linux/sound/usb/midi.c
<<
>>
Prefs
   1/*
   2 * usbmidi.c - ALSA USB MIDI driver
   3 *
   4 * Copyright (c) 2002-2009 Clemens Ladisch
   5 * All rights reserved.
   6 *
   7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
   8 *          NetBSD's umidi driver by Takuya SHIOZAKI,
   9 *          the "USB Device Class Definition for MIDI Devices" by Roland
  10 *
  11 * Redistribution and use in source and binary forms, with or without
  12 * modification, are permitted provided that the following conditions
  13 * are met:
  14 * 1. Redistributions of source code must retain the above copyright
  15 *    notice, this list of conditions, and the following disclaimer,
  16 *    without modification.
  17 * 2. The name of the author may not be used to endorse or promote products
  18 *    derived from this software without specific prior written permission.
  19 *
  20 * Alternatively, this software may be distributed and/or modified under the
  21 * terms of the GNU General Public License as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any later
  23 * version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  35 * SUCH DAMAGE.
  36 */
  37
  38#include <linux/kernel.h>
  39#include <linux/types.h>
  40#include <linux/bitops.h>
  41#include <linux/interrupt.h>
  42#include <linux/spinlock.h>
  43#include <linux/string.h>
  44#include <linux/init.h>
  45#include <linux/slab.h>
  46#include <linux/timer.h>
  47#include <linux/usb.h>
  48#include <linux/wait.h>
  49#include <linux/usb/audio.h>
  50#include <linux/module.h>
  51
  52#include <sound/core.h>
  53#include <sound/control.h>
  54#include <sound/rawmidi.h>
  55#include <sound/asequencer.h>
  56#include "usbaudio.h"
  57#include "midi.h"
  58#include "power.h"
  59#include "helper.h"
  60
  61/*
  62 * define this to log all USB packets
  63 */
  64/* #define DUMP_PACKETS */
  65
  66/*
  67 * how long to wait after some USB errors, so that khubd can disconnect() us
  68 * without too many spurious errors
  69 */
  70#define ERROR_DELAY_JIFFIES (HZ / 10)
  71
  72#define OUTPUT_URBS 7
  73#define INPUT_URBS 7
  74
  75
  76MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
  77MODULE_DESCRIPTION("USB Audio/MIDI helper module");
  78MODULE_LICENSE("Dual BSD/GPL");
  79
  80
  81struct usb_ms_header_descriptor {
  82        __u8  bLength;
  83        __u8  bDescriptorType;
  84        __u8  bDescriptorSubtype;
  85        __u8  bcdMSC[2];
  86        __le16 wTotalLength;
  87} __attribute__ ((packed));
  88
  89struct usb_ms_endpoint_descriptor {
  90        __u8  bLength;
  91        __u8  bDescriptorType;
  92        __u8  bDescriptorSubtype;
  93        __u8  bNumEmbMIDIJack;
  94        __u8  baAssocJackID[0];
  95} __attribute__ ((packed));
  96
  97struct snd_usb_midi_in_endpoint;
  98struct snd_usb_midi_out_endpoint;
  99struct snd_usb_midi_endpoint;
 100
 101struct usb_protocol_ops {
 102        void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
 103        void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
 104        void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
 105        void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
 106        void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
 107};
 108
 109struct snd_usb_midi {
 110        struct usb_device *dev;
 111        struct snd_card *card;
 112        struct usb_interface *iface;
 113        const struct snd_usb_audio_quirk *quirk;
 114        struct snd_rawmidi *rmidi;
 115        struct usb_protocol_ops* usb_protocol_ops;
 116        struct list_head list;
 117        struct timer_list error_timer;
 118        spinlock_t disc_lock;
 119        struct mutex mutex;
 120        u32 usb_id;
 121        int next_midi_device;
 122
 123        struct snd_usb_midi_endpoint {
 124                struct snd_usb_midi_out_endpoint *out;
 125                struct snd_usb_midi_in_endpoint *in;
 126        } endpoints[MIDI_MAX_ENDPOINTS];
 127        unsigned long input_triggered;
 128        unsigned int opened;
 129        unsigned char disconnected;
 130
 131        struct snd_kcontrol *roland_load_ctl;
 132};
 133
 134struct snd_usb_midi_out_endpoint {
 135        struct snd_usb_midi* umidi;
 136        struct out_urb_context {
 137                struct urb *urb;
 138                struct snd_usb_midi_out_endpoint *ep;
 139        } urbs[OUTPUT_URBS];
 140        unsigned int active_urbs;
 141        unsigned int drain_urbs;
 142        int max_transfer;               /* size of urb buffer */
 143        struct tasklet_struct tasklet;
 144        unsigned int next_urb;
 145        spinlock_t buffer_lock;
 146
 147        struct usbmidi_out_port {
 148                struct snd_usb_midi_out_endpoint* ep;
 149                struct snd_rawmidi_substream *substream;
 150                int active;
 151                uint8_t cable;          /* cable number << 4 */
 152                uint8_t state;
 153#define STATE_UNKNOWN   0
 154#define STATE_1PARAM    1
 155#define STATE_2PARAM_1  2
 156#define STATE_2PARAM_2  3
 157#define STATE_SYSEX_0   4
 158#define STATE_SYSEX_1   5
 159#define STATE_SYSEX_2   6
 160                uint8_t data[2];
 161        } ports[0x10];
 162        int current_port;
 163
 164        wait_queue_head_t drain_wait;
 165};
 166
 167struct snd_usb_midi_in_endpoint {
 168        struct snd_usb_midi* umidi;
 169        struct urb* urbs[INPUT_URBS];
 170        struct usbmidi_in_port {
 171                struct snd_rawmidi_substream *substream;
 172                u8 running_status_length;
 173        } ports[0x10];
 174        u8 seen_f5;
 175        u8 error_resubmit;
 176        int current_port;
 177};
 178
 179static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
 180
 181static const uint8_t snd_usbmidi_cin_length[] = {
 182        0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
 183};
 184
 185/*
 186 * Submits the URB, with error handling.
 187 */
 188static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
 189{
 190        int err = usb_submit_urb(urb, flags);
 191        if (err < 0 && err != -ENODEV)
 192                snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
 193        return err;
 194}
 195
 196/*
 197 * Error handling for URB completion functions.
 198 */
 199static int snd_usbmidi_urb_error(int status)
 200{
 201        switch (status) {
 202        /* manually unlinked, or device gone */
 203        case -ENOENT:
 204        case -ECONNRESET:
 205        case -ESHUTDOWN:
 206        case -ENODEV:
 207                return -ENODEV;
 208        /* errors that might occur during unplugging */
 209        case -EPROTO:
 210        case -ETIME:
 211        case -EILSEQ:
 212                return -EIO;
 213        default:
 214                snd_printk(KERN_ERR "urb status %d\n", status);
 215                return 0; /* continue */
 216        }
 217}
 218
 219/*
 220 * Receives a chunk of MIDI data.
 221 */
 222static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
 223                                   uint8_t* data, int length)
 224{
 225        struct usbmidi_in_port* port = &ep->ports[portidx];
 226
 227        if (!port->substream) {
 228                snd_printd("unexpected port %d!\n", portidx);
 229                return;
 230        }
 231        if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
 232                return;
 233        snd_rawmidi_receive(port->substream, data, length);
 234}
 235
 236#ifdef DUMP_PACKETS
 237static void dump_urb(const char *type, const u8 *data, int length)
 238{
 239        snd_printk(KERN_DEBUG "%s packet: [", type);
 240        for (; length > 0; ++data, --length)
 241                printk(" %02x", *data);
 242        printk(" ]\n");
 243}
 244#else
 245#define dump_urb(type, data, length) /* nothing */
 246#endif
 247
 248/*
 249 * Processes the data read from the device.
 250 */
 251static void snd_usbmidi_in_urb_complete(struct urb* urb)
 252{
 253        struct snd_usb_midi_in_endpoint* ep = urb->context;
 254
 255        if (urb->status == 0) {
 256                dump_urb("received", urb->transfer_buffer, urb->actual_length);
 257                ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
 258                                                   urb->actual_length);
 259        } else {
 260                int err = snd_usbmidi_urb_error(urb->status);
 261                if (err < 0) {
 262                        if (err != -ENODEV) {
 263                                ep->error_resubmit = 1;
 264                                mod_timer(&ep->umidi->error_timer,
 265                                          jiffies + ERROR_DELAY_JIFFIES);
 266                        }
 267                        return;
 268                }
 269        }
 270
 271        urb->dev = ep->umidi->dev;
 272        snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
 273}
 274
 275static void snd_usbmidi_out_urb_complete(struct urb* urb)
 276{
 277        struct out_urb_context *context = urb->context;
 278        struct snd_usb_midi_out_endpoint* ep = context->ep;
 279        unsigned int urb_index;
 280
 281        spin_lock(&ep->buffer_lock);
 282        urb_index = context - ep->urbs;
 283        ep->active_urbs &= ~(1 << urb_index);
 284        if (unlikely(ep->drain_urbs)) {
 285                ep->drain_urbs &= ~(1 << urb_index);
 286                wake_up(&ep->drain_wait);
 287        }
 288        spin_unlock(&ep->buffer_lock);
 289        if (urb->status < 0) {
 290                int err = snd_usbmidi_urb_error(urb->status);
 291                if (err < 0) {
 292                        if (err != -ENODEV)
 293                                mod_timer(&ep->umidi->error_timer,
 294                                          jiffies + ERROR_DELAY_JIFFIES);
 295                        return;
 296                }
 297        }
 298        snd_usbmidi_do_output(ep);
 299}
 300
 301/*
 302 * This is called when some data should be transferred to the device
 303 * (from one or more substreams).
