         * SCHED_BATCH and SCHED_IDLE is 0.
4277         */
4278        if (param->sched_priority < 0 ||
4279            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281                return -EINVAL;
4282        if (rt_policy(policy) != (param->sched_priority != 0))
4283                return -EINVAL;
4284
4285        /*
4286         * Allow unprivileged RT tasks to decrease priority:
4287         */
4288        if (user && !capable(CAP_SYS_NICE)) {
4289                if (rt_policy(policy)) {
4290                        unsigned long rlim_rtprio =
4291                                        task_rlimit(p, RLIMIT_RTPRIO);
4292
4293                        /* can't set/change the rt policy */
4294                        if (policy != p->policy && !rlim_rtprio)
4295                                return -EPERM;
4296
4297                        /* can't increase priority */
4298                        if (param->sched_priority > p->rt_priority &&
4299                            param->sched_priority > rlim_rtprio)
4300                                return -EPERM;
4301                }
4302
4303                /*
4304                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4306                 */
4307                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308                        if (!can_nice(p, TASK_NICE(p)))
4309                                return -EPERM;
4310                }
4311
4312                /* can't change other user's priorities */
4313                if (!check_same_owner(p))
4314                        return -EPERM;
4315
4316                /* Normal users shall not reset the sched_reset_on_fork flag */
4317                if (p->sched_reset_on_fork && !reset_on_fork)
4318                        return -EPERM;
4319        }
4320
4321        if (user) {
4322                retval = security_task_setscheduler(p);
4323                if (retval)
4324                        return retval;
4325        }
4326
4327        /*
4328         * make sure no PI-waiters arrive (or leave) while we are
4329         * changing the priority of the task:
4330         *
4331         * To be able to change p->policy safely, the appropriate
4332         * runqueue lock must be held.
4333         */
4334        rq = task_rq_lock(p, &flags);
4335
4336        /*
4337         * Changing the policy of the stop threads its a very bad idea
4338         */
4339        if (p == rq->stop) {
4340                task_rq_unlock(rq, p, &flags);
4341                return -EINVAL;
4342        }
4343
4344        /*
4345         * If not changing anything there's no need to proceed further:
4346         */
4347        if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348                        param->sched_priority == p->rt_priority))) {
4349                task_rq_unlock(rq, p, &flags);
4350                return 0;
4351        }
4352
4353#ifdef CONFIG_RT_GROUP_SCHED
4354        if (user) {
4355                /*
4356                 * Do not allow realtime tasks into groups that have no runtime
4357                 * assigned.
4358                 */
4359                if (rt_bandwidth_enabled() && rt_policy(policy) &&
4360                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4361                                !task_group_is_autogroup(task_group(p))) {
4362                        task_rq_unlock(rq, p, &flags);
4363                        return -EPERM;
4364                }
4365        }
4366#endif
4367
4368        /* recheck policy now with rq lock held */
4369        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4370                policy = oldpolicy = -1;
4371                task_rq_unlock(rq, p, &flags);
4372                goto recheck;
4373        }
4374        on_rq = p->on_rq;
4375        running = task_current(rq, p);
4376        if (on_rq)
4377                dequeue_task(rq, p, 0);
4378        if (running)
4379                p->sched_class->put_prev_task(rq, p);
4380
4381        p->sched_reset_on_fork = reset_on_fork;
4382
4383        oldprio = p->prio;
4384        prev_class = p->sched_class;
4385        __setscheduler(rq, p, policy, param->sched_priority);
4386
4387        if (running)
4388                p->sched_class->set_curr_task(rq);
4389        if (on_rq)
4390                enqueue_task(rq, p, 0);
4391
4392        check_class_changed(rq, p, prev_class, oldprio);
4393        task_rq_unlock(rq, p, &flags);
4394
4395        rt_mutex_adjust_pi(p);
4396
4397        return 0;
4398}
4399
4400/**
4401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402 * @p: the task in question.
4403 * @policy: new policy.
4404 * @param: structure containing the new RT priority.
4405 *
4406 * NOTE that the task may be already dead.
4407 */
4408int sched_setscheduler(struct task_struct *p, int policy,
4409                       const struct sched_param *param)
4410{
4411        return __sched_setscheduler(p, policy, param, true);
4412}
4413EXPORT_SYMBOL_GPL(sched_setscheduler);
4414
4415/**
4416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4417 * @p: the task in question.
4418 * @policy: new policy.
4419 * @param: structure containing the new RT priority.
4420 *
4421 * Just like sched_setscheduler, only don't bother checking if the
4422 * current context has permission.  For example, this is needed in
4423 * stop_machine(): we create temporary high priority worker threads,
4424 * but our caller might not have that capability.
4425 */
4426int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4427                               const struct sched_param *param)
4428{
4429        return __sched_setscheduler(p, policy, param, false);
4430}
4431
4432static int
4433do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4434{
4435        struct sched_param lparam;
4436        struct task_struct *p;
4437        int retval;
4438
4439        if (!param || pid < 0)
4440                return -EINVAL;
4441        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4442                return -EFAULT;
4443
4444        rcu_read_lock();
4445        retval = -ESRCH;
4446        p = find_process_by_pid(pid);
4447        if (p != NULL)
4448                retval = sched_setscheduler(p, policy, &lparam);
4449        rcu_read_unlock();
4450
4451        return retval;
4452}
4453
4454/**
4455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4456 * @pid: the pid in question.
4457 * @policy: new policy.
4458 * @param: structure containing the new RT priority.
4459 */
4460SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4461                struct sched_param __user *, param)
4462{
4463        /* negative values for policy are not valid */
4464        if (policy < 0)
4465                return -EINVAL;
4466
4467        return do_sched_setscheduler(pid, policy, param);
4468}
4469
4470/**
4471 * sys_sched_setparam - set/change the RT priority of a thread
4472 * @pid: the pid in question.
4473 * @param: structure containing the new RT priority.
4474 */
4475SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4476{
4477        return do_sched_setscheduler(pid, -1, param);
4478}
4479
4480/**
4481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4482 * @pid: the pid in question.
4483 */
4484SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4485{
4486        struct task_struct *p;
4487        int retval;
4488
4489        if (pid < 0)
4490                return -EINVAL;
4491
4492        retval = -ESRCH;
4493        rcu_read_lock();
4494        p = find_process_by_pid(pid);
4495        if (p) {
4496                retval = security_task_getscheduler(p);
4497                if (!retval)
4498                        retval = p->policy
4499                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4500        }
4501        rcu_read_unlock();
4502        return retval;
4503}
4504
4505/**
4506 * sys_sched_getparam - get the RT priority of a thread
4507 * @pid: the pid in question.
4508 * @param: structure containing the RT priority.
4509 */
4510SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4511{
4512        struct sched_param lp;
4513        struct task_struct *p;
4514        int retval;
4515
4516        if (!param || pid < 0)
4517                return -EINVAL;
4518
4519        rcu_read_lock();
4520        p = find_process_by_pid(pid);
4521        retval = -ESRCH;
4522        if (!p)
4523                goto out_unlock;
4524
4525        retval = security_task_getscheduler(p);
4526        if (retval)
4527                goto out_unlock;
4528
4529        lp.sched_priority = p->rt_priority;
4530        rcu_read_unlock();
4531
4532        /*
4533         * This one might sleep, we cannot do it with a spinlock held ...
4534         */
4535        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4536
4537        return retval;
4538
4539out_unlock:
4540        rcu_read_unlock();
4541        return retval;
4542}
4543
4544long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4545{
4546        cpumask_var_t cpus_allowed, new_mask;
4547        struct task_struct *p;
4548        int retval;
4549
4550        get_online_cpus();
4551        rcu_read_lock();
4552
4553        p = find_process_by_pid(pid);
4554        if (!p) {
4555                rcu_read_unlock();
4556                put_online_cpus();
4557                return -ESRCH;
4558        }
4559
4560        /* Prevent p going away */
4561        get_task_struct(p);
4562        rcu_read_unlock();
4563
4564        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4565                retval = -ENOMEM;
4566                goto out_put_task;
4567        }
4568        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4569                retval = -ENOMEM;
4570                goto out_free_cpus_allowed;
4571        }
4572        retval = -EPERM;
4573        if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4574                goto out_unlock;
4575
4576        retval = security_task_setscheduler(p);
4577        if (retval)
4578                goto out_unlock;
4579
4580        cpuset_cpus_allowed(p, cpus_allowed);
4581        cpumask_and(new_mask, in_mask, cpus_allowed);
4582again:
4583        retval = set_cpus_allowed_ptr(p, new_mask);
4584
4585        if (!retval) {
4586                cpuset_cpus_allowed(p, cpus_allowed);
4587                if (!cpumask_subset(new_mask, cpus_allowed)) {
4588                        /*
4589                         * We must have raced with a concurrent cpuset
4590                         * update. Just reset the cpus_allowed to the
4591                         * cpuset's cpus_allowed
4592                         */
4593                        cpumask_copy(new_mask, cpus_allowed);
4594                        goto again;
4595                }
4596        }
4597out_unlock:
4598        free_cpumask_var(new_mask);
4599out_free_cpus_allowed:
4600        free_cpumask_var(cpus_allowed);
4601out_put_task:
4602        put_task_struct(p);
4603        put_online_cpus();
4604        return retval;
4605}
4606
4607static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4608                             struct cpumask *new_mask)
4609{
4610        if (len < cpumask_size())
4611                cpumask_clear(new_mask);
4612        else if (len > cpumask_size())
4613                len = cpumask_size();
4614
4615        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4616}
4617
4618/**
4619 * sys_sched_setaffinity - set the cpu affinity of a process
4620 * @pid: pid of the process
4621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4622 * @user_mask_ptr: user-space pointer to the new cpu mask
4623 */
4624SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4625                unsigned long __user *, user_mask_ptr)
4626{
4627        cpumask_var_t new_mask;
4628        int retval;
4629
4630        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4631                return -ENOMEM;
4632
4633        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4634        if (retval == 0)
4635                retval = sched_setaffinity(pid, new_mask);
4636        free_cpumask_var(new_mask);
4637        return retval;
4638}
4639
4640long sched_getaffinity(pid_t pid, struct cpumask *mask)
4641{
4642        struct task_struct *p;
4643        unsigned long flags;
4644        int retval;
4645
4646        get_online_cpus();
4647        rcu_read_lock();
4648
4649        retval = -ESRCH;
4650        p = find_process_by_pid(pid);
4651        if (!p)
4652                goto out_unlock;
4653
4654        retval = security_task_getscheduler(p);
4655        if (retval)
4656                goto out_unlock;
4657
4658        raw_spin_lock_irqsave(&p->pi_lock, flags);
4659        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4660        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4661
4662out_unlock:
4663        rcu_read_unlock();
4664        put_online_cpus();
4665
4666        return retval;
4667}
4668
4669/**
4670 * sys_sched_getaffinity - get the cpu affinity of a process
4671 * @pid: pid of the process
4672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4674 */
4675SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4676                unsigned long __user *, user_mask_ptr)
4677{
4678        int ret;
4679        cpumask_var_t mask;
4680
4681        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4682                return -EINVAL;
4683        if (len & (sizeof(unsigned long)-1))
4684                return -EINVAL;
4685
4686        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4687                return -ENOMEM;
4688
4689        ret = sched_getaffinity(pid, mask);
4690        if (ret == 0) {
4691                size_t retlen = min_t(size_t, len, cpumask_size());
4692
4693                if (copy_to_user(user_mask_ptr, mask, retlen))
4694                        ret = -EFAULT;
4695                else
4696                        ret = retlen;
4697        }
4698        free_cpumask_var(mask);
4699
4700        return ret;
4701}
4702
4703/**
4704 * sys_sched_yield - yield the current processor to other threads.
4705 *
4706 * This function yields the current CPU to other tasks. If there are no
4707 * other threads running on this CPU then this function will return.
4708 */
4709SYSCALL_DEFINE0(sched_yield)
4710{
4711        struct rq *rq = this_rq_lock();
4712
4713        schedstat_inc(rq, yld_count);
4714        current->sched_class->yield_task(rq);
4715
4716        /*
4717         * Since we are going to call schedule() anyway, there's
4718         * no need to preempt or enable interrupts:
4719         */
4720        __release(rq->lock);
4721        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4722        do_raw_spin_unlock(&rq->lock);
4723        sched_preempt_enable_no_resched();
4724
4725        schedule();
4726
4727        return 0;
4728}
4729
4730static inline int should_resched(void)
4731{
4732        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4733}
4734
4735static void __cond_resched(void)
4736{
4737        add_preempt_count(PREEMPT_ACTIVE);
4738        __schedule();
4739        sub_preempt_count(PREEMPT_ACTIVE);
4740}
4741
4742int __sched _cond_resched(void)
4743{
4744        if (should_resched()) {
4745                __cond_resched();
4746                return 1;
4747        }
4748        return 0;
4749}
4750EXPORT_SYMBOL(_cond_resched);
4751
4752/*
4753 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4754 * call schedule, and on return reacquire the lock.
4755 *
4756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4757 * operations here to prevent schedule() from being called twice (once via
4758 * spin_unlock(), once by hand).
4759 */
4760int __cond_resched_lock(spinlock_t *lock)
4761{
4762        int resched = should_resched();
4763        int ret = 0;
4764
4765        lockdep_assert_held(lock);
4766
4767        if (spin_needbreak(lock) || resched) {
4768                spin_unlock(lock);
4769                if (resched)
4770                        __cond_resched();
4771                else
4772                        cpu_relax();
4773                ret = 1;
4774                spin_lock(lock);
4775        }
4776        return ret;
4777}
4778EXPORT_SYMBOL(__cond_resched_lock);
4779
4780int __sched __cond_resched_softirq(void)
4781{
4782        BUG_ON(!in_softirq());
4783
4784        if (should_resched()) {
4785                local_bh_enable();
4786                __cond_resched();
4787                local_bh_disable();
4788                return 1;
4789        }
4790        return 0;
4791}
4792EXPORT_SYMBOL(__cond_resched_softirq);
4793
4794/**
4795 * yield - yield the current processor to other threads.
4796 *
4797 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4798 *
4799 * The scheduler is at all times free to pick the calling task as the most
4800 * eligible task to run, if removing the yield() call from your code breaks
4801 * it, its already broken.
4802 *
4803 * Typical broken usage is:
4804 *
4805 * while (!event)
4806 *      yield();
4807 *
4808 * where one assumes that yield() will let 'the other' process run that will
4809 * make event true. If the current task is a SCHED_FIFO task that will never
4810 * happen. Never use yield() as a progress guarantee!!
4811 *
4812 * If you want to use yield() to wait for something, use wait_event().
4813 * If you want to use yield() to be 'nice' for others, use cond_resched().
4814 * If you still want to use yield(), do not!
4815 */
4816void __sched yield(void)
4817{
4818        set_current_state(TASK_RUNNING);
4819        sys_sched_yield();
4820}
4821EXPORT_SYMBOL(yield);
4822
4823/**
4824 * yield_to - yield the current processor to another thread in
4825 * your thread group, or accelerate that thread toward the
4826 * processor it's on.
4827 * @p: target task
4828 * @preempt: whether task preemption is allowed or not
4829 *
4830 * It's the caller's job to ensure that the target task struct
4831 * can't go away on us before we can do any checks.
4832 *
4833 * Returns true if we indeed boosted the target task.
