linux/arch/ia64/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * 04/11/17 Ashok Raj   <ashok.raj@intel.com> Added CPU Hotplug Support
   7 *
   8 * 2005-10-07 Keith Owens <kaos@sgi.com>
   9 *            Add notify_die() hooks.
  10 */
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/elf.h>
  14#include <linux/errno.h>
  15#include <linux/kallsyms.h>
  16#include <linux/kernel.h>
  17#include <linux/mm.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/notifier.h>
  21#include <linux/personality.h>
  22#include <linux/sched.h>
  23#include <linux/stddef.h>
  24#include <linux/thread_info.h>
  25#include <linux/unistd.h>
  26#include <linux/efi.h>
  27#include <linux/interrupt.h>
  28#include <linux/delay.h>
  29#include <linux/kdebug.h>
  30#include <linux/utsname.h>
  31#include <linux/tracehook.h>
  32#include <linux/rcupdate.h>
  33
  34#include <asm/cpu.h>
  35#include <asm/delay.h>
  36#include <asm/elf.h>
  37#include <asm/irq.h>
  38#include <asm/kexec.h>
  39#include <asm/pgalloc.h>
  40#include <asm/processor.h>
  41#include <asm/sal.h>
  42#include <asm/switch_to.h>
  43#include <asm/tlbflush.h>
  44#include <asm/uaccess.h>
  45#include <asm/unwind.h>
  46#include <asm/user.h>
  47
  48#include "entry.h"
  49
  50#ifdef CONFIG_PERFMON
  51# include <asm/perfmon.h>
  52#endif
  53
  54#include "sigframe.h"
  55
  56void (*ia64_mark_idle)(int);
  57
  58unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  59EXPORT_SYMBOL(boot_option_idle_override);
  60void (*pm_idle) (void);
  61EXPORT_SYMBOL(pm_idle);
  62void (*pm_power_off) (void);
  63EXPORT_SYMBOL(pm_power_off);
  64
  65void
  66ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  67{
  68        unsigned long ip, sp, bsp;
  69        char buf[128];                  /* don't make it so big that it overflows the stack! */
  70
  71        printk("\nCall Trace:\n");
  72        do {
  73                unw_get_ip(info, &ip);
  74                if (ip == 0)
  75                        break;
  76
  77                unw_get_sp(info, &sp);
  78                unw_get_bsp(info, &bsp);
  79                snprintf(buf, sizeof(buf),
  80                         " [<%016lx>] %%s\n"
  81                         "                                sp=%016lx bsp=%016lx\n",
  82                         ip, sp, bsp);
  83                print_symbol(buf, ip);
  84        } while (unw_unwind(info) >= 0);
  85}
  86
  87void
  88show_stack (struct task_struct *task, unsigned long *sp)
  89{
  90        if (!task)
  91                unw_init_running(ia64_do_show_stack, NULL);
  92        else {
  93                struct unw_frame_info info;
  94
  95                unw_init_from_blocked_task(&info, task);
  96                ia64_do_show_stack(&info, NULL);
  97        }
  98}
  99
 100void
 101dump_stack (void)
 102{
 103        show_stack(NULL, NULL);
 104}
 105
 106EXPORT_SYMBOL(dump_stack);
 107
 108void
 109show_regs (struct pt_regs *regs)
 110{
 111        unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
 112
 113        print_modules();
 114        printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
 115                        smp_processor_id(), current->comm);
 116        printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
 117               regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
 118               init_utsname()->release);
 119        print_symbol("ip is at %s\n", ip);
 120        printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
 121               regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
 122        printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
 123               regs->ar_rnat, regs->ar_bspstore, regs->pr);
 124        printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
 125               regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
 126        printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
 127        printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
 128        printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
 129               regs->f6.u.bits[1], regs->f6.u.bits[0],
 130               regs->f7.u.bits[1], regs->f7.u.bits[0]);
 131        printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
 132               regs->f8.u.bits[1], regs->f8.u.bits[0],
 133               regs->f9.u.bits[1], regs->f9.u.bits[0]);
 134        printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
 135               regs->f10.u.bits[1], regs->f10.u.bits[0],
 136               regs->f11.u.bits[1], regs->f11.u.bits[0]);
 137
 138        printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
 139        printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
 140        printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
 141        printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
 142        printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
 143        printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
 144        printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
 145        printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
 146        printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
 147
 148        if (user_mode(regs)) {
 149                /* print the stacked registers */
 150                unsigned long val, *bsp, ndirty;
 151                int i, sof, is_nat = 0;
 152
 153                sof = regs->cr_ifs & 0x7f;      /* size of frame */
 154                ndirty = (regs->loadrs >> 19);
 155                bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
 156                for (i = 0; i < sof; ++i) {
 157                        get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
 158                        printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
 159                               ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
 160                }
 161        } else
 162                show_stack(NULL, NULL);
 163}
 164
 165/* local support for deprecated console_print */
 166void
 167console_print(const char *s)
 168{
 169        printk(KERN_EMERG "%s", s);
 170}
 171
 172void
 173do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
 174{
 175        if (fsys_mode(current, &scr->pt)) {
 176                /*
 177                 * defer signal-handling etc. until we return to
 178                 * privilege-level 0.