 304 */
 305static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
 306{
 307        unsigned int urb_index;
 308        struct urb* urb;
 309        unsigned long flags;
 310
 311        spin_lock_irqsave(&ep->buffer_lock, flags);
 312        if (ep->umidi->disconnected) {
 313                spin_unlock_irqrestore(&ep->buffer_lock, flags);
 314                return;
 315        }
 316
 317        urb_index = ep->next_urb;
 318        for (;;) {
 319                if (!(ep->active_urbs & (1 << urb_index))) {
 320                        urb = ep->urbs[urb_index].urb;
 321                        urb->transfer_buffer_length = 0;
 322                        ep->umidi->usb_protocol_ops->output(ep, urb);
 323                        if (urb->transfer_buffer_length == 0)
 324                                break;
 325
 326                        dump_urb("sending", urb->transfer_buffer,
 327                                 urb->transfer_buffer_length);
 328                        urb->dev = ep->umidi->dev;
 329                        if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
 330                                break;
 331                        ep->active_urbs |= 1 << urb_index;
 332                }
 333                if (++urb_index >= OUTPUT_URBS)
 334                        urb_index = 0;
 335                if (urb_index == ep->next_urb)
 336                        break;
 337        }
 338        ep->next_urb = urb_index;
 339        spin_unlock_irqrestore(&ep->buffer_lock, flags);
 340}
 341
 342static void snd_usbmidi_out_tasklet(unsigned long data)
 343{
 344        struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
 345
 346        snd_usbmidi_do_output(ep);
 347}
 348
 349/* called after transfers had been interrupted due to some USB error */
 350static void snd_usbmidi_error_timer(unsigned long data)
 351{
 352        struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
 353        unsigned int i, j;
 354
 355        spin_lock(&umidi->disc_lock);
 356        if (umidi->disconnected) {
 357                spin_unlock(&umidi->disc_lock);
 358                return;
 359        }
 360        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
 361                struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
 362                if (in && in->error_resubmit) {
 363                        in->error_resubmit = 0;
 364                        for (j = 0; j < INPUT_URBS; ++j) {
 365                                in->urbs[j]->dev = umidi->dev;
 366                                snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
 367                        }
 368                }
 369                if (umidi->endpoints[i].out)
 370                        snd_usbmidi_do_output(umidi->endpoints[i].out);
 371        }
 372        spin_unlock(&umidi->disc_lock);
 373}
 374
 375/* helper function to send static data that may not DMA-able */
 376static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
 377                                 const void *data, int len)
 378{
 379        int err = 0;
 380        void *buf = kmemdup(data, len, GFP_KERNEL);
 381        if (!buf)
 382                return -ENOMEM;
 383        dump_urb("sending", buf, len);
 384        if (ep->urbs[0].urb)
 385                err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
 386                                   buf, len, NULL, 250);
 387        kfree(buf);
 388        return err;
 389}
 390
 391/*
 392 * Standard USB MIDI protocol: see the spec.
 393 * Midiman protocol: like the standard protocol, but the control byte is the
 394 * fourth byte in each packet, and uses length instead of CIN.
 395 */
 396
 397static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
 398                                       uint8_t* buffer, int buffer_length)
 399{
 400        int i;
 401
 402        for (i = 0; i + 3 < buffer_length; i += 4)
 403                if (buffer[i] != 0) {
 404                        int cable = buffer[i] >> 4;
 405                        int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
 406                        snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
 407                }
 408}
 409
 410static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
 411                                      uint8_t* buffer, int buffer_length)
 412{
 413        int i;
 414
 415        for (i = 0; i + 3 < buffer_length; i += 4)
 416                if (buffer[i + 3] != 0) {
 417                        int port = buffer[i + 3] >> 4;
 418                        int length = buffer[i + 3] & 3;
 419                        snd_usbmidi_input_data(ep, port, &buffer[i], length);
 420                }
 421}
 422
 423/*
 424 * Buggy M-Audio device: running status on input results in a packet that has
 425 * the data bytes but not the status byte and that is marked with CIN 4.
 426 */
 427static void snd_usbmidi_maudio_broken_running_status_input(
 428                                        struct snd_usb_midi_in_endpoint* ep,
 429                                        uint8_t* buffer, int buffer_length)
 430{
 431        int i;
 432
 433        for (i = 0; i + 3 < buffer_length; i += 4)
 434                if (buffer[i] != 0) {
 435                        int cable = buffer[i] >> 4;
 436                        u8 cin = buffer[i] & 0x0f;
 437                        struct usbmidi_in_port *port = &ep->ports[cable];
 438                        int length;
 439
 440                        length = snd_usbmidi_cin_length[cin];
 441                        if (cin == 0xf && buffer[i + 1] >= 0xf8)
 442                                ; /* realtime msg: no running status change */
 443                        else if (cin >= 0x8 && cin <= 0xe)
 444                                /* channel msg */
 445                                port->running_status_length = length - 1;
 446                        else if (cin == 0x4 &&
 447                                 port->running_status_length != 0 &&
 448                                 buffer[i + 1] < 0x80)
 449                                /* CIN 4 that is not a SysEx */
 450                                length = port->running_status_length;
 451                        else
 452                                /*
 453                                 * All other msgs cannot begin running status.
 454                                 * (A channel msg sent as two or three CIN 0xF
 455                                 * packets could in theory, but this device
 456                                 * doesn't use this format.)
 457                                 */
 458                                port->running_status_length = 0;
 459                        snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
 460                }
 461}
 462
 463/*
 464 * CME protocol: like the standard protocol, but SysEx commands are sent as a
 465 * single USB packet preceded by a 0x0F byte.
 466 */
 467static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
 468                                  uint8_t *buffer, int buffer_length)
 469{
 470        if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
 471                snd_usbmidi_standard_input(ep, buffer, buffer_length);
 472        else
 473                snd_usbmidi_input_data(ep, buffer[0] >> 4,
 474                                       &buffer[1], buffer_length - 1);
 475}
 476
 477/*
 478 * Adds one USB MIDI packet to the output buffer.
 479 */
 480static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
 481                                               uint8_t p1, uint8_t p2, uint8_t p3)
 482{
 483
 484        uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
 485        buf[0] = p0;
 486        buf[1] = p1;
 487        buf[2] = p2;
 488        buf[3] = p3;
 489        urb->transfer_buffer_length += 4;
 490}
 491
 492/*
 493 * Adds one Midiman packet to the output buffer.
 494 */
 495static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
 496                                              uint8_t p1, uint8_t p2, uint8_t p3)
 497{
 498
 499        uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
 500        buf[0] = p1;
 501        buf[1] = p2;
 502        buf[2] = p3;
 503        buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
 504        urb->transfer_buffer_length += 4;
 505}
 506
 507/*
 508 * Converts MIDI commands to USB MIDI packets.