4834 */
4835bool __sched yield_to(struct task_struct *p, bool preempt)
4836{
4837        struct task_struct *curr = current;
4838        struct rq *rq, *p_rq;
4839        unsigned long flags;
4840        bool yielded = 0;
4841
4842        local_irq_save(flags);
4843        rq = this_rq();
4844
4845again:
4846        p_rq = task_rq(p);
4847        double_rq_lock(rq, p_rq);
4848        while (task_rq(p) != p_rq) {
4849                double_rq_unlock(rq, p_rq);
4850                goto again;
4851        }
4852
4853        if (!curr->sched_class->yield_to_task)
4854                goto out;
4855
4856        if (curr->sched_class != p->sched_class)
4857                goto out;
4858
4859        if (task_running(p_rq, p) || p->state)
4860                goto out;
4861
4862        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4863        if (yielded) {
4864                schedstat_inc(rq, yld_count);
4865                /*
4866                 * Make p's CPU reschedule; pick_next_entity takes care of
4867                 * fairness.
4868                 */
4869                if (preempt && rq != p_rq)
4870                        resched_task(p_rq->curr);
4871        } else {
4872                /*
4873                 * We might have set it in task_yield_fair(), but are
4874                 * not going to schedule(), so don't want to skip
4875                 * the next update.
4876                 */
4877                rq->skip_clock_update = 0;
4878        }
4879
4880out:
4881        double_rq_unlock(rq, p_rq);
4882        local_irq_restore(flags);
4883
4884        if (yielded)
4885                schedule();
4886
4887        return yielded;
4888}
4889EXPORT_SYMBOL_GPL(yield_to);
4890
4891/*
4892 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4893 * that process accounting knows that this is a task in IO wait state.
4894 */
4895void __sched io_schedule(void)
4896{
4897        struct rq *rq = raw_rq();
4898
4899        delayacct_blkio_start();
4900        atomic_inc(&rq->nr_iowait);
4901        blk_flush_plug(current);
4902        current->in_iowait = 1;
4903        schedule();
4904        current->in_iowait = 0;
4905        atomic_dec(&rq->nr_iowait);
4906        delayacct_blkio_end();
4907}
4908EXPORT_SYMBOL(io_schedule);
4909
4910long __sched io_schedule_timeout(long timeout)
4911{
4912        struct rq *rq = raw_rq();
4913        long ret;
4914
4915        delayacct_blkio_start();
4916        atomic_inc(&rq->nr_iowait);
4917        blk_flush_plug(current);
4918        current->in_iowait = 1;
4919        ret = schedule_timeout(timeout);
4920        current->in_iowait = 0;
4921        atomic_dec(&rq->nr_iowait);
4922        delayacct_blkio_end();
4923        return ret;
4924}
4925
4926/**
4927 * sys_sched_get_priority_max - return maximum RT priority.
4928 * @policy: scheduling class.
4929 *
4930 * this syscall returns the maximum rt_priority that can be used
4931 * by a given scheduling class.
4932 */
4933SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4934{
4935        int ret = -EINVAL;
4936
4937        switch (policy) {
4938        case SCHED_FIFO:
4939        case SCHED_RR:
4940                ret = MAX_USER_RT_PRIO-1;
4941                break;
4942        case SCHED_NORMAL:
4943        case SCHED_BATCH:
4944        case SCHED_IDLE:
4945                ret = 0;
4946                break;
4947        }
4948        return ret;
4949}
4950
4951/**
4952 * sys_sched_get_priority_min - return minimum RT priority.
4953 * @policy: scheduling class.
4954 *
4955 * this syscall returns the minimum rt_priority that can be used
4956 * by a given scheduling class.
4957 */
4958SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4959{
4960        int ret = -EINVAL;
4961
4962        switch (policy) {
4963        case SCHED_FIFO:
4964        case SCHED_RR:
4965                ret = 1;
4966                break;
4967        case SCHED_NORMAL:
4968        case SCHED_BATCH:
4969        case SCHED_IDLE:
4970                ret = 0;
4971        }
4972        return ret;
4973}
4974
4975/**
4976 * sys_sched_rr_get_interval - return the default timeslice of a process.
4977 * @pid: pid of the process.
4978 * @interval: userspace pointer to the timeslice value.
4979 *
4980 * this syscall writes the default timeslice value of a given process
4981 * into the user-space timespec buffer. A value of '0' means infinity.
4982 */
4983SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4984                struct timespec __user *, interval)
4985{
4986        struct task_struct *p;
4987        unsigned int time_slice;
4988        unsigned long flags;
4989        struct rq *rq;
4990        int retval;
4991        struct timespec t;
4992
4993        if (pid < 0)
4994                return -EINVAL;
4995
4996        retval = -ESRCH;
4997        rcu_read_lock();
4998        p = find_process_by_pid(pid);
4999        if (!p)
5000                goto out_unlock;
5001
5002        retval = security_task_getscheduler(p);
5003        if (retval)
5004                goto out_unlock;
5005
5006        rq = task_rq_lock(p, &flags);
5007        time_slice = p->sched_class->get_rr_interval(rq, p);
5008        task_rq_unlock(rq, p, &flags);
5009
5010        rcu_read_unlock();
5011        jiffies_to_timespec(time_slice, &t);
5012        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5013        return retval;
5014
5015out_unlock:
5016        rcu_read_unlock();
5017        return retval;
5018}
5019
5020static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5021
5022void sched_show_task(struct task_struct *p)
5023{
5024        unsigned long free = 0;
5025        unsigned state;
5026
5027        state = p->state ? __ffs(p->state) + 1 : 0;
5028        printk(KERN_INFO "%-15.15s %c", p->comm,
5029                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5030#if BITS_PER_LONG == 32
5031        if (state == TASK_RUNNING)
5032                printk(KERN_CONT " running  ");
5033        else
5034                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5035#else
5036        if (state == TASK_RUNNING)
5037                printk(KERN_CONT "  running task    ");
5038        else
5039                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5040#endif
5041#ifdef CONFIG_DEBUG_STACK_USAGE
5042        free = stack_not_used(p);
5043#endif
5044        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5045                task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5046                (unsigned long)task_thread_info(p)->flags);
5047
5048        show_stack(p, NULL);
5049}
5050
5051void show_state_filter(unsigned long state_filter)
5052{
5053        struct task_struct *g, *p;
5054
5055#if BITS_PER_LONG == 32
5056        printk(KERN_INFO
5057                "  task                PC stack   pid father\n");
5058#else
5059        printk(KERN_INFO
5060                "  task                        PC stack   pid father\n");
5061#endif
5062        rcu_read_lock();
5063        do_each_thread(g, p) {
5064                /*
5065                 * reset the NMI-timeout, listing all files on a slow
5066                 * console might take a lot of time:
5067                 */
5068                touch_nmi_watchdog();
5069                if (!state_filter || (p->state & state_filter))
5070                        sched_show_task(p);
5071        } while_each_thread(g, p);
5072
5073        touch_all_softlockup_watchdogs();
5074
5075#ifdef CONFIG_SCHED_DEBUG
5076        sysrq_sched_debug_show();
5077#endif
5078        rcu_read_unlock();
5079        /*
5080         * Only show locks if all tasks are dumped:
5081         */
5082        if (!state_filter)
5083                debug_show_all_locks();
5084}
5085
5086void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5087{
5088        idle->sched_class = &idle_sched_class;
5089}
5090
5091/**
5092 * init_idle - set up an idle thread for a given CPU
5093 * @idle: task in question
5094 * @cpu: cpu the idle task belongs to
5095 *
5096 * NOTE: this function does not set the idle thread's NEED_RESCHED
5097 * flag, to make booting more robust.
5098 */
5099void __cpuinit init_idle(struct task_struct *idle, int cpu)
5100{
5101        struct rq *rq = cpu_rq(cpu);
5102        unsigned long flags;
5103
5104        raw_spin_lock_irqsave(&rq->lock, flags);
5105
5106        __sched_fork(idle);
5107        idle->state = TASK_RUNNING;
5108        idle->se.exec_start = sched_clock();
5109
5110        do_set_cpus_allowed(idle, cpumask_of(cpu));
5111        /*
5112         * We're having a chicken and egg problem, even though we are
5113         * holding rq->lock, the cpu isn't yet set to this cpu so the
5114         * lockdep check in task_group() will fail.
5115         *
5116         * Similar case to sched_fork(). / Alternatively we could
5117         * use task_rq_lock() here and obtain the other rq->lock.
5118         *
5119         * Silence PROVE_RCU
5120         */
5121        rcu_read_lock();
5122        __set_task_cpu(idle, cpu);
5123        rcu_read_unlock();
5124
5125        rq->curr = rq->idle = idle;
5126#if defined(CONFIG_SMP)
5127        idle->on_cpu = 1;
5128#endif
5129        raw_spin_unlock_irqrestore(&rq->lock, flags);
5130
5131        /* Set the preempt count _outside_ the spinlocks! */
5132        task_thread_info(idle)->preempt_count = 0;
5133
5134        /*
5135         * The idle tasks have their own, simple scheduling class:
5136         */
5137        idle->sched_class = &idle_sched_class;
5138        ftrace_graph_init_idle_task(idle, cpu);
5139#if defined(CONFIG_SMP)
5140        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141#endif
5142}
5143
5144#ifdef CONFIG_SMP
5145void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5146{
5147        if (p->sched_class && p->sched_class->set_cpus_allowed)
5148                p->sched_class->set_cpus_allowed(p, new_mask);
5149
5150        cpumask_copy(&p->cpus_allowed, new_mask);
5151        p->nr_cpus_allowed = cpumask_weight(new_mask);
5152}
5153
5154/*
5155 * This is how migration works:
5156 *
5157 * 1) we invoke migration_cpu_stop() on the target CPU using
5158 *    stop_one_cpu().
5159 * 2) stopper starts to run (implicitly forcing the migrated thread
5160 *    off the CPU)
5161 * 3) it checks whether the migrated task is still in the wrong runqueue.
5162 * 4) if it's in the wrong runqueue then the migration thread removes
5163 *    it and puts it into the right queue.
5164 * 5) stopper completes and stop_one_cpu() returns and the migration
5165 *    is done.
5166 */
5167
5168/*
5169 * Change a given task's CPU affinity. Migrate the thread to a
5170 * proper CPU and schedule it away if the CPU it's executing on
5171 * is removed from the allowed bitmask.
5172 *
5173 * NOTE: the caller must have a valid reference to the task, the
5174 * task must not exit() & deallocate itself prematurely. The
5175 * call is not atomic; no spinlocks may be held.
5176 */
5177int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5178{
5179        unsigned long flags;
5180        struct rq *rq;
5181        unsigned int dest_cpu;
5182        int ret = 0;
5183
5184        rq = task_rq_lock(p, &flags);
5185
5186        if (cpumask_equal(&p->cpus_allowed, new_mask))
5187                goto out;
5188
5189        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5190                ret = -EINVAL;
5191                goto out;
5192        }
5193
5194        if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5195                ret = -EINVAL;
5196                goto out;
5197        }
5198
5199        do_set_cpus_allowed(p, new_mask);
5200
5201        /* Can the task run on the task's current CPU? If so, we're done */
5202        if (cpumask_test_cpu(task_cpu(p), new_mask))
5203                goto out;
5204
5205        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5206        if (p->on_rq) {
5207                struct migration_arg arg = { p, dest_cpu };
5208                /* Need help from migration thread: drop lock and wait. */
5209                task_rq_unlock(rq, p, &flags);
5210                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5211                tlb_migrate_finish(p->mm);
5212                return 0;
5213        }
5214out:
5215        task_rq_unlock(rq, p, &flags);
5216
5217        return ret;
5218}
5219EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5220
5221/*
5222 * Move (not current) task off this cpu, onto dest cpu. We're doing
5223 * this because either it can't run here any more (set_cpus_allowed()
5224 * away from this CPU, or CPU going down), or because we're
5225 * attempting to rebalance this task on exec (sched_exec).
5226 *
5227 * So we race with normal scheduler movements, but that's OK, as long
5228 * as the task is no longer on this CPU.
5229 *
5230 * Returns non-zero if task was successfully migrated.
5231 */
5232static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5233{
5234        struct rq *rq_dest, *rq_src;
5235        int ret = 0;
5236
5237        if (unlikely(!cpu_active(dest_cpu)))
5238                return ret;
5239
5240        rq_src = cpu_rq(src_cpu);
5241        rq_dest = cpu_rq(dest_cpu);
5242
5243        raw_spin_lock(&p->pi_lock);
5244        double_rq_lock(rq_src, rq_dest);
5245        /* Already moved. */
5246        if (task_cpu(p) != src_cpu)
5247                goto done;
5248        /* Affinity changed (again). */
5249        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5250                goto fail;
5251
5252        /*
5253         * If we're not on a rq, the next wake-up will ensure we're
5254         * placed properly.
5255         */
5256        if (p->on_rq) {
5257                dequeue_task(rq_src, p, 0);
5258                set_task_cpu(p, dest_cpu);
5259                enqueue_task(rq_dest, p, 0);
5260                check_preempt_curr(rq_dest, p, 0);
5261        }
5262done:
5263        ret = 1;
5264fail:
5265        double_rq_unlock(rq_src, rq_dest);
5266        raw_spin_unlock(&p->pi_lock);
5267        return ret;
5268}
5269
5270/*
5271 * migration_cpu_stop - this will be executed by a highprio stopper thread
5272 * and performs thread migration by bumping thread off CPU then
5273 * 'pushing' onto another runqueue.
5274 */
5275static int migration_cpu_stop(void *data)
5276{
5277        struct migration_arg *arg = data;
5278
5279        /*
5280         * The original target cpu might have gone down and we might
5281         * be on another cpu but it doesn't matter.
5282         */
5283        local_irq_disable();
5284        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5285        local_irq_enable();
5286        return 0;
5287}
5288
5289#ifdef CONFIG_HOTPLUG_CPU
5290
5291/*
5292 * Ensures that the idle task is using init_mm right before its cpu goes
5293 * offline.
5294 */
5295void idle_task_exit(void)
5296{
5297        struct mm_struct *mm = current->active_mm;
5298
5299        BUG_ON(cpu_online(smp_processor_id()));
5300
5301        if (mm != &init_mm)
5302                switch_mm(mm, &init_mm, current);
5303        mmdrop(mm);
5304}
5305
5306/*
5307 * Since this CPU is going 'away' for a while, fold any nr_active delta
5308 * we might have. Assumes we're called after migrate_tasks() so that the
5309 * nr_active count is stable.
5310 *
5311 * Also see the comment "Global load-average calculations".
5312 */
5313static void calc_load_migrate(struct rq *rq)
5314{
5315        long delta = calc_load_fold_active(rq);
5316        if (delta)
5317                atomic_long_add(delta, &calc_load_tasks);
5318}
5319
5320/*
5321 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5322 * try_to_wake_up()->select_task_rq().
5323 *
5324 * Called with rq->lock held even though we'er in stop_machine() and
5325 * there's no concurrency possible, we hold the required locks anyway
5326 * because of lock validation efforts.
5327 */
5328static void migrate_tasks(unsigned int dead_cpu)
5329{
5330        struct rq *rq = cpu_rq(dead_cpu);
5331        struct task_struct *next, *stop = rq->stop;
5332        int dest_cpu;
5333
5334        /*
5335         * Fudge the rq selection such that the below task selection loop
5336         * doesn't get stuck on the currently eligible stop task.
5337         *
5338         * We're currently inside stop_machine() and the rq is either stuck
5339         * in the stop_machine_cpu_stop() loop, or we're executing this code,
5340         * either way we should never end up calling schedule() until we're
5341         * done here.
5342         */
5343        rq->stop = NULL;
5344
5345        for ( ; ; ) {
5346                /*
5347                 * There's this thread running, bail when that's the only
5348                 * remaining thread.