 179                 */
 180                if (!ia64_psr(&scr->pt)->lp)
 181                        ia64_psr(&scr->pt)->lp = 1;
 182                return;
 183        }
 184
 185#ifdef CONFIG_PERFMON
 186        if (current->thread.pfm_needs_checking)
 187                /*
 188                 * Note: pfm_handle_work() allow us to call it with interrupts
 189                 * disabled, and may enable interrupts within the function.
 190                 */
 191                pfm_handle_work();
 192#endif
 193
 194        /* deal with pending signal delivery */
 195        if (test_thread_flag(TIF_SIGPENDING)) {
 196                local_irq_enable();     /* force interrupt enable */
 197                ia64_do_signal(scr, in_syscall);
 198        }
 199
 200        if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
 201                local_irq_enable();     /* force interrupt enable */
 202                tracehook_notify_resume(&scr->pt);
 203        }
 204
 205        /* copy user rbs to kernel rbs */
 206        if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
 207                local_irq_enable();     /* force interrupt enable */
 208                ia64_sync_krbs();
 209        }
 210
 211        local_irq_disable();    /* force interrupt disable */
 212}
 213
 214static int pal_halt        = 1;
 215static int can_do_pal_halt = 1;
 216
 217static int __init nohalt_setup(char * str)
 218{
 219        pal_halt = can_do_pal_halt = 0;
 220        return 1;
 221}
 222__setup("nohalt", nohalt_setup);
 223
 224void
 225update_pal_halt_status(int status)
 226{
 227        can_do_pal_halt = pal_halt && status;
 228}
 229
 230/*
 231 * We use this if we don't have any better idle routine..
 232 */
 233void
 234default_idle (void)
 235{
 236        local_irq_enable();
 237        while (!need_resched()) {
 238                if (can_do_pal_halt) {
 239                        local_irq_disable();
 240                        if (!need_resched()) {
 241                                safe_halt();
 242                        }
 243                        local_irq_enable();
 244                } else
 245                        cpu_relax();
 246        }
 247}
 248
 249#ifdef CONFIG_HOTPLUG_CPU
 250/* We don't actually take CPU down, just spin without interrupts. */
 251static inline void play_dead(void)
 252{
 253        unsigned int this_cpu = smp_processor_id();
 254
 255        /* Ack it */
 256        __get_cpu_var(cpu_state) = CPU_DEAD;
 257
 258        max_xtp();
 259        local_irq_disable();
 260        idle_task_exit();
 261        ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
 262        /*
 263         * The above is a point of no-return, the processor is
 264         * expected to be in SAL loop now.