 509 */
 510static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
 511                                      uint8_t b, struct urb* urb)
 512{
 513        uint8_t p0 = port->cable;
 514        void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
 515                port->ep->umidi->usb_protocol_ops->output_packet;
 516
 517        if (b >= 0xf8) {
 518                output_packet(urb, p0 | 0x0f, b, 0, 0);
 519        } else if (b >= 0xf0) {
 520                switch (b) {
 521                case 0xf0:
 522                        port->data[0] = b;
 523                        port->state = STATE_SYSEX_1;
 524                        break;
 525                case 0xf1:
 526                case 0xf3:
 527                        port->data[0] = b;
 528                        port->state = STATE_1PARAM;
 529                        break;
 530                case 0xf2:
 531                        port->data[0] = b;
 532                        port->state = STATE_2PARAM_1;
 533                        break;
 534                case 0xf4:
 535                case 0xf5:
 536                        port->state = STATE_UNKNOWN;
 537                        break;
 538                case 0xf6:
 539                        output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
 540                        port->state = STATE_UNKNOWN;
 541                        break;
 542                case 0xf7:
 543                        switch (port->state) {
 544                        case STATE_SYSEX_0:
 545                                output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
 546                                break;
 547                        case STATE_SYSEX_1:
 548                                output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
 549                                break;
 550                        case STATE_SYSEX_2:
 551                                output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
 552                                break;
 553                        }
 554                        port->state = STATE_UNKNOWN;
 555                        break;
 556                }
 557        } else if (b >= 0x80) {
 558                port->data[0] = b;
 559                if (b >= 0xc0 && b <= 0xdf)
 560                        port->state = STATE_1PARAM;
 561                else
 562                        port->state = STATE_2PARAM_1;
 563        } else { /* b < 0x80 */
 564                switch (port->state) {
 565                case STATE_1PARAM:
 566                        if (port->data[0] < 0xf0) {
 567                                p0 |= port->data[0] >> 4;
 568                        } else {
 569                                p0 |= 0x02;
 570                                port->state = STATE_UNKNOWN;
 571                        }
 572                        output_packet(urb, p0, port->data[0], b, 0);
 573                        break;
 574                case STATE_2PARAM_1:
 575                        port->data[1] = b;
 576                        port->state = STATE_2PARAM_2;
 577                        break;
 578                case STATE_2PARAM_2:
 579                        if (port->data[0] < 0xf0) {
 580                                p0 |= port->data[0] >> 4;
 581                                port->state = STATE_2PARAM_1;
 582                        } else {
 583                                p0 |= 0x03;
 584                                port->state = STATE_UNKNOWN;
 585                        }
 586                        output_packet(urb, p0, port->data[0], port->data[1], b);
 587                        break;
 588                case STATE_SYSEX_0:
 589                        port->data[0] = b;
 590                        port->state = STATE_SYSEX_1;
 591                        break;
 592                case STATE_SYSEX_1:
 593                        port->data[1] = b;
 594                        port->state = STATE_SYSEX_2;
 595                        break;
 596                case STATE_SYSEX_2:
 597                        output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
 598                        port->state = STATE_SYSEX_0;
 599                        break;
 600                }
 601        }
 602}
 603
 604static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
 605                                        struct urb *urb)
 606{
 607        int p;
 608
 609        /* FIXME: lower-numbered ports can starve higher-numbered ports */
 610        for (p = 0; p < 0x10; ++p) {
 611                struct usbmidi_out_port* port = &ep->ports[p];
 612                if (!port->active)
 613                        continue;
 614                while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
 615                        uint8_t b;
 616                        if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
 617                                port->active = 0;
 618                                break;
 619                        }
 620                        snd_usbmidi_transmit_byte(port, b, urb);
 621                }
 622        }
 623}
 624
 625static struct usb_protocol_ops snd_usbmidi_standard_ops = {
 626        .input = snd_usbmidi_standard_input,
 627        .output = snd_usbmidi_standard_output,
 628        .output_packet = snd_usbmidi_output_standard_packet,
 629};
 630
 631static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
 632        .input = snd_usbmidi_midiman_input,
 633        .output = snd_usbmidi_standard_output,
 634        .output_packet = snd_usbmidi_output_midiman_packet,
 635};
 636
 637static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
 638        .input = snd_usbmidi_maudio_broken_running_status_input,
 639        .output = snd_usbmidi_standard_output,
 640        .output_packet = snd_usbmidi_output_standard_packet,
 641};
 642
 643static struct usb_protocol_ops snd_usbmidi_cme_ops = {
 644        .input = snd_usbmidi_cme_input,
 645        .output = snd_usbmidi_standard_output,
 646        .output_packet = snd_usbmidi_output_standard_packet,
 647};
 648
 649/*
 650 * AKAI MPD16 protocol:
 651 *
 652 * For control port (endpoint 1):
 653 * ==============================
 654 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
 655 * SysEx message (msg_len=9 bytes long).
 656 *
 657 * For data port (endpoint 2):
 658 * ===========================
 659 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
 660 * MIDI message (msg_len bytes long)
 661 *
 662 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
 663 */
 664static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
 665                                   uint8_t *buffer, int buffer_length)
 666{
 667        unsigned int pos = 0;
 668        unsigned int len = (unsigned int)buffer_length;
 669        while (pos < len) {
 670                unsigned int port = (buffer[pos] >> 4) - 1;
 671                unsigned int msg_len = buffer[pos] & 0x0f;
 672                pos++;
 673                if (pos + msg_len <= len && port < 2)
 674                        snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
 675                pos += msg_len;
 676        }
 677}
 678
 679#define MAX_AKAI_SYSEX_LEN 9
 680
 681static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
 682                                    struct urb *urb)
 683{
 684        uint8_t *msg;
 685        int pos, end, count, buf_end;
 686        uint8_t tmp[MAX_AKAI_SYSEX_LEN];
 687        struct snd_rawmidi_substream *substream = ep->ports[0].substream;
 688
 689        if (!ep->ports[0].active)
 690                return;
 691
 692        msg = urb->transfer_buffer + urb->transfer_buffer_length;
 693        buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
 694
 695        /* only try adding more data when there's space for at least 1 SysEx */
 696        while (urb->transfer_buffer_length < buf_end) {
 697                count = snd_rawmidi_transmit_peek(substream,
 698                                                  tmp, MAX_AKAI_SYSEX_LEN);
 699                if (!count) {
 700                        ep->ports[0].active = 0;
 701                        return;
 702                }
 703                /* try to skip non-SysEx data */
 704                for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
 705                        ;
 706
 707                if (pos > 0) {
 708                        snd_rawmidi_transmit_ack(substream, pos);
 709                        continue;
 710                }
 711
 712                /* look for the start or end marker */
 713                for (end = 1; end < count && tmp[end] < 0xF0; end++)
 714                        ;
 715
 716                /* next SysEx started before the end of current one */
 717                if (end < count && tmp[end] == 0xF0) {
 718                        /* it's incomplete - drop it */
 719                        snd_rawmidi_transmit_ack(substream, end);
 720                        continue;
 721                }
 722                /* SysEx complete */
 723                if (end < count && tmp[end] == 0xF7) {
 724                        /* queue it, ack it, and get the next one */
 725                        count = end + 1;
 726                        msg[0] = 0x10 | count;
 727                        memcpy(&msg[1], tmp, count);
 728                        snd_rawmidi_transmit_ack(substream, count);
 729                        urb->transfer_buffer_length += count + 1;
 730                        msg += count + 1;
 731                        continue;
 732                }
 733                /* less than 9 bytes and no end byte - wait for more */
 734                if (count < MAX_AKAI_SYSEX_LEN) {
 735                        ep->ports[0].active = 0;
 736                        return;
 737                }
 738                /* 9 bytes and no end marker in sight - malformed, skip it */
 739                snd_rawmidi_transmit_ack(substream, count);
 740        }
 741}
 742
 743static struct usb_protocol_ops snd_usbmidi_akai_ops = {
 744        .input = snd_usbmidi_akai_input,
 745        .output = snd_usbmidi_akai_output,
 746};
 747
 748/*
 749 * Novation USB MIDI protocol: number of data bytes is in the first byte
 750 * (when receiving) (+1!) or in the second byte (when sending); data begins
 751 * at the third byte.