5349                 */
5350                if (rq->nr_running == 1)
5351                        break;
5352
5353                next = pick_next_task(rq);
5354                BUG_ON(!next);
5355                next->sched_class->put_prev_task(rq, next);
5356
5357                /* Find suitable destination for @next, with force if needed. */
5358                dest_cpu = select_fallback_rq(dead_cpu, next);
5359                raw_spin_unlock(&rq->lock);
5360
5361                __migrate_task(next, dead_cpu, dest_cpu);
5362
5363                raw_spin_lock(&rq->lock);
5364        }
5365
5366        rq->stop = stop;
5367}
5368
5369#endif /* CONFIG_HOTPLUG_CPU */
5370
5371#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5372
5373static struct ctl_table sd_ctl_dir[] = {
5374        {
5375                .procname       = "sched_domain",
5376                .mode           = 0555,
5377        },
5378        {}
5379};
5380
5381static struct ctl_table sd_ctl_root[] = {
5382        {
5383                .procname       = "kernel",
5384                .mode           = 0555,
5385                .child          = sd_ctl_dir,
5386        },
5387        {}
5388};
5389
5390static struct ctl_table *sd_alloc_ctl_entry(int n)
5391{
5392        struct ctl_table *entry =
5393                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5394
5395        return entry;
5396}
5397
5398static void sd_free_ctl_entry(struct ctl_table **tablep)
5399{
5400        struct ctl_table *entry;
5401
5402        /*
5403         * In the intermediate directories, both the child directory and
5404         * procname are dynamically allocated and could fail but the mode
5405         * will always be set. In the lowest directory the names are
5406         * static strings and all have proc handlers.
5407         */
5408        for (entry = *tablep; entry->mode; entry++) {
5409                if (entry->child)
5410                        sd_free_ctl_entry(&entry->child);
5411                if (entry->proc_handler == NULL)
5412                        kfree(entry->procname);
5413        }
5414
5415        kfree(*tablep);
5416        *tablep = NULL;
5417}
5418
5419static void
5420set_table_entry(struct ctl_table *entry,
5421                const char *procname, void *data, int maxlen,
5422                umode_t mode, proc_handler *proc_handler)
5423{
5424        entry->procname = procname;
5425        entry->data = data;
5426        entry->maxlen = maxlen;
5427        entry->mode = mode;
5428        entry->proc_handler = proc_handler;
5429}
5430
5431static struct ctl_table *
5432sd_alloc_ctl_domain_table(struct sched_domain *sd)
5433{
5434        struct ctl_table *table = sd_alloc_ctl_entry(13);
5435
5436        if (table == NULL)
5437                return NULL;
5438
5439        set_table_entry(&table[0], "min_interval", &sd->min_interval,
5440                sizeof(long), 0644, proc_doulongvec_minmax);
5441        set_table_entry(&table[1], "max_interval", &sd->max_interval,
5442                sizeof(long), 0644, proc_doulongvec_minmax);
5443        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5444                sizeof(int), 0644, proc_dointvec_minmax);
5445        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5446                sizeof(int), 0644, proc_dointvec_minmax);
5447        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5448                sizeof(int), 0644, proc_dointvec_minmax);
5449        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5450                sizeof(int), 0644, proc_dointvec_minmax);
5451        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5452                sizeof(int), 0644, proc_dointvec_minmax);
5453        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5454                sizeof(int), 0644, proc_dointvec_minmax);
5455        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5456                sizeof(int), 0644, proc_dointvec_minmax);
5457        set_table_entry(&table[9], "cache_nice_tries",
5458                &sd->cache_nice_tries,
5459                sizeof(int), 0644, proc_dointvec_minmax);
5460        set_table_entry(&table[10], "flags", &sd->flags,
5461                sizeof(int), 0644, proc_dointvec_minmax);
5462        set_table_entry(&table[11], "name", sd->name,
5463                CORENAME_MAX_SIZE, 0444, proc_dostring);
5464        /* &table[12] is terminator */
5465
5466        return table;
5467}
5468
5469static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5470{
5471        struct ctl_table *entry, *table;
5472        struct sched_domain *sd;
5473        int domain_num = 0, i;
5474        char buf[32];
5475
5476        for_each_domain(cpu, sd)
5477                domain_num++;
5478        entry = table = sd_alloc_ctl_entry(domain_num + 1);
5479        if (table == NULL)
5480                return NULL;
5481
5482        i = 0;
5483        for_each_domain(cpu, sd) {
5484                snprintf(buf, 32, "domain%d", i);
5485                entry->procname = kstrdup(buf, GFP_KERNEL);
5486                entry->mode = 0555;
5487                entry->child = sd_alloc_ctl_domain_table(sd);
5488                entry++;
5489                i++;
5490        }
5491        return table;
5492}
5493
5494static struct ctl_table_header *sd_sysctl_header;
5495static void register_sched_domain_sysctl(void)
5496{
5497        int i, cpu_num = num_possible_cpus();
5498        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5499        char buf[32];
5500
5501        WARN_ON(sd_ctl_dir[0].child);
5502        sd_ctl_dir[0].child = entry;
5503
5504        if (entry == NULL)
5505                return;
5506
5507        for_each_possible_cpu(i) {
5508                snprintf(buf, 32, "cpu%d", i);
5509                entry->procname = kstrdup(buf, GFP_KERNEL);
5510                entry->mode = 0555;
5511                entry->child = sd_alloc_ctl_cpu_table(i);
5512                entry++;
5513        }
5514
5515        WARN_ON(sd_sysctl_header);
5516        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5517}
5518
5519/* may be called multiple times per register */
5520static void unregister_sched_domain_sysctl(void)
5521{
5522        if (sd_sysctl_header)
5523                unregister_sysctl_table(sd_sysctl_header);
5524        sd_sysctl_header = NULL;
5525        if (sd_ctl_dir[0].child)
5526                sd_free_ctl_entry(&sd_ctl_dir[0].child);
5527}
5528#else
5529static void register_sched_domain_sysctl(void)
5530{
5531}
5532static void unregister_sched_domain_sysctl(void)
5533{
5534}
5535#endif
5536
5537static void set_rq_online(struct rq *rq)
5538{
5539        if (!rq->online) {
5540                const struct sched_class *class;
5541
5542                cpumask_set_cpu(rq->cpu, rq->rd->online);
5543                rq->online = 1;
5544
5545                for_each_class(class) {
5546                        if (class->rq_online)
5547                                class->rq_online(rq);
5548                }
5549        }
5550}
5551
5552static void set_rq_offline(struct rq *rq)
5553{
5554        if (rq->online) {
5555                const struct sched_class *class;
5556
5557                for_each_class(class) {
5558                        if (class->rq_offline)
5559                                class->rq_offline(rq);
5560                }
5561
5562                cpumask_clear_cpu(rq->cpu, rq->rd->online);
5563                rq->online = 0;
5564        }
5565}
5566
5567/*
5568 * migration_call - callback that gets triggered when a CPU is added.
5569 * Here we can start up the necessary migration thread for the new CPU.
5570 */
5571static int __cpuinit
5572migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5573{
5574        int cpu = (long)hcpu;
5575        unsigned long flags;
5576        struct rq *rq = cpu_rq(cpu);
5577
5578        switch (action & ~CPU_TASKS_FROZEN) {
5579
5580        case CPU_UP_PREPARE:
5581                rq->calc_load_update = calc_load_update;
5582                break;
5583
5584        case CPU_ONLINE:
5585                /* Update our root-domain */
5586                raw_spin_lock_irqsave(&rq->lock, flags);
5587                if (rq->rd) {
5588                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5589
5590                        set_rq_online(rq);
5591                }
5592                raw_spin_unlock_irqrestore(&rq->lock, flags);
5593                break;
5594
5595#ifdef CONFIG_HOTPLUG_CPU
5596        case CPU_DYING:
5597                sched_ttwu_pending();
5598                /* Update our root-domain */
5599                raw_spin_lock_irqsave(&rq->lock, flags);
5600                if (rq->rd) {
5601                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5602                        set_rq_offline(rq);
5603                }
5604                migrate_tasks(cpu);
5605                BUG_ON(rq->nr_running != 1); /* the migration thread */
5606                raw_spin_unlock_irqrestore(&rq->lock, flags);
5607
5608                calc_load_migrate(rq);
5609                break;
5610#endif
5611        }
5612
5613        update_max_interval();
5614
5615        return NOTIFY_OK;
5616}
5617
5618/*
5619 * Register at high priority so that task migration (migrate_all_tasks)
5620 * happens before everything else.  This has to be lower priority than
5621 * the notifier in the perf_event subsystem, though.
5622 */
5623static struct notifier_block __cpuinitdata migration_notifier = {
5624        .notifier_call = migration_call,
5625        .priority = CPU_PRI_MIGRATION,
5626};
5627
5628static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5629                                      unsigned long action, void *hcpu)
5630{
5631        switch (action & ~CPU_TASKS_FROZEN) {
5632        case CPU_STARTING:
5633        case CPU_DOWN_FAILED:
5634                set_cpu_active((long)hcpu, true);
5635                return NOTIFY_OK;
5636        default:
5637                return NOTIFY_DONE;
5638        }
5639}
5640
5641static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5642                                        unsigned long action, void *hcpu)
5643{
5644        switch (action & ~CPU_TASKS_FROZEN) {
5645        case CPU_DOWN_PREPARE:
5646                set_cpu_active((long)hcpu, false);
5647                return NOTIFY_OK;
5648        default:
5649                return NOTIFY_DONE;
5650        }
5651}
5652
5653static int __init migration_init(void)
5654{
5655        void *cpu = (void *)(long)smp_processor_id();
5656        int err;
5657
5658        /* Initialize migration for the boot CPU */
5659        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5660        BUG_ON(err == NOTIFY_BAD);
5661        migration_call(&migration_notifier, CPU_ONLINE, cpu);
5662        register_cpu_notifier(&migration_notifier);
5663
5664        /* Register cpu active notifiers */
5665        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5666        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5667
5668        return 0;
5669}
5670early_initcall(migration_init);
5671#endif
5672
5673#ifdef CONFIG_SMP
5674
5675static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5676
5677#ifdef CONFIG_SCHED_DEBUG
5678
5679static __read_mostly int sched_debug_enabled;
5680
5681static int __init sched_debug_setup(char *str)
5682{
5683        sched_debug_enabled = 1;
5684
5685        return 0;
5686}
5687early_param("sched_debug", sched_debug_setup);
5688
5689static inline bool sched_debug(void)
5690{
5691        return sched_debug_enabled;
5692}
5693
5694static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5695                                  struct cpumask *groupmask)
5696{
5697        struct sched_group *group = sd->groups;
5698        char str[256];
5699
5700        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5701        cpumask_clear(groupmask);
5702
5703        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5704
5705        if (!(sd->flags & SD_LOAD_BALANCE)) {
5706                printk("does not load-balance\n");
5707                if (sd->parent)
5708                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5709                                        " has parent");
5710                return -1;
5711        }
5712
5713        printk(KERN_CONT "span %s level %s\n", str, sd->name);
5714
5715        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5716                printk(KERN_ERR "ERROR: domain->span does not contain "
5717                                "CPU%d\n", cpu);
5718        }
5719        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5720                printk(KERN_ERR "ERROR: domain->groups does not contain"
5721                                " CPU%d\n", cpu);
5722        }
5723
5724        printk(KERN_DEBUG "%*s groups:", level + 1, "");
5725        do {
5726                if (!group) {
5727                        printk("\n");
5728                        printk(KERN_ERR "ERROR: group is NULL\n");
5729                        break;
5730                }
5731
5732                /*
5733                 * Even though we initialize ->power to something semi-sane,
5734                 * we leave power_orig unset. This allows us to detect if
5735                 * domain iteration is still funny without causing /0 traps.
5736                 */
5737                if (!group->sgp->power_orig) {
5738                        printk(KERN_CONT "\n");
5739                        printk(KERN_ERR "ERROR: domain->cpu_power not "
5740                                        "set\n");
5741                        break;
5742                }
5743
5744                if (!cpumask_weight(sched_group_cpus(group))) {
5745                        printk(KERN_CONT "\n");
5746                        printk(KERN_ERR "ERROR: empty group\n");
5747                        break;
5748                }
5749
5750                if (!(sd->flags & SD_OVERLAP) &&
5751                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5752                        printk(KERN_CONT "\n");
5753                        printk(KERN_ERR "ERROR: repeated CPUs\n");
5754                        break;
5755                }
5756
5757                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5758
5759                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5760
5761                printk(KERN_CONT " %s", str);
5762                if (group->sgp->power != SCHED_POWER_SCALE) {
5763                        printk(KERN_CONT " (cpu_power = %d)",
5764                                group->sgp->power);
5765                }
5766
5767                group = group->next;
5768        } while (group != sd->groups);
5769        printk(KERN_CONT "\n");
5770
5771        if (!cpumask_equal(sched_domain_span(sd), groupmask))
5772                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5773
5774        if (sd->parent &&
5775            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5776                printk(KERN_ERR "ERROR: parent span is not a superset "
5777                        "of domain->span\n");
5778        return 0;
5779}
5780
5781static void sched_domain_debug(struct sched_domain *sd, int cpu)
5782{
5783        int level = 0;
5784
5785        if (!sched_debug_enabled)
5786                return;
5787
5788        if (!sd) {
5789                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5790                return;
5791        }
5792
5793        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5794
5795        for (;;) {
5796                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5797                        break;
5798                level++;
5799                sd = sd->parent;
5800                if (!sd)
5801                        break;
5802        }
5803}
5804#else /* !CONFIG_SCHED_DEBUG */
5805# define sched_domain_debug(sd, cpu) do { } while (0)
5806static inline bool sched_debug(void)
5807{
5808        return false;
5809}
5810#endif /* CONFIG_SCHED_DEBUG */
5811
5812static int sd_degenerate(struct sched_domain *sd)
5813{
5814        if (cpumask_weight(sched_domain_span(sd)) == 1)
5815                return 1;
5816
5817        /* Following flags need at least 2 groups */
5818        if (sd->flags & (SD_LOAD_BALANCE |
5819                         SD_BALANCE_NEWIDLE |
5820                         SD_BALANCE_FORK |
5821                         SD_BALANCE_EXEC |
5822                         SD_SHARE_CPUPOWER |
5823                         SD_SHARE_PKG_RESOURCES)) {
5824                if (sd->groups != sd->groups->next)
5825                        return 0;
5826        }
5827
5828        /* Following flags don't use groups */
5829        if (sd->flags & (SD_WAKE_AFFINE))
5830                return 0;
5831
5832        return 1;
5833}
5834
5835static int
5836sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5837{
5838        unsigned long cflags = sd->flags, pflags = parent->flags;
5839
5840        if (sd_degenerate(parent))
5841                return 1;
5842
5843        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5844                return 0;
5845
5846        /* Flags needing groups don't count if only 1 group in parent */
5847        if (parent->groups == parent->groups->next) {
5848                pflags &= ~(SD_LOAD_BALANCE |
5849                                SD_BALANCE_NEWIDLE |
5850                                SD_BALANCE_FORK |
5851                                SD_BALANCE_EXEC |
5852                                SD_SHARE_CPUPOWER |
5853                                SD_SHARE_PKG_RESOURCES);
5854                if (nr_node_ids == 1)
5855                        pflags &= ~SD_SERIALIZE;
5856        }
5857        if (~cflags & pflags)
5858                return 0;
5859
5860        return 1;
5861}
5862
5863static void free_rootdomain(struct rcu_head *rcu)
5864{
5865        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5866
5867        cpupri_cleanup(&rd->cpupri);
5868        free_cpumask_var(rd->rto_mask);
5869        free_cpumask_var(rd->online);
5870        free_cpumask_var(rd->span);
5871        kfree(rd);
5872}
5873
5874static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5875{
5876        struct root_domain *old_rd = NULL;
5877        unsigned long flags;
5878
5879        raw_spin_lock_irqsave(&rq->lock, flags);
5880
5881        if (rq->rd) {
5882                old_rd = rq->rd;
5883
5884                if (cpumask_test_cpu(rq->cpu, old_rd->online))
5885                        set_rq_offline(rq);
5886
5887                cpumask_clear_cpu(rq->cpu, old_rd->span);
5888
5889                /*
5890                 * If we dont want to free the old_rt yet then
5891                 * set old_rd to NULL to skip the freeing later
5892                 * in this function:
5893                 */
5894                if (!atomic_dec_and_test(&old_rd->refcount))
5895                        old_rd = NULL;
5896        }
5897
5898        atomic_inc(&rd->refcount);
5899        rq->rd = rd;
5900
5901        cpumask_set_cpu(rq->cpu, rd->span);
5902        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5903                set_rq_online(rq);
5904
5905        raw_spin_unlock_irqrestore(&rq->lock, flags);
5906
5907        if (old_rd)
5908                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5909}
5910
5911static int init_rootdomain(struct root_domain *rd)
5912{
5913        memset(rd, 0, sizeof(*rd));
5914
5915        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5916                goto out;
5917        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5918                goto free_span;
5919        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5920                goto free_online;
5921
5922        if (cpupri_init(&rd->cpupri) != 0)
5923                goto free_rto_mask;
5924        return 0;
5925
5926free_rto_mask:
5927        free_cpumask_var(rd->rto_mask);
5928free_online:
5929        free_cpumask_var(rd->online);
5930free_span:
5931        free_cpumask_var(rd->span);
5932out:
5933        return -ENOMEM;
5934}
5935
5936/*
5937 * By default the system creates a single root-domain with all cpus as
5938 * members (mimicking the global state we have today).