 265         */
 266        BUG();
 267}
 268#else
 269static inline void play_dead(void)
 270{
 271        BUG();
 272}
 273#endif /* CONFIG_HOTPLUG_CPU */
 274
 275void __attribute__((noreturn))
 276cpu_idle (void)
 277{
 278        void (*mark_idle)(int) = ia64_mark_idle;
 279        int cpu = smp_processor_id();
 280
 281        /* endless idle loop with no priority at all */
 282        while (1) {
 283                rcu_idle_enter();
 284                if (can_do_pal_halt) {
 285                        current_thread_info()->status &= ~TS_POLLING;
 286                        /*
 287                         * TS_POLLING-cleared state must be visible before we
 288                         * test NEED_RESCHED:
 289                         */
 290                        smp_mb();
 291                } else {
 292                        current_thread_info()->status |= TS_POLLING;
 293                }
 294
 295                if (!need_resched()) {
 296                        void (*idle)(void);
 297#ifdef CONFIG_SMP
 298                        min_xtp();
 299#endif
 300                        rmb();
 301                        if (mark_idle)
 302                                (*mark_idle)(1);
 303
 304                        idle = pm_idle;
 305                        if (!idle)
 306                                idle = default_idle;
 307                        (*idle)();
 308                        if (mark_idle)
 309                                (*mark_idle)(0);
 310#ifdef CONFIG_SMP
 311                        normal_xtp();
 312#endif
 313                }
 314                rcu_idle_exit();
 315                schedule_preempt_disabled();
 316                check_pgt_cache();
 317                if (cpu_is_offline(cpu))
 318                        play_dead();
 319        }
 320}
 321
 322void
 323ia64_save_extra (struct task_struct *task)
 324{
 325#ifdef CONFIG_PERFMON
 326        unsigned long info;
 327#endif
 328
 329        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 330                ia64_save_debug_regs(&task->thread.dbr[0]);
 331
 332#ifdef CONFIG_PERFMON
 333        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 334                pfm_save_regs(task);
 335
 336        info = __get_cpu_var(pfm_syst_info);
 337        if (info & PFM_CPUINFO_SYST_WIDE)
 338                pfm_syst_wide_update_task(task, info, 0);
 339#endif
 340}
 341
 342void
 343ia64_load_extra (struct task_struct *task)
 344{
 345#ifdef CONFIG_PERFMON
 346        unsigned long info;
 347#endif
 348
 349        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 350                ia64_load_debug_regs(&task->thread.dbr[0]);
 351
 352#ifdef CONFIG_PERFMON
 353        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 354                pfm_load_regs(task);
 355
 356        info = __get_cpu_var(pfm_syst_info);
 357        if (info & PFM_CPUINFO_SYST_WIDE) 
 358                pfm_syst_wide_update_task(task, info, 1);
 359#endif
 360}
 361
 362/*
 363 * Copy the state of an ia-64 thread.
 364 *
 365 * We get here through the following  call chain:
 366 *
 367 *      from user-level:        from kernel:
 368 *
 369 *      <clone syscall>         <some kernel call frames>
 370 *      sys_clone                  :
 371 *      do_fork                 do_fork
 372 *      copy_thread             copy_thread
 373 *
 374 * This means that the stack layout is as follows:
 375 *
 376 *      +---------------------+ (highest addr)
 377 *      |   struct pt_regs    |
 378 *      +---------------------+
 379 *      | struct switch_stack |
 380 *      +---------------------+
 381 *      |                     |
 382 *      |    memory stack     |
 383 *      |                     | <-- sp (lowest addr)
 384 *      +---------------------+
 385 *
 386 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
 387 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
 388 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
 389 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
 390 * the stack is page aligned and the page size is at least 4KB, this is always the case,
 391 * so there is nothing to worry about.
 392 */
 393int
 394copy_thread(unsigned long clone_flags,
 395             unsigned long user_stack_base, unsigned long user_stack_size,
 396             struct task_struct *p, struct pt_regs *regs)
 397{
 398        extern char ia64_ret_from_clone;
 399        struct switch_stack *child_stack, *stack;
 400        unsigned long rbs, child_rbs, rbs_size;
 401        struct pt_regs *child_ptregs;
 402        int retval = 0;
 403
 404#ifdef CONFIG_SMP
 405        /*
 406         * For SMP idle threads, fork_by_hand() calls do_fork with
 407         * NULL regs.