 752 */
 753
 754static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
 755                                       uint8_t* buffer, int buffer_length)
 756{
 757        if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
 758                return;
 759        snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
 760}
 761
 762static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
 763                                        struct urb *urb)
 764{
 765        uint8_t* transfer_buffer;
 766        int count;
 767
 768        if (!ep->ports[0].active)
 769                return;
 770        transfer_buffer = urb->transfer_buffer;
 771        count = snd_rawmidi_transmit(ep->ports[0].substream,
 772                                     &transfer_buffer[2],
 773                                     ep->max_transfer - 2);
 774        if (count < 1) {
 775                ep->ports[0].active = 0;
 776                return;
 777        }
 778        transfer_buffer[0] = 0;
 779        transfer_buffer[1] = count;
 780        urb->transfer_buffer_length = 2 + count;
 781}
 782
 783static struct usb_protocol_ops snd_usbmidi_novation_ops = {
 784        .input = snd_usbmidi_novation_input,
 785        .output = snd_usbmidi_novation_output,
 786};
 787
 788/*
 789 * "raw" protocol: just move raw MIDI bytes from/to the endpoint
 790 */
 791
 792static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
 793                                  uint8_t* buffer, int buffer_length)
 794{
 795        snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
 796}
 797
 798static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
 799                                   struct urb *urb)
 800{
 801        int count;
 802
 803        if (!ep->ports[0].active)
 804                return;
 805        count = snd_rawmidi_transmit(ep->ports[0].substream,
 806                                     urb->transfer_buffer,
 807                                     ep->max_transfer);
 808        if (count < 1) {
 809                ep->ports[0].active = 0;
 810                return;
 811        }
 812        urb->transfer_buffer_length = count;
 813}
 814
 815static struct usb_protocol_ops snd_usbmidi_raw_ops = {
 816        .input = snd_usbmidi_raw_input,
 817        .output = snd_usbmidi_raw_output,
 818};
 819
 820/*
 821 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
 822 */
 823
 824static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep,
 825                                   uint8_t* buffer, int buffer_length)
 826{
 827        if (buffer_length > 2)
 828                snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
 829}
 830
 831static struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
 832        .input = snd_usbmidi_ftdi_input,
 833        .output = snd_usbmidi_raw_output,
 834};
 835
 836static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
 837                                     uint8_t *buffer, int buffer_length)
 838{
 839        if (buffer_length != 9)
 840                return;
 841        buffer_length = 8;
 842        while (buffer_length && buffer[buffer_length - 1] == 0xFD)
 843                buffer_length--;
 844        if (buffer_length)
 845                snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
 846}
 847
 848static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
 849                                      struct urb *urb)
 850{
 851        int count;
 852
 853        if (!ep->ports[0].active)
 854                return;
 855        switch (snd_usb_get_speed(ep->umidi->dev)) {
 856        case USB_SPEED_HIGH:
 857        case USB_SPEED_SUPER:
 858                count = 1;
 859                break;
 860        default:
 861                count = 2;
 862        }
 863        count = snd_rawmidi_transmit(ep->ports[0].substream,
 864                                     urb->transfer_buffer,
 865                                     count);
 866        if (count < 1) {
 867                ep->ports[0].active = 0;
 868                return;
 869        }
 870
 871        memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
 872        urb->transfer_buffer_length = ep->max_transfer;
 873}
 874
 875static struct usb_protocol_ops snd_usbmidi_122l_ops = {
 876        .input = snd_usbmidi_us122l_input,
 877        .output = snd_usbmidi_us122l_output,
 878};
 879
 880/*
 881 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
 882 */
 883
 884static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
 885{
 886        static const u8 init_data[] = {
 887                /* initialization magic: "get version" */
 888                0xf0,
 889                0x00, 0x20, 0x31,       /* Emagic */
 890                0x64,                   /* Unitor8 */
 891                0x0b,                   /* version number request */
 892                0x00,                   /* command version */
 893                0x00,                   /* EEPROM, box 0 */
 894                0xf7
 895        };
 896        send_bulk_static_data(ep, init_data, sizeof(init_data));
 897        /* while we're at it, pour on more magic */
 898        send_bulk_static_data(ep, init_data, sizeof(init_data));
 899}
 900
 901static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
 902{
 903        static const u8 finish_data[] = {
 904                /* switch to patch mode with last preset */
 905                0xf0,
 906                0x00, 0x20, 0x31,       /* Emagic */
 907                0x64,                   /* Unitor8 */
 908                0x10,                   /* patch switch command */
 909                0x00,                   /* command version */
 910                0x7f,                   /* to all boxes */
 911                0x40,                   /* last preset in EEPROM */
 912                0xf7
 913        };
 914        send_bulk_static_data(ep, finish_data, sizeof(finish_data));
 915}
 916
 917static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
 918                                     uint8_t* buffer, int buffer_length)
 919{
 920        int i;
 921
 922        /* FF indicates end of valid data */
 923        for (i = 0; i < buffer_length; ++i)
 924                if (buffer[i] == 0xff) {
 925                        buffer_length = i;
 926                        break;
 927                }
 928
 929        /* handle F5 at end of last buffer */
 930        if (ep->seen_f5)
 931                goto switch_port;
 932
 933        while (buffer_length > 0) {
 934                /* determine size of data until next F5 */
 935                for (i = 0; i < buffer_length; ++i)
 936                        if (buffer[i] == 0xf5)
 937                                break;
 938                snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
 939                buffer += i;
 940                buffer_length -= i;
 941
 942                if (buffer_length <= 0)
 943                        break;
 944                /* assert(buffer[0] == 0xf5); */
 945                ep->seen_f5 = 1;
 946                ++buffer;
 947                --buffer_length;
 948
 949        switch_port:
 950                if (buffer_length <= 0)
 951                        break;
 952                if (buffer[0] < 0x80) {
 953                        ep->current_port = (buffer[0] - 1) & 15;
 954                        ++buffer;
 955                        --buffer_length;
 956                }
 957                ep->seen_f5 = 0;
 958        }
 959}
 960
 961static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
 962                                      struct urb *urb)
 963{
 964        int port0 = ep->current_port;
 965        uint8_t* buf = urb->transfer_buffer;
 966        int buf_free = ep->max_transfer;
 967        int length, i;
 968
 969        for (i = 0; i < 0x10; ++i) {
 970                /* round-robin, starting at the last current port */
 971                int portnum = (port0 + i) & 15;
 972                struct usbmidi_out_port* port = &ep->ports[portnum];
 973
 974                if (!port->active)
 975                        continue;
 976                if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
 977                        port->active = 0;
 978                        continue;
 979                }
 980
 981                if (portnum != ep->current_port) {
 982                        if (buf_free < 2)
 983                                break;
 984                        ep->current_port = portnum;
 985                        buf[0] = 0xf5;
 986                        buf[1] = (portnum + 1) & 15;
 987                        buf += 2;
 988                        buf_free -= 2;
 989                }
 990
 991                if (buf_free < 1)
 992                        break;
 993                length = snd_rawmidi_transmit(port->substream, buf, buf_free);
 994                if (length > 0) {
 995                        buf += length;
 996                        buf_free -= length;
 997                        if (buf_free < 1)
 998                                break;
 999                }
1000        }
1001        if (buf_free < ep->max_transfer && buf_free > 0) {
1002                *buf = 0xff;
1003                --buf_free;
1004        }
1005        urb->transfer_buffer_length = ep->max_transfer - buf_free;
1006}
1007
1008static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1009        .input = snd_usbmidi_emagic_input,
1010        .output = snd_usbmidi_emagic_output,
1011        .init_out_endpoint = snd_usbmidi_emagic_init_out,
1012        .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1013};
1014
1015
1016static void update_roland_altsetting(struct snd_usb_midi* umidi)
1017{
1018        struct usb_interface *intf;
1019        struct usb_host_interface *hostif;
1020        struct usb_interface_descriptor *intfd;
1021        int is_light_load;
1022
1023        intf = umidi->iface;
1024        is_light_load = intf->cur_altsetting != intf->altsetting;
1025        if (umidi->roland_load_ctl->private_value == is_light_load)
1026                return;
1027        hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1028        intfd = get_iface_desc(hostif);
1029        snd_usbmidi_input_stop(&umidi->list);
1030        usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1031                          intfd->bAlternateSetting);
1032        snd_usbmidi_input_start(&umidi->list);
1033}
1034
1035static void substream_open(struct snd_rawmidi_substream *substream, int open)
1036{
1037        struct snd_usb_midi* umidi = substream->rmidi->private_data;
1038        struct snd_kcontrol *ctl;
1039
1040        mutex_lock(&umidi->mutex);
1041        if (open) {
1042                if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1043                        ctl = umidi->roland_load_ctl;
1044                        ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1045                        snd_ctl_notify(umidi->card,
1046                                       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1047                        update_roland_altsetting(umidi);
1048                }
1049        } else {
1050                if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1051                        ctl = umidi->roland_load_ctl;
1052                        ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1053                        snd_ctl_notify(umidi->card,
1054                                       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1055                }
1056        }
1057        mutex_unlock(&umidi->mutex);
1058}
1059
1060static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1061{
1062        struct snd_usb_midi* umidi = substream->rmidi->private_data;
1063        struct usbmidi_out_port* port = NULL;
1064        int i, j;
1065        int err;
1066
1067        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1068                if (umidi->endpoints[i].out)
1069                        for (j = 0; j < 0x10; ++j)
1070                                if (umidi->endpoints[i].out->ports[j].substream == substream) {
1071                                        port = &umidi->endpoints[i].out->ports[j];
1072                                        break;
1073                                }
1074        if (!port) {
1075                snd_BUG();
1076                return -ENXIO;
1077        }
1078        err = usb_autopm_get_interface(umidi->iface);
1079        if (err < 0)
1080                return -EIO;
1081        substream->runtime->private_data = port;
1082        port->state = STATE_UNKNOWN;
1083        substream_open(substream, 1);
1084        return 0;
1085}
1086
1087static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1088{
1089        struct snd_usb_midi* umidi = substream->rmidi->private_data;
1090
1091        substream_open(substream, 0);
1092        usb_autopm_put_interface(umidi->iface);
1093        return 0;
1094}
1095
1096static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1097{
1098        struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1099
1100        port->active = up;
1101        if (up) {
1102                if (port->ep->umidi->disconnected) {
1103                        /* gobble up remaining bytes to prevent wait in
1104                         * snd_rawmidi_drain_output */
1105                        while (!snd_rawmidi_transmit_empty(substream))
1106                                snd_rawmidi_transmit_ack(substream, 1);
1107                        return;
1108                }
1109                tasklet_schedule(&port->ep->tasklet);
1110        }
1111}
1112
1113static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1114{
1115        struct usbmidi_out_port* port = substream->runtime->private_data;
1116        struct snd_usb_midi_out_endpoint *ep = port->ep;
1117        unsigned int drain_urbs;
1118        DEFINE_WAIT(wait);
1119        long timeout = msecs_to_jiffies(50);
1120
1121        if (ep->umidi->disconnected)
1122                return;
1123        /*
1124         * The substream buffer is empty, but some data might still be in the
1125         * currently active URBs, so we have to wait for those to complete.