5939 */
5940struct root_domain def_root_domain;
5941
5942static void init_defrootdomain(void)
5943{
5944        init_rootdomain(&def_root_domain);
5945
5946        atomic_set(&def_root_domain.refcount, 1);
5947}
5948
5949static struct root_domain *alloc_rootdomain(void)
5950{
5951        struct root_domain *rd;
5952
5953        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5954        if (!rd)
5955                return NULL;
5956
5957        if (init_rootdomain(rd) != 0) {
5958                kfree(rd);
5959                return NULL;
5960        }
5961
5962        return rd;
5963}
5964
5965static void free_sched_groups(struct sched_group *sg, int free_sgp)
5966{
5967        struct sched_group *tmp, *first;
5968
5969        if (!sg)
5970                return;
5971
5972        first = sg;
5973        do {
5974                tmp = sg->next;
5975
5976                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5977                        kfree(sg->sgp);
5978
5979                kfree(sg);
5980                sg = tmp;
5981        } while (sg != first);
5982}
5983
5984static void free_sched_domain(struct rcu_head *rcu)
5985{
5986        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5987
5988        /*
5989         * If its an overlapping domain it has private groups, iterate and
5990         * nuke them all.
5991         */
5992        if (sd->flags & SD_OVERLAP) {
5993                free_sched_groups(sd->groups, 1);
5994        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5995                kfree(sd->groups->sgp);
5996                kfree(sd->groups);
5997        }
5998        kfree(sd);
5999}
6000
6001static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6002{
6003        call_rcu(&sd->rcu, free_sched_domain);
6004}
6005
6006static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6007{
6008        for (; sd; sd = sd->parent)
6009                destroy_sched_domain(sd, cpu);
6010}
6011
6012/*
6013 * Keep a special pointer to the highest sched_domain that has
6014 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6015 * allows us to avoid some pointer chasing select_idle_sibling().
6016 *
6017 * Also keep a unique ID per domain (we use the first cpu number in
6018 * the cpumask of the domain), this allows us to quickly tell if
6019 * two cpus are in the same cache domain, see cpus_share_cache().
6020 */
6021DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6022DEFINE_PER_CPU(int, sd_llc_id);
6023
6024static void update_top_cache_domain(int cpu)
6025{
6026        struct sched_domain *sd;
6027        int id = cpu;
6028
6029        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6030        if (sd)
6031                id = cpumask_first(sched_domain_span(sd));
6032
6033        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6034        per_cpu(sd_llc_id, cpu) = id;
6035}
6036
6037/*
6038 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6039 * hold the hotplug lock.
6040 */
6041static void
6042cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6043{
6044        struct rq *rq = cpu_rq(cpu);
6045        struct sched_domain *tmp;
6046
6047        /* Remove the sched domains which do not contribute to scheduling. */
6048        for (tmp = sd; tmp; ) {
6049                struct sched_domain *parent = tmp->parent;
6050                if (!parent)
6051                        break;
6052
6053                if (sd_parent_degenerate(tmp, parent)) {
6054                        tmp->parent = parent->parent;
6055                        if (parent->parent)
6056                                parent->parent->child = tmp;
6057                        destroy_sched_domain(parent, cpu);
6058                } else
6059                        tmp = tmp->parent;
6060        }
6061
6062        if (sd && sd_degenerate(sd)) {
6063                tmp = sd;
6064                sd = sd->parent;
6065                destroy_sched_domain(tmp, cpu);
6066                if (sd)
6067                        sd->child = NULL;
6068        }
6069
6070        sched_domain_debug(sd, cpu);
6071
6072        rq_attach_root(rq, rd);
6073        tmp = rq->sd;
6074        rcu_assign_pointer(rq->sd, sd);
6075        destroy_sched_domains(tmp, cpu);
6076
6077        update_top_cache_domain(cpu);
6078}
6079
6080/* cpus with isolated domains */
6081static cpumask_var_t cpu_isolated_map;
6082
6083/* Setup the mask of cpus configured for isolated domains */
6084static int __init isolated_cpu_setup(char *str)
6085{
6086        alloc_bootmem_cpumask_var(&cpu_isolated_map);
6087        cpulist_parse(str, cpu_isolated_map);
6088        return 1;
6089}
6090
6091__setup("isolcpus=", isolated_cpu_setup);
6092
6093static const struct cpumask *cpu_cpu_mask(int cpu)
6094{
6095        return cpumask_of_node(cpu_to_node(cpu));
6096}
6097
6098struct sd_data {
6099        struct sched_domain **__percpu sd;
6100        struct sched_group **__percpu sg;
6101        struct sched_group_power **__percpu sgp;
6102};
6103
6104struct s_data {
6105        struct sched_domain ** __percpu sd;
6106        struct root_domain      *rd;
6107};
6108
6109enum s_alloc {
6110        sa_rootdomain,
6111        sa_sd,
6112        sa_sd_storage,
6113        sa_none,
6114};
6115
6116struct sched_domain_topology_level;
6117
6118typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6119typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6120
6121#define SDTL_OVERLAP    0x01
6122
6123struct sched_domain_topology_level {
6124        sched_domain_init_f init;
6125        sched_domain_mask_f mask;
6126        int                 flags;
6127        int                 numa_level;
6128        struct sd_data      data;
6129};
6130
6131/*
6132 * Build an iteration mask that can exclude certain CPUs from the upwards
6133 * domain traversal.
6134 *
6135 * Asymmetric node setups can result in situations where the domain tree is of
6136 * unequal depth, make sure to skip domains that already cover the entire
6137 * range.
6138 *
6139 * In that case build_sched_domains() will have terminated the iteration early
6140 * and our sibling sd spans will be empty. Domains should always include the
6141 * cpu they're built on, so check that.
6142 *
6143 */
6144static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6145{
6146        const struct cpumask *span = sched_domain_span(sd);
6147        struct sd_data *sdd = sd->private;
6148        struct sched_domain *sibling;
6149        int i;
6150
6151        for_each_cpu(i, span) {
6152                sibling = *per_cpu_ptr(sdd->sd, i);
6153                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6154                        continue;
6155
6156                cpumask_set_cpu(i, sched_group_mask(sg));
6157        }
6158}
6159
6160/*
6161 * Return the canonical balance cpu for this group, this is the first cpu
6162 * of this group that's also in the iteration mask.
6163 */
6164int group_balance_cpu(struct sched_group *sg)
6165{
6166        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6167}
6168
6169static int
6170build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6171{
6172        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6173        const struct cpumask *span = sched_domain_span(sd);
6174        struct cpumask *covered = sched_domains_tmpmask;
6175        struct sd_data *sdd = sd->private;
6176        struct sched_domain *child;
6177        int i;
6178
6179        cpumask_clear(covered);
6180
6181        for_each_cpu(i, span) {
6182                struct cpumask *sg_span;
6183
6184                if (cpumask_test_cpu(i, covered))
6185                        continue;
6186
6187                child = *per_cpu_ptr(sdd->sd, i);
6188
6189                /* See the comment near build_group_mask(). */
6190                if (!cpumask_test_cpu(i, sched_domain_span(child)))
6191                        continue;
6192
6193                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6194                                GFP_KERNEL, cpu_to_node(cpu));
6195
6196                if (!sg)
6197                        goto fail;
6198
6199                sg_span = sched_group_cpus(sg);
6200                if (child->child) {
6201                        child = child->child;
6202                        cpumask_copy(sg_span, sched_domain_span(child));
6203                } else
6204                        cpumask_set_cpu(i, sg_span);
6205
6206                cpumask_or(covered, covered, sg_span);
6207
6208                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6209                if (atomic_inc_return(&sg->sgp->ref) == 1)
6210                        build_group_mask(sd, sg);
6211
6212                /*
6213                 * Initialize sgp->power such that even if we mess up the
6214                 * domains and no possible iteration will get us here, we won't
6215                 * die on a /0 trap.
6216                 */
6217                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6218
6219                /*
6220                 * Make sure the first group of this domain contains the
6221                 * canonical balance cpu. Otherwise the sched_domain iteration
6222                 * breaks. See update_sg_lb_stats().
6223                 */
6224                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6225                    group_balance_cpu(sg) == cpu)
6226                        groups = sg;
6227
6228                if (!first)
6229                        first = sg;
6230                if (last)
6231                        last->next = sg;
6232                last = sg;
6233                last->next = first;
6234        }
6235        sd->groups = groups;
6236
6237        return 0;
6238
6239fail:
6240        free_sched_groups(first, 0);
6241
6242        return -ENOMEM;
6243}
6244
6245static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6246{
6247        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6248        struct sched_domain *child = sd->child;
6249
6250        if (child)
6251                cpu = cpumask_first(sched_domain_span(child));
6252
6253        if (sg) {
6254                *sg = *per_cpu_ptr(sdd->sg, cpu);
6255                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6256                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6257        }
6258
6259        return cpu;
6260}
6261
6262/*
6263 * build_sched_groups will build a circular linked list of the groups
6264 * covered by the given span, and will set each group's ->cpumask correctly,
6265 * and ->cpu_power to 0.
6266 *
6267 * Assumes the sched_domain tree is fully constructed
6268 */
6269static int
6270build_sched_groups(struct sched_domain *sd, int cpu)
6271{
6272        struct sched_group *first = NULL, *last = NULL;
6273        struct sd_data *sdd = sd->private;
6274        const struct cpumask *span = sched_domain_span(sd);
6275        struct cpumask *covered;
6276        int i;
6277
6278        get_group(cpu, sdd, &sd->groups);
6279        atomic_inc(&sd->groups->ref);
6280
6281        if (cpu != cpumask_first(sched_domain_span(sd)))
6282                return 0;
6283
6284        lockdep_assert_held(&sched_domains_mutex);
6285        covered = sched_domains_tmpmask;
6286
6287        cpumask_clear(covered);
6288
6289        for_each_cpu(i, span) {
6290                struct sched_group *sg;
6291                int group = get_group(i, sdd, &sg);
6292                int j;
6293
6294                if (cpumask_test_cpu(i, covered))
6295                        continue;
6296
6297                cpumask_clear(sched_group_cpus(sg));
6298                sg->sgp->power = 0;
6299                cpumask_setall(sched_group_mask(sg));
6300
6301                for_each_cpu(j, span) {
6302                        if (get_group(j, sdd, NULL) != group)
6303                                continue;
6304
6305                        cpumask_set_cpu(j, covered);
6306                        cpumask_set_cpu(j, sched_group_cpus(sg));
6307                }
6308
6309                if (!first)
6310                        first = sg;
6311                if (last)
6312                        last->next = sg;
6313                last = sg;
6314        }
6315        last->next = first;
6316
6317        return 0;
6318}
6319
6320/*
6321 * Initialize sched groups cpu_power.
6322 *
6323 * cpu_power indicates the capacity of sched group, which is used while
6324 * distributing the load between different sched groups in a sched domain.
6325 * Typically cpu_power for all the groups in a sched domain will be same unless
6326 * there are asymmetries in the topology. If there are asymmetries, group
6327 * having more cpu_power will pickup more load compared to the group having
6328 * less cpu_power.
6329 */
6330static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6331{
6332        struct sched_group *sg = sd->groups;
6333
6334        WARN_ON(!sd || !sg);
6335
6336        do {
6337                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6338                sg = sg->next;
6339        } while (sg != sd->groups);
6340
6341        if (cpu != group_balance_cpu(sg))
6342                return;
6343
6344        update_group_power(sd, cpu);
6345        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6346}
6347
6348int __weak arch_sd_sibling_asym_packing(void)
6349{
6350       return 0*SD_ASYM_PACKING;
6351}
6352
6353/*
6354 * Initializers for schedule domains
6355 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6356 */
6357
6358#ifdef CONFIG_SCHED_DEBUG
6359# define SD_INIT_NAME(sd, type)         sd->name = #type
6360#else
6361# define SD_INIT_NAME(sd, type)         do { } while (0)
6362#endif
6363
6364#define SD_INIT_FUNC(type)                                              \
6365static noinline struct sched_domain *                                   \
6366sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
6367{                                                                       \
6368        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
6369        *sd = SD_##type##_INIT;                                         \
6370        SD_INIT_NAME(sd, type);                                         \
6371        sd->private = &tl->data;                                        \
6372        return sd;                                                      \
6373}
6374
6375SD_INIT_FUNC(CPU)
6376#ifdef CONFIG_SCHED_SMT
6377 SD_INIT_FUNC(SIBLING)
6378#endif
6379#ifdef CONFIG_SCHED_MC
6380 SD_INIT_FUNC(MC)
6381#endif
6382#ifdef CONFIG_SCHED_BOOK
6383 SD_INIT_FUNC(BOOK)
6384#endif
6385
6386static int default_relax_domain_level = -1;
6387int sched_domain_level_max;
6388
6389static int __init setup_relax_domain_level(char *str)
6390{
6391        if (kstrtoint(str, 0, &default_relax_domain_level))
6392                pr_warn("Unable to set relax_domain_level\n");
6393
6394        return 1;
6395}
6396__setup("relax_domain_level=", setup_relax_domain_level);
6397
6398static void set_domain_attribute(struct sched_domain *sd,
6399                                 struct sched_domain_attr *attr)
6400{
6401        int request;
6402
6403        if (!attr || attr->relax_domain_level < 0) {
6404                if (default_relax_domain_level < 0)
6405                        return;
6406                else
6407                        request = default_relax_domain_level;
6408        } else
6409                request = attr->relax_domain_level;
6410        if (request < sd->level) {
6411                /* turn off idle balance on this domain */
6412                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6413        } else {
6414                /* turn on idle balance on this domain */
6415                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6416        }
6417}
6418
6419static void __sdt_free(const struct cpumask *cpu_map);
6420static int __sdt_alloc(const struct cpumask *cpu_map);
6421
6422static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6423                                 const struct cpumask *cpu_map)
6424{
6425        switch (what) {
6426        case sa_rootdomain:
6427                if (!atomic_read(&d->rd->refcount))
6428                        free_rootdomain(&d->rd->rcu); /* fall through */
6429        case sa_sd:
6430                free_percpu(d->sd); /* fall through */
6431        case sa_sd_storage:
6432                __sdt_free(cpu_map); /* fall through */
6433        case sa_none:
6434                break;
6435        }
6436}
6437
6438static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6439                                                   const struct cpumask *cpu_map)
6440{
6441        memset(d, 0, sizeof(*d));
6442
6443        if (__sdt_alloc(cpu_map))
6444                return sa_sd_storage;
6445        d->sd = alloc_percpu(struct sched_domain *);
6446        if (!d->sd)
6447                return sa_sd_storage;
6448        d->rd = alloc_rootdomain();
6449        if (!d->rd)
6450                return sa_sd;
6451        return sa_rootdomain;
6452}
6453
6454/*
6455 * NULL the sd_data elements we've used to build the sched_domain and
6456 * sched_group structure so that the subsequent __free_domain_allocs()
6457 * will not free the data we're using.