 408         */
 409        if (!regs)
 410                return 0;
 411#endif
 412
 413        stack = ((struct switch_stack *) regs) - 1;
 414
 415        child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
 416        child_stack = (struct switch_stack *) child_ptregs - 1;
 417
 418        /* copy parent's switch_stack & pt_regs to child: */
 419        memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
 420
 421        rbs = (unsigned long) current + IA64_RBS_OFFSET;
 422        child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
 423        rbs_size = stack->ar_bspstore - rbs;
 424
 425        /* copy the parent's register backing store to the child: */
 426        memcpy((void *) child_rbs, (void *) rbs, rbs_size);
 427
 428        if (likely(user_mode(child_ptregs))) {
 429                if (clone_flags & CLONE_SETTLS)
 430                        child_ptregs->r13 = regs->r16;  /* see sys_clone2() in entry.S */
 431                if (user_stack_base) {
 432                        child_ptregs->r12 = user_stack_base + user_stack_size - 16;
 433                        child_ptregs->ar_bspstore = user_stack_base;
 434                        child_ptregs->ar_rnat = 0;
 435                        child_ptregs->loadrs = 0;
 436                }
 437        } else {
 438                /*
 439                 * Note: we simply preserve the relative position of
 440                 * the stack pointer here.  There is no need to
 441                 * allocate a scratch area here, since that will have
 442                 * been taken care of by the caller of sys_clone()
 443                 * already.
 444                 */
 445                child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
 446                child_ptregs->r13 = (unsigned long) p;          /* set `current' pointer */
 447        }
 448        child_stack->ar_bspstore = child_rbs + rbs_size;
 449        child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 450
 451        /* copy parts of thread_struct: */
 452        p->thread.ksp = (unsigned long) child_stack - 16;
 453
 454        /* stop some PSR bits from being inherited.
 455         * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 456         * therefore we must specify them explicitly here and not include them in
 457         * IA64_PSR_BITS_TO_CLEAR.
 458         */
 459        child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 460                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 461
 462        /*
 463         * NOTE: The calling convention considers all floating point
 464         * registers in the high partition (fph) to be scratch.  Since
 465         * the only way to get to this point is through a system call,
 466         * we know that the values in fph are all dead.  Hence, there
 467         * is no need to inherit the fph state from the parent to the
 468         * child and all we have to do is to make sure that
 469         * IA64_THREAD_FPH_VALID is cleared in the child.
 470         *
 471         * XXX We could push this optimization a bit further by
 472         * clearing IA64_THREAD_FPH_VALID on ANY system call.
 473         * However, it's not clear this is worth doing.  Also, it
 474         * would be a slight deviation from the normal Linux system
 475         * call behavior where scratch registers are preserved across
 476         * system calls (unless used by the system call itself).
 477         */
 478#       define THREAD_FLAGS_TO_CLEAR    (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
 479                                         | IA64_THREAD_PM_VALID)
 480#       define THREAD_FLAGS_TO_SET      0
 481        p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
 482                           | THREAD_FLAGS_TO_SET);
 483        ia64_drop_fpu(p);       /* don't pick up stale state from a CPU's fph */
 484
 485#ifdef CONFIG_PERFMON
 486        if (current->thread.pfm_context)
 487                pfm_inherit(p, child_ptregs);
 488#endif
 489        return retval;
 490}
 491
 492static void
 493do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
 494{
 495        unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
 496        unsigned long uninitialized_var(ip);    /* GCC be quiet */
 497        elf_greg_t *dst = arg;
 498        struct pt_regs *pt;
 499        char nat;
 500        int i;
 501
 502        memset(dst, 0, sizeof(elf_gregset_t));  /* don't leak any kernel bits to user-level */
 503
 504        if (unw_unwind_to_user(info) < 0)
 505                return;
 506
 507        unw_get_sp(info, &sp);
 508        pt = (struct pt_regs *) (sp + 16);
 509
 510        urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
 511
 512        if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
 513                return;
 514
 515        ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
 516                  &ar_rnat);
 517
 518        /*
 519         * coredump format:
 520         *      r0-r31
 521         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
 522         *      predicate registers (p0-p63)
 523         *      b0-b7
 524         *      ip cfm user-mask
 525         *      ar.rsc ar.bsp ar.bspstore ar.rnat
 526         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
 527         */
 528
 529        /* r0 is zero */
 530        for (i = 1, mask = (1UL << i); i < 32; ++i) {
 531                unw_get_gr(info, i, &dst[i], &nat);
 532                if (nat)
 533                        nat_bits |= mask;
 534                mask <<= 1;
 535        }
 536        dst[32] = nat_bits;
 537        unw_get_pr(info, &dst[33]);
 538
 539        for (i = 0; i < 8; ++i)
 540                unw_get_br(info, i, &dst[34 + i]);
 541
 542        unw_get_rp(info, &ip);
 543        dst[42] = ip + ia64_psr(pt)->ri;
 544        dst[43] = cfm;
 545        dst[44] = pt->cr_ipsr & IA64_PSR_UM;
 546
 547        unw_get_ar(info, UNW_AR_RSC, &dst[45]);
 548        /*
 549         * For bsp and bspstore, unw_get_ar() would return the kernel
 550         * addresses, but we need the user-level addresses instead:
 551         */
 552        dst[46] = urbs_end;     /* note: by convention PT_AR_BSP points to the end of the urbs! */
 553        dst[47] = pt->ar_bspstore;
 554        dst[48] = ar_rnat;
 555        unw_get_ar(info, UNW_AR_CCV, &dst[49]);
 556        unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
 557        unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
 558        dst[52] = pt->ar_pfs;   /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
 559        unw_get_ar(info, UNW_AR_LC, &dst[53]);
 560        unw_get_ar(info, UNW_AR_EC, &dst[54]);
 561        unw_get_ar(info, UNW_AR_CSD, &dst[55]);
 562        unw_get_ar(info, UNW_AR_SSD, &dst[56]);
 563}
 564
 565void
 566do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
 567{
 568        elf_fpreg_t *dst = arg;
 569        int i;
 570
 571        memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
 572
 573        if (unw_unwind_to_user(info) < 0)
 574                return;
 575
 576        /* f0 is 0.0, f1 is 1.0 */
 577
 578        for (i = 2; i < 32; ++i)
 579                unw_get_fr(info, i, dst + i);
 580
 581        ia64_flush_fph(task);
 582        if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
 583                memcpy(dst + 32, task->thread.fph, 96*16);
 584}
 585
 586void
 587do_copy_regs (struct unw_frame_info *info, void *arg)
 588{
 589        do_copy_task_regs(current, info, arg);
 590}
 591
 592void
 593do_dump_fpu (struct unw_frame_info *info, void *arg)
 594{
 595        do_dump_task_fpu(current, info, arg);
 596}
 597
 598void
 599ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
 600{
 601        unw_init_running(do_copy_regs, dst);
 602}
 603
 604int
 605dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
 606{
 607        unw_init_running(do_dump_fpu, dst);
 608        return 1;       /* f0-f31 are always valid so we always return 1 */
 609}
 610
 611long
 612sys_execve (const char __user *filename,
 613            const char __user *const __user *argv,
 614            const char __user *const __user *envp,
 615            struct pt_regs *regs)
 616{
 617        struct filename *fname;
 618        int error;
 619
 620        fname = getname(filename);
 621        error = PTR_ERR(fname);
 622        if (IS_ERR(fname))
 623                goto out;
 624        error = do_execve(fname->name, argv, envp, regs);
 625        putname(fname);
 626out:
 627        return error;
 628}
 629
 630pid_t
 631kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
 632{
 633        extern void start_kernel_thread (void);
 634        unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
 635        struct {
 636                struct switch_stack sw;
 637                struct pt_regs pt;
 638        } regs;
 639
 640        memset(&regs, 0, sizeof(regs));
 641        regs.pt.cr_iip = helper_fptr[0];        /* set entry point (IP) */
 642        regs.pt.r1 = helper_fptr[1];            /* set GP */
 643        regs.pt.r9 = (unsigned long) fn;        /* 1st argument */
 644        regs.pt.r11 = (unsigned long) arg;      /* 2nd argument */
 645        /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
 646        regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
 647        regs.pt.cr_ifs = 1UL << 63;             /* mark as valid, empty frame */
 648        regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
 649        regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
 650        regs.sw.pr = (1 << PRED_KERNEL_STACK);
 651        return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
 652}
 653EXPORT_SYMBOL(kernel_thread);
 654
 655/* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
 656int
 657kernel_thread_helper (int (*fn)(void *), void *arg)
 658{
 659        return (*fn)(arg);
 660}
 661
 662/*
 663 * Flush thread state.  This is called when a thread does an execve().