1126         */
1127        spin_lock_irq(&ep->buffer_lock);
1128        drain_urbs = ep->active_urbs;
1129        if (drain_urbs) {
1130                ep->drain_urbs |= drain_urbs;
1131                do {
1132                        prepare_to_wait(&ep->drain_wait, &wait,
1133                                        TASK_UNINTERRUPTIBLE);
1134                        spin_unlock_irq(&ep->buffer_lock);
1135                        timeout = schedule_timeout(timeout);
1136                        spin_lock_irq(&ep->buffer_lock);
1137                        drain_urbs &= ep->drain_urbs;
1138                } while (drain_urbs && timeout);
1139                finish_wait(&ep->drain_wait, &wait);
1140        }
1141        spin_unlock_irq(&ep->buffer_lock);
1142}
1143
1144static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1145{
1146        substream_open(substream, 1);
1147        return 0;
1148}
1149
1150static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1151{
1152        substream_open(substream, 0);
1153        return 0;
1154}
1155
1156static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1157{
1158        struct snd_usb_midi* umidi = substream->rmidi->private_data;
1159
1160        if (up)
1161                set_bit(substream->number, &umidi->input_triggered);
1162        else
1163                clear_bit(substream->number, &umidi->input_triggered);
1164}
1165
1166static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1167        .open = snd_usbmidi_output_open,
1168        .close = snd_usbmidi_output_close,
1169        .trigger = snd_usbmidi_output_trigger,
1170        .drain = snd_usbmidi_output_drain,
1171};
1172
1173static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1174        .open = snd_usbmidi_input_open,
1175        .close = snd_usbmidi_input_close,
1176        .trigger = snd_usbmidi_input_trigger
1177};
1178
1179static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1180                                unsigned int buffer_length)
1181{
1182        usb_free_coherent(umidi->dev, buffer_length,
1183                          urb->transfer_buffer, urb->transfer_dma);
1184        usb_free_urb(urb);
1185}
1186
1187/*
1188 * Frees an input endpoint.
1189 * May be called when ep hasn't been initialized completely.
1190 */
1191static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1192{
1193        unsigned int i;
1194
1195        for (i = 0; i < INPUT_URBS; ++i)
1196                if (ep->urbs[i])
1197                        free_urb_and_buffer(ep->umidi, ep->urbs[i],
1198                                            ep->urbs[i]->transfer_buffer_length);
1199        kfree(ep);
1200}
1201
1202/*
1203 * Creates an input endpoint.
1204 */
1205static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1206                                          struct snd_usb_midi_endpoint_info* ep_info,
1207                                          struct snd_usb_midi_endpoint* rep)
1208{
1209        struct snd_usb_midi_in_endpoint* ep;
1210        void* buffer;
1211        unsigned int pipe;
1212        int length;
1213        unsigned int i;
1214
1215        rep->in = NULL;
1216        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1217        if (!ep)
1218                return -ENOMEM;
1219        ep->umidi = umidi;
1220
1221        for (i = 0; i < INPUT_URBS; ++i) {
1222                ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1223                if (!ep->urbs[i]) {
1224                        snd_usbmidi_in_endpoint_delete(ep);
1225                        return -ENOMEM;
1226                }
1227        }
1228        if (ep_info->in_interval)
1229                pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1230        else
1231                pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1232        length = usb_maxpacket(umidi->dev, pipe, 0);
1233        for (i = 0; i < INPUT_URBS; ++i) {
1234                buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1235                                            &ep->urbs[i]->transfer_dma);
1236                if (!buffer) {
1237                        snd_usbmidi_in_endpoint_delete(ep);
1238                        return -ENOMEM;
1239                }
1240                if (ep_info->in_interval)
1241                        usb_fill_int_urb(ep->urbs[i], umidi->dev,
1242                                         pipe, buffer, length,
1243                                         snd_usbmidi_in_urb_complete,
1244                                         ep, ep_info->in_interval);
1245                else
1246                        usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1247                                          pipe, buffer, length,
1248                                          snd_usbmidi_in_urb_complete, ep);
1249                ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1250        }
1251
1252        rep->in = ep;
1253        return 0;
1254}
1255
1256/*
1257 * Frees an output endpoint.
1258 * May be called when ep hasn't been initialized completely.
1259 */
1260static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1261{
1262        unsigned int i;
1263
1264        for (i = 0; i < OUTPUT_URBS; ++i)
1265                if (ep->urbs[i].urb) {
1266                        free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1267                                            ep->max_transfer);
1268                        ep->urbs[i].urb = NULL;
1269                }
1270}
1271
1272static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1273{
1274        snd_usbmidi_out_endpoint_clear(ep);
1275        kfree(ep);
1276}
1277
1278/*
1279 * Creates an output endpoint, and initializes output ports.
1280 */
1281static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1282                                           struct snd_usb_midi_endpoint_info* ep_info,
1283                                           struct snd_usb_midi_endpoint* rep)
1284{
1285        struct snd_usb_midi_out_endpoint* ep;
1286        unsigned int i;
1287        unsigned int pipe;
1288        void* buffer;
1289
1290        rep->out = NULL;
1291        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1292        if (!ep)
1293                return -ENOMEM;
1294        ep->umidi = umidi;
1295
1296        for (i = 0; i < OUTPUT_URBS; ++i) {
1297                ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1298                if (!ep->urbs[i].urb) {
1299                        snd_usbmidi_out_endpoint_delete(ep);
1300                        return -ENOMEM;
1301                }
1302                ep->urbs[i].ep = ep;
1303        }
1304        if (ep_info->out_interval)
1305                pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1306        else
1307                pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1308        switch (umidi->usb_id) {
1309        default:
1310                ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1311                break;
1312                /*
1313                 * Various chips declare a packet size larger than 4 bytes, but
1314                 * do not actually work with larger packets:
1315                 */
1316        case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1317        case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1318        case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1319        case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1320        case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1321        case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1322                ep->max_transfer = 4;
1323                break;
1324                /*
1325                 * Some devices only work with 9 bytes packet size:
1326                 */
1327        case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1328        case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1329                ep->max_transfer = 9;
1330                break;
1331        }
1332        for (i = 0; i < OUTPUT_URBS; ++i) {
1333                buffer = usb_alloc_coherent(umidi->dev,
1334                                            ep->max_transfer, GFP_KERNEL,
1335                                            &ep->urbs[i].urb->transfer_dma);
1336                if (!buffer) {
1337                        snd_usbmidi_out_endpoint_delete(ep);
1338                        return -ENOMEM;
1339                }
1340                if (ep_info->out_interval)
1341                        usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1342                                         pipe, buffer, ep->max_transfer,
1343                                         snd_usbmidi_out_urb_complete,
1344                                         &ep->urbs[i], ep_info->out_interval);
1345                else
1346                        usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1347                                          pipe, buffer, ep->max_transfer,
1348                                          snd_usbmidi_out_urb_complete,
1349                                          &ep->urbs[i]);
1350                ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1351        }
1352
1353        spin_lock_init(&ep->buffer_lock);
1354        tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1355        init_waitqueue_head(&ep->drain_wait);
1356
1357        for (i = 0; i < 0x10; ++i)
1358                if (ep_info->out_cables & (1 << i)) {
1359                        ep->ports[i].ep = ep;
1360                        ep->ports[i].cable = i << 4;
1361                }
1362
1363        if (umidi->usb_protocol_ops->init_out_endpoint)
1364                umidi->usb_protocol_ops->init_out_endpoint(ep);
1365
1366        rep->out = ep;
1367        return 0;
1368}
1369
1370/*
1371 * Frees everything.
1372 */
1373static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1374{
1375        int i;
1376
1377        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1378                struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1379                if (ep->out)
1380                        snd_usbmidi_out_endpoint_delete(ep->out);
1381                if (ep->in)
1382                        snd_usbmidi_in_endpoint_delete(ep->in);
1383        }
1384        mutex_destroy(&umidi->mutex);
1385        kfree(umidi);
1386}
1387
1388/*
1389 * Unlinks all URBs (must be done before the usb_device is deleted).