6458 */
6459static void claim_allocations(int cpu, struct sched_domain *sd)
6460{
6461        struct sd_data *sdd = sd->private;
6462
6463        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6464        *per_cpu_ptr(sdd->sd, cpu) = NULL;
6465
6466        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6467                *per_cpu_ptr(sdd->sg, cpu) = NULL;
6468
6469        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6470                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6471}
6472
6473#ifdef CONFIG_SCHED_SMT
6474static const struct cpumask *cpu_smt_mask(int cpu)
6475{
6476        return topology_thread_cpumask(cpu);
6477}
6478#endif
6479
6480/*
6481 * Topology list, bottom-up.
6482 */
6483static struct sched_domain_topology_level default_topology[] = {
6484#ifdef CONFIG_SCHED_SMT
6485        { sd_init_SIBLING, cpu_smt_mask, },
6486#endif
6487#ifdef CONFIG_SCHED_MC
6488        { sd_init_MC, cpu_coregroup_mask, },
6489#endif
6490#ifdef CONFIG_SCHED_BOOK
6491        { sd_init_BOOK, cpu_book_mask, },
6492#endif
6493        { sd_init_CPU, cpu_cpu_mask, },
6494        { NULL, },
6495};
6496
6497static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6498
6499#ifdef CONFIG_NUMA
6500
6501static int sched_domains_numa_levels;
6502static int *sched_domains_numa_distance;
6503static struct cpumask ***sched_domains_numa_masks;
6504static int sched_domains_curr_level;
6505
6506static inline int sd_local_flags(int level)
6507{
6508        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6509                return 0;
6510
6511        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6512}
6513
6514static struct sched_domain *
6515sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6516{
6517        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6518        int level = tl->numa_level;
6519        int sd_weight = cpumask_weight(
6520                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6521
6522        *sd = (struct sched_domain){
6523                .min_interval           = sd_weight,
6524                .max_interval           = 2*sd_weight,
6525                .busy_factor            = 32,
6526                .imbalance_pct          = 125,
6527                .cache_nice_tries       = 2,
6528                .busy_idx               = 3,
6529                .idle_idx               = 2,
6530                .newidle_idx            = 0,
6531                .wake_idx               = 0,
6532                .forkexec_idx           = 0,
6533
6534                .flags                  = 1*SD_LOAD_BALANCE
6535                                        | 1*SD_BALANCE_NEWIDLE
6536                                        | 0*SD_BALANCE_EXEC
6537                                        | 0*SD_BALANCE_FORK
6538                                        | 0*SD_BALANCE_WAKE
6539                                        | 0*SD_WAKE_AFFINE
6540                                        | 0*SD_PREFER_LOCAL
6541                                        | 0*SD_SHARE_CPUPOWER
6542                                        | 0*SD_SHARE_PKG_RESOURCES
6543                                        | 1*SD_SERIALIZE
6544                                        | 0*SD_PREFER_SIBLING
6545                                        | sd_local_flags(level)
6546                                        ,
6547                .last_balance           = jiffies,
6548                .balance_interval       = sd_weight,
6549        };
6550        SD_INIT_NAME(sd, NUMA);
6551        sd->private = &tl->data;
6552
6553        /*
6554         * Ugly hack to pass state to sd_numa_mask()...
6555         */
6556        sched_domains_curr_level = tl->numa_level;
6557
6558        return sd;
6559}
6560
6561static const struct cpumask *sd_numa_mask(int cpu)
6562{
6563        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6564}
6565
6566static void sched_numa_warn(const char *str)
6567{
6568        static int done = false;
6569        int i,j;
6570
6571        if (done)
6572                return;
6573
6574        done = true;
6575
6576        printk(KERN_WARNING "ERROR: %s\n\n", str);
6577
6578        for (i = 0; i < nr_node_ids; i++) {
6579                printk(KERN_WARNING "  ");
6580                for (j = 0; j < nr_node_ids; j++)
6581                        printk(KERN_CONT "%02d ", node_distance(i,j));
6582                printk(KERN_CONT "\n");
6583        }
6584        printk(KERN_WARNING "\n");
6585}
6586
6587static bool find_numa_distance(int distance)
6588{
6589        int i;
6590
6591        if (distance == node_distance(0, 0))
6592                return true;
6593
6594        for (i = 0; i < sched_domains_numa_levels; i++) {
6595                if (sched_domains_numa_distance[i] == distance)
6596                        return true;
6597        }
6598
6599        return false;
6600}
6601
6602static void sched_init_numa(void)
6603{
6604        int next_distance, curr_distance = node_distance(0, 0);
6605        struct sched_domain_topology_level *tl;
6606        int level = 0;
6607        int i, j, k;
6608
6609        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6610        if (!sched_domains_numa_distance)
6611                return;
6612
6613        /*
6614         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6615         * unique distances in the node_distance() table.
6616         *
6617         * Assumes node_distance(0,j) includes all distances in
6618         * node_distance(i,j) in order to avoid cubic time.
6619         */
6620        next_distance = curr_distance;
6621        for (i = 0; i < nr_node_ids; i++) {
6622                for (j = 0; j < nr_node_ids; j++) {
6623                        for (k = 0; k < nr_node_ids; k++) {
6624                                int distance = node_distance(i, k);
6625
6626                                if (distance > curr_distance &&
6627                                    (distance < next_distance ||
6628                                     next_distance == curr_distance))
6629                                        next_distance = distance;
6630
6631                                /*
6632                                 * While not a strong assumption it would be nice to know
6633                                 * about cases where if node A is connected to B, B is not
6634                                 * equally connected to A.
6635                                 */
6636                                if (sched_debug() && node_distance(k, i) != distance)
6637                                        sched_numa_warn("Node-distance not symmetric");
6638
6639                                if (sched_debug() && i && !find_numa_distance(distance))
6640                                        sched_numa_warn("Node-0 not representative");
6641                        }
6642                        if (next_distance != curr_distance) {
6643                                sched_domains_numa_distance[level++] = next_distance;
6644                                sched_domains_numa_levels = level;
6645                                curr_distance = next_distance;
6646                        } else break;
6647                }
6648
6649                /*
6650                 * In case of sched_debug() we verify the above assumption.
6651                 */
6652                if (!sched_debug())
6653                        break;
6654        }
6655        /*
6656         * 'level' contains the number of unique distances, excluding the
6657         * identity distance node_distance(i,i).
6658         *
6659         * The sched_domains_nume_distance[] array includes the actual distance
6660         * numbers.
6661         */
6662
6663        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6664        if (!sched_domains_numa_masks)
6665                return;
6666
6667        /*
6668         * Now for each level, construct a mask per node which contains all
6669         * cpus of nodes that are that many hops away from us.
6670         */
6671        for (i = 0; i < level; i++) {
6672                sched_domains_numa_masks[i] =
6673                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6674                if (!sched_domains_numa_masks[i])
6675                        return;
6676
6677                for (j = 0; j < nr_node_ids; j++) {
6678                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6679                        if (!mask)
6680                                return;
6681
6682                        sched_domains_numa_masks[i][j] = mask;
6683
6684                        for (k = 0; k < nr_node_ids; k++) {
6685                                if (node_distance(j, k) > sched_domains_numa_distance[i])
6686                                        continue;
6687
6688                                cpumask_or(mask, mask, cpumask_of_node(k));
6689                        }
6690                }
6691        }
6692
6693        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6694                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6695        if (!tl)
6696                return;
6697
6698        /*
6699         * Copy the default topology bits..
6700         */
6701        for (i = 0; default_topology[i].init; i++)
6702                tl[i] = default_topology[i];
6703
6704        /*
6705         * .. and append 'j' levels of NUMA goodness.
6706         */
6707        for (j = 0; j < level; i++, j++) {
6708                tl[i] = (struct sched_domain_topology_level){
6709                        .init = sd_numa_init,
6710                        .mask = sd_numa_mask,
6711                        .flags = SDTL_OVERLAP,
6712                        .numa_level = j,
6713                };
6714        }
6715
6716        sched_domain_topology = tl;
6717}
6718#else
6719static inline void sched_init_numa(void)
6720{
6721}
6722#endif /* CONFIG_NUMA */
6723
6724static int __sdt_alloc(const struct cpumask *cpu_map)
6725{
6726        struct sched_domain_topology_level *tl;
6727        int j;
6728
6729        for (tl = sched_domain_topology; tl->init; tl++) {
6730                struct sd_data *sdd = &tl->data;
6731
6732                sdd->sd = alloc_percpu(struct sched_domain *);
6733                if (!sdd->sd)
6734                        return -ENOMEM;
6735
6736                sdd->sg = alloc_percpu(struct sched_group *);
6737                if (!sdd->sg)
6738                        return -ENOMEM;
6739
6740                sdd->sgp = alloc_percpu(struct sched_group_power *);
6741                if (!sdd->sgp)
6742                        return -ENOMEM;
6743
6744                for_each_cpu(j, cpu_map) {
6745                        struct sched_domain *sd;
6746                        struct sched_group *sg;
6747                        struct sched_group_power *sgp;
6748
6749                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6750                                        GFP_KERNEL, cpu_to_node(j));
6751                        if (!sd)
6752                                return -ENOMEM;
6753
6754                        *per_cpu_ptr(sdd->sd, j) = sd;
6755
6756                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6757                                        GFP_KERNEL, cpu_to_node(j));
6758                        if (!sg)
6759                                return -ENOMEM;
6760
6761                        sg->next = sg;
6762
6763                        *per_cpu_ptr(sdd->sg, j) = sg;
6764
6765                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6766                                        GFP_KERNEL, cpu_to_node(j));
6767                        if (!sgp)
6768                                return -ENOMEM;
6769
6770                        *per_cpu_ptr(sdd->sgp, j) = sgp;
6771                }
6772        }
6773
6774        return 0;
6775}
6776
6777static void __sdt_free(const struct cpumask *cpu_map)
6778{
6779        struct sched_domain_topology_level *tl;
6780        int j;
6781
6782        for (tl = sched_domain_topology; tl->init; tl++) {
6783                struct sd_data *sdd = &tl->data;
6784
6785                for_each_cpu(j, cpu_map) {
6786                        struct sched_domain *sd;
6787
6788                        if (sdd->sd) {
6789                                sd = *per_cpu_ptr(sdd->sd, j);
6790                                if (sd && (sd->flags & SD_OVERLAP))
6791                                        free_sched_groups(sd->groups, 0);
6792                                kfree(*per_cpu_ptr(sdd->sd, j));
6793                        }
6794
6795                        if (sdd->sg)
6796                                kfree(*per_cpu_ptr(sdd->sg, j));
6797                        if (sdd->sgp)
6798                                kfree(*per_cpu_ptr(sdd->sgp, j));
6799                }
6800                free_percpu(sdd->sd);
6801                sdd->sd = NULL;
6802                free_percpu(sdd->sg);
6803                sdd->sg = NULL;
6804                free_percpu(sdd->sgp);
6805                sdd->sgp = NULL;
6806        }
6807}
6808
6809struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6810                struct s_data *d, const struct cpumask *cpu_map,
6811                struct sched_domain_attr *attr, struct sched_domain *child,
6812                int cpu)
6813{
6814        struct sched_domain *sd = tl->init(tl, cpu);
6815        if (!sd)
6816                return child;
6817
6818        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6819        if (child) {
6820                sd->level = child->level + 1;
6821                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6822                child->parent = sd;
6823        }
6824        sd->child = child;
6825        set_domain_attribute(sd, attr);
6826
6827        return sd;
6828}
6829
6830/*
6831 * Build sched domains for a given set of cpus and attach the sched domains
6832 * to the individual cpus
6833 */
6834static int build_sched_domains(const struct cpumask *cpu_map,
6835                               struct sched_domain_attr *attr)
6836{
6837        enum s_alloc alloc_state = sa_none;
6838        struct sched_domain *sd;
6839        struct s_data d;
6840        int i, ret = -ENOMEM;
6841
6842        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6843        if (alloc_state != sa_rootdomain)
6844                goto error;
6845
6846        /* Set up domains for cpus specified by the cpu_map. */
6847        for_each_cpu(i, cpu_map) {
6848                struct sched_domain_topology_level *tl;
6849
6850                sd = NULL;
6851                for (tl = sched_domain_topology; tl->init; tl++) {
6852                        sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6853                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6854                                sd->flags |= SD_OVERLAP;
6855                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6856                                break;
6857                }
6858
6859                while (sd->child)
6860                        sd = sd->child;
6861
6862                *per_cpu_ptr(d.sd, i) = sd;
6863        }
6864
6865        /* Build the groups for the domains */
6866        for_each_cpu(i, cpu_map) {
6867                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6868                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6869                        if (sd->flags & SD_OVERLAP) {
6870                                if (build_overlap_sched_groups(sd, i))
6871                                        goto error;
6872                        } else {
6873                                if (build_sched_groups(sd, i))
6874                                        goto error;
6875                        }
6876                }
6877        }
6878
6879        /* Calculate CPU power for physical packages and nodes */
6880        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6881                if (!cpumask_test_cpu(i, cpu_map))
6882                        continue;
6883
6884                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6885                        claim_allocations(i, sd);
6886                        init_sched_groups_power(i, sd);
6887                }
6888        }
6889
6890        /* Attach the domains */
6891        rcu_read_lock();
6892        for_each_cpu(i, cpu_map) {
6893                sd = *per_cpu_ptr(d.sd, i);
6894                cpu_attach_domain(sd, d.rd, i);
6895        }
6896        rcu_read_unlock();
6897
6898        ret = 0;
6899error:
6900        __free_domain_allocs(&d, alloc_state, cpu_map);
6901        return ret;
6902}
6903
6904static cpumask_var_t *doms_cur; /* current sched domains */
6905static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6906static struct sched_domain_attr *dattr_cur;
6907                                /* attribues of custom domains in 'doms_cur' */
6908
6909/*
6910 * Special case: If a kmalloc of a doms_cur partition (array of
6911 * cpumask) fails, then fallback to a single sched domain,
6912 * as determined by the single cpumask fallback_doms.
6913 */
6914static cpumask_var_t fallback_doms;
6915
6916/*
6917 * arch_update_cpu_topology lets virtualized architectures update the
6918 * cpu core maps. It is supposed to return 1 if the topology changed
6919 * or 0 if it stayed the same.
6920 */
6921int __attribute__((weak)) arch_update_cpu_topology(void)
6922{
6923        return 0;
6924}
6925
6926cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6927{
6928        int i;
6929        cpumask_var_t *doms;
6930
6931        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6932        if (!doms)
6933                return NULL;
6934        for (i = 0; i < ndoms; i++) {
6935                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6936                        free_sched_domains(doms, i);
6937                        return NULL;
6938                }
6939        }
6940        return doms;
6941}
6942
6943void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6944{
6945        unsigned int i;
6946        for (i = 0; i < ndoms; i++)
6947                free_cpumask_var(doms[i]);
6948        kfree(doms);
6949}
6950
6951/*
6952 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6953 * For now this just excludes isolated cpus, but could be used to
6954 * exclude other special cases in the future.