 664 */
 665void
 666flush_thread (void)
 667{
 668        /* drop floating-point and debug-register state if it exists: */
 669        current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
 670        ia64_drop_fpu(current);
 671}
 672
 673/*
 674 * Clean up state associated with current thread.  This is called when
 675 * the thread calls exit().
 676 */
 677void
 678exit_thread (void)
 679{
 680
 681        ia64_drop_fpu(current);
 682#ifdef CONFIG_PERFMON
 683       /* if needed, stop monitoring and flush state to perfmon context */
 684        if (current->thread.pfm_context)
 685                pfm_exit_thread(current);
 686
 687        /* free debug register resources */
 688        if (current->thread.flags & IA64_THREAD_DBG_VALID)
 689                pfm_release_debug_registers(current);
 690#endif
 691}
 692
 693unsigned long
 694get_wchan (struct task_struct *p)
 695{
 696        struct unw_frame_info info;
 697        unsigned long ip;
 698        int count = 0;
 699
 700        if (!p || p == current || p->state == TASK_RUNNING)
 701                return 0;
 702
 703        /*
 704         * Note: p may not be a blocked task (it could be current or
 705         * another process running on some other CPU.  Rather than
 706         * trying to determine if p is really blocked, we just assume
 707         * it's blocked and rely on the unwind routines to fail
 708         * gracefully if the process wasn't really blocked after all.
 709         * --davidm 99/12/15
 710         */
 711        unw_init_from_blocked_task(&info, p);
 712        do {
 713                if (p->state == TASK_RUNNING)
 714                        return 0;
 715                if (unw_unwind(&info) < 0)
 716                        return 0;
 717                unw_get_ip(&info, &ip);
 718                if (!in_sched_functions(ip))
 719                        return ip;
 720        } while (count++ < 16);
 721        return 0;
 722}
 723
 724void
 725cpu_halt (void)
 726{
 727        pal_power_mgmt_info_u_t power_info[8];
 728        unsigned long min_power;
 729        int i, min_power_state;
 730
 731        if (ia64_pal_halt_info(power_info) != 0)
 732                return;
 733
 734        min_power_state = 0;
 735        min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
 736        for (i = 1; i < 8; ++i)
 737                if (power_info[i].pal_power_mgmt_info_s.im
 738                    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
 739                        min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
 740                        min_power_state = i;
 741                }
 742
 743        while (1)
 744                ia64_pal_halt(min_power_state);
 745}
 746
 747void machine_shutdown(void)
 748{
 749#ifdef CONFIG_HOTPLUG_CPU
 750        int cpu;
 751
 752        for_each_online_cpu(cpu) {
 753                if (cpu != smp_processor_id())
 754                        cpu_down(cpu);
 755        }
 756#endif
 757#ifdef CONFIG_KEXEC
 758        kexec_disable_iosapic();
 759#endif
 760}
 761
 762void
 763machine_restart (char *restart_cmd)
 764{
 765        (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
 766        (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
 767}
 768
 769void
 770machine_halt (void)
 771{
 772        (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
 773        cpu_halt();
 774}
 775
 776void
 777machine_power_off (void)
 778{
 779        if (pm_power_off)
 780                pm_power_off();
 781        machine_halt();
 782}
 783
 784