1390 */
1391void snd_usbmidi_disconnect(struct list_head* p)
1392{
1393        struct snd_usb_midi* umidi;
1394        unsigned int i, j;
1395
1396        umidi = list_entry(p, struct snd_usb_midi, list);
1397        /*
1398         * an URB's completion handler may start the timer and
1399         * a timer may submit an URB. To reliably break the cycle
1400         * a flag under lock must be used
1401         */
1402        spin_lock_irq(&umidi->disc_lock);
1403        umidi->disconnected = 1;
1404        spin_unlock_irq(&umidi->disc_lock);
1405        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1406                struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1407                if (ep->out)
1408                        tasklet_kill(&ep->out->tasklet);
1409                if (ep->out) {
1410                        for (j = 0; j < OUTPUT_URBS; ++j)
1411                                usb_kill_urb(ep->out->urbs[j].urb);
1412                        if (umidi->usb_protocol_ops->finish_out_endpoint)
1413                                umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1414                        ep->out->active_urbs = 0;
1415                        if (ep->out->drain_urbs) {
1416                                ep->out->drain_urbs = 0;
1417                                wake_up(&ep->out->drain_wait);
1418                        }
1419                }
1420                if (ep->in)
1421                        for (j = 0; j < INPUT_URBS; ++j)
1422                                usb_kill_urb(ep->in->urbs[j]);
1423                /* free endpoints here; later call can result in Oops */
1424                if (ep->out)
1425                        snd_usbmidi_out_endpoint_clear(ep->out);
1426                if (ep->in) {
1427                        snd_usbmidi_in_endpoint_delete(ep->in);
1428                        ep->in = NULL;
1429                }
1430        }
1431        del_timer_sync(&umidi->error_timer);
1432}
1433
1434static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1435{
1436        struct snd_usb_midi* umidi = rmidi->private_data;
1437        snd_usbmidi_free(umidi);
1438}
1439
1440static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1441                                                                int stream, int number)
1442{
1443        struct list_head* list;
1444
1445        list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1446                struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1447                if (substream->number == number)
1448                        return substream;
1449        }
1450        return NULL;
1451}
1452
1453/*
1454 * This list specifies names for ports that do not fit into the standard
1455 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1456 * such as internal control or synthesizer ports.
1457 */
1458static struct port_info {
1459        u32 id;
1460        short int port;
1461        short int voices;
1462        const char *name;
1463        unsigned int seq_flags;
1464} snd_usbmidi_port_info[] = {
1465#define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1466        { .id = USB_ID(vendor, product), \
1467          .port = num, .voices = voices_, \
1468          .name = name_, .seq_flags = flags }
1469#define EXTERNAL_PORT(vendor, product, num, name) \
1470        PORT_INFO(vendor, product, num, name, 0, \
1471                  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1472                  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1473                  SNDRV_SEQ_PORT_TYPE_PORT)
1474#define CONTROL_PORT(vendor, product, num, name) \
1475        PORT_INFO(vendor, product, num, name, 0, \
1476                  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1477                  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1478#define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1479        PORT_INFO(vendor, product, num, name, voices, \
1480                  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1481                  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1482                  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1483                  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1484                  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1485                  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1486                  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1487#define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1488        PORT_INFO(vendor, product, num, name, voices, \
1489                  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1490                  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1491                  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1492                  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1493                  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1494                  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1495                  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1496                  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1497        /* Roland UA-100 */
1498        CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1499        /* Roland SC-8850 */
1500        SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1501        SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1502        SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1503        SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1504        EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1505        EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1506        /* Roland U-8 */
1507        EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1508        CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1509        /* Roland SC-8820 */
1510        SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1511        SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1512        EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1513        /* Roland SK-500 */
1514        SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1515        SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1516        EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1517        /* Roland SC-D70 */
1518        SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1519        SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1520        EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1521        /* Edirol UM-880 */
1522        CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1523        /* Edirol SD-90 */
1524        ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1525        ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1526        EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1527        EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1528        /* Edirol UM-550 */
1529        CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1530        /* Edirol SD-20 */
1531        ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1532        ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1533        EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1534        /* Edirol SD-80 */
1535        ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1536        ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1537        EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1538        EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1539        /* Edirol UA-700 */
1540        EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1541        CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1542        /* Roland VariOS */
1543        EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1544        EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1545        EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1546        /* Edirol PCR */
1547        EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1548        EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1549        EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1550        /* BOSS GS-10 */
1551        EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1552        CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1553        /* Edirol UA-1000 */
1554        EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1555        CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1556        /* Edirol UR-80 */
1557        EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1558        EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1559        EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1560        /* Edirol PCR-A */
1561        EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1562        EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1563        EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1564        /* Edirol UM-3EX */
1565        CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1566        /* M-Audio MidiSport 8x8 */
1567        CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1568        CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1569        /* MOTU Fastlane */
1570        EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1571        EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1572        /* Emagic Unitor8/AMT8/MT4 */
1573        EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1574        EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1575        EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1576        /* Akai MPD16 */
1577        CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1578        PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1579                SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1580                SNDRV_SEQ_PORT_TYPE_HARDWARE),
1581        /* Access Music Virus TI */
1582        EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1583        PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1584                SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1585                SNDRV_SEQ_PORT_TYPE_HARDWARE |
1586                SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1587};
1588
1589static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1590{
1591        int i;
1592
1593        for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1594                if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1595                    snd_usbmidi_port_info[i].port == number)
1596                        return &snd_usbmidi_port_info[i];
1597        }
1598        return NULL;
1599}
1600
1601static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1602                                      struct snd_seq_port_info *seq_port_info)
1603{
1604        struct snd_usb_midi *umidi = rmidi->private_data;
1605        struct port_info *port_info;
1606
1607        /* TODO: read port flags from descriptors */
1608        port_info = find_port_info(umidi, number);
1609        if (port_info) {
1610                seq_port_info->type = port_info->seq_flags;
1611                seq_port_info->midi_voices = port_info->voices;
1612        }
1613}
1614
1615static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1616                                       int stream, int number,
1617                                       struct snd_rawmidi_substream ** rsubstream)
1618{
1619        struct port_info *port_info;
1620        const char *name_format;
1621
1622        struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1623        if (!substream) {
1624                snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1625                return;
1626        }
1627
1628        /* TODO: read port name from jack descriptor */
1629        port_info = find_port_info(umidi, number);
1630        name_format = port_info ? port_info->name : "%s MIDI %d";
1631        snprintf(substream->name, sizeof(substream->name),
1632                 name_format, umidi->card->shortname, number + 1);
1633
1634        *rsubstream = substream;
1635}
1636
1637/*
1638 * Creates the endpoints and their ports.
1639 */
1640static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1641                                        struct snd_usb_midi_endpoint_info* endpoints)
1642{
1643        int i, j, err;
1644        int out_ports = 0, in_ports = 0;
1645
1646        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1647                if (endpoints[i].out_cables) {
1648                        err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1649                                                              &umidi->endpoints[i]);
1650                        if (err < 0)
1651                                return err;
1652                }
1653                if (endpoints[i].in_cables) {
1654                        err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1655                                                             &umidi->endpoints[i]);
1656                        if (err < 0)
1657                                return err;
1658                }
1659
1660                for (j = 0; j < 0x10; ++j) {
1661                        if (endpoints[i].out_cables & (1 << j)) {
1662                                snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1663                                                           &umidi->endpoints[i].out->ports[j].substream);
1664                                ++out_ports;
1665                        }
1666                        if (endpoints[i].in_cables & (1 << j)) {
1667                                snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1668                                                           &umidi->endpoints[i].in->ports[j].substream);
1669                                ++in_ports;
1670                        }
1671                }
1672        }
1673        snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1674                    out_ports, in_ports);
1675        return 0;
1676}
1677
1678/*
1679 * Returns MIDIStreaming device capabilities.