6955 */
6956static int init_sched_domains(const struct cpumask *cpu_map)
6957{
6958        int err;
6959
6960        arch_update_cpu_topology();
6961        ndoms_cur = 1;
6962        doms_cur = alloc_sched_domains(ndoms_cur);
6963        if (!doms_cur)
6964                doms_cur = &fallback_doms;
6965        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6966        err = build_sched_domains(doms_cur[0], NULL);
6967        register_sched_domain_sysctl();
6968
6969        return err;
6970}
6971
6972/*
6973 * Detach sched domains from a group of cpus specified in cpu_map
6974 * These cpus will now be attached to the NULL domain
6975 */
6976static void detach_destroy_domains(const struct cpumask *cpu_map)
6977{
6978        int i;
6979
6980        rcu_read_lock();
6981        for_each_cpu(i, cpu_map)
6982                cpu_attach_domain(NULL, &def_root_domain, i);
6983        rcu_read_unlock();
6984}
6985
6986/* handle null as "default" */
6987static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6988                        struct sched_domain_attr *new, int idx_new)
6989{
6990        struct sched_domain_attr tmp;
6991
6992        /* fast path */
6993        if (!new && !cur)
6994                return 1;
6995
6996        tmp = SD_ATTR_INIT;
6997        return !memcmp(cur ? (cur + idx_cur) : &tmp,
6998                        new ? (new + idx_new) : &tmp,
6999                        sizeof(struct sched_domain_attr));
7000}
7001
7002/*
7003 * Partition sched domains as specified by the 'ndoms_new'
7004 * cpumasks in the array doms_new[] of cpumasks. This compares
7005 * doms_new[] to the current sched domain partitioning, doms_cur[].
7006 * It destroys each deleted domain and builds each new domain.
7007 *
7008 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7009 * The masks don't intersect (don't overlap.) We should setup one
7010 * sched domain for each mask. CPUs not in any of the cpumasks will
7011 * not be load balanced. If the same cpumask appears both in the
7012 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7013 * it as it is.
7014 *
7015 * The passed in 'doms_new' should be allocated using
7016 * alloc_sched_domains.  This routine takes ownership of it and will
7017 * free_sched_domains it when done with it. If the caller failed the
7018 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7019 * and partition_sched_domains() will fallback to the single partition
7020 * 'fallback_doms', it also forces the domains to be rebuilt.
7021 *
7022 * If doms_new == NULL it will be replaced with cpu_online_mask.
7023 * ndoms_new == 0 is a special case for destroying existing domains,
7024 * and it will not create the default domain.
7025 *
7026 * Call with hotplug lock held
7027 */
7028void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7029                             struct sched_domain_attr *dattr_new)
7030{
7031        int i, j, n;
7032        int new_topology;
7033
7034        mutex_lock(&sched_domains_mutex);
7035
7036        /* always unregister in case we don't destroy any domains */
7037        unregister_sched_domain_sysctl();
7038
7039        /* Let architecture update cpu core mappings. */
7040        new_topology = arch_update_cpu_topology();
7041
7042        n = doms_new ? ndoms_new : 0;
7043
7044        /* Destroy deleted domains */
7045        for (i = 0; i < ndoms_cur; i++) {
7046                for (j = 0; j < n && !new_topology; j++) {
7047                        if (cpumask_equal(doms_cur[i], doms_new[j])
7048                            && dattrs_equal(dattr_cur, i, dattr_new, j))
7049                                goto match1;
7050                }
7051                /* no match - a current sched domain not in new doms_new[] */
7052                detach_destroy_domains(doms_cur[i]);
7053match1:
7054                ;
7055        }
7056
7057        if (doms_new == NULL) {
7058                ndoms_cur = 0;
7059                doms_new = &fallback_doms;
7060                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7061                WARN_ON_ONCE(dattr_new);
7062        }
7063
7064        /* Build new domains */
7065        for (i = 0; i < ndoms_new; i++) {
7066                for (j = 0; j < ndoms_cur && !new_topology; j++) {
7067                        if (cpumask_equal(doms_new[i], doms_cur[j])
7068                            && dattrs_equal(dattr_new, i, dattr_cur, j))
7069                                goto match2;
7070                }
7071                /* no match - add a new doms_new */
7072                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7073match2:
7074                ;
7075        }
7076
7077        /* Remember the new sched domains */
7078        if (doms_cur != &fallback_doms)
7079                free_sched_domains(doms_cur, ndoms_cur);
7080        kfree(dattr_cur);       /* kfree(NULL) is safe */
7081        doms_cur = doms_new;
7082        dattr_cur = dattr_new;
7083        ndoms_cur = ndoms_new;
7084
7085        register_sched_domain_sysctl();
7086
7087        mutex_unlock(&sched_domains_mutex);
7088}
7089
7090static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
7091
7092/*
7093 * Update cpusets according to cpu_active mask.  If cpusets are
7094 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7095 * around partition_sched_domains().
7096 *
7097 * If we come here as part of a suspend/resume, don't touch cpusets because we
7098 * want to restore it back to its original state upon resume anyway.
7099 */
7100static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7101                             void *hcpu)
7102{
7103        switch (action) {
7104        case CPU_ONLINE_FROZEN:
7105        case CPU_DOWN_FAILED_FROZEN:
7106
7107                /*
7108                 * num_cpus_frozen tracks how many CPUs are involved in suspend
7109                 * resume sequence. As long as this is not the last online
7110                 * operation in the resume sequence, just build a single sched
7111                 * domain, ignoring cpusets.
7112                 */
7113                num_cpus_frozen--;
7114                if (likely(num_cpus_frozen)) {
7115                        partition_sched_domains(1, NULL, NULL);
7116                        break;
7117                }
7118
7119                /*
7120                 * This is the last CPU online operation. So fall through and
7121                 * restore the original sched domains by considering the
7122                 * cpuset configurations.
7123                 */
7124
7125        case CPU_ONLINE:
7126        case CPU_DOWN_FAILED:
7127                cpuset_update_active_cpus(true);
7128                break;
7129        default:
7130                return NOTIFY_DONE;
7131        }
7132        return NOTIFY_OK;
7133}
7134
7135static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7136                               void *hcpu)
7137{
7138        switch (action) {
7139        case CPU_DOWN_PREPARE:
7140                cpuset_update_active_cpus(false);
7141                break;
7142        case CPU_DOWN_PREPARE_FROZEN:
7143                num_cpus_frozen++;
7144                partition_sched_domains(1, NULL, NULL);
7145                break;
7146        default:
7147                return NOTIFY_DONE;
7148        }
7149        return NOTIFY_OK;
7150}
7151
7152void __init sched_init_smp(void)
7153{
7154        cpumask_var_t non_isolated_cpus;
7155
7156        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7157        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7158
7159        sched_init_numa();
7160
7161        get_online_cpus();
7162        mutex_lock(&sched_domains_mutex);
7163        init_sched_domains(cpu_active_mask);
7164        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7165        if (cpumask_empty(non_isolated_cpus))
7166                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7167        mutex_unlock(&sched_domains_mutex);
7168        put_online_cpus();
7169
7170        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7171        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7172
7173        /* RT runtime code needs to handle some hotplug events */
7174        hotcpu_notifier(update_runtime, 0);
7175
7176        init_hrtick();
7177
7178        /* Move init over to a non-isolated CPU */
7179        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7180                BUG();
7181        sched_init_granularity();
7182        free_cpumask_var(non_isolated_cpus);
7183
7184        init_sched_rt_class();
7185}
7186#else
7187void __init sched_init_smp(void)
7188{
7189        sched_init_granularity();
7190}
7191#endif /* CONFIG_SMP */
7192
7193const_debug unsigned int sysctl_timer_migration = 1;
7194
7195int in_sched_functions(unsigned long addr)
7196{
7197        return in_lock_functions(addr) ||
7198                (addr >= (unsigned long)__sched_text_start
7199                && addr < (unsigned long)__sched_text_end);
7200}
7201
7202#ifdef CONFIG_CGROUP_SCHED
7203struct task_group root_task_group;
7204LIST_HEAD(task_groups);
7205#endif
7206
7207DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7208
7209void __init sched_init(void)
7210{
7211        int i, j;
7212        unsigned long alloc_size = 0, ptr;
7213
7214#ifdef CONFIG_FAIR_GROUP_SCHED
7215        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7216#endif
7217#ifdef CONFIG_RT_GROUP_SCHED
7218        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7219#endif
7220#ifdef CONFIG_CPUMASK_OFFSTACK
7221        alloc_size += num_possible_cpus() * cpumask_size();
7222#endif
7223        if (alloc_size) {
7224                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7225
7226#ifdef CONFIG_FAIR_GROUP_SCHED
7227                root_task_group.se = (struct sched_entity **)ptr;
7228                ptr += nr_cpu_ids * sizeof(void **);
7229
7230                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7231                ptr += nr_cpu_ids * sizeof(void **);
7232
7233#endif /* CONFIG_FAIR_GROUP_SCHED */
7234#ifdef CONFIG_RT_GROUP_SCHED
7235                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7236                ptr += nr_cpu_ids * sizeof(void **);
7237
7238                root_task_group.rt_rq = (struct rt_rq **)ptr;
7239                ptr += nr_cpu_ids * sizeof(void **);
7240
7241#endif /* CONFIG_RT_GROUP_SCHED */
7242#ifdef CONFIG_CPUMASK_OFFSTACK
7243                for_each_possible_cpu(i) {
7244                        per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7245                        ptr += cpumask_size();
7246                }
7247#endif /* CONFIG_CPUMASK_OFFSTACK */
7248        }
7249
7250#ifdef CONFIG_SMP
7251        init_defrootdomain();
7252#endif
7253
7254        init_rt_bandwidth(&def_rt_bandwidth,
7255                        global_rt_period(), global_rt_runtime());
7256
7257#ifdef CONFIG_RT_GROUP_SCHED
7258        init_rt_bandwidth(&root_task_group.rt_bandwidth,
7259                        global_rt_period(), global_rt_runtime());
7260#endif /* CONFIG_RT_GROUP_SCHED */
7261
7262#ifdef CONFIG_CGROUP_SCHED
7263        list_add(&root_task_group.list, &task_groups);
7264        INIT_LIST_HEAD(&root_task_group.children);
7265        INIT_LIST_HEAD(&root_task_group.siblings);
7266        autogroup_init(&init_task);
7267
7268#endif /* CONFIG_CGROUP_SCHED */
7269
7270#ifdef CONFIG_CGROUP_CPUACCT
7271        root_cpuacct.cpustat = &kernel_cpustat;
7272        root_cpuacct.cpuusage = alloc_percpu(u64);
7273        /* Too early, not expected to fail */
7274        BUG_ON(!root_cpuacct.cpuusage);
7275#endif
7276        for_each_possible_cpu(i) {
7277                struct rq *rq;
7278
7279                rq = cpu_rq(i);
7280                raw_spin_lock_init(&rq->lock);
7281                rq->nr_running = 0;
7282                rq->calc_load_active = 0;
7283                rq->calc_load_update = jiffies + LOAD_FREQ;
7284                init_cfs_rq(&rq->cfs);
7285                init_rt_rq(&rq->rt, rq);
7286#ifdef CONFIG_FAIR_GROUP_SCHED
7287                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7288                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7289                /*
7290                 * How much cpu bandwidth does root_task_group get?
7291                 *
7292                 * In case of task-groups formed thr' the cgroup filesystem, it
7293                 * gets 100% of the cpu resources in the system. This overall
7294                 * system cpu resource is divided among the tasks of
7295                 * root_task_group and its child task-groups in a fair manner,
7296                 * based on each entity's (task or task-group's) weight
7297                 * (se->load.weight).
7298                 *
7299                 * In other words, if root_task_group has 10 tasks of weight
7300                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7301                 * then A0's share of the cpu resource is:
7302                 *
7303                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7304                 *
7305                 * We achieve this by letting root_task_group's tasks sit
7306                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7307                 */
7308                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7309                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7310#endif /* CONFIG_FAIR_GROUP_SCHED */
7311
7312                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7313#ifdef CONFIG_RT_GROUP_SCHED
7314                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7315                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7316#endif
7317
7318                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7319                        rq->cpu_load[j] = 0;
7320
7321                rq->last_load_update_tick = jiffies;
7322
7323#ifdef CONFIG_SMP
7324                rq->sd = NULL;
7325                rq->rd = NULL;
7326                rq->cpu_power = SCHED_POWER_SCALE;
7327                rq->post_schedule = 0;
7328                rq->active_balance = 0;
7329                rq->next_balance = jiffies;
7330                rq->push_cpu = 0;
7331                rq->cpu = i;
7332                rq->online = 0;
7333                rq->idle_stamp = 0;
7334                rq->avg_idle = 2*sysctl_sched_migration_cost;
7335
7336                INIT_LIST_HEAD(&rq->cfs_tasks);
7337
7338                rq_attach_root(rq, &def_root_domain);
7339#ifdef CONFIG_NO_HZ
7340                rq->nohz_flags = 0;
7341#endif
7342#endif
7343                init_rq_hrtick(rq);
7344                atomic_set(&rq->nr_iowait, 0);
7345        }
7346
7347        set_load_weight(&init_task);
7348
7349#ifdef CONFIG_PREEMPT_NOTIFIERS
7350        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7351#endif
7352
7353#ifdef CONFIG_RT_MUTEXES
7354        plist_head_init(&init_task.pi_waiters);
7355#endif
7356
7357        /*
7358         * The boot idle thread does lazy MMU switching as well:
7359         */
7360        atomic_inc(&init_mm.mm_count);
7361        enter_lazy_tlb(&init_mm, current);
7362
7363        /*
7364         * Make us the idle thread. Technically, schedule() should not be
7365         * called from this thread, however somewhere below it might be,
7366         * but because we are the idle thread, we just pick up running again
7367         * when this runqueue becomes "idle".
7368         */
7369        init_idle(current, smp_processor_id());
7370
7371        calc_load_update = jiffies + LOAD_FREQ;
7372
7373        /*
7374         * During early bootup we pretend to be a normal task:
7375         */
7376        current->sched_class = &fair_sched_class;
7377
7378#ifdef CONFIG_SMP
7379        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7380        /* May be allocated at isolcpus cmdline parse time */
7381        if (cpu_isolated_map == NULL)
7382                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7383        idle_thread_set_boot_cpu();
7384#endif
7385        init_sched_fair_class();
7386
7387        scheduler_running = 1;
7388}
7389
7390#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7391static inline int preempt_count_equals(int preempt_offset)
7392{
7393        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7394
7395        return (nested == preempt_offset);
7396}
7397
7398void __might_sleep(const char *file, int line, int preempt_offset)
7399{
7400        static unsigned long prev_jiffy;        /* ratelimiting */
7401
7402        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7403        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7404            system_state != SYSTEM_RUNNING || oops_in_progress)
7405                return;
7406        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7407                return;
7408        prev_jiffy = jiffies;
7409
7410        printk(KERN_ERR
7411                "BUG: sleeping function called from invalid context at %s:%d\n",
7412                        file, line);
7413        printk(KERN_ERR
7414                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7415                        in_atomic(), irqs_disabled(),
7416                        current->pid, current->comm);
7417
7418        debug_show_held_locks(current);
7419        if (irqs_disabled())
7420                print_irqtrace_events(current);
7421        dump_stack();
7422}
7423EXPORT_SYMBOL(__might_sleep);
7424#endif
7425
7426#ifdef CONFIG_MAGIC_SYSRQ
7427static void normalize_task(struct rq *rq, struct task_struct *p)
7428{
7429        const struct sched_class *prev_class = p->sched_class;
7430        int old_prio = p->prio;
7431        int on_rq;
7432
7433        on_rq = p->on_rq;
7434        if (on_rq)
7435                dequeue_task(rq, p, 0);
7436        __setscheduler(rq, p, SCHED_NORMAL, 0);
7437        if (on_rq) {
7438                enqueue_task(rq, p, 0);
7439                resched_task(rq->curr);
7440        }
7441
7442        check_class_changed(rq, p, prev_class, old_prio);
7443}
7444
7445void normalize_rt_tasks(void)
7446{
7447        struct task_struct *g, *p;
7448        unsigned long flags;
7449        struct rq *rq;
7450
7451        read_lock_irqsave(&tasklist_lock, flags);
7452        do_each_thread(g, p) {
7453                /*
7454                 * Only normalize user tasks:
7455                 */
7456                if (!p->mm)
7457                        continue;
7458
7459                p->se.exec_start                = 0;
7460#ifdef CONFIG_SCHEDSTATS
7461                p->se.statistics.wait_start     = 0;
7462                p->se.statistics.sleep_start    = 0;
7463                p->se.statistics.block_start    = 0;
7464#endif
7465
7466                if (!rt_task(p)) {
7467                        /*
7468                         * Renice negative nice level userspace
7469                         * tasks back to 0:
7470                         */
7471                        if (TASK_NICE(p) < 0 && p->mm)
7472                                set_user_nice(p, 0);
7473                        continue;
7474                }
7475
7476                raw_spin_lock(&p->pi_lock);
7477                rq = __task_rq_lock(p);
7478
7479                normalize_task(rq, p);
7480
7481                __task_rq_unlock(rq);
7482                raw_spin_unlock(&p->pi_lock);
7483        } while_each_thread(g, p);
7484
7485        read_unlock_irqrestore(&tasklist_lock, flags);
7486}
7487
7488#endif /* CONFIG_MAGIC_SYSRQ */
7489
7490#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7491/*
7492 * These functions are only useful for the IA64 MCA handling, or kdb.
7493 *
7494 * They can only be called when the whole system has been
7495 * stopped - every CPU needs to be quiescent, and no scheduling
7496 * activity can take place. Using them for anything else would
7497 * be a serious bug, and as a result, they aren't even visible
7498 * under any other configuration.
7499 */
7500
7501/**
7502 * curr_task - return the current task for a given cpu.
7503 * @cpu: the processor in question.
7504 *
7505 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7506 */
7507struct task_struct *curr_task(int cpu)
7508{
7509        return cpu_curr(cpu);
7510}
7511
7512#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7513
7514#ifdef CONFIG_IA64
7515/**
7516 * set_curr_task - set the current task for a given cpu.
7517 * @cpu: the processor in question.
7518 * @p: the task pointer to set.
7519 *
7520 * Description: This function must only be used when non-maskable interrupts
7521 * are serviced on a separate stack. It allows the architecture to switch the
7522 * notion of the current task on a cpu in a non-blocking manner. This function
7523 * must be called with all CPU's synchronized, and interrupts disabled, the
7524 * and caller must save the original value of the current task (see
7525 * curr_task() above) and restore that value before reenabling interrupts and
7526 * re-starting the system.
7527 *
7528 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7529 */
7530void set_curr_task(int cpu, struct task_struct *p)
7531{
7532        cpu_curr(cpu) = p;
7533}
7534
7535#endif
7536
7537#ifdef CONFIG_CGROUP_SCHED
7538/* task_group_lock serializes the addition/removal of task groups */
7539static DEFINE_SPINLOCK(task_group_lock);
7540
7541static void free_sched_group(struct task_group *tg)
7542{
7543        free_fair_sched_group(tg);
7544        free_rt_sched_group(tg);
7545        autogroup_free(tg);
7546        kfree(tg);
7547}
7548
7549/* allocate runqueue etc for a new task group */
7550struct task_group *sched_create_group(struct task_group *parent)
7551{
7552        struct task_group *tg;
7553        unsigned long flags;
7554
7555        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7556        if (!tg)
7557                return ERR_PTR(-ENOMEM);
7558
7559        if (!alloc_fair_sched_group(tg, parent))
7560                goto err;
7561
7562        if (!alloc_rt_sched_group(tg, parent))
7563                goto err;
7564
7565        spin_lock_irqsave(&task_group_lock, flags);
7566        list_add_rcu(&tg->list, &task_groups);
7567
7568        WARN_ON(!parent); /* root should already exist */
7569
7570        tg->parent = parent;
7571        INIT_LIST_HEAD(&tg->children);
7572        list_add_rcu(&tg->siblings, &parent->children);
7573        spin_unlock_irqrestore(&task_group_lock, flags);
7574
7575        return tg;
7576
7577err:
7578        free_sched_group(tg);
7579        return ERR_PTR(-ENOMEM);
7580}
7581
7582/* rcu callback to free various structures associated with a task group */
7583static void free_sched_group_rcu(struct rcu_head *rhp)
7584{
7585        /* now it should be safe to free those cfs_rqs */
7586        free_sched_group(container_of(rhp, struct task_group, rcu));
7587}
7588
7589/* Destroy runqueue etc associated with a task group */
7590void sched_destroy_group(struct task_group *tg)
7591{
7592        unsigned long flags;
7593        int i;
7594
7595        /* end participation in shares distribution */
7596        for_each_possible_cpu(i)
7597                unregister_fair_sched_group(tg, i);
7598
7599        spin_lock_irqsave(&task_group_lock, flags);
7600        list_del_rcu(&tg->list);
7601        list_del_rcu(&tg->siblings);
7602        spin_unlock_irqrestore(&task_group_lock, flags);
7603
7604        /* wait for possible concurrent references to cfs_rqs complete */
7605        call_rcu(&tg->rcu, free_sched_group_rcu);
7606}
7607
7608/* change task's runqueue when it moves between groups.
7609 *      The caller of this function should have put the task in its new group
7610 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7611 *      reflect its new group.
7612 */
7613void sched_move_task(struct task_struct *tsk)
7614{
7615        struct task_group *tg;
7616        int on_rq, running;
7617        unsigned long flags;
7618        struct rq *rq;
7619
7620        rq = task_rq_lock(tsk, &flags);
7621
7622        running = task_current(rq, tsk);
7623        on_rq = tsk->on_rq;
7624
7625        if (on_rq)
7626                dequeue_task(rq, tsk, 0);
7627        if (unlikely(running))
7628                tsk->sched_class->put_prev_task(rq, tsk);
7629
7630        tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7631                                lockdep_is_held(&tsk->sighand->siglock)),
7632                          struct task_group, css);
7633        tg = autogroup_task_group(tsk, tg);
7634        tsk->sched_task_group = tg;
7635
7636#ifdef CONFIG_FAIR_GROUP_SCHED
7637        if (tsk->sched_class->task_move_group)
7638                tsk->sched_class->task_move_group(tsk, on_rq);
7639        else
7640#endif
7641                set_task_rq(tsk, task_cpu(tsk));
7642
7643        if (unlikely(running))
7644                tsk->sched_class->set_curr_task(rq);
7645        if (on_rq)
7646                enqueue_task(rq, tsk, 0);
7647
7648        task_rq_unlock(rq, tsk, &flags);
7649}
7650#endif /* CONFIG_CGROUP_SCHED */
7651
7652#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7653static unsigned long to_ratio(u64 period, u64 runtime)
7654{
7655        if (runtime == RUNTIME_INF)
7656                return 1ULL << 20;
7657
7658        return div64_u64(runtime << 20, period);
7659}
7660#endif
7661
7662#ifdef CONFIG_RT_GROUP_SCHED
7663/*
7664 * Ensure that the real time constraints are schedulable.
7665 */
7666static DEFINE_MUTEX(rt_constraints_mutex);
7667
7668/* Must be called with tasklist_lock held */
7669static inline int tg_has_rt_tasks(struct task_group *tg)
7670{
7671        struct task_struct *g, *p;
7672
7673        do_each_thread(g, p) {
7674                if (rt_task(p) && task_rq(p)->rt.tg == tg)
7675                        return 1;
7676        } while_each_thread(g, p);
7677
7678        return 0;
7679}
7680
7681struct rt_schedulable_data {
7682        struct task_group *tg;
7683        u64 rt_period;
7684        u64 rt_runtime;
7685};
7686
7687static int tg_rt_schedulable(struct task_group *tg, void *data)
7688{
7689        struct rt_schedulable_data *d = data;
7690        struct task_group *child;
7691        unsigned long total, sum = 0;
7692        u64 period, runtime;
7693
7694        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7695        runtime = tg->rt_bandwidth.rt_runtime;
7696
7697        if (tg == d->tg) {
7698                period = d->rt_period;
7699                runtime = d->rt_runtime;
7700        }
7701
7702        /*
7703         * Cannot have more runtime than the period.
7704         */
7705        if (runtime > period && runtime != RUNTIME_INF)
7706                return -EINVAL;
7707
7708        /*
7709         * Ensure we don't starve existing RT tasks.
7710         */
7711        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7712                return -EBUSY;
7713
7714        total = to_ratio(period, runtime);
7715
7716        /*
7717         * Nobody can have more than the global setting allows.
7718         */
7719        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7720                return -EINVAL;
7721
7722        /*
7723         * The sum of our children's runtime should not exceed our own.
7724         */
7725        list_for_each_entry_rcu(child, &tg->children, siblings) {
7726                period = ktime_to_ns(child->rt_bandwidth.rt_period);
7727                runtime = child->rt_bandwidth.rt_runtime;
7728
7729                if (child == d->tg) {
7730                        period = d->rt_period;
7731                        runtime = d->rt_runtime;
7732                }
7733
7734                sum += to_ratio(period, runtime);
7735        }
7736
7737        if (sum > total)
7738                return -EINVAL;
7739
7740        return 0;
7741}
7742
7743static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7744{
7745        int ret;
7746
7747        struct rt_schedulable_data data = {
7748                .tg = tg,
7749                .rt_period = period,
7750                .rt_runtime = runtime,
7751        };
7752
7753        rcu_read_lock();
7754        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7755        rcu_read_unlock();
7756
7757        return ret;
7758}
7759
7760static int tg_set_rt_bandwidth(struct task_group *tg,
7761                u64 rt_period, u64 rt_runtime)
7762{
7763        int i, err = 0;
7764
7765        mutex_lock(&rt_constraints_mutex);
7766        read_lock(&tasklist_lock);
7767        err = __rt_schedulable(tg, rt_period, rt_runtime);
7768        if (err)
7769                goto unlock;
7770
7771        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7772        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7773        tg->rt_bandwidth.rt_runtime = rt_runtime;
7774
7775        for_each_possible_cpu(i) {
7776                struct rt_rq *rt_rq = tg->rt_rq[i];
7777
7778                raw_spin_lock(&rt_rq->rt_runtime_lock);
7779                rt_rq->rt_runtime = rt_runtime;
7780                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7781        }
7782        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7783unlock:
7784        read_unlock(&tasklist_lock);
7785        mutex_unlock(&rt_constraints_mutex);
7786
7787        return err;
7788}
7789
7790int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7791{
7792        u64 rt_runtime, rt_period;
7793
7794        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7795        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7796        if (rt_runtime_us < 0)
7797                rt_runtime = RUNTIME_INF;
7798
7799        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7800}
7801
7802long sched_group_rt_runtime(struct task_group *tg)
7803{
7804        u64 rt_runtime_us;
7805
7806        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7807                return -1;
7808
7809        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7810        do_div(rt_runtime_us, NSEC_PER_USEC);
7811        return rt_runtime_us;
7812}
7813
7814int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7815{
7816        u64 rt_runtime, rt_period;
7817
7818        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7819        rt_runtime = tg->rt_bandwidth.rt_runtime;
7820
7821        if (rt_period == 0)
7822                return -EINVAL;
7823
7824        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7825}
7826
7827long sched_group_rt_period(struct task_group *tg)
7828{
7829        u64 rt_period_us;
7830
7831        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7832        do_div(rt_period_us, NSEC_PER_USEC);
7833        return rt_period_us;
7834}
7835
7836static int sched_rt_global_constraints(void)
7837{
7838        u64 runtime, period;
7839        int ret = 0;
7840
7841        if (sysctl_sched_rt_period <= 0)
7842                return -EINVAL;
7843
7844        runtime = global_rt_runtime();
7845        period = global_rt_period();
7846
7847        /*
7848         * Sanity check on the sysctl variables.
7849         */
7850        if (runtime > period && runtime != RUNTIME_INF)
7851                return -EINVAL;
7852
7853        mutex_lock(&rt_constraints_mutex);
7854        read_lock(&tasklist_lock);
7855        ret = __rt_schedulable(NULL, 0, 0);
7856        read_unlock(&tasklist_lock);
7857        mutex_unlock(&rt_constraints_mutex);
7858
7859        return ret;
7860}
7861
7862int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7863{
7864        /* Don't accept realtime tasks when there is no way for them to run */
7865        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7866                return 0;
7867
7868        return 1;
7869}
7870
7871#else /* !CONFIG_RT_GROUP_SCHED */
7872static int sched_rt_global_constraints(void)
7873{
7874        unsigned long flags;
7875        int i;
7876
7877        if (sysctl_sched_rt_period <= 0)
7878                return -EINVAL;
7879
7880        /*
7881         * There's always some RT tasks in the root group
7882         * -- migration, kstopmachine etc..
7883         */
7884        if (sysctl_sched_rt_runtime == 0)
7885                return -EBUSY;
7886
7887        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7888        for_each_possible_cpu(i) {
7889                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7890
7891                raw_spin_lock(&rt_rq->rt_runtime_lock);
7892                rt_rq->rt_runtime = global_rt_runtime();
7893                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7894        }
7895        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7896
7897        return 0;
7898}
7899#endif /* CONFIG_RT_GROUP_SCHED */
7900
7901int sched_rt_handler(struct ctl_table *table, int write,
7902                void __user *buffer, size_t *lenp,
7903                loff_t *ppos)
7904{
7905        int ret;
7906        int old_period, old_runtime;
7907        static DEFINE_MUTEX(mutex);
7908
7909        mutex_lock(&mutex);
7910        old_period = sysctl_sched_rt_period;
7911        old_runtime = sysctl_sched_rt_runtime;
7912
7913        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7914
7915        if (!ret && write) {
7916                ret = sched_rt_global_constraints();
7917                if (ret) {
7918                        sysctl_sched_rt_period = old_period;
7919                        sysctl_sched_rt_runtime = old_runtime;
7920                } else {
7921                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
7922                        def_rt_bandwidth.rt_period =
7923                                ns_to_ktime(global_rt_period());
7924                }
7925        }
7926        mutex_unlock(&mutex);
7927
7928        return ret;
7929}
7930
7931#ifdef CONFIG_CGROUP_SCHED
7932
7933/* return corresponding task_group object of a cgroup */
7934static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7935{
7936        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7937                            struct task_group, css);
7938}
7939
7940static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7941{
7942        struct task_group *tg, *parent;
7943
7944        if (!cgrp->parent) {
7945                /* This is early initialization for the top cgroup */
7946                return &root_task_group.css;
7947        }
7948
7949        parent = cgroup_tg(cgrp->parent);
7950        tg = sched_create_group(parent);
7951        if (IS_ERR(tg))
7952                return ERR_PTR(-ENOMEM);
7953
7954        return &tg->css;
7955}
7956
7957static void cpu_cgroup_destroy(struct cgroup *cgrp)
7958{
7959        struct task_group *tg = cgroup_tg(cgrp);
7960
7961        sched_destroy_group(tg);
7962}
7963
7964static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7965                                 struct cgroup_taskset *tset)
7966{
7967        struct task_struct *task;
7968
7969        cgroup_taskset_for_each(task, cgrp, tset) {
7970#ifdef CONFIG_RT_GROUP_SCHED
7971                if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7972                        return -EINVAL;
7973#else
7974                /* We don't support RT-tasks being in separate groups */
7975                if (task->sched_class != &fair_sched_class)
7976                        return -EINVAL;
7977#endif
7978        }
7979        return 0;
7980}
7981
7982static void cpu_cgroup_attach(struct cgroup *cgrp,
7983                              struct cgroup_taskset *tset)
7984{
7985        struct task_struct *task;
7986
7987        cgroup_taskset_for_each(task, cgrp, tset)
7988                sched_move_task(task);
7989}
7990
7991static void
7992cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7993                struct task_struct *task)
7994{
7995        /*
7996         * cgroup_exit() is called in the copy_process() failure path.