1680 */
1681static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1682                                   struct snd_usb_midi_endpoint_info* endpoints)
1683{
1684        struct usb_interface* intf;
1685        struct usb_host_interface *hostif;
1686        struct usb_interface_descriptor* intfd;
1687        struct usb_ms_header_descriptor* ms_header;
1688        struct usb_host_endpoint *hostep;
1689        struct usb_endpoint_descriptor* ep;
1690        struct usb_ms_endpoint_descriptor* ms_ep;
1691        int i, epidx;
1692
1693        intf = umidi->iface;
1694        if (!intf)
1695                return -ENXIO;
1696        hostif = &intf->altsetting[0];
1697        intfd = get_iface_desc(hostif);
1698        ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1699        if (hostif->extralen >= 7 &&
1700            ms_header->bLength >= 7 &&
1701            ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1702            ms_header->bDescriptorSubtype == UAC_HEADER)
1703                snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1704                            ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1705        else
1706                snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1707
1708        epidx = 0;
1709        for (i = 0; i < intfd->bNumEndpoints; ++i) {
1710                hostep = &hostif->endpoint[i];
1711                ep = get_ep_desc(hostep);
1712                if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1713                        continue;
1714                ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1715                if (hostep->extralen < 4 ||
1716                    ms_ep->bLength < 4 ||
1717                    ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1718                    ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1719                        continue;
1720                if (usb_endpoint_dir_out(ep)) {
1721                        if (endpoints[epidx].out_ep) {
1722                                if (++epidx >= MIDI_MAX_ENDPOINTS) {
1723                                        snd_printk(KERN_WARNING "too many endpoints\n");
1724                                        break;
1725                                }
1726                        }
1727                        endpoints[epidx].out_ep = usb_endpoint_num(ep);
1728                        if (usb_endpoint_xfer_int(ep))
1729                                endpoints[epidx].out_interval = ep->bInterval;
1730                        else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1731                                /*
1732                                 * Low speed bulk transfers don't exist, so
1733                                 * force interrupt transfers for devices like
1734                                 * ESI MIDI Mate that try to use them anyway.
1735                                 */
1736                                endpoints[epidx].out_interval = 1;
1737                        endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1738                        snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1739                                    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1740                } else {
1741                        if (endpoints[epidx].in_ep) {
1742                                if (++epidx >= MIDI_MAX_ENDPOINTS) {
1743                                        snd_printk(KERN_WARNING "too many endpoints\n");
1744                                        break;
1745                                }
1746                        }
1747                        endpoints[epidx].in_ep = usb_endpoint_num(ep);
1748                        if (usb_endpoint_xfer_int(ep))
1749                                endpoints[epidx].in_interval = ep->bInterval;
1750                        else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1751                                endpoints[epidx].in_interval = 1;
1752                        endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1753                        snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1754                                    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1755                }
1756        }
1757        return 0;
1758}
1759
1760static int roland_load_info(struct snd_kcontrol *kcontrol,
1761                            struct snd_ctl_elem_info *info)
1762{
1763        static const char *const names[] = { "High Load", "Light Load" };
1764
1765        return snd_ctl_enum_info(info, 1, 2, names);
1766}
1767
1768static int roland_load_get(struct snd_kcontrol *kcontrol,
1769                           struct snd_ctl_elem_value *value)
1770{
1771        value->value.enumerated.item[0] = kcontrol->private_value;
1772        return 0;
1773}
1774
1775static int roland_load_put(struct snd_kcontrol *kcontrol,
1776                           struct snd_ctl_elem_value *value)
1777{
1778        struct snd_usb_midi* umidi = kcontrol->private_data;
1779        int changed;
1780
1781        if (value->value.enumerated.item[0] > 1)
1782                return -EINVAL;
1783        mutex_lock(&umidi->mutex);
1784        changed = value->value.enumerated.item[0] != kcontrol->private_value;
1785        if (changed)
1786                kcontrol->private_value = value->value.enumerated.item[0];
1787        mutex_unlock(&umidi->mutex);
1788        return changed;
1789}
1790
1791static struct snd_kcontrol_new roland_load_ctl = {
1792        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1793        .name = "MIDI Input Mode",
1794        .info = roland_load_info,
1795        .get = roland_load_get,
1796        .put = roland_load_put,
1797        .private_value = 1,
1798};
1799
1800/*
1801 * On Roland devices, use the second alternate setting to be able to use
1802 * the interrupt input endpoint.
1803 */
1804static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1805{
1806        struct usb_interface* intf;
1807        struct usb_host_interface *hostif;
1808        struct usb_interface_descriptor* intfd;
1809
1810        intf = umidi->iface;
1811        if (!intf || intf->num_altsetting != 2)
1812                return;
1813
1814        hostif = &intf->altsetting[1];
1815        intfd = get_iface_desc(hostif);
1816        if (intfd->bNumEndpoints != 2 ||
1817            (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1818            (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1819                return;
1820
1821        snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1822                    intfd->bAlternateSetting);
1823        usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1824                          intfd->bAlternateSetting);
1825
1826        umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1827        if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1828                umidi->roland_load_ctl = NULL;
1829}
1830
1831/*
1832 * Try to find any usable endpoints in the interface.
1833 */
1834static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1835                                        struct snd_usb_midi_endpoint_info* endpoint,
1836                                        int max_endpoints)
1837{
1838        struct usb_interface* intf;
1839        struct usb_host_interface *hostif;
1840        struct usb_interface_descriptor* intfd;
1841        struct usb_endpoint_descriptor* epd;
1842        int i, out_eps = 0, in_eps = 0;
1843
1844        if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1845                snd_usbmidi_switch_roland_altsetting(umidi);
1846
1847        if (endpoint[0].out_ep || endpoint[0].in_ep)
1848                return 0;
1849
1850        intf = umidi->iface;
1851        if (!intf || intf->num_altsetting < 1)
1852                return -ENOENT;
1853        hostif = intf->cur_altsetting;
1854        intfd = get_iface_desc(hostif);
1855
1856        for (i = 0; i < intfd->bNumEndpoints; ++i) {
1857                epd = get_endpoint(hostif, i);
1858                if (!usb_endpoint_xfer_bulk(epd) &&
1859                    !usb_endpoint_xfer_int(epd))
1860                        continue;
1861                if (out_eps < max_endpoints &&
1862                    usb_endpoint_dir_out(epd)) {
1863                        endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1864                        if (usb_endpoint_xfer_int(epd))
1865                                endpoint[out_eps].out_interval = epd->bInterval;
1866                        ++out_eps;
1867                }
1868                if (in_eps < max_endpoints &&
1869                    usb_endpoint_dir_in(epd)) {
1870                        endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1871                        if (usb_endpoint_xfer_int(epd))
1872                                endpoint[in_eps].in_interval = epd->bInterval;
1873                        ++in_eps;
1874                }
1875        }
1876        return (out_eps || in_eps) ? 0 : -ENOENT;
1877}
1878
1879/*
1880 * Detects the endpoints for one-port-per-endpoint protocols.
1881 */
1882static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1883                                                 struct snd_usb_midi_endpoint_info* endpoints)
1884{
1885        int err, i;
1886
1887        err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1888        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1889                if (endpoints[i].out_ep)
1890                        endpoints[i].out_cables = 0x0001;
1891                if (endpoints[i].in_ep)
1892                        endpoints[i].in_cables = 0x0001;
1893        }
1894        return err;
1895}
1896
1897/*
1898 * Detects the endpoints and ports of Yamaha devices.
1899 */
1900static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1901                                     struct snd_usb_midi_endpoint_info* endpoint)
1902{
1903        struct usb_interface* intf;
1904        struct usb_host_interface *hostif;
1905        struct usb_interface_descriptor* intfd;
1906        uint8_t* cs_desc;
1907
1908        intf = umidi->iface;
1909        if (!intf)
1910                return -ENOENT;
1911        hostif = intf->altsetting;
1912        intfd = get_iface_desc(hostif);
1913        if (intfd->bNumEndpoints < 1)
1914                return -ENOENT;
1915
1916        /*
1917         * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1918         * necessarily with any useful contents.  So simply count 'em.
1919         */
1920        for (cs_desc = hostif->extra;
1921             cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1922             cs_desc += cs_desc[0]) {
1923                if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1924                        if (cs_desc[2] == UAC_MIDI_IN_JACK)
1925                                endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1926                        else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1927                                endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1928                }
1929        }
1930        if (!endpoint->in_cables && !endpoint->out_cables)
1931                return -ENOENT;
1932
1933        return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1934}
1935
1936/*
1937 * Creates the endpoints and their ports for Midiman devices.
1938 */
1939static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1940                                                struct snd_usb_midi_endpoint_info* endpoint)
1941{
1942        struct snd_usb_midi_endpoint_info ep_info;
1943        struct usb_interface* intf;
1944        struct usb_host_interface *hostif;
1945        struct usb_interface_descriptor* intfd;
1946        struct usb_endpoint_descriptor* epd;
1947        int cable, err;
1948
1949        intf = umidi->iface;
1950        if (!intf)
1951                return -ENOENT;
1952        hostif = intf->altsetting;
1953        intfd = get_iface_desc(hostif);
1954        /*
1955         * The various MidiSport devices have more or less random endpoint
1956         * numbers, so we have to identify the endpoints by their index in
1957         * the descriptor array, like the driver for that other OS does.
1958         *
1959         * There is one interrupt input endpoint for all input ports, one
1960         * bulk output endpoint for even-numbered ports, and one for odd-
1961         * numbered ports.  Both bulk output endpoints have corresponding
1962         * input bulk endpoints (at indices 1 and 3) which aren't used.