7997         * Ignore this case since the task hasn't ran yet, this avoids
7998         * trying to poke a half freed task state from generic code.
7999         */
8000        if (!(task->flags & PF_EXITING))
8001                return;
8002
8003        sched_move_task(task);
8004}
8005
8006#ifdef CONFIG_FAIR_GROUP_SCHED
8007static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8008                                u64 shareval)
8009{
8010        return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8011}
8012
8013static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8014{
8015        struct task_group *tg = cgroup_tg(cgrp);
8016
8017        return (u64) scale_load_down(tg->shares);
8018}
8019
8020#ifdef CONFIG_CFS_BANDWIDTH
8021static DEFINE_MUTEX(cfs_constraints_mutex);
8022
8023const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8024const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8025
8026static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8027
8028static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8029{
8030        int i, ret = 0, runtime_enabled, runtime_was_enabled;
8031        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8032
8033        if (tg == &root_task_group)
8034                return -EINVAL;
8035
8036        /*
8037         * Ensure we have at some amount of bandwidth every period.  This is
8038         * to prevent reaching a state of large arrears when throttled via
8039         * entity_tick() resulting in prolonged exit starvation.
8040         */
8041        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8042                return -EINVAL;
8043
8044        /*
8045         * Likewise, bound things on the otherside by preventing insane quota
8046         * periods.  This also allows us to normalize in computing quota
8047         * feasibility.
8048         */
8049        if (period > max_cfs_quota_period)
8050                return -EINVAL;
8051
8052        mutex_lock(&cfs_constraints_mutex);
8053        ret = __cfs_schedulable(tg, period, quota);
8054        if (ret)
8055                goto out_unlock;
8056
8057        runtime_enabled = quota != RUNTIME_INF;
8058        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8059        account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8060        raw_spin_lock_irq(&cfs_b->lock);
8061        cfs_b->period = ns_to_ktime(period);
8062        cfs_b->quota = quota;
8063
8064        __refill_cfs_bandwidth_runtime(cfs_b);
8065        /* restart the period timer (if active) to handle new period expiry */
8066        if (runtime_enabled && cfs_b->timer_active) {
8067                /* force a reprogram */
8068                cfs_b->timer_active = 0;
8069                __start_cfs_bandwidth(cfs_b);
8070        }
8071        raw_spin_unlock_irq(&cfs_b->lock);
8072
8073        for_each_possible_cpu(i) {
8074                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8075                struct rq *rq = cfs_rq->rq;
8076
8077                raw_spin_lock_irq(&rq->lock);
8078                cfs_rq->runtime_enabled = runtime_enabled;
8079                cfs_rq->runtime_remaining = 0;
8080
8081                if (cfs_rq->throttled)
8082                        unthrottle_cfs_rq(cfs_rq);
8083                raw_spin_unlock_irq(&rq->lock);
8084        }
8085out_unlock:
8086        mutex_unlock(&cfs_constraints_mutex);
8087
8088        return ret;
8089}
8090
8091int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8092{
8093        u64 quota, period;
8094
8095        period = ktime_to_ns(tg->cfs_bandwidth.period);
8096        if (cfs_quota_us < 0)
8097                quota = RUNTIME_INF;
8098        else
8099                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8100
8101        return tg_set_cfs_bandwidth(tg, period, quota);
8102}
8103
8104long tg_get_cfs_quota(struct task_group *tg)
8105{
8106        u64 quota_us;
8107
8108        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8109                return -1;
8110
8111        quota_us = tg->cfs_bandwidth.quota;
8112        do_div(quota_us, NSEC_PER_USEC);
8113
8114        return quota_us;
8115}
8116
8117int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8118{
8119        u64 quota, period;
8120
8121        period = (u64)cfs_period_us * NSEC_PER_USEC;
8122        quota = tg->cfs_bandwidth.quota;
8123
8124        return tg_set_cfs_bandwidth(tg, period, quota);
8125}
8126
8127long tg_get_cfs_period(struct task_group *tg)
8128{
8129        u64 cfs_period_us;
8130
8131        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8132        do_div(cfs_period_us, NSEC_PER_USEC);
8133
8134        return cfs_period_us;
8135}
8136
8137static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8138{
8139        return tg_get_cfs_quota(cgroup_tg(cgrp));
8140}
8141
8142static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8143                                s64 cfs_quota_us)
8144{
8145        return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8146}
8147
8148static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8149{
8150        return tg_get_cfs_period(cgroup_tg(cgrp));
8151}
8152
8153static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8154                                u64 cfs_period_us)
8155{
8156        return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8157}
8158
8159struct cfs_schedulable_data {
8160        struct task_group *tg;
8161        u64 period, quota;
8162};
8163
8164/*
8165 * normalize group quota/period to be quota/max_period
8166 * note: units are usecs
8167 */
8168static u64 normalize_cfs_quota(struct task_group *tg,
8169                               struct cfs_schedulable_data *d)
8170{
8171        u64 quota, period;
8172
8173        if (tg == d->tg) {
8174                period = d->period;
8175                quota = d->quota;
8176        } else {
8177                period = tg_get_cfs_period(tg);
8178                quota = tg_get_cfs_quota(tg);
8179        }
8180
8181        /* note: these should typically be equivalent */
8182        if (quota == RUNTIME_INF || quota == -1)
8183                return RUNTIME_INF;
8184
8185        return to_ratio(period, quota);
8186}
8187
8188static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8189{
8190        struct cfs_schedulable_data *d = data;
8191        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8192        s64 quota = 0, parent_quota = -1;
8193
8194        if (!tg->parent) {
8195                quota = RUNTIME_INF;
8196        } else {
8197                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8198
8199                quota = normalize_cfs_quota(tg, d);
8200                parent_quota = parent_b->hierarchal_quota;
8201
8202                /*
8203                 * ensure max(child_quota) <= parent_quota, inherit when no
8204                 * limit is set
8205                 */
8206                if (quota == RUNTIME_INF)
8207                        quota = parent_quota;
8208                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8209                        return -EINVAL;
8210        }
8211        cfs_b->hierarchal_quota = quota;
8212
8213        return 0;
8214}
8215
8216static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8217{
8218        int ret;
8219        struct cfs_schedulable_data data = {
8220                .tg = tg,
8221                .period = period,
8222                .quota = quota,
8223        };
8224
8225        if (quota != RUNTIME_INF) {
8226                do_div(data.period, NSEC_PER_USEC);
8227                do_div(data.quota, NSEC_PER_USEC);
8228        }
8229
8230        rcu_read_lock();
8231        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8232        rcu_read_unlock();
8233
8234        return ret;
8235}
8236
8237static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8238                struct cgroup_map_cb *cb)
8239{
8240        struct task_group *tg = cgroup_tg(cgrp);
8241        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8242
8243        cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8244        cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8245        cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8246
8247        return 0;
8248}
8249#endif /* CONFIG_CFS_BANDWIDTH */
8250#endif /* CONFIG_FAIR_GROUP_SCHED */
8251
8252#ifdef CONFIG_RT_GROUP_SCHED
8253static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8254                                s64 val)
8255{
8256        return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8257}
8258
8259static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8260{
8261        return sched_group_rt_runtime(cgroup_tg(cgrp));
8262}
8263
8264static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8265                u64 rt_period_us)
8266{
8267        return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8268}
8269
8270static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8271{
8272        return sched_group_rt_period(cgroup_tg(cgrp));
8273}
8274#endif /* CONFIG_RT_GROUP_SCHED */
8275
8276static struct cftype cpu_files[] = {
8277#ifdef CONFIG_FAIR_GROUP_SCHED
8278        {
8279                .name = "shares",
8280                .read_u64 = cpu_shares_read_u64,
8281                .write_u64 = cpu_shares_write_u64,
8282        },
8283#endif
8284#ifdef CONFIG_CFS_BANDWIDTH
8285        {
8286                .name = "cfs_quota_us",
8287                .read_s64 = cpu_cfs_quota_read_s64,
8288                .write_s64 = cpu_cfs_quota_write_s64,
8289        },
8290        {
8291                .name = "cfs_period_us",
8292                .read_u64 = cpu_cfs_period_read_u64,
8293                .write_u64 = cpu_cfs_period_write_u64,
8294        },
8295        {
8296                .name = "stat",
8297                .read_map = cpu_stats_show,
8298        },
8299#endif
8300#ifdef CONFIG_RT_GROUP_SCHED
8301        {
8302                .name = "rt_runtime_us",
8303                .read_s64 = cpu_rt_runtime_read,
8304                .write_s64 = cpu_rt_runtime_write,
8305        },
8306        {
8307                .name = "rt_period_us",
8308                .read_u64 = cpu_rt_period_read_uint,
8309                .write_u64 = cpu_rt_period_write_uint,
8310        },
8311#endif
8312        { }     /* terminate */
8313};
8314
8315struct cgroup_subsys cpu_cgroup_subsys = {
8316        .name           = "cpu",
8317        .create         = cpu_cgroup_create,
8318        .destroy        = cpu_cgroup_destroy,
8319        .can_attach     = cpu_cgroup_can_attach,
8320        .attach         = cpu_cgroup_attach,
8321        .exit           = cpu_cgroup_exit,
8322        .subsys_id      = cpu_cgroup_subsys_id,
8323        .base_cftypes   = cpu_files,
8324        .early_init     = 1,
8325};
8326
8327#endif  /* CONFIG_CGROUP_SCHED */
8328
8329#ifdef CONFIG_CGROUP_CPUACCT
8330
8331/*
8332 * CPU accounting code for task groups.
8333 *
8334 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8335 * (balbir@in.ibm.com).
8336 */
8337
8338/* create a new cpu accounting group */
8339static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8340{
8341        struct cpuacct *ca;
8342
8343        if (!cgrp->parent)
8344                return &root_cpuacct.css;
8345
8346        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8347        if (!ca)
8348                goto out;
8349
8350        ca->cpuusage = alloc_percpu(u64);
8351        if (!ca->cpuusage)
8352                goto out_free_ca;
8353
8354        ca->cpustat = alloc_percpu(struct kernel_cpustat);
8355        if (!ca->cpustat)
8356                goto out_free_cpuusage;
8357
8358        return &ca->css;
8359
8360out_free_cpuusage:
8361        free_percpu(ca->cpuusage);
8362out_free_ca:
8363        kfree(ca);
8364out:
8365        return ERR_PTR(-ENOMEM);
8366}
8367
8368/* destroy an existing cpu accounting group */
8369static void cpuacct_destroy(struct cgroup *cgrp)
8370{
8371        struct cpuacct *ca = cgroup_ca(cgrp);
8372
8373        free_percpu(ca->cpustat);
8374        free_percpu(ca->cpuusage);
8375        kfree(ca);
8376}
8377
8378static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8379{
8380        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8381        u64 data;
8382
8383#ifndef CONFIG_64BIT
8384        /*
8385         * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8386         */
8387        raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8388        data = *cpuusage;
8389        raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8390#else
8391        data = *cpuusage;
8392#endif
8393
8394        return data;
8395}
8396
8397static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8398{
8399        u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8400
8401#ifndef CONFIG_64BIT
8402        /*
8403         * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8404         */
8405        raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8406        *cpuusage = val;
8407        raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8408#else
8409        *cpuusage = val;
8410#endif
8411}
8412
8413/* return total cpu usage (in nanoseconds) of a group */
8414static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8415{
8416        struct cpuacct *ca = cgroup_ca(cgrp);
8417        u64 totalcpuusage = 0;
8418        int i;
8419
8420        for_each_present_cpu(i)
8421                totalcpuusage += cpuacct_cpuusage_read(ca, i);
8422
8423        return totalcpuusage;
8424}
8425
8426static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8427                                                                u64 reset)
8428{
8429        struct cpuacct *ca = cgroup_ca(cgrp);
8430        int err = 0;
8431        int i;
8432
8433        if (reset) {
8434                err = -EINVAL;
8435                goto out;
8436        }
8437
8438        for_each_present_cpu(i)
8439                cpuacct_cpuusage_write(ca, i, 0);
8440
8441out:
8442        return err;
8443}
8444
8445static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8446                                   struct seq_file *m)
8447{
8448        struct cpuacct *ca = cgroup_ca(cgroup);
8449        u64 percpu;
8450        int i;
8451
8452        for_each_present_cpu(i) {
8453                percpu = cpuacct_cpuusage_read(ca, i);
8454                seq_printf(m, "%llu ", (unsigned long long) percpu);
8455        }
8456        seq_printf(m, "\n");
8457        return 0;
8458}
8459
8460static const char *cpuacct_stat_desc[] = {
8461        [CPUACCT_STAT_USER] = "user",
8462        [CPUACCT_STAT_SYSTEM] = "system",
8463};
8464
8465static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8466                              struct cgroup_map_cb *cb)
8467{
8468        struct cpuacct *ca = cgroup_ca(cgrp);
8469        int cpu;
8470        s64 val = 0;
8471
8472        for_each_online_cpu(cpu) {
8473                struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8474                val += kcpustat->cpustat[CPUTIME_USER];
8475                val += kcpustat->cpustat[CPUTIME_NICE];
8476        }
8477        val = cputime64_to_clock_t(val);
8478        cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8479
8480        val = 0;
8481        for_each_online_cpu(cpu) {
8482                struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8483                val += kcpustat->cpustat[CPUTIME_SYSTEM];
8484                val += kcpustat->cpustat[CPUTIME_IRQ];
8485                val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8486        }
8487
8488        val = cputime64_to_clock_t(val);
8489        cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8490
8491        return 0;
8492}
8493
8494static struct cftype files[] = {
8495        {
8496                .name = "usage",
8497                .read_u64 = cpuusage_read,
8498                .write_u64 = cpuusage_write,
8499        },
8500        {
8501                .name = "usage_percpu",
8502                .read_seq_string = cpuacct_percpu_seq_read,
8503        },
8504        {
8505                .name = "stat",
8506                .read_map = cpuacct_stats_show,
8507        },
8508        { }     /* terminate */
8509};
8510
8511/*
8512 * charge this task's execution time to its accounting group.
8513 *
8514 * called with rq->lock held.
8515 */
8516void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8517{
8518        struct cpuacct *ca;
8519        int cpu;
8520
8521        if (unlikely(!cpuacct_subsys.active))
8522                return;
8523
8524        cpu = task_cpu(tsk);
8525
8526        rcu_read_lock();
8527
8528        ca = task_ca(tsk);
8529
8530        for (; ca; ca = parent_ca(ca)) {
8531                u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8532                *cpuusage += cputime;
8533        }
8534
8535        rcu_read_unlock();
8536}
8537
8538struct cgroup_subsys cpuacct_subsys = {
8539        .name = "cpuacct",
8540        .create = cpuacct_create,
8541        .destroy = cpuacct_destroy,
8542        .subsys_id = cpuacct_subsys_id,
8543        .base_cftypes = files,
8544};
8545#endif  /* CONFIG_CGROUP_CPUACCT */
8546