1963         */
1964        if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1965                snd_printdd(KERN_ERR "not enough endpoints\n");
1966                return -ENOENT;
1967        }
1968
1969        epd = get_endpoint(hostif, 0);
1970        if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1971                snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1972                return -ENXIO;
1973        }
1974        epd = get_endpoint(hostif, 2);
1975        if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1976                snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1977                return -ENXIO;
1978        }
1979        if (endpoint->out_cables > 0x0001) {
1980                epd = get_endpoint(hostif, 4);
1981                if (!usb_endpoint_dir_out(epd) ||
1982                    !usb_endpoint_xfer_bulk(epd)) {
1983                        snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1984                        return -ENXIO;
1985                }
1986        }
1987
1988        ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1989        ep_info.out_interval = 0;
1990        ep_info.out_cables = endpoint->out_cables & 0x5555;
1991        err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1992        if (err < 0)
1993                return err;
1994
1995        ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1996        ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1997        ep_info.in_cables = endpoint->in_cables;
1998        err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1999        if (err < 0)
2000                return err;
2001
2002        if (endpoint->out_cables > 0x0001) {
2003                ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2004                ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2005                err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
2006                if (err < 0)
2007                        return err;
2008        }
2009
2010        for (cable = 0; cable < 0x10; ++cable) {
2011                if (endpoint->out_cables & (1 << cable))
2012                        snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
2013                                                   &umidi->endpoints[cable & 1].out->ports[cable].substream);
2014                if (endpoint->in_cables & (1 << cable))
2015                        snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
2016                                                   &umidi->endpoints[0].in->ports[cable].substream);
2017        }
2018        return 0;
2019}
2020
2021static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2022        .get_port_info = snd_usbmidi_get_port_info,
2023};
2024
2025static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2026                                      int out_ports, int in_ports)
2027{
2028        struct snd_rawmidi *rmidi;
2029        int err;
2030
2031        err = snd_rawmidi_new(umidi->card, "USB MIDI",
2032                              umidi->next_midi_device++,
2033                              out_ports, in_ports, &rmidi);
2034        if (err < 0)
2035                return err;
2036        strcpy(rmidi->name, umidi->card->shortname);
2037        rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2038                            SNDRV_RAWMIDI_INFO_INPUT |
2039                            SNDRV_RAWMIDI_INFO_DUPLEX;
2040        rmidi->ops = &snd_usbmidi_ops;
2041        rmidi->private_data = umidi;
2042        rmidi->private_free = snd_usbmidi_rawmidi_free;
2043        snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2044        snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2045
2046        umidi->rmidi = rmidi;
2047        return 0;
2048}
2049
2050/*
2051 * Temporarily stop input.
2052 */
2053void snd_usbmidi_input_stop(struct list_head* p)
2054{
2055        struct snd_usb_midi* umidi;
2056        unsigned int i, j;
2057
2058        umidi = list_entry(p, struct snd_usb_midi, list);
2059        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2060                struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2061                if (ep->in)
2062                        for (j = 0; j < INPUT_URBS; ++j)
2063                                usb_kill_urb(ep->in->urbs[j]);
2064        }
2065}
2066
2067static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2068{
2069        unsigned int i;
2070
2071        if (!ep)
2072                return;
2073        for (i = 0; i < INPUT_URBS; ++i) {
2074                struct urb* urb = ep->urbs[i];
2075                urb->dev = ep->umidi->dev;
2076                snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2077        }
2078}
2079
2080/*
2081 * Resume input after a call to snd_usbmidi_input_stop().
2082 */
2083void snd_usbmidi_input_start(struct list_head* p)
2084{
2085        struct snd_usb_midi* umidi;
2086        int i;
2087
2088        umidi = list_entry(p, struct snd_usb_midi, list);
2089        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2090                snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2091}
2092
2093/*
2094 * Creates and registers everything needed for a MIDI streaming interface.
2095 */
2096int snd_usbmidi_create(struct snd_card *card,
2097                       struct usb_interface* iface,
2098                       struct list_head *midi_list,
2099                       const struct snd_usb_audio_quirk* quirk)
2100{
2101        struct snd_usb_midi* umidi;
2102        struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2103        int out_ports, in_ports;
2104        int i, err;
2105
2106        umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2107        if (!umidi)
2108                return -ENOMEM;
2109        umidi->dev = interface_to_usbdev(iface);
2110        umidi->card = card;
2111        umidi->iface = iface;
2112        umidi->quirk = quirk;
2113        umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2114        init_timer(&umidi->error_timer);
2115        spin_lock_init(&umidi->disc_lock);
2116        mutex_init(&umidi->mutex);
2117        umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2118                               le16_to_cpu(umidi->dev->descriptor.idProduct));
2119        umidi->error_timer.function = snd_usbmidi_error_timer;
2120        umidi->error_timer.data = (unsigned long)umidi;
2121
2122        /* detect the endpoint(s) to use */
2123        memset(endpoints, 0, sizeof(endpoints));
2124        switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2125        case QUIRK_MIDI_STANDARD_INTERFACE:
2126                err = snd_usbmidi_get_ms_info(umidi, endpoints);
2127                if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2128                        umidi->usb_protocol_ops =
2129                                &snd_usbmidi_maudio_broken_running_status_ops;
2130                break;
2131        case QUIRK_MIDI_US122L:
2132                umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2133                /* fall through */
2134        case QUIRK_MIDI_FIXED_ENDPOINT:
2135                memcpy(&endpoints[0], quirk->data,
2136                       sizeof(struct snd_usb_midi_endpoint_info));
2137                err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2138                break;
2139        case QUIRK_MIDI_YAMAHA:
2140                err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2141                break;
2142        case QUIRK_MIDI_MIDIMAN:
2143                umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2144                memcpy(&endpoints[0], quirk->data,
2145                       sizeof(struct snd_usb_midi_endpoint_info));
2146                err = 0;
2147                break;
2148        case QUIRK_MIDI_NOVATION:
2149                umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2150                err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2151                break;
2152        case QUIRK_MIDI_RAW_BYTES:
2153                umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2154                /*
2155                 * Interface 1 contains isochronous endpoints, but with the same
2156                 * numbers as in interface 0.  Since it is interface 1 that the
2157                 * USB core has most recently seen, these descriptors are now
2158                 * associated with the endpoint numbers.  This will foul up our
2159                 * attempts to submit bulk/interrupt URBs to the endpoints in
2160                 * interface 0, so we have to make sure that the USB core looks
2161                 * again at interface 0 by calling usb_set_interface() on it.
2162                 */
2163                if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2164                        usb_set_interface(umidi->dev, 0, 0);
2165                err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2166                break;
2167        case QUIRK_MIDI_EMAGIC:
2168                umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2169                memcpy(&endpoints[0], quirk->data,
2170                       sizeof(struct snd_usb_midi_endpoint_info));
2171                err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2172                break;
2173        case QUIRK_MIDI_CME:
2174                umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2175                err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2176                break;
2177        case QUIRK_MIDI_AKAI:
2178                umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2179                err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2180                /* endpoint 1 is input-only */
2181                endpoints[1].out_cables = 0;
2182                break;
2183        case QUIRK_MIDI_FTDI:
2184                umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2185
2186                /* set baud rate to 31250 (48 MHz / 16 / 96) */
2187                err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2188                                      3, 0x40, 0x60, 0, NULL, 0, 1000);
2189                if (err < 0)
2190                        break;
2191
2192                err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2193                break;
2194        default:
2195                snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2196                err = -ENXIO;
2197                break;
2198        }
2199        if (err < 0) {
2200                kfree(umidi);
2201                return err;
2202        }
2203
2204        /* create rawmidi device */
2205        out_ports = 0;
2206        in_ports = 0;
2207        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2208                out_ports += hweight16(endpoints[i].out_cables);
2209                in_ports += hweight16(endpoints[i].in_cables);
2210        }
2211        err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2212        if (err < 0) {
2213                kfree(umidi);
2214                return err;
2215        }
2216
2217        /* create endpoint/port structures */
2218        if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2219                err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2220        else
2221                err = snd_usbmidi_create_endpoints(umidi, endpoints);
2222        if (err < 0) {
2223                snd_usbmidi_free(umidi);
2224                return err;
2225        }
2226
2227        list_add_tail(&umidi->list, midi_list);
2228
2229        for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2230                snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2231        return 0;
2232}
2233
2234EXPORT_SYMBOL(snd_usbmidi_create);
2235EXPORT_SYMBOL(snd_usbmidi_input_stop);
2236EXPORT_SYMBOL(snd_usbmidi_input_start);
2237EXPORT_SYMBOL(snd_usbmidi_disconnect);
2238